xref: /openbmc/qemu/accel/tcg/translate-all.c (revision ec132efaa81f09861a3bd6afad94827e74543b3f)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "qemu-common.h"
22 #define NO_CPU_IO_DEFS
23 #include "cpu.h"
24 #include "trace.h"
25 #include "disas/disas.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #if defined(CONFIG_USER_ONLY)
29 #include "qemu.h"
30 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
31 #include <sys/param.h>
32 #if __FreeBSD_version >= 700104
33 #define HAVE_KINFO_GETVMMAP
34 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
35 #include <sys/proc.h>
36 #include <machine/profile.h>
37 #define _KERNEL
38 #include <sys/user.h>
39 #undef _KERNEL
40 #undef sigqueue
41 #include <libutil.h>
42 #endif
43 #endif
44 #else
45 #include "exec/ram_addr.h"
46 #endif
47 
48 #include "exec/cputlb.h"
49 #include "exec/tb-hash.h"
50 #include "translate-all.h"
51 #include "qemu/bitmap.h"
52 #include "qemu/error-report.h"
53 #include "qemu/qemu-print.h"
54 #include "qemu/timer.h"
55 #include "qemu/main-loop.h"
56 #include "exec/log.h"
57 #include "sysemu/cpus.h"
58 
59 /* #define DEBUG_TB_INVALIDATE */
60 /* #define DEBUG_TB_FLUSH */
61 /* make various TB consistency checks */
62 /* #define DEBUG_TB_CHECK */
63 
64 #ifdef DEBUG_TB_INVALIDATE
65 #define DEBUG_TB_INVALIDATE_GATE 1
66 #else
67 #define DEBUG_TB_INVALIDATE_GATE 0
68 #endif
69 
70 #ifdef DEBUG_TB_FLUSH
71 #define DEBUG_TB_FLUSH_GATE 1
72 #else
73 #define DEBUG_TB_FLUSH_GATE 0
74 #endif
75 
76 #if !defined(CONFIG_USER_ONLY)
77 /* TB consistency checks only implemented for usermode emulation.  */
78 #undef DEBUG_TB_CHECK
79 #endif
80 
81 #ifdef DEBUG_TB_CHECK
82 #define DEBUG_TB_CHECK_GATE 1
83 #else
84 #define DEBUG_TB_CHECK_GATE 0
85 #endif
86 
87 /* Access to the various translations structures need to be serialised via locks
88  * for consistency.
89  * In user-mode emulation access to the memory related structures are protected
90  * with mmap_lock.
91  * In !user-mode we use per-page locks.
92  */
93 #ifdef CONFIG_SOFTMMU
94 #define assert_memory_lock()
95 #else
96 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
97 #endif
98 
99 #define SMC_BITMAP_USE_THRESHOLD 10
100 
101 typedef struct PageDesc {
102     /* list of TBs intersecting this ram page */
103     uintptr_t first_tb;
104 #ifdef CONFIG_SOFTMMU
105     /* in order to optimize self modifying code, we count the number
106        of lookups we do to a given page to use a bitmap */
107     unsigned long *code_bitmap;
108     unsigned int code_write_count;
109 #else
110     unsigned long flags;
111 #endif
112 #ifndef CONFIG_USER_ONLY
113     QemuSpin lock;
114 #endif
115 } PageDesc;
116 
117 /**
118  * struct page_entry - page descriptor entry
119  * @pd:     pointer to the &struct PageDesc of the page this entry represents
120  * @index:  page index of the page
121  * @locked: whether the page is locked
122  *
123  * This struct helps us keep track of the locked state of a page, without
124  * bloating &struct PageDesc.
125  *
126  * A page lock protects accesses to all fields of &struct PageDesc.
127  *
128  * See also: &struct page_collection.
129  */
130 struct page_entry {
131     PageDesc *pd;
132     tb_page_addr_t index;
133     bool locked;
134 };
135 
136 /**
137  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
138  * @tree:   Binary search tree (BST) of the pages, with key == page index
139  * @max:    Pointer to the page in @tree with the highest page index
140  *
141  * To avoid deadlock we lock pages in ascending order of page index.
142  * When operating on a set of pages, we need to keep track of them so that
143  * we can lock them in order and also unlock them later. For this we collect
144  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
145  * @tree implementation we use does not provide an O(1) operation to obtain the
146  * highest-ranked element, we use @max to keep track of the inserted page
147  * with the highest index. This is valuable because if a page is not in
148  * the tree and its index is higher than @max's, then we can lock it
149  * without breaking the locking order rule.
150  *
151  * Note on naming: 'struct page_set' would be shorter, but we already have a few
152  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
153  *
154  * See also: page_collection_lock().
155  */
156 struct page_collection {
157     GTree *tree;
158     struct page_entry *max;
159 };
160 
161 /* list iterators for lists of tagged pointers in TranslationBlock */
162 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
163     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
164          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
165              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
166 
167 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
168     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
169 
170 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
171     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
172 
173 /* In system mode we want L1_MAP to be based on ram offsets,
174    while in user mode we want it to be based on virtual addresses.  */
175 #if !defined(CONFIG_USER_ONLY)
176 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
177 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
178 #else
179 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
180 #endif
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
183 #endif
184 
185 /* Size of the L2 (and L3, etc) page tables.  */
186 #define V_L2_BITS 10
187 #define V_L2_SIZE (1 << V_L2_BITS)
188 
189 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
190 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
191                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
192                   * BITS_PER_BYTE);
193 
194 /*
195  * L1 Mapping properties
196  */
197 static int v_l1_size;
198 static int v_l1_shift;
199 static int v_l2_levels;
200 
201 /* The bottom level has pointers to PageDesc, and is indexed by
202  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
203  */
204 #define V_L1_MIN_BITS 4
205 #define V_L1_MAX_BITS (V_L2_BITS + 3)
206 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
207 
208 static void *l1_map[V_L1_MAX_SIZE];
209 
210 /* code generation context */
211 TCGContext tcg_init_ctx;
212 __thread TCGContext *tcg_ctx;
213 TBContext tb_ctx;
214 bool parallel_cpus;
215 
216 static void page_table_config_init(void)
217 {
218     uint32_t v_l1_bits;
219 
220     assert(TARGET_PAGE_BITS);
221     /* The bits remaining after N lower levels of page tables.  */
222     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
223     if (v_l1_bits < V_L1_MIN_BITS) {
224         v_l1_bits += V_L2_BITS;
225     }
226 
227     v_l1_size = 1 << v_l1_bits;
228     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
229     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
230 
231     assert(v_l1_bits <= V_L1_MAX_BITS);
232     assert(v_l1_shift % V_L2_BITS == 0);
233     assert(v_l2_levels >= 0);
234 }
235 
236 void cpu_gen_init(void)
237 {
238     tcg_context_init(&tcg_init_ctx);
239 }
240 
241 /* Encode VAL as a signed leb128 sequence at P.
242    Return P incremented past the encoded value.  */
243 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
244 {
245     int more, byte;
246 
247     do {
248         byte = val & 0x7f;
249         val >>= 7;
250         more = !((val == 0 && (byte & 0x40) == 0)
251                  || (val == -1 && (byte & 0x40) != 0));
252         if (more) {
253             byte |= 0x80;
254         }
255         *p++ = byte;
256     } while (more);
257 
258     return p;
259 }
260 
261 /* Decode a signed leb128 sequence at *PP; increment *PP past the
262    decoded value.  Return the decoded value.  */
263 static target_long decode_sleb128(uint8_t **pp)
264 {
265     uint8_t *p = *pp;
266     target_long val = 0;
267     int byte, shift = 0;
268 
269     do {
270         byte = *p++;
271         val |= (target_ulong)(byte & 0x7f) << shift;
272         shift += 7;
273     } while (byte & 0x80);
274     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
275         val |= -(target_ulong)1 << shift;
276     }
277 
278     *pp = p;
279     return val;
280 }
281 
282 /* Encode the data collected about the instructions while compiling TB.
283    Place the data at BLOCK, and return the number of bytes consumed.
284 
285    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
286    which come from the target's insn_start data, followed by a uintptr_t
287    which comes from the host pc of the end of the code implementing the insn.
288 
289    Each line of the table is encoded as sleb128 deltas from the previous
290    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
291    That is, the first column is seeded with the guest pc, the last column
292    with the host pc, and the middle columns with zeros.  */
293 
294 static int encode_search(TranslationBlock *tb, uint8_t *block)
295 {
296     uint8_t *highwater = tcg_ctx->code_gen_highwater;
297     uint8_t *p = block;
298     int i, j, n;
299 
300     for (i = 0, n = tb->icount; i < n; ++i) {
301         target_ulong prev;
302 
303         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
304             if (i == 0) {
305                 prev = (j == 0 ? tb->pc : 0);
306             } else {
307                 prev = tcg_ctx->gen_insn_data[i - 1][j];
308             }
309             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
310         }
311         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
312         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
313 
314         /* Test for (pending) buffer overflow.  The assumption is that any
315            one row beginning below the high water mark cannot overrun
316            the buffer completely.  Thus we can test for overflow after
317            encoding a row without having to check during encoding.  */
318         if (unlikely(p > highwater)) {
319             return -1;
320         }
321     }
322 
323     return p - block;
324 }
325 
326 /* The cpu state corresponding to 'searched_pc' is restored.
327  * When reset_icount is true, current TB will be interrupted and
328  * icount should be recalculated.
329  */
330 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
331                                      uintptr_t searched_pc, bool reset_icount)
332 {
333     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
334     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
335     CPUArchState *env = cpu->env_ptr;
336     uint8_t *p = tb->tc.ptr + tb->tc.size;
337     int i, j, num_insns = tb->icount;
338 #ifdef CONFIG_PROFILER
339     TCGProfile *prof = &tcg_ctx->prof;
340     int64_t ti = profile_getclock();
341 #endif
342 
343     searched_pc -= GETPC_ADJ;
344 
345     if (searched_pc < host_pc) {
346         return -1;
347     }
348 
349     /* Reconstruct the stored insn data while looking for the point at
350        which the end of the insn exceeds the searched_pc.  */
351     for (i = 0; i < num_insns; ++i) {
352         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
353             data[j] += decode_sleb128(&p);
354         }
355         host_pc += decode_sleb128(&p);
356         if (host_pc > searched_pc) {
357             goto found;
358         }
359     }
360     return -1;
361 
362  found:
363     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
364         assert(use_icount);
365         /* Reset the cycle counter to the start of the block
366            and shift if to the number of actually executed instructions */
367         cpu->icount_decr.u16.low += num_insns - i;
368     }
369     restore_state_to_opc(env, tb, data);
370 
371 #ifdef CONFIG_PROFILER
372     atomic_set(&prof->restore_time,
373                 prof->restore_time + profile_getclock() - ti);
374     atomic_set(&prof->restore_count, prof->restore_count + 1);
375 #endif
376     return 0;
377 }
378 
379 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
380 {
381     TranslationBlock *tb;
382     bool r = false;
383     uintptr_t check_offset;
384 
385     /* The host_pc has to be in the region of current code buffer. If
386      * it is not we will not be able to resolve it here. The two cases
387      * where host_pc will not be correct are:
388      *
389      *  - fault during translation (instruction fetch)
390      *  - fault from helper (not using GETPC() macro)
391      *
392      * Either way we need return early as we can't resolve it here.
393      *
394      * We are using unsigned arithmetic so if host_pc <
395      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
396      * above the code_gen_buffer_size
397      */
398     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
399 
400     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
401         tb = tcg_tb_lookup(host_pc);
402         if (tb) {
403             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
404             if (tb_cflags(tb) & CF_NOCACHE) {
405                 /* one-shot translation, invalidate it immediately */
406                 tb_phys_invalidate(tb, -1);
407                 tcg_tb_remove(tb);
408             }
409             r = true;
410         }
411     }
412 
413     return r;
414 }
415 
416 static void page_init(void)
417 {
418     page_size_init();
419     page_table_config_init();
420 
421 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
422     {
423 #ifdef HAVE_KINFO_GETVMMAP
424         struct kinfo_vmentry *freep;
425         int i, cnt;
426 
427         freep = kinfo_getvmmap(getpid(), &cnt);
428         if (freep) {
429             mmap_lock();
430             for (i = 0; i < cnt; i++) {
431                 unsigned long startaddr, endaddr;
432 
433                 startaddr = freep[i].kve_start;
434                 endaddr = freep[i].kve_end;
435                 if (h2g_valid(startaddr)) {
436                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
437 
438                     if (h2g_valid(endaddr)) {
439                         endaddr = h2g(endaddr);
440                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
441                     } else {
442 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
443                         endaddr = ~0ul;
444                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
445 #endif
446                     }
447                 }
448             }
449             free(freep);
450             mmap_unlock();
451         }
452 #else
453         FILE *f;
454 
455         last_brk = (unsigned long)sbrk(0);
456 
457         f = fopen("/compat/linux/proc/self/maps", "r");
458         if (f) {
459             mmap_lock();
460 
461             do {
462                 unsigned long startaddr, endaddr;
463                 int n;
464 
465                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
466 
467                 if (n == 2 && h2g_valid(startaddr)) {
468                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
469 
470                     if (h2g_valid(endaddr)) {
471                         endaddr = h2g(endaddr);
472                     } else {
473                         endaddr = ~0ul;
474                     }
475                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
476                 }
477             } while (!feof(f));
478 
479             fclose(f);
480             mmap_unlock();
481         }
482 #endif
483     }
484 #endif
485 }
486 
487 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
488 {
489     PageDesc *pd;
490     void **lp;
491     int i;
492 
493     /* Level 1.  Always allocated.  */
494     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
495 
496     /* Level 2..N-1.  */
497     for (i = v_l2_levels; i > 0; i--) {
498         void **p = atomic_rcu_read(lp);
499 
500         if (p == NULL) {
501             void *existing;
502 
503             if (!alloc) {
504                 return NULL;
505             }
506             p = g_new0(void *, V_L2_SIZE);
507             existing = atomic_cmpxchg(lp, NULL, p);
508             if (unlikely(existing)) {
509                 g_free(p);
510                 p = existing;
511             }
512         }
513 
514         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
515     }
516 
517     pd = atomic_rcu_read(lp);
518     if (pd == NULL) {
519         void *existing;
520 
521         if (!alloc) {
522             return NULL;
523         }
524         pd = g_new0(PageDesc, V_L2_SIZE);
525 #ifndef CONFIG_USER_ONLY
526         {
527             int i;
528 
529             for (i = 0; i < V_L2_SIZE; i++) {
530                 qemu_spin_init(&pd[i].lock);
531             }
532         }
533 #endif
534         existing = atomic_cmpxchg(lp, NULL, pd);
535         if (unlikely(existing)) {
536             g_free(pd);
537             pd = existing;
538         }
539     }
540 
541     return pd + (index & (V_L2_SIZE - 1));
542 }
543 
544 static inline PageDesc *page_find(tb_page_addr_t index)
545 {
546     return page_find_alloc(index, 0);
547 }
548 
549 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
550                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
551 
552 /* In user-mode page locks aren't used; mmap_lock is enough */
553 #ifdef CONFIG_USER_ONLY
554 
555 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
556 
557 static inline void page_lock(PageDesc *pd)
558 { }
559 
560 static inline void page_unlock(PageDesc *pd)
561 { }
562 
563 static inline void page_lock_tb(const TranslationBlock *tb)
564 { }
565 
566 static inline void page_unlock_tb(const TranslationBlock *tb)
567 { }
568 
569 struct page_collection *
570 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
571 {
572     return NULL;
573 }
574 
575 void page_collection_unlock(struct page_collection *set)
576 { }
577 #else /* !CONFIG_USER_ONLY */
578 
579 #ifdef CONFIG_DEBUG_TCG
580 
581 static __thread GHashTable *ht_pages_locked_debug;
582 
583 static void ht_pages_locked_debug_init(void)
584 {
585     if (ht_pages_locked_debug) {
586         return;
587     }
588     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
589 }
590 
591 static bool page_is_locked(const PageDesc *pd)
592 {
593     PageDesc *found;
594 
595     ht_pages_locked_debug_init();
596     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
597     return !!found;
598 }
599 
600 static void page_lock__debug(PageDesc *pd)
601 {
602     ht_pages_locked_debug_init();
603     g_assert(!page_is_locked(pd));
604     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
605 }
606 
607 static void page_unlock__debug(const PageDesc *pd)
608 {
609     bool removed;
610 
611     ht_pages_locked_debug_init();
612     g_assert(page_is_locked(pd));
613     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
614     g_assert(removed);
615 }
616 
617 static void
618 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
619 {
620     if (unlikely(!page_is_locked(pd))) {
621         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
622                      pd, file, line);
623         abort();
624     }
625 }
626 
627 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
628 
629 void assert_no_pages_locked(void)
630 {
631     ht_pages_locked_debug_init();
632     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
633 }
634 
635 #else /* !CONFIG_DEBUG_TCG */
636 
637 #define assert_page_locked(pd)
638 
639 static inline void page_lock__debug(const PageDesc *pd)
640 {
641 }
642 
643 static inline void page_unlock__debug(const PageDesc *pd)
644 {
645 }
646 
647 #endif /* CONFIG_DEBUG_TCG */
648 
649 static inline void page_lock(PageDesc *pd)
650 {
651     page_lock__debug(pd);
652     qemu_spin_lock(&pd->lock);
653 }
654 
655 static inline void page_unlock(PageDesc *pd)
656 {
657     qemu_spin_unlock(&pd->lock);
658     page_unlock__debug(pd);
659 }
660 
661 /* lock the page(s) of a TB in the correct acquisition order */
662 static inline void page_lock_tb(const TranslationBlock *tb)
663 {
664     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
665 }
666 
667 static inline void page_unlock_tb(const TranslationBlock *tb)
668 {
669     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
670 
671     page_unlock(p1);
672     if (unlikely(tb->page_addr[1] != -1)) {
673         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
674 
675         if (p2 != p1) {
676             page_unlock(p2);
677         }
678     }
679 }
680 
681 static inline struct page_entry *
682 page_entry_new(PageDesc *pd, tb_page_addr_t index)
683 {
684     struct page_entry *pe = g_malloc(sizeof(*pe));
685 
686     pe->index = index;
687     pe->pd = pd;
688     pe->locked = false;
689     return pe;
690 }
691 
692 static void page_entry_destroy(gpointer p)
693 {
694     struct page_entry *pe = p;
695 
696     g_assert(pe->locked);
697     page_unlock(pe->pd);
698     g_free(pe);
699 }
700 
701 /* returns false on success */
702 static bool page_entry_trylock(struct page_entry *pe)
703 {
704     bool busy;
705 
706     busy = qemu_spin_trylock(&pe->pd->lock);
707     if (!busy) {
708         g_assert(!pe->locked);
709         pe->locked = true;
710         page_lock__debug(pe->pd);
711     }
712     return busy;
713 }
714 
715 static void do_page_entry_lock(struct page_entry *pe)
716 {
717     page_lock(pe->pd);
718     g_assert(!pe->locked);
719     pe->locked = true;
720 }
721 
722 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
723 {
724     struct page_entry *pe = value;
725 
726     do_page_entry_lock(pe);
727     return FALSE;
728 }
729 
730 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
731 {
732     struct page_entry *pe = value;
733 
734     if (pe->locked) {
735         pe->locked = false;
736         page_unlock(pe->pd);
737     }
738     return FALSE;
739 }
740 
741 /*
742  * Trylock a page, and if successful, add the page to a collection.
743  * Returns true ("busy") if the page could not be locked; false otherwise.
744  */
745 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
746 {
747     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
748     struct page_entry *pe;
749     PageDesc *pd;
750 
751     pe = g_tree_lookup(set->tree, &index);
752     if (pe) {
753         return false;
754     }
755 
756     pd = page_find(index);
757     if (pd == NULL) {
758         return false;
759     }
760 
761     pe = page_entry_new(pd, index);
762     g_tree_insert(set->tree, &pe->index, pe);
763 
764     /*
765      * If this is either (1) the first insertion or (2) a page whose index
766      * is higher than any other so far, just lock the page and move on.
767      */
768     if (set->max == NULL || pe->index > set->max->index) {
769         set->max = pe;
770         do_page_entry_lock(pe);
771         return false;
772     }
773     /*
774      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
775      * locks in order.
776      */
777     return page_entry_trylock(pe);
778 }
779 
780 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
781 {
782     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
783     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
784 
785     if (a == b) {
786         return 0;
787     } else if (a < b) {
788         return -1;
789     }
790     return 1;
791 }
792 
793 /*
794  * Lock a range of pages ([@start,@end[) as well as the pages of all
795  * intersecting TBs.
796  * Locking order: acquire locks in ascending order of page index.
797  */
798 struct page_collection *
799 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
800 {
801     struct page_collection *set = g_malloc(sizeof(*set));
802     tb_page_addr_t index;
803     PageDesc *pd;
804 
805     start >>= TARGET_PAGE_BITS;
806     end   >>= TARGET_PAGE_BITS;
807     g_assert(start <= end);
808 
809     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
810                                 page_entry_destroy);
811     set->max = NULL;
812     assert_no_pages_locked();
813 
814  retry:
815     g_tree_foreach(set->tree, page_entry_lock, NULL);
816 
817     for (index = start; index <= end; index++) {
818         TranslationBlock *tb;
819         int n;
820 
821         pd = page_find(index);
822         if (pd == NULL) {
823             continue;
824         }
825         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
826             g_tree_foreach(set->tree, page_entry_unlock, NULL);
827             goto retry;
828         }
829         assert_page_locked(pd);
830         PAGE_FOR_EACH_TB(pd, tb, n) {
831             if (page_trylock_add(set, tb->page_addr[0]) ||
832                 (tb->page_addr[1] != -1 &&
833                  page_trylock_add(set, tb->page_addr[1]))) {
834                 /* drop all locks, and reacquire in order */
835                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
836                 goto retry;
837             }
838         }
839     }
840     return set;
841 }
842 
843 void page_collection_unlock(struct page_collection *set)
844 {
845     /* entries are unlocked and freed via page_entry_destroy */
846     g_tree_destroy(set->tree);
847     g_free(set);
848 }
849 
850 #endif /* !CONFIG_USER_ONLY */
851 
852 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
853                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
854 {
855     PageDesc *p1, *p2;
856     tb_page_addr_t page1;
857     tb_page_addr_t page2;
858 
859     assert_memory_lock();
860     g_assert(phys1 != -1);
861 
862     page1 = phys1 >> TARGET_PAGE_BITS;
863     page2 = phys2 >> TARGET_PAGE_BITS;
864 
865     p1 = page_find_alloc(page1, alloc);
866     if (ret_p1) {
867         *ret_p1 = p1;
868     }
869     if (likely(phys2 == -1)) {
870         page_lock(p1);
871         return;
872     } else if (page1 == page2) {
873         page_lock(p1);
874         if (ret_p2) {
875             *ret_p2 = p1;
876         }
877         return;
878     }
879     p2 = page_find_alloc(page2, alloc);
880     if (ret_p2) {
881         *ret_p2 = p2;
882     }
883     if (page1 < page2) {
884         page_lock(p1);
885         page_lock(p2);
886     } else {
887         page_lock(p2);
888         page_lock(p1);
889     }
890 }
891 
892 #if defined(CONFIG_USER_ONLY)
893 /* Currently it is not recommended to allocate big chunks of data in
894    user mode. It will change when a dedicated libc will be used.  */
895 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
896    region in which the guest needs to run.  Revisit this.  */
897 #define USE_STATIC_CODE_GEN_BUFFER
898 #endif
899 
900 /* Minimum size of the code gen buffer.  This number is randomly chosen,
901    but not so small that we can't have a fair number of TB's live.  */
902 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
903 
904 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
905    indicated, this is constrained by the range of direct branches on the
906    host cpu, as used by the TCG implementation of goto_tb.  */
907 #if defined(__x86_64__)
908 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
909 #elif defined(__sparc__)
910 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
911 #elif defined(__powerpc64__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
915 #elif defined(__aarch64__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
917 #elif defined(__s390x__)
918   /* We have a +- 4GB range on the branches; leave some slop.  */
919 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
920 #elif defined(__mips__)
921   /* We have a 256MB branch region, but leave room to make sure the
922      main executable is also within that region.  */
923 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
924 #else
925 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
926 #endif
927 
928 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
929 
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
931   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
932    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
933 
934 static inline size_t size_code_gen_buffer(size_t tb_size)
935 {
936     /* Size the buffer.  */
937     if (tb_size == 0) {
938 #ifdef USE_STATIC_CODE_GEN_BUFFER
939         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
940 #else
941         /* ??? Needs adjustments.  */
942         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
943            static buffer, we could size this on RESERVED_VA, on the text
944            segment size of the executable, or continue to use the default.  */
945         tb_size = (unsigned long)(ram_size / 4);
946 #endif
947     }
948     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
949         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
950     }
951     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
952         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
953     }
954     return tb_size;
955 }
956 
957 #ifdef __mips__
958 /* In order to use J and JAL within the code_gen_buffer, we require
959    that the buffer not cross a 256MB boundary.  */
960 static inline bool cross_256mb(void *addr, size_t size)
961 {
962     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
963 }
964 
965 /* We weren't able to allocate a buffer without crossing that boundary,
966    so make do with the larger portion of the buffer that doesn't cross.
967    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
968 static inline void *split_cross_256mb(void *buf1, size_t size1)
969 {
970     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
971     size_t size2 = buf1 + size1 - buf2;
972 
973     size1 = buf2 - buf1;
974     if (size1 < size2) {
975         size1 = size2;
976         buf1 = buf2;
977     }
978 
979     tcg_ctx->code_gen_buffer_size = size1;
980     return buf1;
981 }
982 #endif
983 
984 #ifdef USE_STATIC_CODE_GEN_BUFFER
985 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
986     __attribute__((aligned(CODE_GEN_ALIGN)));
987 
988 static inline void *alloc_code_gen_buffer(void)
989 {
990     void *buf = static_code_gen_buffer;
991     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
992     size_t size;
993 
994     /* page-align the beginning and end of the buffer */
995     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
996     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
997 
998     size = end - buf;
999 
1000     /* Honor a command-line option limiting the size of the buffer.  */
1001     if (size > tcg_ctx->code_gen_buffer_size) {
1002         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1003                                qemu_real_host_page_size);
1004     }
1005     tcg_ctx->code_gen_buffer_size = size;
1006 
1007 #ifdef __mips__
1008     if (cross_256mb(buf, size)) {
1009         buf = split_cross_256mb(buf, size);
1010         size = tcg_ctx->code_gen_buffer_size;
1011     }
1012 #endif
1013 
1014     if (qemu_mprotect_rwx(buf, size)) {
1015         abort();
1016     }
1017     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1018 
1019     return buf;
1020 }
1021 #elif defined(_WIN32)
1022 static inline void *alloc_code_gen_buffer(void)
1023 {
1024     size_t size = tcg_ctx->code_gen_buffer_size;
1025     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1026                         PAGE_EXECUTE_READWRITE);
1027 }
1028 #else
1029 static inline void *alloc_code_gen_buffer(void)
1030 {
1031     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1032     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1033     uintptr_t start = 0;
1034     size_t size = tcg_ctx->code_gen_buffer_size;
1035     void *buf;
1036 
1037     /* Constrain the position of the buffer based on the host cpu.
1038        Note that these addresses are chosen in concert with the
1039        addresses assigned in the relevant linker script file.  */
1040 # if defined(__PIE__) || defined(__PIC__)
1041     /* Don't bother setting a preferred location if we're building
1042        a position-independent executable.  We're more likely to get
1043        an address near the main executable if we let the kernel
1044        choose the address.  */
1045 # elif defined(__x86_64__) && defined(MAP_32BIT)
1046     /* Force the memory down into low memory with the executable.
1047        Leave the choice of exact location with the kernel.  */
1048     flags |= MAP_32BIT;
1049     /* Cannot expect to map more than 800MB in low memory.  */
1050     if (size > 800u * 1024 * 1024) {
1051         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1052     }
1053 # elif defined(__sparc__)
1054     start = 0x40000000ul;
1055 # elif defined(__s390x__)
1056     start = 0x90000000ul;
1057 # elif defined(__mips__)
1058 #  if _MIPS_SIM == _ABI64
1059     start = 0x128000000ul;
1060 #  else
1061     start = 0x08000000ul;
1062 #  endif
1063 # endif
1064 
1065     buf = mmap((void *)start, size, prot, flags, -1, 0);
1066     if (buf == MAP_FAILED) {
1067         return NULL;
1068     }
1069 
1070 #ifdef __mips__
1071     if (cross_256mb(buf, size)) {
1072         /* Try again, with the original still mapped, to avoid re-acquiring
1073            that 256mb crossing.  This time don't specify an address.  */
1074         size_t size2;
1075         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1076         switch ((int)(buf2 != MAP_FAILED)) {
1077         case 1:
1078             if (!cross_256mb(buf2, size)) {
1079                 /* Success!  Use the new buffer.  */
1080                 munmap(buf, size);
1081                 break;
1082             }
1083             /* Failure.  Work with what we had.  */
1084             munmap(buf2, size);
1085             /* fallthru */
1086         default:
1087             /* Split the original buffer.  Free the smaller half.  */
1088             buf2 = split_cross_256mb(buf, size);
1089             size2 = tcg_ctx->code_gen_buffer_size;
1090             if (buf == buf2) {
1091                 munmap(buf + size2, size - size2);
1092             } else {
1093                 munmap(buf, size - size2);
1094             }
1095             size = size2;
1096             break;
1097         }
1098         buf = buf2;
1099     }
1100 #endif
1101 
1102     /* Request large pages for the buffer.  */
1103     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1104 
1105     return buf;
1106 }
1107 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1108 
1109 static inline void code_gen_alloc(size_t tb_size)
1110 {
1111     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1112     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1113     if (tcg_ctx->code_gen_buffer == NULL) {
1114         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1115         exit(1);
1116     }
1117 }
1118 
1119 static bool tb_cmp(const void *ap, const void *bp)
1120 {
1121     const TranslationBlock *a = ap;
1122     const TranslationBlock *b = bp;
1123 
1124     return a->pc == b->pc &&
1125         a->cs_base == b->cs_base &&
1126         a->flags == b->flags &&
1127         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1128         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1129         a->page_addr[0] == b->page_addr[0] &&
1130         a->page_addr[1] == b->page_addr[1];
1131 }
1132 
1133 static void tb_htable_init(void)
1134 {
1135     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1136 
1137     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1138 }
1139 
1140 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1141    (in bytes) allocated to the translation buffer. Zero means default
1142    size. */
1143 void tcg_exec_init(unsigned long tb_size)
1144 {
1145     tcg_allowed = true;
1146     cpu_gen_init();
1147     page_init();
1148     tb_htable_init();
1149     code_gen_alloc(tb_size);
1150 #if defined(CONFIG_SOFTMMU)
1151     /* There's no guest base to take into account, so go ahead and
1152        initialize the prologue now.  */
1153     tcg_prologue_init(tcg_ctx);
1154 #endif
1155 }
1156 
1157 /*
1158  * Allocate a new translation block. Flush the translation buffer if
1159  * too many translation blocks or too much generated code.
1160  */
1161 static TranslationBlock *tb_alloc(target_ulong pc)
1162 {
1163     TranslationBlock *tb;
1164 
1165     assert_memory_lock();
1166 
1167     tb = tcg_tb_alloc(tcg_ctx);
1168     if (unlikely(tb == NULL)) {
1169         return NULL;
1170     }
1171     return tb;
1172 }
1173 
1174 /* call with @p->lock held */
1175 static inline void invalidate_page_bitmap(PageDesc *p)
1176 {
1177     assert_page_locked(p);
1178 #ifdef CONFIG_SOFTMMU
1179     g_free(p->code_bitmap);
1180     p->code_bitmap = NULL;
1181     p->code_write_count = 0;
1182 #endif
1183 }
1184 
1185 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1186 static void page_flush_tb_1(int level, void **lp)
1187 {
1188     int i;
1189 
1190     if (*lp == NULL) {
1191         return;
1192     }
1193     if (level == 0) {
1194         PageDesc *pd = *lp;
1195 
1196         for (i = 0; i < V_L2_SIZE; ++i) {
1197             page_lock(&pd[i]);
1198             pd[i].first_tb = (uintptr_t)NULL;
1199             invalidate_page_bitmap(pd + i);
1200             page_unlock(&pd[i]);
1201         }
1202     } else {
1203         void **pp = *lp;
1204 
1205         for (i = 0; i < V_L2_SIZE; ++i) {
1206             page_flush_tb_1(level - 1, pp + i);
1207         }
1208     }
1209 }
1210 
1211 static void page_flush_tb(void)
1212 {
1213     int i, l1_sz = v_l1_size;
1214 
1215     for (i = 0; i < l1_sz; i++) {
1216         page_flush_tb_1(v_l2_levels, l1_map + i);
1217     }
1218 }
1219 
1220 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1221 {
1222     const TranslationBlock *tb = value;
1223     size_t *size = data;
1224 
1225     *size += tb->tc.size;
1226     return false;
1227 }
1228 
1229 /* flush all the translation blocks */
1230 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1231 {
1232     mmap_lock();
1233     /* If it is already been done on request of another CPU,
1234      * just retry.
1235      */
1236     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1237         goto done;
1238     }
1239 
1240     if (DEBUG_TB_FLUSH_GATE) {
1241         size_t nb_tbs = tcg_nb_tbs();
1242         size_t host_size = 0;
1243 
1244         tcg_tb_foreach(tb_host_size_iter, &host_size);
1245         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1246                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1247     }
1248 
1249     CPU_FOREACH(cpu) {
1250         cpu_tb_jmp_cache_clear(cpu);
1251     }
1252 
1253     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1254     page_flush_tb();
1255 
1256     tcg_region_reset_all();
1257     /* XXX: flush processor icache at this point if cache flush is
1258        expensive */
1259     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1260 
1261 done:
1262     mmap_unlock();
1263 }
1264 
1265 void tb_flush(CPUState *cpu)
1266 {
1267     if (tcg_enabled()) {
1268         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1269         async_safe_run_on_cpu(cpu, do_tb_flush,
1270                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1271     }
1272 }
1273 
1274 /*
1275  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1276  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1277  * and let the optimizer get rid of them by wrapping their user-only callers
1278  * with if (DEBUG_TB_CHECK_GATE).
1279  */
1280 #ifdef CONFIG_USER_ONLY
1281 
1282 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1283 {
1284     TranslationBlock *tb = p;
1285     target_ulong addr = *(target_ulong *)userp;
1286 
1287     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1288         printf("ERROR invalidate: address=" TARGET_FMT_lx
1289                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1290     }
1291 }
1292 
1293 /* verify that all the pages have correct rights for code
1294  *
1295  * Called with mmap_lock held.
1296  */
1297 static void tb_invalidate_check(target_ulong address)
1298 {
1299     address &= TARGET_PAGE_MASK;
1300     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1301 }
1302 
1303 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1304 {
1305     TranslationBlock *tb = p;
1306     int flags1, flags2;
1307 
1308     flags1 = page_get_flags(tb->pc);
1309     flags2 = page_get_flags(tb->pc + tb->size - 1);
1310     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1311         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1312                (long)tb->pc, tb->size, flags1, flags2);
1313     }
1314 }
1315 
1316 /* verify that all the pages have correct rights for code */
1317 static void tb_page_check(void)
1318 {
1319     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1320 }
1321 
1322 #endif /* CONFIG_USER_ONLY */
1323 
1324 /*
1325  * user-mode: call with mmap_lock held
1326  * !user-mode: call with @pd->lock held
1327  */
1328 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1329 {
1330     TranslationBlock *tb1;
1331     uintptr_t *pprev;
1332     unsigned int n1;
1333 
1334     assert_page_locked(pd);
1335     pprev = &pd->first_tb;
1336     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1337         if (tb1 == tb) {
1338             *pprev = tb1->page_next[n1];
1339             return;
1340         }
1341         pprev = &tb1->page_next[n1];
1342     }
1343     g_assert_not_reached();
1344 }
1345 
1346 /* remove @orig from its @n_orig-th jump list */
1347 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1348 {
1349     uintptr_t ptr, ptr_locked;
1350     TranslationBlock *dest;
1351     TranslationBlock *tb;
1352     uintptr_t *pprev;
1353     int n;
1354 
1355     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1356     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1357     dest = (TranslationBlock *)(ptr & ~1);
1358     if (dest == NULL) {
1359         return;
1360     }
1361 
1362     qemu_spin_lock(&dest->jmp_lock);
1363     /*
1364      * While acquiring the lock, the jump might have been removed if the
1365      * destination TB was invalidated; check again.
1366      */
1367     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1368     if (ptr_locked != ptr) {
1369         qemu_spin_unlock(&dest->jmp_lock);
1370         /*
1371          * The only possibility is that the jump was unlinked via
1372          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1373          * because we set the LSB above.
1374          */
1375         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1376         return;
1377     }
1378     /*
1379      * We first acquired the lock, and since the destination pointer matches,
1380      * we know for sure that @orig is in the jmp list.
1381      */
1382     pprev = &dest->jmp_list_head;
1383     TB_FOR_EACH_JMP(dest, tb, n) {
1384         if (tb == orig && n == n_orig) {
1385             *pprev = tb->jmp_list_next[n];
1386             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1387             qemu_spin_unlock(&dest->jmp_lock);
1388             return;
1389         }
1390         pprev = &tb->jmp_list_next[n];
1391     }
1392     g_assert_not_reached();
1393 }
1394 
1395 /* reset the jump entry 'n' of a TB so that it is not chained to
1396    another TB */
1397 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1398 {
1399     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1400     tb_set_jmp_target(tb, n, addr);
1401 }
1402 
1403 /* remove any jumps to the TB */
1404 static inline void tb_jmp_unlink(TranslationBlock *dest)
1405 {
1406     TranslationBlock *tb;
1407     int n;
1408 
1409     qemu_spin_lock(&dest->jmp_lock);
1410 
1411     TB_FOR_EACH_JMP(dest, tb, n) {
1412         tb_reset_jump(tb, n);
1413         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1414         /* No need to clear the list entry; setting the dest ptr is enough */
1415     }
1416     dest->jmp_list_head = (uintptr_t)NULL;
1417 
1418     qemu_spin_unlock(&dest->jmp_lock);
1419 }
1420 
1421 /*
1422  * In user-mode, call with mmap_lock held.
1423  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1424  * locks held.
1425  */
1426 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1427 {
1428     CPUState *cpu;
1429     PageDesc *p;
1430     uint32_t h;
1431     tb_page_addr_t phys_pc;
1432 
1433     assert_memory_lock();
1434 
1435     /* make sure no further incoming jumps will be chained to this TB */
1436     qemu_spin_lock(&tb->jmp_lock);
1437     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1438     qemu_spin_unlock(&tb->jmp_lock);
1439 
1440     /* remove the TB from the hash list */
1441     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1442     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1443                      tb->trace_vcpu_dstate);
1444     if (!(tb->cflags & CF_NOCACHE) &&
1445         !qht_remove(&tb_ctx.htable, tb, h)) {
1446         return;
1447     }
1448 
1449     /* remove the TB from the page list */
1450     if (rm_from_page_list) {
1451         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1452         tb_page_remove(p, tb);
1453         invalidate_page_bitmap(p);
1454         if (tb->page_addr[1] != -1) {
1455             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1456             tb_page_remove(p, tb);
1457             invalidate_page_bitmap(p);
1458         }
1459     }
1460 
1461     /* remove the TB from the hash list */
1462     h = tb_jmp_cache_hash_func(tb->pc);
1463     CPU_FOREACH(cpu) {
1464         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1465             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1466         }
1467     }
1468 
1469     /* suppress this TB from the two jump lists */
1470     tb_remove_from_jmp_list(tb, 0);
1471     tb_remove_from_jmp_list(tb, 1);
1472 
1473     /* suppress any remaining jumps to this TB */
1474     tb_jmp_unlink(tb);
1475 
1476     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1477                tcg_ctx->tb_phys_invalidate_count + 1);
1478 }
1479 
1480 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1481 {
1482     do_tb_phys_invalidate(tb, true);
1483 }
1484 
1485 /* invalidate one TB
1486  *
1487  * Called with mmap_lock held in user-mode.
1488  */
1489 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1490 {
1491     if (page_addr == -1 && tb->page_addr[0] != -1) {
1492         page_lock_tb(tb);
1493         do_tb_phys_invalidate(tb, true);
1494         page_unlock_tb(tb);
1495     } else {
1496         do_tb_phys_invalidate(tb, false);
1497     }
1498 }
1499 
1500 #ifdef CONFIG_SOFTMMU
1501 /* call with @p->lock held */
1502 static void build_page_bitmap(PageDesc *p)
1503 {
1504     int n, tb_start, tb_end;
1505     TranslationBlock *tb;
1506 
1507     assert_page_locked(p);
1508     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1509 
1510     PAGE_FOR_EACH_TB(p, tb, n) {
1511         /* NOTE: this is subtle as a TB may span two physical pages */
1512         if (n == 0) {
1513             /* NOTE: tb_end may be after the end of the page, but
1514                it is not a problem */
1515             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1516             tb_end = tb_start + tb->size;
1517             if (tb_end > TARGET_PAGE_SIZE) {
1518                 tb_end = TARGET_PAGE_SIZE;
1519              }
1520         } else {
1521             tb_start = 0;
1522             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1523         }
1524         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1525     }
1526 }
1527 #endif
1528 
1529 /* add the tb in the target page and protect it if necessary
1530  *
1531  * Called with mmap_lock held for user-mode emulation.
1532  * Called with @p->lock held in !user-mode.
1533  */
1534 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1535                                unsigned int n, tb_page_addr_t page_addr)
1536 {
1537 #ifndef CONFIG_USER_ONLY
1538     bool page_already_protected;
1539 #endif
1540 
1541     assert_page_locked(p);
1542 
1543     tb->page_addr[n] = page_addr;
1544     tb->page_next[n] = p->first_tb;
1545 #ifndef CONFIG_USER_ONLY
1546     page_already_protected = p->first_tb != (uintptr_t)NULL;
1547 #endif
1548     p->first_tb = (uintptr_t)tb | n;
1549     invalidate_page_bitmap(p);
1550 
1551 #if defined(CONFIG_USER_ONLY)
1552     if (p->flags & PAGE_WRITE) {
1553         target_ulong addr;
1554         PageDesc *p2;
1555         int prot;
1556 
1557         /* force the host page as non writable (writes will have a
1558            page fault + mprotect overhead) */
1559         page_addr &= qemu_host_page_mask;
1560         prot = 0;
1561         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1562             addr += TARGET_PAGE_SIZE) {
1563 
1564             p2 = page_find(addr >> TARGET_PAGE_BITS);
1565             if (!p2) {
1566                 continue;
1567             }
1568             prot |= p2->flags;
1569             p2->flags &= ~PAGE_WRITE;
1570           }
1571         mprotect(g2h(page_addr), qemu_host_page_size,
1572                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1573         if (DEBUG_TB_INVALIDATE_GATE) {
1574             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1575         }
1576     }
1577 #else
1578     /* if some code is already present, then the pages are already
1579        protected. So we handle the case where only the first TB is
1580        allocated in a physical page */
1581     if (!page_already_protected) {
1582         tlb_protect_code(page_addr);
1583     }
1584 #endif
1585 }
1586 
1587 /* add a new TB and link it to the physical page tables. phys_page2 is
1588  * (-1) to indicate that only one page contains the TB.
1589  *
1590  * Called with mmap_lock held for user-mode emulation.
1591  *
1592  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1593  * Note that in !user-mode, another thread might have already added a TB
1594  * for the same block of guest code that @tb corresponds to. In that case,
1595  * the caller should discard the original @tb, and use instead the returned TB.
1596  */
1597 static TranslationBlock *
1598 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1599              tb_page_addr_t phys_page2)
1600 {
1601     PageDesc *p;
1602     PageDesc *p2 = NULL;
1603 
1604     assert_memory_lock();
1605 
1606     if (phys_pc == -1) {
1607         /*
1608          * If the TB is not associated with a physical RAM page then
1609          * it must be a temporary one-insn TB, and we have nothing to do
1610          * except fill in the page_addr[] fields.
1611          */
1612         assert(tb->cflags & CF_NOCACHE);
1613         tb->page_addr[0] = tb->page_addr[1] = -1;
1614         return tb;
1615     }
1616 
1617     /*
1618      * Add the TB to the page list, acquiring first the pages's locks.
1619      * We keep the locks held until after inserting the TB in the hash table,
1620      * so that if the insertion fails we know for sure that the TBs are still
1621      * in the page descriptors.
1622      * Note that inserting into the hash table first isn't an option, since
1623      * we can only insert TBs that are fully initialized.
1624      */
1625     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1626     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1627     if (p2) {
1628         tb_page_add(p2, tb, 1, phys_page2);
1629     } else {
1630         tb->page_addr[1] = -1;
1631     }
1632 
1633     if (!(tb->cflags & CF_NOCACHE)) {
1634         void *existing_tb = NULL;
1635         uint32_t h;
1636 
1637         /* add in the hash table */
1638         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1639                          tb->trace_vcpu_dstate);
1640         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1641 
1642         /* remove TB from the page(s) if we couldn't insert it */
1643         if (unlikely(existing_tb)) {
1644             tb_page_remove(p, tb);
1645             invalidate_page_bitmap(p);
1646             if (p2) {
1647                 tb_page_remove(p2, tb);
1648                 invalidate_page_bitmap(p2);
1649             }
1650             tb = existing_tb;
1651         }
1652     }
1653 
1654     if (p2 && p2 != p) {
1655         page_unlock(p2);
1656     }
1657     page_unlock(p);
1658 
1659 #ifdef CONFIG_USER_ONLY
1660     if (DEBUG_TB_CHECK_GATE) {
1661         tb_page_check();
1662     }
1663 #endif
1664     return tb;
1665 }
1666 
1667 /* Called with mmap_lock held for user mode emulation.  */
1668 TranslationBlock *tb_gen_code(CPUState *cpu,
1669                               target_ulong pc, target_ulong cs_base,
1670                               uint32_t flags, int cflags)
1671 {
1672     CPUArchState *env = cpu->env_ptr;
1673     TranslationBlock *tb, *existing_tb;
1674     tb_page_addr_t phys_pc, phys_page2;
1675     target_ulong virt_page2;
1676     tcg_insn_unit *gen_code_buf;
1677     int gen_code_size, search_size;
1678 #ifdef CONFIG_PROFILER
1679     TCGProfile *prof = &tcg_ctx->prof;
1680     int64_t ti;
1681 #endif
1682     assert_memory_lock();
1683 
1684     phys_pc = get_page_addr_code(env, pc);
1685 
1686     if (phys_pc == -1) {
1687         /* Generate a temporary TB with 1 insn in it */
1688         cflags &= ~CF_COUNT_MASK;
1689         cflags |= CF_NOCACHE | 1;
1690     }
1691 
1692     cflags &= ~CF_CLUSTER_MASK;
1693     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1694 
1695  buffer_overflow:
1696     tb = tb_alloc(pc);
1697     if (unlikely(!tb)) {
1698         /* flush must be done */
1699         tb_flush(cpu);
1700         mmap_unlock();
1701         /* Make the execution loop process the flush as soon as possible.  */
1702         cpu->exception_index = EXCP_INTERRUPT;
1703         cpu_loop_exit(cpu);
1704     }
1705 
1706     gen_code_buf = tcg_ctx->code_gen_ptr;
1707     tb->tc.ptr = gen_code_buf;
1708     tb->pc = pc;
1709     tb->cs_base = cs_base;
1710     tb->flags = flags;
1711     tb->cflags = cflags;
1712     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1713     tcg_ctx->tb_cflags = cflags;
1714 
1715 #ifdef CONFIG_PROFILER
1716     /* includes aborted translations because of exceptions */
1717     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1718     ti = profile_getclock();
1719 #endif
1720 
1721     tcg_func_start(tcg_ctx);
1722 
1723     tcg_ctx->cpu = ENV_GET_CPU(env);
1724     gen_intermediate_code(cpu, tb);
1725     tcg_ctx->cpu = NULL;
1726 
1727     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1728 
1729     /* generate machine code */
1730     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1731     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1732     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1733     if (TCG_TARGET_HAS_direct_jump) {
1734         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1735         tcg_ctx->tb_jmp_target_addr = NULL;
1736     } else {
1737         tcg_ctx->tb_jmp_insn_offset = NULL;
1738         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1739     }
1740 
1741 #ifdef CONFIG_PROFILER
1742     atomic_set(&prof->tb_count, prof->tb_count + 1);
1743     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1744     ti = profile_getclock();
1745 #endif
1746 
1747     /* ??? Overflow could be handled better here.  In particular, we
1748        don't need to re-do gen_intermediate_code, nor should we re-do
1749        the tcg optimization currently hidden inside tcg_gen_code.  All
1750        that should be required is to flush the TBs, allocate a new TB,
1751        re-initialize it per above, and re-do the actual code generation.  */
1752     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1753     if (unlikely(gen_code_size < 0)) {
1754         goto buffer_overflow;
1755     }
1756     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1757     if (unlikely(search_size < 0)) {
1758         goto buffer_overflow;
1759     }
1760     tb->tc.size = gen_code_size;
1761 
1762 #ifdef CONFIG_PROFILER
1763     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1764     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1765     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1766     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1767 #endif
1768 
1769 #ifdef DEBUG_DISAS
1770     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1771         qemu_log_in_addr_range(tb->pc)) {
1772         qemu_log_lock();
1773         qemu_log("OUT: [size=%d]\n", gen_code_size);
1774         if (tcg_ctx->data_gen_ptr) {
1775             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1776             size_t data_size = gen_code_size - code_size;
1777             size_t i;
1778 
1779             log_disas(tb->tc.ptr, code_size);
1780 
1781             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1782                 if (sizeof(tcg_target_ulong) == 8) {
1783                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1784                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1785                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1786                 } else {
1787                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1788                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1789                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1790                 }
1791             }
1792         } else {
1793             log_disas(tb->tc.ptr, gen_code_size);
1794         }
1795         qemu_log("\n");
1796         qemu_log_flush();
1797         qemu_log_unlock();
1798     }
1799 #endif
1800 
1801     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1802         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1803                  CODE_GEN_ALIGN));
1804 
1805     /* init jump list */
1806     qemu_spin_init(&tb->jmp_lock);
1807     tb->jmp_list_head = (uintptr_t)NULL;
1808     tb->jmp_list_next[0] = (uintptr_t)NULL;
1809     tb->jmp_list_next[1] = (uintptr_t)NULL;
1810     tb->jmp_dest[0] = (uintptr_t)NULL;
1811     tb->jmp_dest[1] = (uintptr_t)NULL;
1812 
1813     /* init original jump addresses which have been set during tcg_gen_code() */
1814     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1815         tb_reset_jump(tb, 0);
1816     }
1817     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1818         tb_reset_jump(tb, 1);
1819     }
1820 
1821     /* check next page if needed */
1822     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1823     phys_page2 = -1;
1824     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1825         phys_page2 = get_page_addr_code(env, virt_page2);
1826     }
1827     /*
1828      * No explicit memory barrier is required -- tb_link_page() makes the
1829      * TB visible in a consistent state.
1830      */
1831     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1832     /* if the TB already exists, discard what we just translated */
1833     if (unlikely(existing_tb != tb)) {
1834         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1835 
1836         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1837         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1838         return existing_tb;
1839     }
1840     tcg_tb_insert(tb);
1841     return tb;
1842 }
1843 
1844 /*
1845  * @p must be non-NULL.
1846  * user-mode: call with mmap_lock held.
1847  * !user-mode: call with all @pages locked.
1848  */
1849 static void
1850 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1851                                       PageDesc *p, tb_page_addr_t start,
1852                                       tb_page_addr_t end,
1853                                       int is_cpu_write_access)
1854 {
1855     TranslationBlock *tb;
1856     tb_page_addr_t tb_start, tb_end;
1857     int n;
1858 #ifdef TARGET_HAS_PRECISE_SMC
1859     CPUState *cpu = current_cpu;
1860     CPUArchState *env = NULL;
1861     int current_tb_not_found = is_cpu_write_access;
1862     TranslationBlock *current_tb = NULL;
1863     int current_tb_modified = 0;
1864     target_ulong current_pc = 0;
1865     target_ulong current_cs_base = 0;
1866     uint32_t current_flags = 0;
1867 #endif /* TARGET_HAS_PRECISE_SMC */
1868 
1869     assert_page_locked(p);
1870 
1871 #if defined(TARGET_HAS_PRECISE_SMC)
1872     if (cpu != NULL) {
1873         env = cpu->env_ptr;
1874     }
1875 #endif
1876 
1877     /* we remove all the TBs in the range [start, end[ */
1878     /* XXX: see if in some cases it could be faster to invalidate all
1879        the code */
1880     PAGE_FOR_EACH_TB(p, tb, n) {
1881         assert_page_locked(p);
1882         /* NOTE: this is subtle as a TB may span two physical pages */
1883         if (n == 0) {
1884             /* NOTE: tb_end may be after the end of the page, but
1885                it is not a problem */
1886             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1887             tb_end = tb_start + tb->size;
1888         } else {
1889             tb_start = tb->page_addr[1];
1890             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1891         }
1892         if (!(tb_end <= start || tb_start >= end)) {
1893 #ifdef TARGET_HAS_PRECISE_SMC
1894             if (current_tb_not_found) {
1895                 current_tb_not_found = 0;
1896                 current_tb = NULL;
1897                 if (cpu->mem_io_pc) {
1898                     /* now we have a real cpu fault */
1899                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1900                 }
1901             }
1902             if (current_tb == tb &&
1903                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1904                 /* If we are modifying the current TB, we must stop
1905                 its execution. We could be more precise by checking
1906                 that the modification is after the current PC, but it
1907                 would require a specialized function to partially
1908                 restore the CPU state */
1909 
1910                 current_tb_modified = 1;
1911                 cpu_restore_state_from_tb(cpu, current_tb,
1912                                           cpu->mem_io_pc, true);
1913                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1914                                      &current_flags);
1915             }
1916 #endif /* TARGET_HAS_PRECISE_SMC */
1917             tb_phys_invalidate__locked(tb);
1918         }
1919     }
1920 #if !defined(CONFIG_USER_ONLY)
1921     /* if no code remaining, no need to continue to use slow writes */
1922     if (!p->first_tb) {
1923         invalidate_page_bitmap(p);
1924         tlb_unprotect_code(start);
1925     }
1926 #endif
1927 #ifdef TARGET_HAS_PRECISE_SMC
1928     if (current_tb_modified) {
1929         page_collection_unlock(pages);
1930         /* Force execution of one insn next time.  */
1931         cpu->cflags_next_tb = 1 | curr_cflags();
1932         mmap_unlock();
1933         cpu_loop_exit_noexc(cpu);
1934     }
1935 #endif
1936 }
1937 
1938 /*
1939  * Invalidate all TBs which intersect with the target physical address range
1940  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1941  * 'is_cpu_write_access' should be true if called from a real cpu write
1942  * access: the virtual CPU will exit the current TB if code is modified inside
1943  * this TB.
1944  *
1945  * Called with mmap_lock held for user-mode emulation
1946  */
1947 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1948                                    int is_cpu_write_access)
1949 {
1950     struct page_collection *pages;
1951     PageDesc *p;
1952 
1953     assert_memory_lock();
1954 
1955     p = page_find(start >> TARGET_PAGE_BITS);
1956     if (p == NULL) {
1957         return;
1958     }
1959     pages = page_collection_lock(start, end);
1960     tb_invalidate_phys_page_range__locked(pages, p, start, end,
1961                                           is_cpu_write_access);
1962     page_collection_unlock(pages);
1963 }
1964 
1965 /*
1966  * Invalidate all TBs which intersect with the target physical address range
1967  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1968  * 'is_cpu_write_access' should be true if called from a real cpu write
1969  * access: the virtual CPU will exit the current TB if code is modified inside
1970  * this TB.
1971  *
1972  * Called with mmap_lock held for user-mode emulation.
1973  */
1974 #ifdef CONFIG_SOFTMMU
1975 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1976 #else
1977 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1978 #endif
1979 {
1980     struct page_collection *pages;
1981     tb_page_addr_t next;
1982 
1983     assert_memory_lock();
1984 
1985     pages = page_collection_lock(start, end);
1986     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1987          start < end;
1988          start = next, next += TARGET_PAGE_SIZE) {
1989         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1990         tb_page_addr_t bound = MIN(next, end);
1991 
1992         if (pd == NULL) {
1993             continue;
1994         }
1995         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1996     }
1997     page_collection_unlock(pages);
1998 }
1999 
2000 #ifdef CONFIG_SOFTMMU
2001 /* len must be <= 8 and start must be a multiple of len.
2002  * Called via softmmu_template.h when code areas are written to with
2003  * iothread mutex not held.
2004  *
2005  * Call with all @pages in the range [@start, @start + len[ locked.
2006  */
2007 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2008                                   tb_page_addr_t start, int len)
2009 {
2010     PageDesc *p;
2011 
2012     assert_memory_lock();
2013 
2014     p = page_find(start >> TARGET_PAGE_BITS);
2015     if (!p) {
2016         return;
2017     }
2018 
2019     assert_page_locked(p);
2020     if (!p->code_bitmap &&
2021         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2022         build_page_bitmap(p);
2023     }
2024     if (p->code_bitmap) {
2025         unsigned int nr;
2026         unsigned long b;
2027 
2028         nr = start & ~TARGET_PAGE_MASK;
2029         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2030         if (b & ((1 << len) - 1)) {
2031             goto do_invalidate;
2032         }
2033     } else {
2034     do_invalidate:
2035         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2036     }
2037 }
2038 #else
2039 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2040  * host PC of the faulting store instruction that caused this invalidate.
2041  * Returns true if the caller needs to abort execution of the current
2042  * TB (because it was modified by this store and the guest CPU has
2043  * precise-SMC semantics).
2044  */
2045 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2046 {
2047     TranslationBlock *tb;
2048     PageDesc *p;
2049     int n;
2050 #ifdef TARGET_HAS_PRECISE_SMC
2051     TranslationBlock *current_tb = NULL;
2052     CPUState *cpu = current_cpu;
2053     CPUArchState *env = NULL;
2054     int current_tb_modified = 0;
2055     target_ulong current_pc = 0;
2056     target_ulong current_cs_base = 0;
2057     uint32_t current_flags = 0;
2058 #endif
2059 
2060     assert_memory_lock();
2061 
2062     addr &= TARGET_PAGE_MASK;
2063     p = page_find(addr >> TARGET_PAGE_BITS);
2064     if (!p) {
2065         return false;
2066     }
2067 
2068 #ifdef TARGET_HAS_PRECISE_SMC
2069     if (p->first_tb && pc != 0) {
2070         current_tb = tcg_tb_lookup(pc);
2071     }
2072     if (cpu != NULL) {
2073         env = cpu->env_ptr;
2074     }
2075 #endif
2076     assert_page_locked(p);
2077     PAGE_FOR_EACH_TB(p, tb, n) {
2078 #ifdef TARGET_HAS_PRECISE_SMC
2079         if (current_tb == tb &&
2080             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2081                 /* If we are modifying the current TB, we must stop
2082                    its execution. We could be more precise by checking
2083                    that the modification is after the current PC, but it
2084                    would require a specialized function to partially
2085                    restore the CPU state */
2086 
2087             current_tb_modified = 1;
2088             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2089             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2090                                  &current_flags);
2091         }
2092 #endif /* TARGET_HAS_PRECISE_SMC */
2093         tb_phys_invalidate(tb, addr);
2094     }
2095     p->first_tb = (uintptr_t)NULL;
2096 #ifdef TARGET_HAS_PRECISE_SMC
2097     if (current_tb_modified) {
2098         /* Force execution of one insn next time.  */
2099         cpu->cflags_next_tb = 1 | curr_cflags();
2100         return true;
2101     }
2102 #endif
2103 
2104     return false;
2105 }
2106 #endif
2107 
2108 /* user-mode: call with mmap_lock held */
2109 void tb_check_watchpoint(CPUState *cpu)
2110 {
2111     TranslationBlock *tb;
2112 
2113     assert_memory_lock();
2114 
2115     tb = tcg_tb_lookup(cpu->mem_io_pc);
2116     if (tb) {
2117         /* We can use retranslation to find the PC.  */
2118         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2119         tb_phys_invalidate(tb, -1);
2120     } else {
2121         /* The exception probably happened in a helper.  The CPU state should
2122            have been saved before calling it. Fetch the PC from there.  */
2123         CPUArchState *env = cpu->env_ptr;
2124         target_ulong pc, cs_base;
2125         tb_page_addr_t addr;
2126         uint32_t flags;
2127 
2128         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2129         addr = get_page_addr_code(env, pc);
2130         if (addr != -1) {
2131             tb_invalidate_phys_range(addr, addr + 1);
2132         }
2133     }
2134 }
2135 
2136 #ifndef CONFIG_USER_ONLY
2137 /* in deterministic execution mode, instructions doing device I/Os
2138  * must be at the end of the TB.
2139  *
2140  * Called by softmmu_template.h, with iothread mutex not held.
2141  */
2142 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2143 {
2144 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2145     CPUArchState *env = cpu->env_ptr;
2146 #endif
2147     TranslationBlock *tb;
2148     uint32_t n;
2149 
2150     tb = tcg_tb_lookup(retaddr);
2151     if (!tb) {
2152         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2153                   (void *)retaddr);
2154     }
2155     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2156 
2157     /* On MIPS and SH, delay slot instructions can only be restarted if
2158        they were already the first instruction in the TB.  If this is not
2159        the first instruction in a TB then re-execute the preceding
2160        branch.  */
2161     n = 1;
2162 #if defined(TARGET_MIPS)
2163     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2164         && env->active_tc.PC != tb->pc) {
2165         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2166         cpu->icount_decr.u16.low++;
2167         env->hflags &= ~MIPS_HFLAG_BMASK;
2168         n = 2;
2169     }
2170 #elif defined(TARGET_SH4)
2171     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2172         && env->pc != tb->pc) {
2173         env->pc -= 2;
2174         cpu->icount_decr.u16.low++;
2175         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2176         n = 2;
2177     }
2178 #endif
2179 
2180     /* Generate a new TB executing the I/O insn.  */
2181     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2182 
2183     if (tb_cflags(tb) & CF_NOCACHE) {
2184         if (tb->orig_tb) {
2185             /* Invalidate original TB if this TB was generated in
2186              * cpu_exec_nocache() */
2187             tb_phys_invalidate(tb->orig_tb, -1);
2188         }
2189         tcg_tb_remove(tb);
2190     }
2191 
2192     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2193      * the first in the TB) then we end up generating a whole new TB and
2194      *  repeating the fault, which is horribly inefficient.
2195      *  Better would be to execute just this insn uncached, or generate a
2196      *  second new TB.
2197      */
2198     cpu_loop_exit_noexc(cpu);
2199 }
2200 
2201 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2202 {
2203     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2204 
2205     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2206         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2207     }
2208 }
2209 
2210 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2211 {
2212     /* Discard jump cache entries for any tb which might potentially
2213        overlap the flushed page.  */
2214     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2215     tb_jmp_cache_clear_page(cpu, addr);
2216 }
2217 
2218 static void print_qht_statistics(struct qht_stats hst)
2219 {
2220     uint32_t hgram_opts;
2221     size_t hgram_bins;
2222     char *hgram;
2223 
2224     if (!hst.head_buckets) {
2225         return;
2226     }
2227     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2228                 hst.used_head_buckets, hst.head_buckets,
2229                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2230 
2231     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2232     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2233     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2234         hgram_opts |= QDIST_PR_NODECIMAL;
2235     }
2236     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2237     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2238                 qdist_avg(&hst.occupancy) * 100, hgram);
2239     g_free(hgram);
2240 
2241     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2242     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2243     if (hgram_bins > 10) {
2244         hgram_bins = 10;
2245     } else {
2246         hgram_bins = 0;
2247         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2248     }
2249     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2250     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2251                 qdist_avg(&hst.chain), hgram);
2252     g_free(hgram);
2253 }
2254 
2255 struct tb_tree_stats {
2256     size_t nb_tbs;
2257     size_t host_size;
2258     size_t target_size;
2259     size_t max_target_size;
2260     size_t direct_jmp_count;
2261     size_t direct_jmp2_count;
2262     size_t cross_page;
2263 };
2264 
2265 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2266 {
2267     const TranslationBlock *tb = value;
2268     struct tb_tree_stats *tst = data;
2269 
2270     tst->nb_tbs++;
2271     tst->host_size += tb->tc.size;
2272     tst->target_size += tb->size;
2273     if (tb->size > tst->max_target_size) {
2274         tst->max_target_size = tb->size;
2275     }
2276     if (tb->page_addr[1] != -1) {
2277         tst->cross_page++;
2278     }
2279     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2280         tst->direct_jmp_count++;
2281         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2282             tst->direct_jmp2_count++;
2283         }
2284     }
2285     return false;
2286 }
2287 
2288 void dump_exec_info(void)
2289 {
2290     struct tb_tree_stats tst = {};
2291     struct qht_stats hst;
2292     size_t nb_tbs, flush_full, flush_part, flush_elide;
2293 
2294     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2295     nb_tbs = tst.nb_tbs;
2296     /* XXX: avoid using doubles ? */
2297     qemu_printf("Translation buffer state:\n");
2298     /*
2299      * Report total code size including the padding and TB structs;
2300      * otherwise users might think "-tb-size" is not honoured.
2301      * For avg host size we use the precise numbers from tb_tree_stats though.
2302      */
2303     qemu_printf("gen code size       %zu/%zu\n",
2304                 tcg_code_size(), tcg_code_capacity());
2305     qemu_printf("TB count            %zu\n", nb_tbs);
2306     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2307                 nb_tbs ? tst.target_size / nb_tbs : 0,
2308                 tst.max_target_size);
2309     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2310                 nb_tbs ? tst.host_size / nb_tbs : 0,
2311                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2312     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2313                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2314     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2315                 tst.direct_jmp_count,
2316                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2317                 tst.direct_jmp2_count,
2318                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2319 
2320     qht_statistics_init(&tb_ctx.htable, &hst);
2321     print_qht_statistics(hst);
2322     qht_statistics_destroy(&hst);
2323 
2324     qemu_printf("\nStatistics:\n");
2325     qemu_printf("TB flush count      %u\n",
2326                 atomic_read(&tb_ctx.tb_flush_count));
2327     qemu_printf("TB invalidate count %zu\n",
2328                 tcg_tb_phys_invalidate_count());
2329 
2330     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2331     qemu_printf("TLB full flushes    %zu\n", flush_full);
2332     qemu_printf("TLB partial flushes %zu\n", flush_part);
2333     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2334     tcg_dump_info();
2335 }
2336 
2337 void dump_opcount_info(void)
2338 {
2339     tcg_dump_op_count();
2340 }
2341 
2342 #else /* CONFIG_USER_ONLY */
2343 
2344 void cpu_interrupt(CPUState *cpu, int mask)
2345 {
2346     g_assert(qemu_mutex_iothread_locked());
2347     cpu->interrupt_request |= mask;
2348     atomic_set(&cpu->icount_decr.u16.high, -1);
2349 }
2350 
2351 /*
2352  * Walks guest process memory "regions" one by one
2353  * and calls callback function 'fn' for each region.
2354  */
2355 struct walk_memory_regions_data {
2356     walk_memory_regions_fn fn;
2357     void *priv;
2358     target_ulong start;
2359     int prot;
2360 };
2361 
2362 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2363                                    target_ulong end, int new_prot)
2364 {
2365     if (data->start != -1u) {
2366         int rc = data->fn(data->priv, data->start, end, data->prot);
2367         if (rc != 0) {
2368             return rc;
2369         }
2370     }
2371 
2372     data->start = (new_prot ? end : -1u);
2373     data->prot = new_prot;
2374 
2375     return 0;
2376 }
2377 
2378 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2379                                  target_ulong base, int level, void **lp)
2380 {
2381     target_ulong pa;
2382     int i, rc;
2383 
2384     if (*lp == NULL) {
2385         return walk_memory_regions_end(data, base, 0);
2386     }
2387 
2388     if (level == 0) {
2389         PageDesc *pd = *lp;
2390 
2391         for (i = 0; i < V_L2_SIZE; ++i) {
2392             int prot = pd[i].flags;
2393 
2394             pa = base | (i << TARGET_PAGE_BITS);
2395             if (prot != data->prot) {
2396                 rc = walk_memory_regions_end(data, pa, prot);
2397                 if (rc != 0) {
2398                     return rc;
2399                 }
2400             }
2401         }
2402     } else {
2403         void **pp = *lp;
2404 
2405         for (i = 0; i < V_L2_SIZE; ++i) {
2406             pa = base | ((target_ulong)i <<
2407                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2408             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2409             if (rc != 0) {
2410                 return rc;
2411             }
2412         }
2413     }
2414 
2415     return 0;
2416 }
2417 
2418 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2419 {
2420     struct walk_memory_regions_data data;
2421     uintptr_t i, l1_sz = v_l1_size;
2422 
2423     data.fn = fn;
2424     data.priv = priv;
2425     data.start = -1u;
2426     data.prot = 0;
2427 
2428     for (i = 0; i < l1_sz; i++) {
2429         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2430         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2431         if (rc != 0) {
2432             return rc;
2433         }
2434     }
2435 
2436     return walk_memory_regions_end(&data, 0, 0);
2437 }
2438 
2439 static int dump_region(void *priv, target_ulong start,
2440     target_ulong end, unsigned long prot)
2441 {
2442     FILE *f = (FILE *)priv;
2443 
2444     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2445         " "TARGET_FMT_lx" %c%c%c\n",
2446         start, end, end - start,
2447         ((prot & PAGE_READ) ? 'r' : '-'),
2448         ((prot & PAGE_WRITE) ? 'w' : '-'),
2449         ((prot & PAGE_EXEC) ? 'x' : '-'));
2450 
2451     return 0;
2452 }
2453 
2454 /* dump memory mappings */
2455 void page_dump(FILE *f)
2456 {
2457     const int length = sizeof(target_ulong) * 2;
2458     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2459             length, "start", length, "end", length, "size", "prot");
2460     walk_memory_regions(f, dump_region);
2461 }
2462 
2463 int page_get_flags(target_ulong address)
2464 {
2465     PageDesc *p;
2466 
2467     p = page_find(address >> TARGET_PAGE_BITS);
2468     if (!p) {
2469         return 0;
2470     }
2471     return p->flags;
2472 }
2473 
2474 /* Modify the flags of a page and invalidate the code if necessary.
2475    The flag PAGE_WRITE_ORG is positioned automatically depending
2476    on PAGE_WRITE.  The mmap_lock should already be held.  */
2477 void page_set_flags(target_ulong start, target_ulong end, int flags)
2478 {
2479     target_ulong addr, len;
2480 
2481     /* This function should never be called with addresses outside the
2482        guest address space.  If this assert fires, it probably indicates
2483        a missing call to h2g_valid.  */
2484 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2485     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2486 #endif
2487     assert(start < end);
2488     assert_memory_lock();
2489 
2490     start = start & TARGET_PAGE_MASK;
2491     end = TARGET_PAGE_ALIGN(end);
2492 
2493     if (flags & PAGE_WRITE) {
2494         flags |= PAGE_WRITE_ORG;
2495     }
2496 
2497     for (addr = start, len = end - start;
2498          len != 0;
2499          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2500         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2501 
2502         /* If the write protection bit is set, then we invalidate
2503            the code inside.  */
2504         if (!(p->flags & PAGE_WRITE) &&
2505             (flags & PAGE_WRITE) &&
2506             p->first_tb) {
2507             tb_invalidate_phys_page(addr, 0);
2508         }
2509         p->flags = flags;
2510     }
2511 }
2512 
2513 int page_check_range(target_ulong start, target_ulong len, int flags)
2514 {
2515     PageDesc *p;
2516     target_ulong end;
2517     target_ulong addr;
2518 
2519     /* This function should never be called with addresses outside the
2520        guest address space.  If this assert fires, it probably indicates
2521        a missing call to h2g_valid.  */
2522 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2523     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2524 #endif
2525 
2526     if (len == 0) {
2527         return 0;
2528     }
2529     if (start + len - 1 < start) {
2530         /* We've wrapped around.  */
2531         return -1;
2532     }
2533 
2534     /* must do before we loose bits in the next step */
2535     end = TARGET_PAGE_ALIGN(start + len);
2536     start = start & TARGET_PAGE_MASK;
2537 
2538     for (addr = start, len = end - start;
2539          len != 0;
2540          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2541         p = page_find(addr >> TARGET_PAGE_BITS);
2542         if (!p) {
2543             return -1;
2544         }
2545         if (!(p->flags & PAGE_VALID)) {
2546             return -1;
2547         }
2548 
2549         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2550             return -1;
2551         }
2552         if (flags & PAGE_WRITE) {
2553             if (!(p->flags & PAGE_WRITE_ORG)) {
2554                 return -1;
2555             }
2556             /* unprotect the page if it was put read-only because it
2557                contains translated code */
2558             if (!(p->flags & PAGE_WRITE)) {
2559                 if (!page_unprotect(addr, 0)) {
2560                     return -1;
2561                 }
2562             }
2563         }
2564     }
2565     return 0;
2566 }
2567 
2568 /* called from signal handler: invalidate the code and unprotect the
2569  * page. Return 0 if the fault was not handled, 1 if it was handled,
2570  * and 2 if it was handled but the caller must cause the TB to be
2571  * immediately exited. (We can only return 2 if the 'pc' argument is
2572  * non-zero.)
2573  */
2574 int page_unprotect(target_ulong address, uintptr_t pc)
2575 {
2576     unsigned int prot;
2577     bool current_tb_invalidated;
2578     PageDesc *p;
2579     target_ulong host_start, host_end, addr;
2580 
2581     /* Technically this isn't safe inside a signal handler.  However we
2582        know this only ever happens in a synchronous SEGV handler, so in
2583        practice it seems to be ok.  */
2584     mmap_lock();
2585 
2586     p = page_find(address >> TARGET_PAGE_BITS);
2587     if (!p) {
2588         mmap_unlock();
2589         return 0;
2590     }
2591 
2592     /* if the page was really writable, then we change its
2593        protection back to writable */
2594     if (p->flags & PAGE_WRITE_ORG) {
2595         current_tb_invalidated = false;
2596         if (p->flags & PAGE_WRITE) {
2597             /* If the page is actually marked WRITE then assume this is because
2598              * this thread raced with another one which got here first and
2599              * set the page to PAGE_WRITE and did the TB invalidate for us.
2600              */
2601 #ifdef TARGET_HAS_PRECISE_SMC
2602             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2603             if (current_tb) {
2604                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2605             }
2606 #endif
2607         } else {
2608             host_start = address & qemu_host_page_mask;
2609             host_end = host_start + qemu_host_page_size;
2610 
2611             prot = 0;
2612             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2613                 p = page_find(addr >> TARGET_PAGE_BITS);
2614                 p->flags |= PAGE_WRITE;
2615                 prot |= p->flags;
2616 
2617                 /* and since the content will be modified, we must invalidate
2618                    the corresponding translated code. */
2619                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2620 #ifdef CONFIG_USER_ONLY
2621                 if (DEBUG_TB_CHECK_GATE) {
2622                     tb_invalidate_check(addr);
2623                 }
2624 #endif
2625             }
2626             mprotect((void *)g2h(host_start), qemu_host_page_size,
2627                      prot & PAGE_BITS);
2628         }
2629         mmap_unlock();
2630         /* If current TB was invalidated return to main loop */
2631         return current_tb_invalidated ? 2 : 1;
2632     }
2633     mmap_unlock();
2634     return 0;
2635 }
2636 #endif /* CONFIG_USER_ONLY */
2637 
2638 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2639 void tcg_flush_softmmu_tlb(CPUState *cs)
2640 {
2641 #ifdef CONFIG_SOFTMMU
2642     tlb_flush(cs);
2643 #endif
2644 }
2645