xref: /openbmc/qemu/accel/tcg/translate-all.c (revision ef5c8d0b)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #define NO_CPU_IO_DEFS
23 #include "trace.h"
24 #include "disas/disas.h"
25 #include "exec/exec-all.h"
26 #include "tcg/tcg.h"
27 #if defined(CONFIG_USER_ONLY)
28 #include "qemu.h"
29 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
30 #include <sys/param.h>
31 #if __FreeBSD_version >= 700104
32 #define HAVE_KINFO_GETVMMAP
33 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
34 #include <sys/proc.h>
35 #include <machine/profile.h>
36 #define _KERNEL
37 #include <sys/user.h>
38 #undef _KERNEL
39 #undef sigqueue
40 #include <libutil.h>
41 #endif
42 #endif
43 #else
44 #include "exec/ram_addr.h"
45 #endif
46 
47 #include "exec/cputlb.h"
48 #include "exec/translate-all.h"
49 #include "exec/translator.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/qemu-print.h"
52 #include "qemu/timer.h"
53 #include "qemu/main-loop.h"
54 #include "qemu/cacheinfo.h"
55 #include "exec/log.h"
56 #include "sysemu/cpus.h"
57 #include "sysemu/cpu-timers.h"
58 #include "sysemu/tcg.h"
59 #include "qapi/error.h"
60 #include "hw/core/tcg-cpu-ops.h"
61 #include "tb-jmp-cache.h"
62 #include "tb-hash.h"
63 #include "tb-context.h"
64 #include "internal.h"
65 
66 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
67 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
68                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
69                   * BITS_PER_BYTE);
70 
71 TBContext tb_ctx;
72 
73 /* Encode VAL as a signed leb128 sequence at P.
74    Return P incremented past the encoded value.  */
75 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
76 {
77     int more, byte;
78 
79     do {
80         byte = val & 0x7f;
81         val >>= 7;
82         more = !((val == 0 && (byte & 0x40) == 0)
83                  || (val == -1 && (byte & 0x40) != 0));
84         if (more) {
85             byte |= 0x80;
86         }
87         *p++ = byte;
88     } while (more);
89 
90     return p;
91 }
92 
93 /* Decode a signed leb128 sequence at *PP; increment *PP past the
94    decoded value.  Return the decoded value.  */
95 static target_long decode_sleb128(const uint8_t **pp)
96 {
97     const uint8_t *p = *pp;
98     target_long val = 0;
99     int byte, shift = 0;
100 
101     do {
102         byte = *p++;
103         val |= (target_ulong)(byte & 0x7f) << shift;
104         shift += 7;
105     } while (byte & 0x80);
106     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
107         val |= -(target_ulong)1 << shift;
108     }
109 
110     *pp = p;
111     return val;
112 }
113 
114 /* Encode the data collected about the instructions while compiling TB.
115    Place the data at BLOCK, and return the number of bytes consumed.
116 
117    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
118    which come from the target's insn_start data, followed by a uintptr_t
119    which comes from the host pc of the end of the code implementing the insn.
120 
121    Each line of the table is encoded as sleb128 deltas from the previous
122    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
123    That is, the first column is seeded with the guest pc, the last column
124    with the host pc, and the middle columns with zeros.  */
125 
126 static int encode_search(TranslationBlock *tb, uint8_t *block)
127 {
128     uint8_t *highwater = tcg_ctx->code_gen_highwater;
129     uint8_t *p = block;
130     int i, j, n;
131 
132     for (i = 0, n = tb->icount; i < n; ++i) {
133         target_ulong prev;
134 
135         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
136             if (i == 0) {
137                 prev = (!TARGET_TB_PCREL && j == 0 ? tb_pc(tb) : 0);
138             } else {
139                 prev = tcg_ctx->gen_insn_data[i - 1][j];
140             }
141             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
142         }
143         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
144         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
145 
146         /* Test for (pending) buffer overflow.  The assumption is that any
147            one row beginning below the high water mark cannot overrun
148            the buffer completely.  Thus we can test for overflow after
149            encoding a row without having to check during encoding.  */
150         if (unlikely(p > highwater)) {
151             return -1;
152         }
153     }
154 
155     return p - block;
156 }
157 
158 static int cpu_unwind_data_from_tb(TranslationBlock *tb, uintptr_t host_pc,
159                                    uint64_t *data)
160 {
161     uintptr_t iter_pc = (uintptr_t)tb->tc.ptr;
162     const uint8_t *p = tb->tc.ptr + tb->tc.size;
163     int i, j, num_insns = tb->icount;
164 
165     host_pc -= GETPC_ADJ;
166 
167     if (host_pc < iter_pc) {
168         return -1;
169     }
170 
171     memset(data, 0, sizeof(uint64_t) * TARGET_INSN_START_WORDS);
172     if (!TARGET_TB_PCREL) {
173         data[0] = tb_pc(tb);
174     }
175 
176     /*
177      * Reconstruct the stored insn data while looking for the point
178      * at which the end of the insn exceeds host_pc.
179      */
180     for (i = 0; i < num_insns; ++i) {
181         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
182             data[j] += decode_sleb128(&p);
183         }
184         iter_pc += decode_sleb128(&p);
185         if (iter_pc > host_pc) {
186             return num_insns - i;
187         }
188     }
189     return -1;
190 }
191 
192 /*
193  * The cpu state corresponding to 'host_pc' is restored in
194  * preparation for exiting the TB.
195  */
196 void cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
197                                uintptr_t host_pc)
198 {
199     uint64_t data[TARGET_INSN_START_WORDS];
200 #ifdef CONFIG_PROFILER
201     TCGProfile *prof = &tcg_ctx->prof;
202     int64_t ti = profile_getclock();
203 #endif
204     int insns_left = cpu_unwind_data_from_tb(tb, host_pc, data);
205 
206     if (insns_left < 0) {
207         return;
208     }
209 
210     if (tb_cflags(tb) & CF_USE_ICOUNT) {
211         assert(icount_enabled());
212         /*
213          * Reset the cycle counter to the start of the block and
214          * shift if to the number of actually executed instructions.
215          */
216         cpu_neg(cpu)->icount_decr.u16.low += insns_left;
217     }
218 
219     cpu->cc->tcg_ops->restore_state_to_opc(cpu, tb, data);
220 
221 #ifdef CONFIG_PROFILER
222     qatomic_set(&prof->restore_time,
223                 prof->restore_time + profile_getclock() - ti);
224     qatomic_set(&prof->restore_count, prof->restore_count + 1);
225 #endif
226 }
227 
228 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc)
229 {
230     /*
231      * The host_pc has to be in the rx region of the code buffer.
232      * If it is not we will not be able to resolve it here.
233      * The two cases where host_pc will not be correct are:
234      *
235      *  - fault during translation (instruction fetch)
236      *  - fault from helper (not using GETPC() macro)
237      *
238      * Either way we need return early as we can't resolve it here.
239      */
240     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
241         TranslationBlock *tb = tcg_tb_lookup(host_pc);
242         if (tb) {
243             cpu_restore_state_from_tb(cpu, tb, host_pc);
244             return true;
245         }
246     }
247     return false;
248 }
249 
250 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data)
251 {
252     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
253         TranslationBlock *tb = tcg_tb_lookup(host_pc);
254         if (tb) {
255             return cpu_unwind_data_from_tb(tb, host_pc, data) >= 0;
256         }
257     }
258     return false;
259 }
260 
261 void page_init(void)
262 {
263     page_size_init();
264     page_table_config_init();
265 }
266 
267 /*
268  * Isolate the portion of code gen which can setjmp/longjmp.
269  * Return the size of the generated code, or negative on error.
270  */
271 static int setjmp_gen_code(CPUArchState *env, TranslationBlock *tb,
272                            target_ulong pc, void *host_pc,
273                            int *max_insns, int64_t *ti)
274 {
275     int ret = sigsetjmp(tcg_ctx->jmp_trans, 0);
276     if (unlikely(ret != 0)) {
277         return ret;
278     }
279 
280     tcg_func_start(tcg_ctx);
281 
282     tcg_ctx->cpu = env_cpu(env);
283     gen_intermediate_code(env_cpu(env), tb, *max_insns, pc, host_pc);
284     assert(tb->size != 0);
285     tcg_ctx->cpu = NULL;
286     *max_insns = tb->icount;
287 
288 #ifdef CONFIG_PROFILER
289     qatomic_set(&tcg_ctx->prof.tb_count, tcg_ctx->prof.tb_count + 1);
290     qatomic_set(&tcg_ctx->prof.interm_time,
291                 tcg_ctx->prof.interm_time + profile_getclock() - *ti);
292     *ti = profile_getclock();
293 #endif
294 
295     return tcg_gen_code(tcg_ctx, tb, pc);
296 }
297 
298 /* Called with mmap_lock held for user mode emulation.  */
299 TranslationBlock *tb_gen_code(CPUState *cpu,
300                               target_ulong pc, target_ulong cs_base,
301                               uint32_t flags, int cflags)
302 {
303     CPUArchState *env = cpu->env_ptr;
304     TranslationBlock *tb, *existing_tb;
305     tb_page_addr_t phys_pc;
306     tcg_insn_unit *gen_code_buf;
307     int gen_code_size, search_size, max_insns;
308 #ifdef CONFIG_PROFILER
309     TCGProfile *prof = &tcg_ctx->prof;
310 #endif
311     int64_t ti;
312     void *host_pc;
313 
314     assert_memory_lock();
315     qemu_thread_jit_write();
316 
317     phys_pc = get_page_addr_code_hostp(env, pc, &host_pc);
318 
319     if (phys_pc == -1) {
320         /* Generate a one-shot TB with 1 insn in it */
321         cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
322     }
323 
324     max_insns = cflags & CF_COUNT_MASK;
325     if (max_insns == 0) {
326         max_insns = TCG_MAX_INSNS;
327     }
328     QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS);
329 
330  buffer_overflow:
331     tb = tcg_tb_alloc(tcg_ctx);
332     if (unlikely(!tb)) {
333         /* flush must be done */
334         tb_flush(cpu);
335         mmap_unlock();
336         /* Make the execution loop process the flush as soon as possible.  */
337         cpu->exception_index = EXCP_INTERRUPT;
338         cpu_loop_exit(cpu);
339     }
340 
341     gen_code_buf = tcg_ctx->code_gen_ptr;
342     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
343 #if !TARGET_TB_PCREL
344     tb->pc = pc;
345 #endif
346     tb->cs_base = cs_base;
347     tb->flags = flags;
348     tb->cflags = cflags;
349     tb->trace_vcpu_dstate = *cpu->trace_dstate;
350     tb_set_page_addr0(tb, phys_pc);
351     tb_set_page_addr1(tb, -1);
352     tcg_ctx->tb_cflags = cflags;
353  tb_overflow:
354 
355 #ifdef CONFIG_PROFILER
356     /* includes aborted translations because of exceptions */
357     qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
358     ti = profile_getclock();
359 #endif
360 
361     trace_translate_block(tb, pc, tb->tc.ptr);
362 
363     gen_code_size = setjmp_gen_code(env, tb, pc, host_pc, &max_insns, &ti);
364     if (unlikely(gen_code_size < 0)) {
365         switch (gen_code_size) {
366         case -1:
367             /*
368              * Overflow of code_gen_buffer, or the current slice of it.
369              *
370              * TODO: We don't need to re-do gen_intermediate_code, nor
371              * should we re-do the tcg optimization currently hidden
372              * inside tcg_gen_code.  All that should be required is to
373              * flush the TBs, allocate a new TB, re-initialize it per
374              * above, and re-do the actual code generation.
375              */
376             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
377                           "Restarting code generation for "
378                           "code_gen_buffer overflow\n");
379             goto buffer_overflow;
380 
381         case -2:
382             /*
383              * The code generated for the TranslationBlock is too large.
384              * The maximum size allowed by the unwind info is 64k.
385              * There may be stricter constraints from relocations
386              * in the tcg backend.
387              *
388              * Try again with half as many insns as we attempted this time.
389              * If a single insn overflows, there's a bug somewhere...
390              */
391             assert(max_insns > 1);
392             max_insns /= 2;
393             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
394                           "Restarting code generation with "
395                           "smaller translation block (max %d insns)\n",
396                           max_insns);
397             goto tb_overflow;
398 
399         default:
400             g_assert_not_reached();
401         }
402     }
403     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
404     if (unlikely(search_size < 0)) {
405         goto buffer_overflow;
406     }
407     tb->tc.size = gen_code_size;
408 
409 #ifdef CONFIG_PROFILER
410     qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
411     qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
412     qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
413     qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
414 #endif
415 
416 #ifdef DEBUG_DISAS
417     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
418         qemu_log_in_addr_range(pc)) {
419         FILE *logfile = qemu_log_trylock();
420         if (logfile) {
421             int code_size, data_size;
422             const tcg_target_ulong *rx_data_gen_ptr;
423             size_t chunk_start;
424             int insn = 0;
425 
426             if (tcg_ctx->data_gen_ptr) {
427                 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
428                 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
429                 data_size = gen_code_size - code_size;
430             } else {
431                 rx_data_gen_ptr = 0;
432                 code_size = gen_code_size;
433                 data_size = 0;
434             }
435 
436             /* Dump header and the first instruction */
437             fprintf(logfile, "OUT: [size=%d]\n", gen_code_size);
438             fprintf(logfile,
439                     "  -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
440                     tcg_ctx->gen_insn_data[insn][0]);
441             chunk_start = tcg_ctx->gen_insn_end_off[insn];
442             disas(logfile, tb->tc.ptr, chunk_start);
443 
444             /*
445              * Dump each instruction chunk, wrapping up empty chunks into
446              * the next instruction. The whole array is offset so the
447              * first entry is the beginning of the 2nd instruction.
448              */
449             while (insn < tb->icount) {
450                 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
451                 if (chunk_end > chunk_start) {
452                     fprintf(logfile, "  -- guest addr 0x" TARGET_FMT_lx "\n",
453                             tcg_ctx->gen_insn_data[insn][0]);
454                     disas(logfile, tb->tc.ptr + chunk_start,
455                           chunk_end - chunk_start);
456                     chunk_start = chunk_end;
457                 }
458                 insn++;
459             }
460 
461             if (chunk_start < code_size) {
462                 fprintf(logfile, "  -- tb slow paths + alignment\n");
463                 disas(logfile, tb->tc.ptr + chunk_start,
464                       code_size - chunk_start);
465             }
466 
467             /* Finally dump any data we may have after the block */
468             if (data_size) {
469                 int i;
470                 fprintf(logfile, "  data: [size=%d]\n", data_size);
471                 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
472                     if (sizeof(tcg_target_ulong) == 8) {
473                         fprintf(logfile,
474                                 "0x%08" PRIxPTR ":  .quad  0x%016" TCG_PRIlx "\n",
475                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
476                     } else if (sizeof(tcg_target_ulong) == 4) {
477                         fprintf(logfile,
478                                 "0x%08" PRIxPTR ":  .long  0x%08" TCG_PRIlx "\n",
479                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
480                     } else {
481                         qemu_build_not_reached();
482                     }
483                 }
484             }
485             fprintf(logfile, "\n");
486             qemu_log_unlock(logfile);
487         }
488     }
489 #endif
490 
491     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
492         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
493                  CODE_GEN_ALIGN));
494 
495     /* init jump list */
496     qemu_spin_init(&tb->jmp_lock);
497     tb->jmp_list_head = (uintptr_t)NULL;
498     tb->jmp_list_next[0] = (uintptr_t)NULL;
499     tb->jmp_list_next[1] = (uintptr_t)NULL;
500     tb->jmp_dest[0] = (uintptr_t)NULL;
501     tb->jmp_dest[1] = (uintptr_t)NULL;
502 
503     /* init original jump addresses which have been set during tcg_gen_code() */
504     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
505         tb_reset_jump(tb, 0);
506     }
507     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
508         tb_reset_jump(tb, 1);
509     }
510 
511     /*
512      * If the TB is not associated with a physical RAM page then it must be
513      * a temporary one-insn TB, and we have nothing left to do. Return early
514      * before attempting to link to other TBs or add to the lookup table.
515      */
516     if (tb_page_addr0(tb) == -1) {
517         return tb;
518     }
519 
520     /*
521      * Insert TB into the corresponding region tree before publishing it
522      * through QHT. Otherwise rewinding happened in the TB might fail to
523      * lookup itself using host PC.
524      */
525     tcg_tb_insert(tb);
526 
527     /*
528      * No explicit memory barrier is required -- tb_link_page() makes the
529      * TB visible in a consistent state.
530      */
531     existing_tb = tb_link_page(tb, tb_page_addr0(tb), tb_page_addr1(tb));
532     /* if the TB already exists, discard what we just translated */
533     if (unlikely(existing_tb != tb)) {
534         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
535 
536         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
537         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
538         tcg_tb_remove(tb);
539         return existing_tb;
540     }
541     return tb;
542 }
543 
544 /* user-mode: call with mmap_lock held */
545 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
546 {
547     TranslationBlock *tb;
548 
549     assert_memory_lock();
550 
551     tb = tcg_tb_lookup(retaddr);
552     if (tb) {
553         /* We can use retranslation to find the PC.  */
554         cpu_restore_state_from_tb(cpu, tb, retaddr);
555         tb_phys_invalidate(tb, -1);
556     } else {
557         /* The exception probably happened in a helper.  The CPU state should
558            have been saved before calling it. Fetch the PC from there.  */
559         CPUArchState *env = cpu->env_ptr;
560         target_ulong pc, cs_base;
561         tb_page_addr_t addr;
562         uint32_t flags;
563 
564         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
565         addr = get_page_addr_code(env, pc);
566         if (addr != -1) {
567             tb_invalidate_phys_range(addr, addr + 1);
568         }
569     }
570 }
571 
572 #ifndef CONFIG_USER_ONLY
573 /*
574  * In deterministic execution mode, instructions doing device I/Os
575  * must be at the end of the TB.
576  *
577  * Called by softmmu_template.h, with iothread mutex not held.
578  */
579 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
580 {
581     TranslationBlock *tb;
582     CPUClass *cc;
583     uint32_t n;
584 
585     tb = tcg_tb_lookup(retaddr);
586     if (!tb) {
587         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
588                   (void *)retaddr);
589     }
590     cpu_restore_state_from_tb(cpu, tb, retaddr);
591 
592     /*
593      * Some guests must re-execute the branch when re-executing a delay
594      * slot instruction.  When this is the case, adjust icount and N
595      * to account for the re-execution of the branch.
596      */
597     n = 1;
598     cc = CPU_GET_CLASS(cpu);
599     if (cc->tcg_ops->io_recompile_replay_branch &&
600         cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
601         cpu_neg(cpu)->icount_decr.u16.low++;
602         n = 2;
603     }
604 
605     /*
606      * Exit the loop and potentially generate a new TB executing the
607      * just the I/O insns. We also limit instrumentation to memory
608      * operations only (which execute after completion) so we don't
609      * double instrument the instruction.
610      */
611     cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;
612 
613     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
614         target_ulong pc = log_pc(cpu, tb);
615         if (qemu_log_in_addr_range(pc)) {
616             qemu_log("cpu_io_recompile: rewound execution of TB to "
617                      TARGET_FMT_lx "\n", pc);
618         }
619     }
620 
621     cpu_loop_exit_noexc(cpu);
622 }
623 
624 static void print_qht_statistics(struct qht_stats hst, GString *buf)
625 {
626     uint32_t hgram_opts;
627     size_t hgram_bins;
628     char *hgram;
629 
630     if (!hst.head_buckets) {
631         return;
632     }
633     g_string_append_printf(buf, "TB hash buckets     %zu/%zu "
634                            "(%0.2f%% head buckets used)\n",
635                            hst.used_head_buckets, hst.head_buckets,
636                            (double)hst.used_head_buckets /
637                            hst.head_buckets * 100);
638 
639     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
640     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
641     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
642         hgram_opts |= QDIST_PR_NODECIMAL;
643     }
644     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
645     g_string_append_printf(buf, "TB hash occupancy   %0.2f%% avg chain occ. "
646                            "Histogram: %s\n",
647                            qdist_avg(&hst.occupancy) * 100, hgram);
648     g_free(hgram);
649 
650     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
651     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
652     if (hgram_bins > 10) {
653         hgram_bins = 10;
654     } else {
655         hgram_bins = 0;
656         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
657     }
658     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
659     g_string_append_printf(buf, "TB hash avg chain   %0.3f buckets. "
660                            "Histogram: %s\n",
661                            qdist_avg(&hst.chain), hgram);
662     g_free(hgram);
663 }
664 
665 struct tb_tree_stats {
666     size_t nb_tbs;
667     size_t host_size;
668     size_t target_size;
669     size_t max_target_size;
670     size_t direct_jmp_count;
671     size_t direct_jmp2_count;
672     size_t cross_page;
673 };
674 
675 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
676 {
677     const TranslationBlock *tb = value;
678     struct tb_tree_stats *tst = data;
679 
680     tst->nb_tbs++;
681     tst->host_size += tb->tc.size;
682     tst->target_size += tb->size;
683     if (tb->size > tst->max_target_size) {
684         tst->max_target_size = tb->size;
685     }
686     if (tb_page_addr1(tb) != -1) {
687         tst->cross_page++;
688     }
689     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
690         tst->direct_jmp_count++;
691         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
692             tst->direct_jmp2_count++;
693         }
694     }
695     return false;
696 }
697 
698 void dump_exec_info(GString *buf)
699 {
700     struct tb_tree_stats tst = {};
701     struct qht_stats hst;
702     size_t nb_tbs, flush_full, flush_part, flush_elide;
703 
704     tcg_tb_foreach(tb_tree_stats_iter, &tst);
705     nb_tbs = tst.nb_tbs;
706     /* XXX: avoid using doubles ? */
707     g_string_append_printf(buf, "Translation buffer state:\n");
708     /*
709      * Report total code size including the padding and TB structs;
710      * otherwise users might think "-accel tcg,tb-size" is not honoured.
711      * For avg host size we use the precise numbers from tb_tree_stats though.
712      */
713     g_string_append_printf(buf, "gen code size       %zu/%zu\n",
714                            tcg_code_size(), tcg_code_capacity());
715     g_string_append_printf(buf, "TB count            %zu\n", nb_tbs);
716     g_string_append_printf(buf, "TB avg target size  %zu max=%zu bytes\n",
717                            nb_tbs ? tst.target_size / nb_tbs : 0,
718                            tst.max_target_size);
719     g_string_append_printf(buf, "TB avg host size    %zu bytes "
720                            "(expansion ratio: %0.1f)\n",
721                            nb_tbs ? tst.host_size / nb_tbs : 0,
722                            tst.target_size ?
723                            (double)tst.host_size / tst.target_size : 0);
724     g_string_append_printf(buf, "cross page TB count %zu (%zu%%)\n",
725                            tst.cross_page,
726                            nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
727     g_string_append_printf(buf, "direct jump count   %zu (%zu%%) "
728                            "(2 jumps=%zu %zu%%)\n",
729                            tst.direct_jmp_count,
730                            nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
731                            tst.direct_jmp2_count,
732                            nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
733 
734     qht_statistics_init(&tb_ctx.htable, &hst);
735     print_qht_statistics(hst, buf);
736     qht_statistics_destroy(&hst);
737 
738     g_string_append_printf(buf, "\nStatistics:\n");
739     g_string_append_printf(buf, "TB flush count      %u\n",
740                            qatomic_read(&tb_ctx.tb_flush_count));
741     g_string_append_printf(buf, "TB invalidate count %u\n",
742                            qatomic_read(&tb_ctx.tb_phys_invalidate_count));
743 
744     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
745     g_string_append_printf(buf, "TLB full flushes    %zu\n", flush_full);
746     g_string_append_printf(buf, "TLB partial flushes %zu\n", flush_part);
747     g_string_append_printf(buf, "TLB elided flushes  %zu\n", flush_elide);
748     tcg_dump_info(buf);
749 }
750 
751 #else /* CONFIG_USER_ONLY */
752 
753 void cpu_interrupt(CPUState *cpu, int mask)
754 {
755     g_assert(qemu_mutex_iothread_locked());
756     cpu->interrupt_request |= mask;
757     qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
758 }
759 
760 #endif /* CONFIG_USER_ONLY */
761 
762 /*
763  * Called by generic code at e.g. cpu reset after cpu creation,
764  * therefore we must be prepared to allocate the jump cache.
765  */
766 void tcg_flush_jmp_cache(CPUState *cpu)
767 {
768     CPUJumpCache *jc = cpu->tb_jmp_cache;
769 
770     /* During early initialization, the cache may not yet be allocated. */
771     if (unlikely(jc == NULL)) {
772         return;
773     }
774 
775     for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) {
776         qatomic_set(&jc->array[i].tb, NULL);
777     }
778 }
779 
780 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
781 void tcg_flush_softmmu_tlb(CPUState *cs)
782 {
783 #ifdef CONFIG_SOFTMMU
784     tlb_flush(cs);
785 #endif
786 }
787