xref: /openbmc/qemu/accel/tcg/translate-all.c (revision f18793b0)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
23 
24 
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/address-spaces.h"
50 #endif
51 
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/error-report.h"
57 #include "qemu/timer.h"
58 #include "qemu/main-loop.h"
59 #include "exec/log.h"
60 #include "sysemu/cpus.h"
61 
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66 
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72 
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78 
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation.  */
81 #undef DEBUG_TB_CHECK
82 #endif
83 
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89 
90 /* Access to the various translations structures need to be serialised via locks
91  * for consistency.
92  * In user-mode emulation access to the memory related structures are protected
93  * with mmap_lock.
94  * In !user-mode we use per-page locks.
95  */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101 
102 #define SMC_BITMAP_USE_THRESHOLD 10
103 
104 typedef struct PageDesc {
105     /* list of TBs intersecting this ram page */
106     uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108     /* in order to optimize self modifying code, we count the number
109        of lookups we do to a given page to use a bitmap */
110     unsigned long *code_bitmap;
111     unsigned int code_write_count;
112 #else
113     unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116     QemuSpin lock;
117 #endif
118 } PageDesc;
119 
120 /**
121  * struct page_entry - page descriptor entry
122  * @pd:     pointer to the &struct PageDesc of the page this entry represents
123  * @index:  page index of the page
124  * @locked: whether the page is locked
125  *
126  * This struct helps us keep track of the locked state of a page, without
127  * bloating &struct PageDesc.
128  *
129  * A page lock protects accesses to all fields of &struct PageDesc.
130  *
131  * See also: &struct page_collection.
132  */
133 struct page_entry {
134     PageDesc *pd;
135     tb_page_addr_t index;
136     bool locked;
137 };
138 
139 /**
140  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141  * @tree:   Binary search tree (BST) of the pages, with key == page index
142  * @max:    Pointer to the page in @tree with the highest page index
143  *
144  * To avoid deadlock we lock pages in ascending order of page index.
145  * When operating on a set of pages, we need to keep track of them so that
146  * we can lock them in order and also unlock them later. For this we collect
147  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148  * @tree implementation we use does not provide an O(1) operation to obtain the
149  * highest-ranked element, we use @max to keep track of the inserted page
150  * with the highest index. This is valuable because if a page is not in
151  * the tree and its index is higher than @max's, then we can lock it
152  * without breaking the locking order rule.
153  *
154  * Note on naming: 'struct page_set' would be shorter, but we already have a few
155  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156  *
157  * See also: page_collection_lock().
158  */
159 struct page_collection {
160     GTree *tree;
161     struct page_entry *max;
162 };
163 
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
166     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
167          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
171     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 
173 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
174     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 
176 /* In system mode we want L1_MAP to be based on ram offsets,
177    while in user mode we want it to be based on virtual addresses.  */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
187 
188 /* Size of the L2 (and L3, etc) page tables.  */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
191 
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
195                   * BITS_PER_BYTE);
196 
197 /*
198  * L1 Mapping properties
199  */
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
203 
204 /* The bottom level has pointers to PageDesc, and is indexed by
205  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206  */
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210 
211 static void *l1_map[V_L1_MAX_SIZE];
212 
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
218 
219 static void page_table_config_init(void)
220 {
221     uint32_t v_l1_bits;
222 
223     assert(TARGET_PAGE_BITS);
224     /* The bits remaining after N lower levels of page tables.  */
225     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226     if (v_l1_bits < V_L1_MIN_BITS) {
227         v_l1_bits += V_L2_BITS;
228     }
229 
230     v_l1_size = 1 << v_l1_bits;
231     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233 
234     assert(v_l1_bits <= V_L1_MAX_BITS);
235     assert(v_l1_shift % V_L2_BITS == 0);
236     assert(v_l2_levels >= 0);
237 }
238 
239 void cpu_gen_init(void)
240 {
241     tcg_context_init(&tcg_init_ctx);
242 }
243 
244 /* Encode VAL as a signed leb128 sequence at P.
245    Return P incremented past the encoded value.  */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
247 {
248     int more, byte;
249 
250     do {
251         byte = val & 0x7f;
252         val >>= 7;
253         more = !((val == 0 && (byte & 0x40) == 0)
254                  || (val == -1 && (byte & 0x40) != 0));
255         if (more) {
256             byte |= 0x80;
257         }
258         *p++ = byte;
259     } while (more);
260 
261     return p;
262 }
263 
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265    decoded value.  Return the decoded value.  */
266 static target_long decode_sleb128(uint8_t **pp)
267 {
268     uint8_t *p = *pp;
269     target_long val = 0;
270     int byte, shift = 0;
271 
272     do {
273         byte = *p++;
274         val |= (target_ulong)(byte & 0x7f) << shift;
275         shift += 7;
276     } while (byte & 0x80);
277     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278         val |= -(target_ulong)1 << shift;
279     }
280 
281     *pp = p;
282     return val;
283 }
284 
285 /* Encode the data collected about the instructions while compiling TB.
286    Place the data at BLOCK, and return the number of bytes consumed.
287 
288    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289    which come from the target's insn_start data, followed by a uintptr_t
290    which comes from the host pc of the end of the code implementing the insn.
291 
292    Each line of the table is encoded as sleb128 deltas from the previous
293    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294    That is, the first column is seeded with the guest pc, the last column
295    with the host pc, and the middle columns with zeros.  */
296 
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 {
299     uint8_t *highwater = tcg_ctx->code_gen_highwater;
300     uint8_t *p = block;
301     int i, j, n;
302 
303     for (i = 0, n = tb->icount; i < n; ++i) {
304         target_ulong prev;
305 
306         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307             if (i == 0) {
308                 prev = (j == 0 ? tb->pc : 0);
309             } else {
310                 prev = tcg_ctx->gen_insn_data[i - 1][j];
311             }
312             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313         }
314         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316 
317         /* Test for (pending) buffer overflow.  The assumption is that any
318            one row beginning below the high water mark cannot overrun
319            the buffer completely.  Thus we can test for overflow after
320            encoding a row without having to check during encoding.  */
321         if (unlikely(p > highwater)) {
322             return -1;
323         }
324     }
325 
326     return p - block;
327 }
328 
329 /* The cpu state corresponding to 'searched_pc' is restored.
330  * When reset_icount is true, current TB will be interrupted and
331  * icount should be recalculated.
332  */
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334                                      uintptr_t searched_pc, bool reset_icount)
335 {
336     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338     CPUArchState *env = cpu->env_ptr;
339     uint8_t *p = tb->tc.ptr + tb->tc.size;
340     int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342     TCGProfile *prof = &tcg_ctx->prof;
343     int64_t ti = profile_getclock();
344 #endif
345 
346     searched_pc -= GETPC_ADJ;
347 
348     if (searched_pc < host_pc) {
349         return -1;
350     }
351 
352     /* Reconstruct the stored insn data while looking for the point at
353        which the end of the insn exceeds the searched_pc.  */
354     for (i = 0; i < num_insns; ++i) {
355         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356             data[j] += decode_sleb128(&p);
357         }
358         host_pc += decode_sleb128(&p);
359         if (host_pc > searched_pc) {
360             goto found;
361         }
362     }
363     return -1;
364 
365  found:
366     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367         assert(use_icount);
368         /* Reset the cycle counter to the start of the block
369            and shift if to the number of actually executed instructions */
370         cpu->icount_decr.u16.low += num_insns - i;
371     }
372     restore_state_to_opc(env, tb, data);
373 
374 #ifdef CONFIG_PROFILER
375     atomic_set(&prof->restore_time,
376                 prof->restore_time + profile_getclock() - ti);
377     atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379     return 0;
380 }
381 
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 {
384     TranslationBlock *tb;
385     bool r = false;
386     uintptr_t check_offset;
387 
388     /* The host_pc has to be in the region of current code buffer. If
389      * it is not we will not be able to resolve it here. The two cases
390      * where host_pc will not be correct are:
391      *
392      *  - fault during translation (instruction fetch)
393      *  - fault from helper (not using GETPC() macro)
394      *
395      * Either way we need return early as we can't resolve it here.
396      *
397      * We are using unsigned arithmetic so if host_pc <
398      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399      * above the code_gen_buffer_size
400      */
401     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402 
403     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404         tb = tcg_tb_lookup(host_pc);
405         if (tb) {
406             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407             if (tb_cflags(tb) & CF_NOCACHE) {
408                 /* one-shot translation, invalidate it immediately */
409                 tb_phys_invalidate(tb, -1);
410                 tcg_tb_remove(tb);
411             }
412             r = true;
413         }
414     }
415 
416     return r;
417 }
418 
419 static void page_init(void)
420 {
421     page_size_init();
422     page_table_config_init();
423 
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425     {
426 #ifdef HAVE_KINFO_GETVMMAP
427         struct kinfo_vmentry *freep;
428         int i, cnt;
429 
430         freep = kinfo_getvmmap(getpid(), &cnt);
431         if (freep) {
432             mmap_lock();
433             for (i = 0; i < cnt; i++) {
434                 unsigned long startaddr, endaddr;
435 
436                 startaddr = freep[i].kve_start;
437                 endaddr = freep[i].kve_end;
438                 if (h2g_valid(startaddr)) {
439                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 
441                     if (h2g_valid(endaddr)) {
442                         endaddr = h2g(endaddr);
443                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444                     } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446                         endaddr = ~0ul;
447                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449                     }
450                 }
451             }
452             free(freep);
453             mmap_unlock();
454         }
455 #else
456         FILE *f;
457 
458         last_brk = (unsigned long)sbrk(0);
459 
460         f = fopen("/compat/linux/proc/self/maps", "r");
461         if (f) {
462             mmap_lock();
463 
464             do {
465                 unsigned long startaddr, endaddr;
466                 int n;
467 
468                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 
470                 if (n == 2 && h2g_valid(startaddr)) {
471                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 
473                     if (h2g_valid(endaddr)) {
474                         endaddr = h2g(endaddr);
475                     } else {
476                         endaddr = ~0ul;
477                     }
478                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479                 }
480             } while (!feof(f));
481 
482             fclose(f);
483             mmap_unlock();
484         }
485 #endif
486     }
487 #endif
488 }
489 
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492     PageDesc *pd;
493     void **lp;
494     int i;
495 
496     /* Level 1.  Always allocated.  */
497     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498 
499     /* Level 2..N-1.  */
500     for (i = v_l2_levels; i > 0; i--) {
501         void **p = atomic_rcu_read(lp);
502 
503         if (p == NULL) {
504             void *existing;
505 
506             if (!alloc) {
507                 return NULL;
508             }
509             p = g_new0(void *, V_L2_SIZE);
510             existing = atomic_cmpxchg(lp, NULL, p);
511             if (unlikely(existing)) {
512                 g_free(p);
513                 p = existing;
514             }
515         }
516 
517         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518     }
519 
520     pd = atomic_rcu_read(lp);
521     if (pd == NULL) {
522         void *existing;
523 
524         if (!alloc) {
525             return NULL;
526         }
527         pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529         {
530             int i;
531 
532             for (i = 0; i < V_L2_SIZE; i++) {
533                 qemu_spin_init(&pd[i].lock);
534             }
535         }
536 #endif
537         existing = atomic_cmpxchg(lp, NULL, pd);
538         if (unlikely(existing)) {
539             g_free(pd);
540             pd = existing;
541         }
542     }
543 
544     return pd + (index & (V_L2_SIZE - 1));
545 }
546 
547 static inline PageDesc *page_find(tb_page_addr_t index)
548 {
549     return page_find_alloc(index, 0);
550 }
551 
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554 
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
557 
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559 
560 static inline void page_lock(PageDesc *pd)
561 { }
562 
563 static inline void page_unlock(PageDesc *pd)
564 { }
565 
566 static inline void page_lock_tb(const TranslationBlock *tb)
567 { }
568 
569 static inline void page_unlock_tb(const TranslationBlock *tb)
570 { }
571 
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
574 {
575     return NULL;
576 }
577 
578 void page_collection_unlock(struct page_collection *set)
579 { }
580 #else /* !CONFIG_USER_ONLY */
581 
582 #ifdef CONFIG_DEBUG_TCG
583 
584 static __thread GHashTable *ht_pages_locked_debug;
585 
586 static void ht_pages_locked_debug_init(void)
587 {
588     if (ht_pages_locked_debug) {
589         return;
590     }
591     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
592 }
593 
594 static bool page_is_locked(const PageDesc *pd)
595 {
596     PageDesc *found;
597 
598     ht_pages_locked_debug_init();
599     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600     return !!found;
601 }
602 
603 static void page_lock__debug(PageDesc *pd)
604 {
605     ht_pages_locked_debug_init();
606     g_assert(!page_is_locked(pd));
607     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
608 }
609 
610 static void page_unlock__debug(const PageDesc *pd)
611 {
612     bool removed;
613 
614     ht_pages_locked_debug_init();
615     g_assert(page_is_locked(pd));
616     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617     g_assert(removed);
618 }
619 
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 {
623     if (unlikely(!page_is_locked(pd))) {
624         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625                      pd, file, line);
626         abort();
627     }
628 }
629 
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631 
632 void assert_no_pages_locked(void)
633 {
634     ht_pages_locked_debug_init();
635     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
636 }
637 
638 #else /* !CONFIG_DEBUG_TCG */
639 
640 #define assert_page_locked(pd)
641 
642 static inline void page_lock__debug(const PageDesc *pd)
643 {
644 }
645 
646 static inline void page_unlock__debug(const PageDesc *pd)
647 {
648 }
649 
650 #endif /* CONFIG_DEBUG_TCG */
651 
652 static inline void page_lock(PageDesc *pd)
653 {
654     page_lock__debug(pd);
655     qemu_spin_lock(&pd->lock);
656 }
657 
658 static inline void page_unlock(PageDesc *pd)
659 {
660     qemu_spin_unlock(&pd->lock);
661     page_unlock__debug(pd);
662 }
663 
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
666 {
667     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
668 }
669 
670 static inline void page_unlock_tb(const TranslationBlock *tb)
671 {
672     page_unlock(page_find(tb->page_addr[0] >> TARGET_PAGE_BITS));
673     if (unlikely(tb->page_addr[1] != -1)) {
674         page_unlock(page_find(tb->page_addr[1] >> TARGET_PAGE_BITS));
675     }
676 }
677 
678 static inline struct page_entry *
679 page_entry_new(PageDesc *pd, tb_page_addr_t index)
680 {
681     struct page_entry *pe = g_malloc(sizeof(*pe));
682 
683     pe->index = index;
684     pe->pd = pd;
685     pe->locked = false;
686     return pe;
687 }
688 
689 static void page_entry_destroy(gpointer p)
690 {
691     struct page_entry *pe = p;
692 
693     g_assert(pe->locked);
694     page_unlock(pe->pd);
695     g_free(pe);
696 }
697 
698 /* returns false on success */
699 static bool page_entry_trylock(struct page_entry *pe)
700 {
701     bool busy;
702 
703     busy = qemu_spin_trylock(&pe->pd->lock);
704     if (!busy) {
705         g_assert(!pe->locked);
706         pe->locked = true;
707         page_lock__debug(pe->pd);
708     }
709     return busy;
710 }
711 
712 static void do_page_entry_lock(struct page_entry *pe)
713 {
714     page_lock(pe->pd);
715     g_assert(!pe->locked);
716     pe->locked = true;
717 }
718 
719 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
720 {
721     struct page_entry *pe = value;
722 
723     do_page_entry_lock(pe);
724     return FALSE;
725 }
726 
727 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
728 {
729     struct page_entry *pe = value;
730 
731     if (pe->locked) {
732         pe->locked = false;
733         page_unlock(pe->pd);
734     }
735     return FALSE;
736 }
737 
738 /*
739  * Trylock a page, and if successful, add the page to a collection.
740  * Returns true ("busy") if the page could not be locked; false otherwise.
741  */
742 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
743 {
744     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
745     struct page_entry *pe;
746     PageDesc *pd;
747 
748     pe = g_tree_lookup(set->tree, &index);
749     if (pe) {
750         return false;
751     }
752 
753     pd = page_find(index);
754     if (pd == NULL) {
755         return false;
756     }
757 
758     pe = page_entry_new(pd, index);
759     g_tree_insert(set->tree, &pe->index, pe);
760 
761     /*
762      * If this is either (1) the first insertion or (2) a page whose index
763      * is higher than any other so far, just lock the page and move on.
764      */
765     if (set->max == NULL || pe->index > set->max->index) {
766         set->max = pe;
767         do_page_entry_lock(pe);
768         return false;
769     }
770     /*
771      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
772      * locks in order.
773      */
774     return page_entry_trylock(pe);
775 }
776 
777 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
778 {
779     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
780     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
781 
782     if (a == b) {
783         return 0;
784     } else if (a < b) {
785         return -1;
786     }
787     return 1;
788 }
789 
790 /*
791  * Lock a range of pages ([@start,@end[) as well as the pages of all
792  * intersecting TBs.
793  * Locking order: acquire locks in ascending order of page index.
794  */
795 struct page_collection *
796 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
797 {
798     struct page_collection *set = g_malloc(sizeof(*set));
799     tb_page_addr_t index;
800     PageDesc *pd;
801 
802     start >>= TARGET_PAGE_BITS;
803     end   >>= TARGET_PAGE_BITS;
804     g_assert(start <= end);
805 
806     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
807                                 page_entry_destroy);
808     set->max = NULL;
809     assert_no_pages_locked();
810 
811  retry:
812     g_tree_foreach(set->tree, page_entry_lock, NULL);
813 
814     for (index = start; index <= end; index++) {
815         TranslationBlock *tb;
816         int n;
817 
818         pd = page_find(index);
819         if (pd == NULL) {
820             continue;
821         }
822         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
823             g_tree_foreach(set->tree, page_entry_unlock, NULL);
824             goto retry;
825         }
826         assert_page_locked(pd);
827         PAGE_FOR_EACH_TB(pd, tb, n) {
828             if (page_trylock_add(set, tb->page_addr[0]) ||
829                 (tb->page_addr[1] != -1 &&
830                  page_trylock_add(set, tb->page_addr[1]))) {
831                 /* drop all locks, and reacquire in order */
832                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
833                 goto retry;
834             }
835         }
836     }
837     return set;
838 }
839 
840 void page_collection_unlock(struct page_collection *set)
841 {
842     /* entries are unlocked and freed via page_entry_destroy */
843     g_tree_destroy(set->tree);
844     g_free(set);
845 }
846 
847 #endif /* !CONFIG_USER_ONLY */
848 
849 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
850                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
851 {
852     PageDesc *p1, *p2;
853 
854     assert_memory_lock();
855     g_assert(phys1 != -1 && phys1 != phys2);
856     p1 = page_find_alloc(phys1 >> TARGET_PAGE_BITS, alloc);
857     if (ret_p1) {
858         *ret_p1 = p1;
859     }
860     if (likely(phys2 == -1)) {
861         page_lock(p1);
862         return;
863     }
864     p2 = page_find_alloc(phys2 >> TARGET_PAGE_BITS, alloc);
865     if (ret_p2) {
866         *ret_p2 = p2;
867     }
868     if (phys1 < phys2) {
869         page_lock(p1);
870         page_lock(p2);
871     } else {
872         page_lock(p2);
873         page_lock(p1);
874     }
875 }
876 
877 #if defined(CONFIG_USER_ONLY)
878 /* Currently it is not recommended to allocate big chunks of data in
879    user mode. It will change when a dedicated libc will be used.  */
880 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
881    region in which the guest needs to run.  Revisit this.  */
882 #define USE_STATIC_CODE_GEN_BUFFER
883 #endif
884 
885 /* Minimum size of the code gen buffer.  This number is randomly chosen,
886    but not so small that we can't have a fair number of TB's live.  */
887 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
888 
889 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
890    indicated, this is constrained by the range of direct branches on the
891    host cpu, as used by the TCG implementation of goto_tb.  */
892 #if defined(__x86_64__)
893 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
894 #elif defined(__sparc__)
895 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
896 #elif defined(__powerpc64__)
897 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
898 #elif defined(__powerpc__)
899 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
900 #elif defined(__aarch64__)
901 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
902 #elif defined(__s390x__)
903   /* We have a +- 4GB range on the branches; leave some slop.  */
904 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
905 #elif defined(__mips__)
906   /* We have a 256MB branch region, but leave room to make sure the
907      main executable is also within that region.  */
908 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
909 #else
910 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
911 #endif
912 
913 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
914 
915 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
916   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
917    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
918 
919 static inline size_t size_code_gen_buffer(size_t tb_size)
920 {
921     /* Size the buffer.  */
922     if (tb_size == 0) {
923 #ifdef USE_STATIC_CODE_GEN_BUFFER
924         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
925 #else
926         /* ??? Needs adjustments.  */
927         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
928            static buffer, we could size this on RESERVED_VA, on the text
929            segment size of the executable, or continue to use the default.  */
930         tb_size = (unsigned long)(ram_size / 4);
931 #endif
932     }
933     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
934         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
935     }
936     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
937         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
938     }
939     return tb_size;
940 }
941 
942 #ifdef __mips__
943 /* In order to use J and JAL within the code_gen_buffer, we require
944    that the buffer not cross a 256MB boundary.  */
945 static inline bool cross_256mb(void *addr, size_t size)
946 {
947     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
948 }
949 
950 /* We weren't able to allocate a buffer without crossing that boundary,
951    so make do with the larger portion of the buffer that doesn't cross.
952    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
953 static inline void *split_cross_256mb(void *buf1, size_t size1)
954 {
955     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
956     size_t size2 = buf1 + size1 - buf2;
957 
958     size1 = buf2 - buf1;
959     if (size1 < size2) {
960         size1 = size2;
961         buf1 = buf2;
962     }
963 
964     tcg_ctx->code_gen_buffer_size = size1;
965     return buf1;
966 }
967 #endif
968 
969 #ifdef USE_STATIC_CODE_GEN_BUFFER
970 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
971     __attribute__((aligned(CODE_GEN_ALIGN)));
972 
973 static inline void *alloc_code_gen_buffer(void)
974 {
975     void *buf = static_code_gen_buffer;
976     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
977     size_t size;
978 
979     /* page-align the beginning and end of the buffer */
980     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
981     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
982 
983     size = end - buf;
984 
985     /* Honor a command-line option limiting the size of the buffer.  */
986     if (size > tcg_ctx->code_gen_buffer_size) {
987         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
988                                qemu_real_host_page_size);
989     }
990     tcg_ctx->code_gen_buffer_size = size;
991 
992 #ifdef __mips__
993     if (cross_256mb(buf, size)) {
994         buf = split_cross_256mb(buf, size);
995         size = tcg_ctx->code_gen_buffer_size;
996     }
997 #endif
998 
999     if (qemu_mprotect_rwx(buf, size)) {
1000         abort();
1001     }
1002     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1003 
1004     return buf;
1005 }
1006 #elif defined(_WIN32)
1007 static inline void *alloc_code_gen_buffer(void)
1008 {
1009     size_t size = tcg_ctx->code_gen_buffer_size;
1010     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1011                         PAGE_EXECUTE_READWRITE);
1012 }
1013 #else
1014 static inline void *alloc_code_gen_buffer(void)
1015 {
1016     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1017     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1018     uintptr_t start = 0;
1019     size_t size = tcg_ctx->code_gen_buffer_size;
1020     void *buf;
1021 
1022     /* Constrain the position of the buffer based on the host cpu.
1023        Note that these addresses are chosen in concert with the
1024        addresses assigned in the relevant linker script file.  */
1025 # if defined(__PIE__) || defined(__PIC__)
1026     /* Don't bother setting a preferred location if we're building
1027        a position-independent executable.  We're more likely to get
1028        an address near the main executable if we let the kernel
1029        choose the address.  */
1030 # elif defined(__x86_64__) && defined(MAP_32BIT)
1031     /* Force the memory down into low memory with the executable.
1032        Leave the choice of exact location with the kernel.  */
1033     flags |= MAP_32BIT;
1034     /* Cannot expect to map more than 800MB in low memory.  */
1035     if (size > 800u * 1024 * 1024) {
1036         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1037     }
1038 # elif defined(__sparc__)
1039     start = 0x40000000ul;
1040 # elif defined(__s390x__)
1041     start = 0x90000000ul;
1042 # elif defined(__mips__)
1043 #  if _MIPS_SIM == _ABI64
1044     start = 0x128000000ul;
1045 #  else
1046     start = 0x08000000ul;
1047 #  endif
1048 # endif
1049 
1050     buf = mmap((void *)start, size, prot, flags, -1, 0);
1051     if (buf == MAP_FAILED) {
1052         return NULL;
1053     }
1054 
1055 #ifdef __mips__
1056     if (cross_256mb(buf, size)) {
1057         /* Try again, with the original still mapped, to avoid re-acquiring
1058            that 256mb crossing.  This time don't specify an address.  */
1059         size_t size2;
1060         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1061         switch ((int)(buf2 != MAP_FAILED)) {
1062         case 1:
1063             if (!cross_256mb(buf2, size)) {
1064                 /* Success!  Use the new buffer.  */
1065                 munmap(buf, size);
1066                 break;
1067             }
1068             /* Failure.  Work with what we had.  */
1069             munmap(buf2, size);
1070             /* fallthru */
1071         default:
1072             /* Split the original buffer.  Free the smaller half.  */
1073             buf2 = split_cross_256mb(buf, size);
1074             size2 = tcg_ctx->code_gen_buffer_size;
1075             if (buf == buf2) {
1076                 munmap(buf + size2, size - size2);
1077             } else {
1078                 munmap(buf, size - size2);
1079             }
1080             size = size2;
1081             break;
1082         }
1083         buf = buf2;
1084     }
1085 #endif
1086 
1087     /* Request large pages for the buffer.  */
1088     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1089 
1090     return buf;
1091 }
1092 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1093 
1094 static inline void code_gen_alloc(size_t tb_size)
1095 {
1096     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1097     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1098     if (tcg_ctx->code_gen_buffer == NULL) {
1099         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1100         exit(1);
1101     }
1102 }
1103 
1104 static bool tb_cmp(const void *ap, const void *bp)
1105 {
1106     const TranslationBlock *a = ap;
1107     const TranslationBlock *b = bp;
1108 
1109     return a->pc == b->pc &&
1110         a->cs_base == b->cs_base &&
1111         a->flags == b->flags &&
1112         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1113         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1114         a->page_addr[0] == b->page_addr[0] &&
1115         a->page_addr[1] == b->page_addr[1];
1116 }
1117 
1118 static void tb_htable_init(void)
1119 {
1120     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1121 
1122     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1123 }
1124 
1125 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1126    (in bytes) allocated to the translation buffer. Zero means default
1127    size. */
1128 void tcg_exec_init(unsigned long tb_size)
1129 {
1130     tcg_allowed = true;
1131     cpu_gen_init();
1132     page_init();
1133     tb_htable_init();
1134     code_gen_alloc(tb_size);
1135 #if defined(CONFIG_SOFTMMU)
1136     /* There's no guest base to take into account, so go ahead and
1137        initialize the prologue now.  */
1138     tcg_prologue_init(tcg_ctx);
1139 #endif
1140 }
1141 
1142 /*
1143  * Allocate a new translation block. Flush the translation buffer if
1144  * too many translation blocks or too much generated code.
1145  */
1146 static TranslationBlock *tb_alloc(target_ulong pc)
1147 {
1148     TranslationBlock *tb;
1149 
1150     assert_memory_lock();
1151 
1152     tb = tcg_tb_alloc(tcg_ctx);
1153     if (unlikely(tb == NULL)) {
1154         return NULL;
1155     }
1156     return tb;
1157 }
1158 
1159 /* call with @p->lock held */
1160 static inline void invalidate_page_bitmap(PageDesc *p)
1161 {
1162     assert_page_locked(p);
1163 #ifdef CONFIG_SOFTMMU
1164     g_free(p->code_bitmap);
1165     p->code_bitmap = NULL;
1166     p->code_write_count = 0;
1167 #endif
1168 }
1169 
1170 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1171 static void page_flush_tb_1(int level, void **lp)
1172 {
1173     int i;
1174 
1175     if (*lp == NULL) {
1176         return;
1177     }
1178     if (level == 0) {
1179         PageDesc *pd = *lp;
1180 
1181         for (i = 0; i < V_L2_SIZE; ++i) {
1182             page_lock(&pd[i]);
1183             pd[i].first_tb = (uintptr_t)NULL;
1184             invalidate_page_bitmap(pd + i);
1185             page_unlock(&pd[i]);
1186         }
1187     } else {
1188         void **pp = *lp;
1189 
1190         for (i = 0; i < V_L2_SIZE; ++i) {
1191             page_flush_tb_1(level - 1, pp + i);
1192         }
1193     }
1194 }
1195 
1196 static void page_flush_tb(void)
1197 {
1198     int i, l1_sz = v_l1_size;
1199 
1200     for (i = 0; i < l1_sz; i++) {
1201         page_flush_tb_1(v_l2_levels, l1_map + i);
1202     }
1203 }
1204 
1205 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1206 {
1207     const TranslationBlock *tb = value;
1208     size_t *size = data;
1209 
1210     *size += tb->tc.size;
1211     return false;
1212 }
1213 
1214 /* flush all the translation blocks */
1215 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1216 {
1217     mmap_lock();
1218     /* If it is already been done on request of another CPU,
1219      * just retry.
1220      */
1221     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1222         goto done;
1223     }
1224 
1225     if (DEBUG_TB_FLUSH_GATE) {
1226         size_t nb_tbs = tcg_nb_tbs();
1227         size_t host_size = 0;
1228 
1229         tcg_tb_foreach(tb_host_size_iter, &host_size);
1230         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1231                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1232     }
1233 
1234     CPU_FOREACH(cpu) {
1235         cpu_tb_jmp_cache_clear(cpu);
1236     }
1237 
1238     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1239     page_flush_tb();
1240 
1241     tcg_region_reset_all();
1242     /* XXX: flush processor icache at this point if cache flush is
1243        expensive */
1244     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1245 
1246 done:
1247     mmap_unlock();
1248 }
1249 
1250 void tb_flush(CPUState *cpu)
1251 {
1252     if (tcg_enabled()) {
1253         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1254         async_safe_run_on_cpu(cpu, do_tb_flush,
1255                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1256     }
1257 }
1258 
1259 /*
1260  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1261  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1262  * and let the optimizer get rid of them by wrapping their user-only callers
1263  * with if (DEBUG_TB_CHECK_GATE).
1264  */
1265 #ifdef CONFIG_USER_ONLY
1266 
1267 static void
1268 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1269 {
1270     TranslationBlock *tb = p;
1271     target_ulong addr = *(target_ulong *)userp;
1272 
1273     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1274         printf("ERROR invalidate: address=" TARGET_FMT_lx
1275                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1276     }
1277 }
1278 
1279 /* verify that all the pages have correct rights for code
1280  *
1281  * Called with mmap_lock held.
1282  */
1283 static void tb_invalidate_check(target_ulong address)
1284 {
1285     address &= TARGET_PAGE_MASK;
1286     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1287 }
1288 
1289 static void
1290 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1291 {
1292     TranslationBlock *tb = p;
1293     int flags1, flags2;
1294 
1295     flags1 = page_get_flags(tb->pc);
1296     flags2 = page_get_flags(tb->pc + tb->size - 1);
1297     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1298         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1299                (long)tb->pc, tb->size, flags1, flags2);
1300     }
1301 }
1302 
1303 /* verify that all the pages have correct rights for code */
1304 static void tb_page_check(void)
1305 {
1306     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1307 }
1308 
1309 #endif /* CONFIG_USER_ONLY */
1310 
1311 /*
1312  * user-mode: call with mmap_lock held
1313  * !user-mode: call with @pd->lock held
1314  */
1315 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1316 {
1317     TranslationBlock *tb1;
1318     uintptr_t *pprev;
1319     unsigned int n1;
1320 
1321     assert_page_locked(pd);
1322     pprev = &pd->first_tb;
1323     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1324         if (tb1 == tb) {
1325             *pprev = tb1->page_next[n1];
1326             return;
1327         }
1328         pprev = &tb1->page_next[n1];
1329     }
1330     g_assert_not_reached();
1331 }
1332 
1333 /* remove @orig from its @n_orig-th jump list */
1334 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1335 {
1336     uintptr_t ptr, ptr_locked;
1337     TranslationBlock *dest;
1338     TranslationBlock *tb;
1339     uintptr_t *pprev;
1340     int n;
1341 
1342     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1343     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1344     dest = (TranslationBlock *)(ptr & ~1);
1345     if (dest == NULL) {
1346         return;
1347     }
1348 
1349     qemu_spin_lock(&dest->jmp_lock);
1350     /*
1351      * While acquiring the lock, the jump might have been removed if the
1352      * destination TB was invalidated; check again.
1353      */
1354     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1355     if (ptr_locked != ptr) {
1356         qemu_spin_unlock(&dest->jmp_lock);
1357         /*
1358          * The only possibility is that the jump was unlinked via
1359          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1360          * because we set the LSB above.
1361          */
1362         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1363         return;
1364     }
1365     /*
1366      * We first acquired the lock, and since the destination pointer matches,
1367      * we know for sure that @orig is in the jmp list.
1368      */
1369     pprev = &dest->jmp_list_head;
1370     TB_FOR_EACH_JMP(dest, tb, n) {
1371         if (tb == orig && n == n_orig) {
1372             *pprev = tb->jmp_list_next[n];
1373             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1374             qemu_spin_unlock(&dest->jmp_lock);
1375             return;
1376         }
1377         pprev = &tb->jmp_list_next[n];
1378     }
1379     g_assert_not_reached();
1380 }
1381 
1382 /* reset the jump entry 'n' of a TB so that it is not chained to
1383    another TB */
1384 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1385 {
1386     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1387     tb_set_jmp_target(tb, n, addr);
1388 }
1389 
1390 /* remove any jumps to the TB */
1391 static inline void tb_jmp_unlink(TranslationBlock *dest)
1392 {
1393     TranslationBlock *tb;
1394     int n;
1395 
1396     qemu_spin_lock(&dest->jmp_lock);
1397 
1398     TB_FOR_EACH_JMP(dest, tb, n) {
1399         tb_reset_jump(tb, n);
1400         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1401         /* No need to clear the list entry; setting the dest ptr is enough */
1402     }
1403     dest->jmp_list_head = (uintptr_t)NULL;
1404 
1405     qemu_spin_unlock(&dest->jmp_lock);
1406 }
1407 
1408 /*
1409  * In user-mode, call with mmap_lock held.
1410  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1411  * locks held.
1412  */
1413 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1414 {
1415     CPUState *cpu;
1416     PageDesc *p;
1417     uint32_t h;
1418     tb_page_addr_t phys_pc;
1419 
1420     assert_memory_lock();
1421 
1422     /* make sure no further incoming jumps will be chained to this TB */
1423     qemu_spin_lock(&tb->jmp_lock);
1424     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1425     qemu_spin_unlock(&tb->jmp_lock);
1426 
1427     /* remove the TB from the hash list */
1428     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1429     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1430                      tb->trace_vcpu_dstate);
1431     if (!qht_remove(&tb_ctx.htable, tb, h)) {
1432         return;
1433     }
1434 
1435     /* remove the TB from the page list */
1436     if (rm_from_page_list) {
1437         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1438         tb_page_remove(p, tb);
1439         invalidate_page_bitmap(p);
1440         if (tb->page_addr[1] != -1) {
1441             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1442             tb_page_remove(p, tb);
1443             invalidate_page_bitmap(p);
1444         }
1445     }
1446 
1447     /* remove the TB from the hash list */
1448     h = tb_jmp_cache_hash_func(tb->pc);
1449     CPU_FOREACH(cpu) {
1450         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1451             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1452         }
1453     }
1454 
1455     /* suppress this TB from the two jump lists */
1456     tb_remove_from_jmp_list(tb, 0);
1457     tb_remove_from_jmp_list(tb, 1);
1458 
1459     /* suppress any remaining jumps to this TB */
1460     tb_jmp_unlink(tb);
1461 
1462     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1463                tcg_ctx->tb_phys_invalidate_count + 1);
1464 }
1465 
1466 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1467 {
1468     do_tb_phys_invalidate(tb, true);
1469 }
1470 
1471 /* invalidate one TB
1472  *
1473  * Called with mmap_lock held in user-mode.
1474  */
1475 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1476 {
1477     if (page_addr == -1) {
1478         page_lock_tb(tb);
1479         do_tb_phys_invalidate(tb, true);
1480         page_unlock_tb(tb);
1481     } else {
1482         do_tb_phys_invalidate(tb, false);
1483     }
1484 }
1485 
1486 #ifdef CONFIG_SOFTMMU
1487 /* call with @p->lock held */
1488 static void build_page_bitmap(PageDesc *p)
1489 {
1490     int n, tb_start, tb_end;
1491     TranslationBlock *tb;
1492 
1493     assert_page_locked(p);
1494     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1495 
1496     PAGE_FOR_EACH_TB(p, tb, n) {
1497         /* NOTE: this is subtle as a TB may span two physical pages */
1498         if (n == 0) {
1499             /* NOTE: tb_end may be after the end of the page, but
1500                it is not a problem */
1501             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1502             tb_end = tb_start + tb->size;
1503             if (tb_end > TARGET_PAGE_SIZE) {
1504                 tb_end = TARGET_PAGE_SIZE;
1505              }
1506         } else {
1507             tb_start = 0;
1508             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1509         }
1510         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1511     }
1512 }
1513 #endif
1514 
1515 /* add the tb in the target page and protect it if necessary
1516  *
1517  * Called with mmap_lock held for user-mode emulation.
1518  * Called with @p->lock held in !user-mode.
1519  */
1520 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1521                                unsigned int n, tb_page_addr_t page_addr)
1522 {
1523 #ifndef CONFIG_USER_ONLY
1524     bool page_already_protected;
1525 #endif
1526 
1527     assert_page_locked(p);
1528 
1529     tb->page_addr[n] = page_addr;
1530     tb->page_next[n] = p->first_tb;
1531 #ifndef CONFIG_USER_ONLY
1532     page_already_protected = p->first_tb != (uintptr_t)NULL;
1533 #endif
1534     p->first_tb = (uintptr_t)tb | n;
1535     invalidate_page_bitmap(p);
1536 
1537 #if defined(CONFIG_USER_ONLY)
1538     if (p->flags & PAGE_WRITE) {
1539         target_ulong addr;
1540         PageDesc *p2;
1541         int prot;
1542 
1543         /* force the host page as non writable (writes will have a
1544            page fault + mprotect overhead) */
1545         page_addr &= qemu_host_page_mask;
1546         prot = 0;
1547         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1548             addr += TARGET_PAGE_SIZE) {
1549 
1550             p2 = page_find(addr >> TARGET_PAGE_BITS);
1551             if (!p2) {
1552                 continue;
1553             }
1554             prot |= p2->flags;
1555             p2->flags &= ~PAGE_WRITE;
1556           }
1557         mprotect(g2h(page_addr), qemu_host_page_size,
1558                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1559         if (DEBUG_TB_INVALIDATE_GATE) {
1560             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1561         }
1562     }
1563 #else
1564     /* if some code is already present, then the pages are already
1565        protected. So we handle the case where only the first TB is
1566        allocated in a physical page */
1567     if (!page_already_protected) {
1568         tlb_protect_code(page_addr);
1569     }
1570 #endif
1571 }
1572 
1573 /* add a new TB and link it to the physical page tables. phys_page2 is
1574  * (-1) to indicate that only one page contains the TB.
1575  *
1576  * Called with mmap_lock held for user-mode emulation.
1577  *
1578  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1579  * Note that in !user-mode, another thread might have already added a TB
1580  * for the same block of guest code that @tb corresponds to. In that case,
1581  * the caller should discard the original @tb, and use instead the returned TB.
1582  */
1583 static TranslationBlock *
1584 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1585              tb_page_addr_t phys_page2)
1586 {
1587     PageDesc *p;
1588     PageDesc *p2 = NULL;
1589     void *existing_tb = NULL;
1590     uint32_t h;
1591 
1592     assert_memory_lock();
1593 
1594     /*
1595      * Add the TB to the page list, acquiring first the pages's locks.
1596      * We keep the locks held until after inserting the TB in the hash table,
1597      * so that if the insertion fails we know for sure that the TBs are still
1598      * in the page descriptors.
1599      * Note that inserting into the hash table first isn't an option, since
1600      * we can only insert TBs that are fully initialized.
1601      */
1602     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1603     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1604     if (p2) {
1605         tb_page_add(p2, tb, 1, phys_page2);
1606     } else {
1607         tb->page_addr[1] = -1;
1608     }
1609 
1610     /* add in the hash table */
1611     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1612                      tb->trace_vcpu_dstate);
1613     qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1614 
1615     /* remove TB from the page(s) if we couldn't insert it */
1616     if (unlikely(existing_tb)) {
1617         tb_page_remove(p, tb);
1618         invalidate_page_bitmap(p);
1619         if (p2) {
1620             tb_page_remove(p2, tb);
1621             invalidate_page_bitmap(p2);
1622         }
1623         tb = existing_tb;
1624     }
1625 
1626     if (p2) {
1627         page_unlock(p2);
1628     }
1629     page_unlock(p);
1630 
1631 #ifdef CONFIG_USER_ONLY
1632     if (DEBUG_TB_CHECK_GATE) {
1633         tb_page_check();
1634     }
1635 #endif
1636     return tb;
1637 }
1638 
1639 /* Called with mmap_lock held for user mode emulation.  */
1640 TranslationBlock *tb_gen_code(CPUState *cpu,
1641                               target_ulong pc, target_ulong cs_base,
1642                               uint32_t flags, int cflags)
1643 {
1644     CPUArchState *env = cpu->env_ptr;
1645     TranslationBlock *tb, *existing_tb;
1646     tb_page_addr_t phys_pc, phys_page2;
1647     target_ulong virt_page2;
1648     tcg_insn_unit *gen_code_buf;
1649     int gen_code_size, search_size;
1650 #ifdef CONFIG_PROFILER
1651     TCGProfile *prof = &tcg_ctx->prof;
1652     int64_t ti;
1653 #endif
1654     assert_memory_lock();
1655 
1656     phys_pc = get_page_addr_code(env, pc);
1657 
1658  buffer_overflow:
1659     tb = tb_alloc(pc);
1660     if (unlikely(!tb)) {
1661         /* flush must be done */
1662         tb_flush(cpu);
1663         mmap_unlock();
1664         /* Make the execution loop process the flush as soon as possible.  */
1665         cpu->exception_index = EXCP_INTERRUPT;
1666         cpu_loop_exit(cpu);
1667     }
1668 
1669     gen_code_buf = tcg_ctx->code_gen_ptr;
1670     tb->tc.ptr = gen_code_buf;
1671     tb->pc = pc;
1672     tb->cs_base = cs_base;
1673     tb->flags = flags;
1674     tb->cflags = cflags;
1675     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1676     tcg_ctx->tb_cflags = cflags;
1677 
1678 #ifdef CONFIG_PROFILER
1679     /* includes aborted translations because of exceptions */
1680     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1681     ti = profile_getclock();
1682 #endif
1683 
1684     tcg_func_start(tcg_ctx);
1685 
1686     tcg_ctx->cpu = ENV_GET_CPU(env);
1687     gen_intermediate_code(cpu, tb);
1688     tcg_ctx->cpu = NULL;
1689 
1690     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1691 
1692     /* generate machine code */
1693     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1694     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1695     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1696     if (TCG_TARGET_HAS_direct_jump) {
1697         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1698         tcg_ctx->tb_jmp_target_addr = NULL;
1699     } else {
1700         tcg_ctx->tb_jmp_insn_offset = NULL;
1701         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1702     }
1703 
1704 #ifdef CONFIG_PROFILER
1705     atomic_set(&prof->tb_count, prof->tb_count + 1);
1706     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1707     ti = profile_getclock();
1708 #endif
1709 
1710     /* ??? Overflow could be handled better here.  In particular, we
1711        don't need to re-do gen_intermediate_code, nor should we re-do
1712        the tcg optimization currently hidden inside tcg_gen_code.  All
1713        that should be required is to flush the TBs, allocate a new TB,
1714        re-initialize it per above, and re-do the actual code generation.  */
1715     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1716     if (unlikely(gen_code_size < 0)) {
1717         goto buffer_overflow;
1718     }
1719     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1720     if (unlikely(search_size < 0)) {
1721         goto buffer_overflow;
1722     }
1723     tb->tc.size = gen_code_size;
1724 
1725 #ifdef CONFIG_PROFILER
1726     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1727     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1728     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1729     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1730 #endif
1731 
1732 #ifdef DEBUG_DISAS
1733     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1734         qemu_log_in_addr_range(tb->pc)) {
1735         qemu_log_lock();
1736         qemu_log("OUT: [size=%d]\n", gen_code_size);
1737         if (tcg_ctx->data_gen_ptr) {
1738             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1739             size_t data_size = gen_code_size - code_size;
1740             size_t i;
1741 
1742             log_disas(tb->tc.ptr, code_size);
1743 
1744             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1745                 if (sizeof(tcg_target_ulong) == 8) {
1746                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1747                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1748                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1749                 } else {
1750                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1751                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1752                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1753                 }
1754             }
1755         } else {
1756             log_disas(tb->tc.ptr, gen_code_size);
1757         }
1758         qemu_log("\n");
1759         qemu_log_flush();
1760         qemu_log_unlock();
1761     }
1762 #endif
1763 
1764     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1765         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1766                  CODE_GEN_ALIGN));
1767 
1768     /* init jump list */
1769     qemu_spin_init(&tb->jmp_lock);
1770     tb->jmp_list_head = (uintptr_t)NULL;
1771     tb->jmp_list_next[0] = (uintptr_t)NULL;
1772     tb->jmp_list_next[1] = (uintptr_t)NULL;
1773     tb->jmp_dest[0] = (uintptr_t)NULL;
1774     tb->jmp_dest[1] = (uintptr_t)NULL;
1775 
1776     /* init original jump addresses wich has been set during tcg_gen_code() */
1777     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1778         tb_reset_jump(tb, 0);
1779     }
1780     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1781         tb_reset_jump(tb, 1);
1782     }
1783 
1784     /* check next page if needed */
1785     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1786     phys_page2 = -1;
1787     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1788         phys_page2 = get_page_addr_code(env, virt_page2);
1789     }
1790     /*
1791      * No explicit memory barrier is required -- tb_link_page() makes the
1792      * TB visible in a consistent state.
1793      */
1794     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1795     /* if the TB already exists, discard what we just translated */
1796     if (unlikely(existing_tb != tb)) {
1797         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1798 
1799         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1800         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1801         return existing_tb;
1802     }
1803     tcg_tb_insert(tb);
1804     return tb;
1805 }
1806 
1807 /*
1808  * @p must be non-NULL.
1809  * user-mode: call with mmap_lock held.
1810  * !user-mode: call with all @pages locked.
1811  */
1812 static void
1813 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1814                                       PageDesc *p, tb_page_addr_t start,
1815                                       tb_page_addr_t end,
1816                                       int is_cpu_write_access)
1817 {
1818     TranslationBlock *tb;
1819     tb_page_addr_t tb_start, tb_end;
1820     int n;
1821 #ifdef TARGET_HAS_PRECISE_SMC
1822     CPUState *cpu = current_cpu;
1823     CPUArchState *env = NULL;
1824     int current_tb_not_found = is_cpu_write_access;
1825     TranslationBlock *current_tb = NULL;
1826     int current_tb_modified = 0;
1827     target_ulong current_pc = 0;
1828     target_ulong current_cs_base = 0;
1829     uint32_t current_flags = 0;
1830 #endif /* TARGET_HAS_PRECISE_SMC */
1831 
1832     assert_page_locked(p);
1833 
1834 #if defined(TARGET_HAS_PRECISE_SMC)
1835     if (cpu != NULL) {
1836         env = cpu->env_ptr;
1837     }
1838 #endif
1839 
1840     /* we remove all the TBs in the range [start, end[ */
1841     /* XXX: see if in some cases it could be faster to invalidate all
1842        the code */
1843     PAGE_FOR_EACH_TB(p, tb, n) {
1844         assert_page_locked(p);
1845         /* NOTE: this is subtle as a TB may span two physical pages */
1846         if (n == 0) {
1847             /* NOTE: tb_end may be after the end of the page, but
1848                it is not a problem */
1849             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1850             tb_end = tb_start + tb->size;
1851         } else {
1852             tb_start = tb->page_addr[1];
1853             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1854         }
1855         if (!(tb_end <= start || tb_start >= end)) {
1856 #ifdef TARGET_HAS_PRECISE_SMC
1857             if (current_tb_not_found) {
1858                 current_tb_not_found = 0;
1859                 current_tb = NULL;
1860                 if (cpu->mem_io_pc) {
1861                     /* now we have a real cpu fault */
1862                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1863                 }
1864             }
1865             if (current_tb == tb &&
1866                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1867                 /* If we are modifying the current TB, we must stop
1868                 its execution. We could be more precise by checking
1869                 that the modification is after the current PC, but it
1870                 would require a specialized function to partially
1871                 restore the CPU state */
1872 
1873                 current_tb_modified = 1;
1874                 cpu_restore_state_from_tb(cpu, current_tb,
1875                                           cpu->mem_io_pc, true);
1876                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1877                                      &current_flags);
1878             }
1879 #endif /* TARGET_HAS_PRECISE_SMC */
1880             tb_phys_invalidate__locked(tb);
1881         }
1882     }
1883 #if !defined(CONFIG_USER_ONLY)
1884     /* if no code remaining, no need to continue to use slow writes */
1885     if (!p->first_tb) {
1886         invalidate_page_bitmap(p);
1887         tlb_unprotect_code(start);
1888     }
1889 #endif
1890 #ifdef TARGET_HAS_PRECISE_SMC
1891     if (current_tb_modified) {
1892         page_collection_unlock(pages);
1893         /* Force execution of one insn next time.  */
1894         cpu->cflags_next_tb = 1 | curr_cflags();
1895         mmap_unlock();
1896         cpu_loop_exit_noexc(cpu);
1897     }
1898 #endif
1899 }
1900 
1901 /*
1902  * Invalidate all TBs which intersect with the target physical address range
1903  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1904  * 'is_cpu_write_access' should be true if called from a real cpu write
1905  * access: the virtual CPU will exit the current TB if code is modified inside
1906  * this TB.
1907  *
1908  * Called with mmap_lock held for user-mode emulation
1909  */
1910 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1911                                    int is_cpu_write_access)
1912 {
1913     struct page_collection *pages;
1914     PageDesc *p;
1915 
1916     assert_memory_lock();
1917 
1918     p = page_find(start >> TARGET_PAGE_BITS);
1919     if (p == NULL) {
1920         return;
1921     }
1922     pages = page_collection_lock(start, end);
1923     tb_invalidate_phys_page_range__locked(pages, p, start, end,
1924                                           is_cpu_write_access);
1925     page_collection_unlock(pages);
1926 }
1927 
1928 /*
1929  * Invalidate all TBs which intersect with the target physical address range
1930  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1931  * 'is_cpu_write_access' should be true if called from a real cpu write
1932  * access: the virtual CPU will exit the current TB if code is modified inside
1933  * this TB.
1934  *
1935  * Called with mmap_lock held for user-mode emulation.
1936  */
1937 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1938 {
1939     struct page_collection *pages;
1940     tb_page_addr_t next;
1941 
1942     assert_memory_lock();
1943 
1944     pages = page_collection_lock(start, end);
1945     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1946          start < end;
1947          start = next, next += TARGET_PAGE_SIZE) {
1948         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1949         tb_page_addr_t bound = MIN(next, end);
1950 
1951         if (pd == NULL) {
1952             continue;
1953         }
1954         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1955     }
1956     page_collection_unlock(pages);
1957 }
1958 
1959 #ifdef CONFIG_SOFTMMU
1960 /* len must be <= 8 and start must be a multiple of len.
1961  * Called via softmmu_template.h when code areas are written to with
1962  * iothread mutex not held.
1963  *
1964  * Call with all @pages in the range [@start, @start + len[ locked.
1965  */
1966 void tb_invalidate_phys_page_fast(struct page_collection *pages,
1967                                   tb_page_addr_t start, int len)
1968 {
1969     PageDesc *p;
1970 
1971 #if 0
1972     if (1) {
1973         qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1974                   cpu_single_env->mem_io_vaddr, len,
1975                   cpu_single_env->eip,
1976                   cpu_single_env->eip +
1977                   (intptr_t)cpu_single_env->segs[R_CS].base);
1978     }
1979 #endif
1980     assert_memory_lock();
1981 
1982     p = page_find(start >> TARGET_PAGE_BITS);
1983     if (!p) {
1984         return;
1985     }
1986 
1987     assert_page_locked(p);
1988     if (!p->code_bitmap &&
1989         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1990         build_page_bitmap(p);
1991     }
1992     if (p->code_bitmap) {
1993         unsigned int nr;
1994         unsigned long b;
1995 
1996         nr = start & ~TARGET_PAGE_MASK;
1997         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1998         if (b & ((1 << len) - 1)) {
1999             goto do_invalidate;
2000         }
2001     } else {
2002     do_invalidate:
2003         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2004     }
2005 }
2006 #else
2007 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2008  * host PC of the faulting store instruction that caused this invalidate.
2009  * Returns true if the caller needs to abort execution of the current
2010  * TB (because it was modified by this store and the guest CPU has
2011  * precise-SMC semantics).
2012  */
2013 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2014 {
2015     TranslationBlock *tb;
2016     PageDesc *p;
2017     int n;
2018 #ifdef TARGET_HAS_PRECISE_SMC
2019     TranslationBlock *current_tb = NULL;
2020     CPUState *cpu = current_cpu;
2021     CPUArchState *env = NULL;
2022     int current_tb_modified = 0;
2023     target_ulong current_pc = 0;
2024     target_ulong current_cs_base = 0;
2025     uint32_t current_flags = 0;
2026 #endif
2027 
2028     assert_memory_lock();
2029 
2030     addr &= TARGET_PAGE_MASK;
2031     p = page_find(addr >> TARGET_PAGE_BITS);
2032     if (!p) {
2033         return false;
2034     }
2035 
2036 #ifdef TARGET_HAS_PRECISE_SMC
2037     if (p->first_tb && pc != 0) {
2038         current_tb = tcg_tb_lookup(pc);
2039     }
2040     if (cpu != NULL) {
2041         env = cpu->env_ptr;
2042     }
2043 #endif
2044     assert_page_locked(p);
2045     PAGE_FOR_EACH_TB(p, tb, n) {
2046 #ifdef TARGET_HAS_PRECISE_SMC
2047         if (current_tb == tb &&
2048             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2049                 /* If we are modifying the current TB, we must stop
2050                    its execution. We could be more precise by checking
2051                    that the modification is after the current PC, but it
2052                    would require a specialized function to partially
2053                    restore the CPU state */
2054 
2055             current_tb_modified = 1;
2056             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2057             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2058                                  &current_flags);
2059         }
2060 #endif /* TARGET_HAS_PRECISE_SMC */
2061         tb_phys_invalidate(tb, addr);
2062     }
2063     p->first_tb = (uintptr_t)NULL;
2064 #ifdef TARGET_HAS_PRECISE_SMC
2065     if (current_tb_modified) {
2066         /* Force execution of one insn next time.  */
2067         cpu->cflags_next_tb = 1 | curr_cflags();
2068         return true;
2069     }
2070 #endif
2071 
2072     return false;
2073 }
2074 #endif
2075 
2076 #if !defined(CONFIG_USER_ONLY)
2077 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
2078 {
2079     ram_addr_t ram_addr;
2080     MemoryRegion *mr;
2081     hwaddr l = 1;
2082 
2083     rcu_read_lock();
2084     mr = address_space_translate(as, addr, &addr, &l, false, attrs);
2085     if (!(memory_region_is_ram(mr)
2086           || memory_region_is_romd(mr))) {
2087         rcu_read_unlock();
2088         return;
2089     }
2090     ram_addr = memory_region_get_ram_addr(mr) + addr;
2091     tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
2092     rcu_read_unlock();
2093 }
2094 #endif /* !defined(CONFIG_USER_ONLY) */
2095 
2096 /* user-mode: call with mmap_lock held */
2097 void tb_check_watchpoint(CPUState *cpu)
2098 {
2099     TranslationBlock *tb;
2100 
2101     assert_memory_lock();
2102 
2103     tb = tcg_tb_lookup(cpu->mem_io_pc);
2104     if (tb) {
2105         /* We can use retranslation to find the PC.  */
2106         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2107         tb_phys_invalidate(tb, -1);
2108     } else {
2109         /* The exception probably happened in a helper.  The CPU state should
2110            have been saved before calling it. Fetch the PC from there.  */
2111         CPUArchState *env = cpu->env_ptr;
2112         target_ulong pc, cs_base;
2113         tb_page_addr_t addr;
2114         uint32_t flags;
2115 
2116         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2117         addr = get_page_addr_code(env, pc);
2118         tb_invalidate_phys_range(addr, addr + 1);
2119     }
2120 }
2121 
2122 #ifndef CONFIG_USER_ONLY
2123 /* in deterministic execution mode, instructions doing device I/Os
2124  * must be at the end of the TB.
2125  *
2126  * Called by softmmu_template.h, with iothread mutex not held.
2127  */
2128 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2129 {
2130 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2131     CPUArchState *env = cpu->env_ptr;
2132 #endif
2133     TranslationBlock *tb;
2134     uint32_t n;
2135 
2136     tb = tcg_tb_lookup(retaddr);
2137     if (!tb) {
2138         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2139                   (void *)retaddr);
2140     }
2141     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2142 
2143     /* On MIPS and SH, delay slot instructions can only be restarted if
2144        they were already the first instruction in the TB.  If this is not
2145        the first instruction in a TB then re-execute the preceding
2146        branch.  */
2147     n = 1;
2148 #if defined(TARGET_MIPS)
2149     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2150         && env->active_tc.PC != tb->pc) {
2151         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2152         cpu->icount_decr.u16.low++;
2153         env->hflags &= ~MIPS_HFLAG_BMASK;
2154         n = 2;
2155     }
2156 #elif defined(TARGET_SH4)
2157     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2158         && env->pc != tb->pc) {
2159         env->pc -= 2;
2160         cpu->icount_decr.u16.low++;
2161         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2162         n = 2;
2163     }
2164 #endif
2165 
2166     /* Generate a new TB executing the I/O insn.  */
2167     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2168 
2169     if (tb_cflags(tb) & CF_NOCACHE) {
2170         if (tb->orig_tb) {
2171             /* Invalidate original TB if this TB was generated in
2172              * cpu_exec_nocache() */
2173             tb_phys_invalidate(tb->orig_tb, -1);
2174         }
2175         tcg_tb_remove(tb);
2176     }
2177 
2178     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2179      * the first in the TB) then we end up generating a whole new TB and
2180      *  repeating the fault, which is horribly inefficient.
2181      *  Better would be to execute just this insn uncached, or generate a
2182      *  second new TB.
2183      */
2184     cpu_loop_exit_noexc(cpu);
2185 }
2186 
2187 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2188 {
2189     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2190 
2191     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2192         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2193     }
2194 }
2195 
2196 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2197 {
2198     /* Discard jump cache entries for any tb which might potentially
2199        overlap the flushed page.  */
2200     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2201     tb_jmp_cache_clear_page(cpu, addr);
2202 }
2203 
2204 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
2205                                  struct qht_stats hst)
2206 {
2207     uint32_t hgram_opts;
2208     size_t hgram_bins;
2209     char *hgram;
2210 
2211     if (!hst.head_buckets) {
2212         return;
2213     }
2214     cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2215                 hst.used_head_buckets, hst.head_buckets,
2216                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2217 
2218     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2219     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2220     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2221         hgram_opts |= QDIST_PR_NODECIMAL;
2222     }
2223     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2224     cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2225                 qdist_avg(&hst.occupancy) * 100, hgram);
2226     g_free(hgram);
2227 
2228     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2229     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2230     if (hgram_bins > 10) {
2231         hgram_bins = 10;
2232     } else {
2233         hgram_bins = 0;
2234         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2235     }
2236     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2237     cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2238                 qdist_avg(&hst.chain), hgram);
2239     g_free(hgram);
2240 }
2241 
2242 struct tb_tree_stats {
2243     size_t nb_tbs;
2244     size_t host_size;
2245     size_t target_size;
2246     size_t max_target_size;
2247     size_t direct_jmp_count;
2248     size_t direct_jmp2_count;
2249     size_t cross_page;
2250 };
2251 
2252 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2253 {
2254     const TranslationBlock *tb = value;
2255     struct tb_tree_stats *tst = data;
2256 
2257     tst->nb_tbs++;
2258     tst->host_size += tb->tc.size;
2259     tst->target_size += tb->size;
2260     if (tb->size > tst->max_target_size) {
2261         tst->max_target_size = tb->size;
2262     }
2263     if (tb->page_addr[1] != -1) {
2264         tst->cross_page++;
2265     }
2266     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2267         tst->direct_jmp_count++;
2268         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2269             tst->direct_jmp2_count++;
2270         }
2271     }
2272     return false;
2273 }
2274 
2275 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
2276 {
2277     struct tb_tree_stats tst = {};
2278     struct qht_stats hst;
2279     size_t nb_tbs;
2280 
2281     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2282     nb_tbs = tst.nb_tbs;
2283     /* XXX: avoid using doubles ? */
2284     cpu_fprintf(f, "Translation buffer state:\n");
2285     /*
2286      * Report total code size including the padding and TB structs;
2287      * otherwise users might think "-tb-size" is not honoured.
2288      * For avg host size we use the precise numbers from tb_tree_stats though.
2289      */
2290     cpu_fprintf(f, "gen code size       %zu/%zu\n",
2291                 tcg_code_size(), tcg_code_capacity());
2292     cpu_fprintf(f, "TB count            %zu\n", nb_tbs);
2293     cpu_fprintf(f, "TB avg target size  %zu max=%zu bytes\n",
2294                 nb_tbs ? tst.target_size / nb_tbs : 0,
2295                 tst.max_target_size);
2296     cpu_fprintf(f, "TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2297                 nb_tbs ? tst.host_size / nb_tbs : 0,
2298                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2299     cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
2300             nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2301     cpu_fprintf(f, "direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2302                 tst.direct_jmp_count,
2303                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2304                 tst.direct_jmp2_count,
2305                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2306 
2307     qht_statistics_init(&tb_ctx.htable, &hst);
2308     print_qht_statistics(f, cpu_fprintf, hst);
2309     qht_statistics_destroy(&hst);
2310 
2311     cpu_fprintf(f, "\nStatistics:\n");
2312     cpu_fprintf(f, "TB flush count      %u\n",
2313                 atomic_read(&tb_ctx.tb_flush_count));
2314     cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
2315     cpu_fprintf(f, "TLB flush count     %zu\n", tlb_flush_count());
2316     tcg_dump_info(f, cpu_fprintf);
2317 }
2318 
2319 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
2320 {
2321     tcg_dump_op_count(f, cpu_fprintf);
2322 }
2323 
2324 #else /* CONFIG_USER_ONLY */
2325 
2326 void cpu_interrupt(CPUState *cpu, int mask)
2327 {
2328     g_assert(qemu_mutex_iothread_locked());
2329     cpu->interrupt_request |= mask;
2330     cpu->icount_decr.u16.high = -1;
2331 }
2332 
2333 /*
2334  * Walks guest process memory "regions" one by one
2335  * and calls callback function 'fn' for each region.
2336  */
2337 struct walk_memory_regions_data {
2338     walk_memory_regions_fn fn;
2339     void *priv;
2340     target_ulong start;
2341     int prot;
2342 };
2343 
2344 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2345                                    target_ulong end, int new_prot)
2346 {
2347     if (data->start != -1u) {
2348         int rc = data->fn(data->priv, data->start, end, data->prot);
2349         if (rc != 0) {
2350             return rc;
2351         }
2352     }
2353 
2354     data->start = (new_prot ? end : -1u);
2355     data->prot = new_prot;
2356 
2357     return 0;
2358 }
2359 
2360 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2361                                  target_ulong base, int level, void **lp)
2362 {
2363     target_ulong pa;
2364     int i, rc;
2365 
2366     if (*lp == NULL) {
2367         return walk_memory_regions_end(data, base, 0);
2368     }
2369 
2370     if (level == 0) {
2371         PageDesc *pd = *lp;
2372 
2373         for (i = 0; i < V_L2_SIZE; ++i) {
2374             int prot = pd[i].flags;
2375 
2376             pa = base | (i << TARGET_PAGE_BITS);
2377             if (prot != data->prot) {
2378                 rc = walk_memory_regions_end(data, pa, prot);
2379                 if (rc != 0) {
2380                     return rc;
2381                 }
2382             }
2383         }
2384     } else {
2385         void **pp = *lp;
2386 
2387         for (i = 0; i < V_L2_SIZE; ++i) {
2388             pa = base | ((target_ulong)i <<
2389                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2390             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2391             if (rc != 0) {
2392                 return rc;
2393             }
2394         }
2395     }
2396 
2397     return 0;
2398 }
2399 
2400 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2401 {
2402     struct walk_memory_regions_data data;
2403     uintptr_t i, l1_sz = v_l1_size;
2404 
2405     data.fn = fn;
2406     data.priv = priv;
2407     data.start = -1u;
2408     data.prot = 0;
2409 
2410     for (i = 0; i < l1_sz; i++) {
2411         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2412         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2413         if (rc != 0) {
2414             return rc;
2415         }
2416     }
2417 
2418     return walk_memory_regions_end(&data, 0, 0);
2419 }
2420 
2421 static int dump_region(void *priv, target_ulong start,
2422     target_ulong end, unsigned long prot)
2423 {
2424     FILE *f = (FILE *)priv;
2425 
2426     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2427         " "TARGET_FMT_lx" %c%c%c\n",
2428         start, end, end - start,
2429         ((prot & PAGE_READ) ? 'r' : '-'),
2430         ((prot & PAGE_WRITE) ? 'w' : '-'),
2431         ((prot & PAGE_EXEC) ? 'x' : '-'));
2432 
2433     return 0;
2434 }
2435 
2436 /* dump memory mappings */
2437 void page_dump(FILE *f)
2438 {
2439     const int length = sizeof(target_ulong) * 2;
2440     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2441             length, "start", length, "end", length, "size", "prot");
2442     walk_memory_regions(f, dump_region);
2443 }
2444 
2445 int page_get_flags(target_ulong address)
2446 {
2447     PageDesc *p;
2448 
2449     p = page_find(address >> TARGET_PAGE_BITS);
2450     if (!p) {
2451         return 0;
2452     }
2453     return p->flags;
2454 }
2455 
2456 /* Modify the flags of a page and invalidate the code if necessary.
2457    The flag PAGE_WRITE_ORG is positioned automatically depending
2458    on PAGE_WRITE.  The mmap_lock should already be held.  */
2459 void page_set_flags(target_ulong start, target_ulong end, int flags)
2460 {
2461     target_ulong addr, len;
2462 
2463     /* This function should never be called with addresses outside the
2464        guest address space.  If this assert fires, it probably indicates
2465        a missing call to h2g_valid.  */
2466 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2467     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2468 #endif
2469     assert(start < end);
2470     assert_memory_lock();
2471 
2472     start = start & TARGET_PAGE_MASK;
2473     end = TARGET_PAGE_ALIGN(end);
2474 
2475     if (flags & PAGE_WRITE) {
2476         flags |= PAGE_WRITE_ORG;
2477     }
2478 
2479     for (addr = start, len = end - start;
2480          len != 0;
2481          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2482         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2483 
2484         /* If the write protection bit is set, then we invalidate
2485            the code inside.  */
2486         if (!(p->flags & PAGE_WRITE) &&
2487             (flags & PAGE_WRITE) &&
2488             p->first_tb) {
2489             tb_invalidate_phys_page(addr, 0);
2490         }
2491         p->flags = flags;
2492     }
2493 }
2494 
2495 int page_check_range(target_ulong start, target_ulong len, int flags)
2496 {
2497     PageDesc *p;
2498     target_ulong end;
2499     target_ulong addr;
2500 
2501     /* This function should never be called with addresses outside the
2502        guest address space.  If this assert fires, it probably indicates
2503        a missing call to h2g_valid.  */
2504 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2505     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2506 #endif
2507 
2508     if (len == 0) {
2509         return 0;
2510     }
2511     if (start + len - 1 < start) {
2512         /* We've wrapped around.  */
2513         return -1;
2514     }
2515 
2516     /* must do before we loose bits in the next step */
2517     end = TARGET_PAGE_ALIGN(start + len);
2518     start = start & TARGET_PAGE_MASK;
2519 
2520     for (addr = start, len = end - start;
2521          len != 0;
2522          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2523         p = page_find(addr >> TARGET_PAGE_BITS);
2524         if (!p) {
2525             return -1;
2526         }
2527         if (!(p->flags & PAGE_VALID)) {
2528             return -1;
2529         }
2530 
2531         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2532             return -1;
2533         }
2534         if (flags & PAGE_WRITE) {
2535             if (!(p->flags & PAGE_WRITE_ORG)) {
2536                 return -1;
2537             }
2538             /* unprotect the page if it was put read-only because it
2539                contains translated code */
2540             if (!(p->flags & PAGE_WRITE)) {
2541                 if (!page_unprotect(addr, 0)) {
2542                     return -1;
2543                 }
2544             }
2545         }
2546     }
2547     return 0;
2548 }
2549 
2550 /* called from signal handler: invalidate the code and unprotect the
2551  * page. Return 0 if the fault was not handled, 1 if it was handled,
2552  * and 2 if it was handled but the caller must cause the TB to be
2553  * immediately exited. (We can only return 2 if the 'pc' argument is
2554  * non-zero.)
2555  */
2556 int page_unprotect(target_ulong address, uintptr_t pc)
2557 {
2558     unsigned int prot;
2559     bool current_tb_invalidated;
2560     PageDesc *p;
2561     target_ulong host_start, host_end, addr;
2562 
2563     /* Technically this isn't safe inside a signal handler.  However we
2564        know this only ever happens in a synchronous SEGV handler, so in
2565        practice it seems to be ok.  */
2566     mmap_lock();
2567 
2568     p = page_find(address >> TARGET_PAGE_BITS);
2569     if (!p) {
2570         mmap_unlock();
2571         return 0;
2572     }
2573 
2574     /* if the page was really writable, then we change its
2575        protection back to writable */
2576     if (p->flags & PAGE_WRITE_ORG) {
2577         current_tb_invalidated = false;
2578         if (p->flags & PAGE_WRITE) {
2579             /* If the page is actually marked WRITE then assume this is because
2580              * this thread raced with another one which got here first and
2581              * set the page to PAGE_WRITE and did the TB invalidate for us.
2582              */
2583 #ifdef TARGET_HAS_PRECISE_SMC
2584             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2585             if (current_tb) {
2586                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2587             }
2588 #endif
2589         } else {
2590             host_start = address & qemu_host_page_mask;
2591             host_end = host_start + qemu_host_page_size;
2592 
2593             prot = 0;
2594             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2595                 p = page_find(addr >> TARGET_PAGE_BITS);
2596                 p->flags |= PAGE_WRITE;
2597                 prot |= p->flags;
2598 
2599                 /* and since the content will be modified, we must invalidate
2600                    the corresponding translated code. */
2601                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2602 #ifdef CONFIG_USER_ONLY
2603                 if (DEBUG_TB_CHECK_GATE) {
2604                     tb_invalidate_check(addr);
2605                 }
2606 #endif
2607             }
2608             mprotect((void *)g2h(host_start), qemu_host_page_size,
2609                      prot & PAGE_BITS);
2610         }
2611         mmap_unlock();
2612         /* If current TB was invalidated return to main loop */
2613         return current_tb_invalidated ? 2 : 1;
2614     }
2615     mmap_unlock();
2616     return 0;
2617 }
2618 #endif /* CONFIG_USER_ONLY */
2619 
2620 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2621 void tcg_flush_softmmu_tlb(CPUState *cs)
2622 {
2623 #ifdef CONFIG_SOFTMMU
2624     tlb_flush(cs);
2625 #endif
2626 }
2627