1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "qemu-common.h" 22 #define NO_CPU_IO_DEFS 23 #include "cpu.h" 24 #include "trace.h" 25 #include "disas/disas.h" 26 #include "exec/exec-all.h" 27 #include "tcg.h" 28 #if defined(CONFIG_USER_ONLY) 29 #include "qemu.h" 30 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 31 #include <sys/param.h> 32 #if __FreeBSD_version >= 700104 33 #define HAVE_KINFO_GETVMMAP 34 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 35 #include <sys/proc.h> 36 #include <machine/profile.h> 37 #define _KERNEL 38 #include <sys/user.h> 39 #undef _KERNEL 40 #undef sigqueue 41 #include <libutil.h> 42 #endif 43 #endif 44 #else 45 #include "exec/ram_addr.h" 46 #endif 47 48 #include "exec/cputlb.h" 49 #include "exec/tb-hash.h" 50 #include "translate-all.h" 51 #include "qemu/bitmap.h" 52 #include "qemu/error-report.h" 53 #include "qemu/qemu-print.h" 54 #include "qemu/timer.h" 55 #include "qemu/main-loop.h" 56 #include "exec/log.h" 57 #include "sysemu/cpus.h" 58 59 /* #define DEBUG_TB_INVALIDATE */ 60 /* #define DEBUG_TB_FLUSH */ 61 /* make various TB consistency checks */ 62 /* #define DEBUG_TB_CHECK */ 63 64 #ifdef DEBUG_TB_INVALIDATE 65 #define DEBUG_TB_INVALIDATE_GATE 1 66 #else 67 #define DEBUG_TB_INVALIDATE_GATE 0 68 #endif 69 70 #ifdef DEBUG_TB_FLUSH 71 #define DEBUG_TB_FLUSH_GATE 1 72 #else 73 #define DEBUG_TB_FLUSH_GATE 0 74 #endif 75 76 #if !defined(CONFIG_USER_ONLY) 77 /* TB consistency checks only implemented for usermode emulation. */ 78 #undef DEBUG_TB_CHECK 79 #endif 80 81 #ifdef DEBUG_TB_CHECK 82 #define DEBUG_TB_CHECK_GATE 1 83 #else 84 #define DEBUG_TB_CHECK_GATE 0 85 #endif 86 87 /* Access to the various translations structures need to be serialised via locks 88 * for consistency. 89 * In user-mode emulation access to the memory related structures are protected 90 * with mmap_lock. 91 * In !user-mode we use per-page locks. 92 */ 93 #ifdef CONFIG_SOFTMMU 94 #define assert_memory_lock() 95 #else 96 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 97 #endif 98 99 #define SMC_BITMAP_USE_THRESHOLD 10 100 101 typedef struct PageDesc { 102 /* list of TBs intersecting this ram page */ 103 uintptr_t first_tb; 104 #ifdef CONFIG_SOFTMMU 105 /* in order to optimize self modifying code, we count the number 106 of lookups we do to a given page to use a bitmap */ 107 unsigned long *code_bitmap; 108 unsigned int code_write_count; 109 #else 110 unsigned long flags; 111 #endif 112 #ifndef CONFIG_USER_ONLY 113 QemuSpin lock; 114 #endif 115 } PageDesc; 116 117 /** 118 * struct page_entry - page descriptor entry 119 * @pd: pointer to the &struct PageDesc of the page this entry represents 120 * @index: page index of the page 121 * @locked: whether the page is locked 122 * 123 * This struct helps us keep track of the locked state of a page, without 124 * bloating &struct PageDesc. 125 * 126 * A page lock protects accesses to all fields of &struct PageDesc. 127 * 128 * See also: &struct page_collection. 129 */ 130 struct page_entry { 131 PageDesc *pd; 132 tb_page_addr_t index; 133 bool locked; 134 }; 135 136 /** 137 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 138 * @tree: Binary search tree (BST) of the pages, with key == page index 139 * @max: Pointer to the page in @tree with the highest page index 140 * 141 * To avoid deadlock we lock pages in ascending order of page index. 142 * When operating on a set of pages, we need to keep track of them so that 143 * we can lock them in order and also unlock them later. For this we collect 144 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 145 * @tree implementation we use does not provide an O(1) operation to obtain the 146 * highest-ranked element, we use @max to keep track of the inserted page 147 * with the highest index. This is valuable because if a page is not in 148 * the tree and its index is higher than @max's, then we can lock it 149 * without breaking the locking order rule. 150 * 151 * Note on naming: 'struct page_set' would be shorter, but we already have a few 152 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 153 * 154 * See also: page_collection_lock(). 155 */ 156 struct page_collection { 157 GTree *tree; 158 struct page_entry *max; 159 }; 160 161 /* list iterators for lists of tagged pointers in TranslationBlock */ 162 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 163 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 164 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 165 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 166 167 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 168 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 169 170 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 171 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 172 173 /* In system mode we want L1_MAP to be based on ram offsets, 174 while in user mode we want it to be based on virtual addresses. */ 175 #if !defined(CONFIG_USER_ONLY) 176 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 177 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 178 #else 179 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 180 #endif 181 #else 182 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 183 #endif 184 185 /* Size of the L2 (and L3, etc) page tables. */ 186 #define V_L2_BITS 10 187 #define V_L2_SIZE (1 << V_L2_BITS) 188 189 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 190 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 191 sizeof_field(TranslationBlock, trace_vcpu_dstate) 192 * BITS_PER_BYTE); 193 194 /* 195 * L1 Mapping properties 196 */ 197 static int v_l1_size; 198 static int v_l1_shift; 199 static int v_l2_levels; 200 201 /* The bottom level has pointers to PageDesc, and is indexed by 202 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 203 */ 204 #define V_L1_MIN_BITS 4 205 #define V_L1_MAX_BITS (V_L2_BITS + 3) 206 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 207 208 static void *l1_map[V_L1_MAX_SIZE]; 209 210 /* code generation context */ 211 TCGContext tcg_init_ctx; 212 __thread TCGContext *tcg_ctx; 213 TBContext tb_ctx; 214 bool parallel_cpus; 215 216 static void page_table_config_init(void) 217 { 218 uint32_t v_l1_bits; 219 220 assert(TARGET_PAGE_BITS); 221 /* The bits remaining after N lower levels of page tables. */ 222 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 223 if (v_l1_bits < V_L1_MIN_BITS) { 224 v_l1_bits += V_L2_BITS; 225 } 226 227 v_l1_size = 1 << v_l1_bits; 228 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 229 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 230 231 assert(v_l1_bits <= V_L1_MAX_BITS); 232 assert(v_l1_shift % V_L2_BITS == 0); 233 assert(v_l2_levels >= 0); 234 } 235 236 void cpu_gen_init(void) 237 { 238 tcg_context_init(&tcg_init_ctx); 239 } 240 241 /* Encode VAL as a signed leb128 sequence at P. 242 Return P incremented past the encoded value. */ 243 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 244 { 245 int more, byte; 246 247 do { 248 byte = val & 0x7f; 249 val >>= 7; 250 more = !((val == 0 && (byte & 0x40) == 0) 251 || (val == -1 && (byte & 0x40) != 0)); 252 if (more) { 253 byte |= 0x80; 254 } 255 *p++ = byte; 256 } while (more); 257 258 return p; 259 } 260 261 /* Decode a signed leb128 sequence at *PP; increment *PP past the 262 decoded value. Return the decoded value. */ 263 static target_long decode_sleb128(uint8_t **pp) 264 { 265 uint8_t *p = *pp; 266 target_long val = 0; 267 int byte, shift = 0; 268 269 do { 270 byte = *p++; 271 val |= (target_ulong)(byte & 0x7f) << shift; 272 shift += 7; 273 } while (byte & 0x80); 274 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 275 val |= -(target_ulong)1 << shift; 276 } 277 278 *pp = p; 279 return val; 280 } 281 282 /* Encode the data collected about the instructions while compiling TB. 283 Place the data at BLOCK, and return the number of bytes consumed. 284 285 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 286 which come from the target's insn_start data, followed by a uintptr_t 287 which comes from the host pc of the end of the code implementing the insn. 288 289 Each line of the table is encoded as sleb128 deltas from the previous 290 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 291 That is, the first column is seeded with the guest pc, the last column 292 with the host pc, and the middle columns with zeros. */ 293 294 static int encode_search(TranslationBlock *tb, uint8_t *block) 295 { 296 uint8_t *highwater = tcg_ctx->code_gen_highwater; 297 uint8_t *p = block; 298 int i, j, n; 299 300 for (i = 0, n = tb->icount; i < n; ++i) { 301 target_ulong prev; 302 303 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 304 if (i == 0) { 305 prev = (j == 0 ? tb->pc : 0); 306 } else { 307 prev = tcg_ctx->gen_insn_data[i - 1][j]; 308 } 309 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 310 } 311 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 312 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 313 314 /* Test for (pending) buffer overflow. The assumption is that any 315 one row beginning below the high water mark cannot overrun 316 the buffer completely. Thus we can test for overflow after 317 encoding a row without having to check during encoding. */ 318 if (unlikely(p > highwater)) { 319 return -1; 320 } 321 } 322 323 return p - block; 324 } 325 326 /* The cpu state corresponding to 'searched_pc' is restored. 327 * When reset_icount is true, current TB will be interrupted and 328 * icount should be recalculated. 329 */ 330 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 331 uintptr_t searched_pc, bool reset_icount) 332 { 333 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 334 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 335 CPUArchState *env = cpu->env_ptr; 336 uint8_t *p = tb->tc.ptr + tb->tc.size; 337 int i, j, num_insns = tb->icount; 338 #ifdef CONFIG_PROFILER 339 TCGProfile *prof = &tcg_ctx->prof; 340 int64_t ti = profile_getclock(); 341 #endif 342 343 searched_pc -= GETPC_ADJ; 344 345 if (searched_pc < host_pc) { 346 return -1; 347 } 348 349 /* Reconstruct the stored insn data while looking for the point at 350 which the end of the insn exceeds the searched_pc. */ 351 for (i = 0; i < num_insns; ++i) { 352 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 353 data[j] += decode_sleb128(&p); 354 } 355 host_pc += decode_sleb128(&p); 356 if (host_pc > searched_pc) { 357 goto found; 358 } 359 } 360 return -1; 361 362 found: 363 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 364 assert(use_icount); 365 /* Reset the cycle counter to the start of the block 366 and shift if to the number of actually executed instructions */ 367 cpu->icount_decr.u16.low += num_insns - i; 368 } 369 restore_state_to_opc(env, tb, data); 370 371 #ifdef CONFIG_PROFILER 372 atomic_set(&prof->restore_time, 373 prof->restore_time + profile_getclock() - ti); 374 atomic_set(&prof->restore_count, prof->restore_count + 1); 375 #endif 376 return 0; 377 } 378 379 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 380 { 381 TranslationBlock *tb; 382 bool r = false; 383 uintptr_t check_offset; 384 385 /* The host_pc has to be in the region of current code buffer. If 386 * it is not we will not be able to resolve it here. The two cases 387 * where host_pc will not be correct are: 388 * 389 * - fault during translation (instruction fetch) 390 * - fault from helper (not using GETPC() macro) 391 * 392 * Either way we need return early as we can't resolve it here. 393 * 394 * We are using unsigned arithmetic so if host_pc < 395 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 396 * above the code_gen_buffer_size 397 */ 398 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 399 400 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 401 tb = tcg_tb_lookup(host_pc); 402 if (tb) { 403 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 404 if (tb_cflags(tb) & CF_NOCACHE) { 405 /* one-shot translation, invalidate it immediately */ 406 tb_phys_invalidate(tb, -1); 407 tcg_tb_remove(tb); 408 } 409 r = true; 410 } 411 } 412 413 return r; 414 } 415 416 static void page_init(void) 417 { 418 page_size_init(); 419 page_table_config_init(); 420 421 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 422 { 423 #ifdef HAVE_KINFO_GETVMMAP 424 struct kinfo_vmentry *freep; 425 int i, cnt; 426 427 freep = kinfo_getvmmap(getpid(), &cnt); 428 if (freep) { 429 mmap_lock(); 430 for (i = 0; i < cnt; i++) { 431 unsigned long startaddr, endaddr; 432 433 startaddr = freep[i].kve_start; 434 endaddr = freep[i].kve_end; 435 if (h2g_valid(startaddr)) { 436 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 437 438 if (h2g_valid(endaddr)) { 439 endaddr = h2g(endaddr); 440 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 441 } else { 442 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 443 endaddr = ~0ul; 444 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 445 #endif 446 } 447 } 448 } 449 free(freep); 450 mmap_unlock(); 451 } 452 #else 453 FILE *f; 454 455 last_brk = (unsigned long)sbrk(0); 456 457 f = fopen("/compat/linux/proc/self/maps", "r"); 458 if (f) { 459 mmap_lock(); 460 461 do { 462 unsigned long startaddr, endaddr; 463 int n; 464 465 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 466 467 if (n == 2 && h2g_valid(startaddr)) { 468 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 469 470 if (h2g_valid(endaddr)) { 471 endaddr = h2g(endaddr); 472 } else { 473 endaddr = ~0ul; 474 } 475 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 476 } 477 } while (!feof(f)); 478 479 fclose(f); 480 mmap_unlock(); 481 } 482 #endif 483 } 484 #endif 485 } 486 487 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 488 { 489 PageDesc *pd; 490 void **lp; 491 int i; 492 493 /* Level 1. Always allocated. */ 494 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 495 496 /* Level 2..N-1. */ 497 for (i = v_l2_levels; i > 0; i--) { 498 void **p = atomic_rcu_read(lp); 499 500 if (p == NULL) { 501 void *existing; 502 503 if (!alloc) { 504 return NULL; 505 } 506 p = g_new0(void *, V_L2_SIZE); 507 existing = atomic_cmpxchg(lp, NULL, p); 508 if (unlikely(existing)) { 509 g_free(p); 510 p = existing; 511 } 512 } 513 514 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 515 } 516 517 pd = atomic_rcu_read(lp); 518 if (pd == NULL) { 519 void *existing; 520 521 if (!alloc) { 522 return NULL; 523 } 524 pd = g_new0(PageDesc, V_L2_SIZE); 525 #ifndef CONFIG_USER_ONLY 526 { 527 int i; 528 529 for (i = 0; i < V_L2_SIZE; i++) { 530 qemu_spin_init(&pd[i].lock); 531 } 532 } 533 #endif 534 existing = atomic_cmpxchg(lp, NULL, pd); 535 if (unlikely(existing)) { 536 g_free(pd); 537 pd = existing; 538 } 539 } 540 541 return pd + (index & (V_L2_SIZE - 1)); 542 } 543 544 static inline PageDesc *page_find(tb_page_addr_t index) 545 { 546 return page_find_alloc(index, 0); 547 } 548 549 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 550 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 551 552 /* In user-mode page locks aren't used; mmap_lock is enough */ 553 #ifdef CONFIG_USER_ONLY 554 555 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 556 557 static inline void page_lock(PageDesc *pd) 558 { } 559 560 static inline void page_unlock(PageDesc *pd) 561 { } 562 563 static inline void page_lock_tb(const TranslationBlock *tb) 564 { } 565 566 static inline void page_unlock_tb(const TranslationBlock *tb) 567 { } 568 569 struct page_collection * 570 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 571 { 572 return NULL; 573 } 574 575 void page_collection_unlock(struct page_collection *set) 576 { } 577 #else /* !CONFIG_USER_ONLY */ 578 579 #ifdef CONFIG_DEBUG_TCG 580 581 static __thread GHashTable *ht_pages_locked_debug; 582 583 static void ht_pages_locked_debug_init(void) 584 { 585 if (ht_pages_locked_debug) { 586 return; 587 } 588 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 589 } 590 591 static bool page_is_locked(const PageDesc *pd) 592 { 593 PageDesc *found; 594 595 ht_pages_locked_debug_init(); 596 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 597 return !!found; 598 } 599 600 static void page_lock__debug(PageDesc *pd) 601 { 602 ht_pages_locked_debug_init(); 603 g_assert(!page_is_locked(pd)); 604 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 605 } 606 607 static void page_unlock__debug(const PageDesc *pd) 608 { 609 bool removed; 610 611 ht_pages_locked_debug_init(); 612 g_assert(page_is_locked(pd)); 613 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 614 g_assert(removed); 615 } 616 617 static void 618 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 619 { 620 if (unlikely(!page_is_locked(pd))) { 621 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 622 pd, file, line); 623 abort(); 624 } 625 } 626 627 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 628 629 void assert_no_pages_locked(void) 630 { 631 ht_pages_locked_debug_init(); 632 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 633 } 634 635 #else /* !CONFIG_DEBUG_TCG */ 636 637 #define assert_page_locked(pd) 638 639 static inline void page_lock__debug(const PageDesc *pd) 640 { 641 } 642 643 static inline void page_unlock__debug(const PageDesc *pd) 644 { 645 } 646 647 #endif /* CONFIG_DEBUG_TCG */ 648 649 static inline void page_lock(PageDesc *pd) 650 { 651 page_lock__debug(pd); 652 qemu_spin_lock(&pd->lock); 653 } 654 655 static inline void page_unlock(PageDesc *pd) 656 { 657 qemu_spin_unlock(&pd->lock); 658 page_unlock__debug(pd); 659 } 660 661 /* lock the page(s) of a TB in the correct acquisition order */ 662 static inline void page_lock_tb(const TranslationBlock *tb) 663 { 664 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 665 } 666 667 static inline void page_unlock_tb(const TranslationBlock *tb) 668 { 669 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 670 671 page_unlock(p1); 672 if (unlikely(tb->page_addr[1] != -1)) { 673 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 674 675 if (p2 != p1) { 676 page_unlock(p2); 677 } 678 } 679 } 680 681 static inline struct page_entry * 682 page_entry_new(PageDesc *pd, tb_page_addr_t index) 683 { 684 struct page_entry *pe = g_malloc(sizeof(*pe)); 685 686 pe->index = index; 687 pe->pd = pd; 688 pe->locked = false; 689 return pe; 690 } 691 692 static void page_entry_destroy(gpointer p) 693 { 694 struct page_entry *pe = p; 695 696 g_assert(pe->locked); 697 page_unlock(pe->pd); 698 g_free(pe); 699 } 700 701 /* returns false on success */ 702 static bool page_entry_trylock(struct page_entry *pe) 703 { 704 bool busy; 705 706 busy = qemu_spin_trylock(&pe->pd->lock); 707 if (!busy) { 708 g_assert(!pe->locked); 709 pe->locked = true; 710 page_lock__debug(pe->pd); 711 } 712 return busy; 713 } 714 715 static void do_page_entry_lock(struct page_entry *pe) 716 { 717 page_lock(pe->pd); 718 g_assert(!pe->locked); 719 pe->locked = true; 720 } 721 722 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 723 { 724 struct page_entry *pe = value; 725 726 do_page_entry_lock(pe); 727 return FALSE; 728 } 729 730 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 731 { 732 struct page_entry *pe = value; 733 734 if (pe->locked) { 735 pe->locked = false; 736 page_unlock(pe->pd); 737 } 738 return FALSE; 739 } 740 741 /* 742 * Trylock a page, and if successful, add the page to a collection. 743 * Returns true ("busy") if the page could not be locked; false otherwise. 744 */ 745 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 746 { 747 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 748 struct page_entry *pe; 749 PageDesc *pd; 750 751 pe = g_tree_lookup(set->tree, &index); 752 if (pe) { 753 return false; 754 } 755 756 pd = page_find(index); 757 if (pd == NULL) { 758 return false; 759 } 760 761 pe = page_entry_new(pd, index); 762 g_tree_insert(set->tree, &pe->index, pe); 763 764 /* 765 * If this is either (1) the first insertion or (2) a page whose index 766 * is higher than any other so far, just lock the page and move on. 767 */ 768 if (set->max == NULL || pe->index > set->max->index) { 769 set->max = pe; 770 do_page_entry_lock(pe); 771 return false; 772 } 773 /* 774 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 775 * locks in order. 776 */ 777 return page_entry_trylock(pe); 778 } 779 780 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 781 { 782 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 783 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 784 785 if (a == b) { 786 return 0; 787 } else if (a < b) { 788 return -1; 789 } 790 return 1; 791 } 792 793 /* 794 * Lock a range of pages ([@start,@end[) as well as the pages of all 795 * intersecting TBs. 796 * Locking order: acquire locks in ascending order of page index. 797 */ 798 struct page_collection * 799 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 800 { 801 struct page_collection *set = g_malloc(sizeof(*set)); 802 tb_page_addr_t index; 803 PageDesc *pd; 804 805 start >>= TARGET_PAGE_BITS; 806 end >>= TARGET_PAGE_BITS; 807 g_assert(start <= end); 808 809 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 810 page_entry_destroy); 811 set->max = NULL; 812 assert_no_pages_locked(); 813 814 retry: 815 g_tree_foreach(set->tree, page_entry_lock, NULL); 816 817 for (index = start; index <= end; index++) { 818 TranslationBlock *tb; 819 int n; 820 821 pd = page_find(index); 822 if (pd == NULL) { 823 continue; 824 } 825 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 826 g_tree_foreach(set->tree, page_entry_unlock, NULL); 827 goto retry; 828 } 829 assert_page_locked(pd); 830 PAGE_FOR_EACH_TB(pd, tb, n) { 831 if (page_trylock_add(set, tb->page_addr[0]) || 832 (tb->page_addr[1] != -1 && 833 page_trylock_add(set, tb->page_addr[1]))) { 834 /* drop all locks, and reacquire in order */ 835 g_tree_foreach(set->tree, page_entry_unlock, NULL); 836 goto retry; 837 } 838 } 839 } 840 return set; 841 } 842 843 void page_collection_unlock(struct page_collection *set) 844 { 845 /* entries are unlocked and freed via page_entry_destroy */ 846 g_tree_destroy(set->tree); 847 g_free(set); 848 } 849 850 #endif /* !CONFIG_USER_ONLY */ 851 852 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 853 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 854 { 855 PageDesc *p1, *p2; 856 tb_page_addr_t page1; 857 tb_page_addr_t page2; 858 859 assert_memory_lock(); 860 g_assert(phys1 != -1); 861 862 page1 = phys1 >> TARGET_PAGE_BITS; 863 page2 = phys2 >> TARGET_PAGE_BITS; 864 865 p1 = page_find_alloc(page1, alloc); 866 if (ret_p1) { 867 *ret_p1 = p1; 868 } 869 if (likely(phys2 == -1)) { 870 page_lock(p1); 871 return; 872 } else if (page1 == page2) { 873 page_lock(p1); 874 if (ret_p2) { 875 *ret_p2 = p1; 876 } 877 return; 878 } 879 p2 = page_find_alloc(page2, alloc); 880 if (ret_p2) { 881 *ret_p2 = p2; 882 } 883 if (page1 < page2) { 884 page_lock(p1); 885 page_lock(p2); 886 } else { 887 page_lock(p2); 888 page_lock(p1); 889 } 890 } 891 892 #if defined(CONFIG_USER_ONLY) 893 /* Currently it is not recommended to allocate big chunks of data in 894 user mode. It will change when a dedicated libc will be used. */ 895 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 896 region in which the guest needs to run. Revisit this. */ 897 #define USE_STATIC_CODE_GEN_BUFFER 898 #endif 899 900 /* Minimum size of the code gen buffer. This number is randomly chosen, 901 but not so small that we can't have a fair number of TB's live. */ 902 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) 903 904 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 905 indicated, this is constrained by the range of direct branches on the 906 host cpu, as used by the TCG implementation of goto_tb. */ 907 #if defined(__x86_64__) 908 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 909 #elif defined(__sparc__) 910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 911 #elif defined(__powerpc64__) 912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 913 #elif defined(__powerpc__) 914 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) 915 #elif defined(__aarch64__) 916 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 917 #elif defined(__s390x__) 918 /* We have a +- 4GB range on the branches; leave some slop. */ 919 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) 920 #elif defined(__mips__) 921 /* We have a 256MB branch region, but leave room to make sure the 922 main executable is also within that region. */ 923 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) 924 #else 925 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 926 #endif 927 928 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) 929 930 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 931 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 932 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 933 934 static inline size_t size_code_gen_buffer(size_t tb_size) 935 { 936 /* Size the buffer. */ 937 if (tb_size == 0) { 938 #ifdef USE_STATIC_CODE_GEN_BUFFER 939 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 940 #else 941 /* ??? Needs adjustments. */ 942 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 943 static buffer, we could size this on RESERVED_VA, on the text 944 segment size of the executable, or continue to use the default. */ 945 tb_size = (unsigned long)(ram_size / 4); 946 #endif 947 } 948 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 949 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 950 } 951 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 952 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 953 } 954 return tb_size; 955 } 956 957 #ifdef __mips__ 958 /* In order to use J and JAL within the code_gen_buffer, we require 959 that the buffer not cross a 256MB boundary. */ 960 static inline bool cross_256mb(void *addr, size_t size) 961 { 962 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 963 } 964 965 /* We weren't able to allocate a buffer without crossing that boundary, 966 so make do with the larger portion of the buffer that doesn't cross. 967 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 968 static inline void *split_cross_256mb(void *buf1, size_t size1) 969 { 970 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 971 size_t size2 = buf1 + size1 - buf2; 972 973 size1 = buf2 - buf1; 974 if (size1 < size2) { 975 size1 = size2; 976 buf1 = buf2; 977 } 978 979 tcg_ctx->code_gen_buffer_size = size1; 980 return buf1; 981 } 982 #endif 983 984 #ifdef USE_STATIC_CODE_GEN_BUFFER 985 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 986 __attribute__((aligned(CODE_GEN_ALIGN))); 987 988 static inline void *alloc_code_gen_buffer(void) 989 { 990 void *buf = static_code_gen_buffer; 991 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 992 size_t size; 993 994 /* page-align the beginning and end of the buffer */ 995 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 996 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 997 998 size = end - buf; 999 1000 /* Honor a command-line option limiting the size of the buffer. */ 1001 if (size > tcg_ctx->code_gen_buffer_size) { 1002 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1003 qemu_real_host_page_size); 1004 } 1005 tcg_ctx->code_gen_buffer_size = size; 1006 1007 #ifdef __mips__ 1008 if (cross_256mb(buf, size)) { 1009 buf = split_cross_256mb(buf, size); 1010 size = tcg_ctx->code_gen_buffer_size; 1011 } 1012 #endif 1013 1014 if (qemu_mprotect_rwx(buf, size)) { 1015 abort(); 1016 } 1017 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1018 1019 return buf; 1020 } 1021 #elif defined(_WIN32) 1022 static inline void *alloc_code_gen_buffer(void) 1023 { 1024 size_t size = tcg_ctx->code_gen_buffer_size; 1025 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1026 PAGE_EXECUTE_READWRITE); 1027 } 1028 #else 1029 static inline void *alloc_code_gen_buffer(void) 1030 { 1031 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1032 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1033 uintptr_t start = 0; 1034 size_t size = tcg_ctx->code_gen_buffer_size; 1035 void *buf; 1036 1037 /* Constrain the position of the buffer based on the host cpu. 1038 Note that these addresses are chosen in concert with the 1039 addresses assigned in the relevant linker script file. */ 1040 # if defined(__PIE__) || defined(__PIC__) 1041 /* Don't bother setting a preferred location if we're building 1042 a position-independent executable. We're more likely to get 1043 an address near the main executable if we let the kernel 1044 choose the address. */ 1045 # elif defined(__x86_64__) && defined(MAP_32BIT) 1046 /* Force the memory down into low memory with the executable. 1047 Leave the choice of exact location with the kernel. */ 1048 flags |= MAP_32BIT; 1049 /* Cannot expect to map more than 800MB in low memory. */ 1050 if (size > 800u * 1024 * 1024) { 1051 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1052 } 1053 # elif defined(__sparc__) 1054 start = 0x40000000ul; 1055 # elif defined(__s390x__) 1056 start = 0x90000000ul; 1057 # elif defined(__mips__) 1058 # if _MIPS_SIM == _ABI64 1059 start = 0x128000000ul; 1060 # else 1061 start = 0x08000000ul; 1062 # endif 1063 # endif 1064 1065 buf = mmap((void *)start, size, prot, flags, -1, 0); 1066 if (buf == MAP_FAILED) { 1067 return NULL; 1068 } 1069 1070 #ifdef __mips__ 1071 if (cross_256mb(buf, size)) { 1072 /* Try again, with the original still mapped, to avoid re-acquiring 1073 that 256mb crossing. This time don't specify an address. */ 1074 size_t size2; 1075 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1076 switch ((int)(buf2 != MAP_FAILED)) { 1077 case 1: 1078 if (!cross_256mb(buf2, size)) { 1079 /* Success! Use the new buffer. */ 1080 munmap(buf, size); 1081 break; 1082 } 1083 /* Failure. Work with what we had. */ 1084 munmap(buf2, size); 1085 /* fallthru */ 1086 default: 1087 /* Split the original buffer. Free the smaller half. */ 1088 buf2 = split_cross_256mb(buf, size); 1089 size2 = tcg_ctx->code_gen_buffer_size; 1090 if (buf == buf2) { 1091 munmap(buf + size2, size - size2); 1092 } else { 1093 munmap(buf, size - size2); 1094 } 1095 size = size2; 1096 break; 1097 } 1098 buf = buf2; 1099 } 1100 #endif 1101 1102 /* Request large pages for the buffer. */ 1103 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1104 1105 return buf; 1106 } 1107 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1108 1109 static inline void code_gen_alloc(size_t tb_size) 1110 { 1111 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1112 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1113 if (tcg_ctx->code_gen_buffer == NULL) { 1114 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1115 exit(1); 1116 } 1117 } 1118 1119 static bool tb_cmp(const void *ap, const void *bp) 1120 { 1121 const TranslationBlock *a = ap; 1122 const TranslationBlock *b = bp; 1123 1124 return a->pc == b->pc && 1125 a->cs_base == b->cs_base && 1126 a->flags == b->flags && 1127 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1128 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1129 a->page_addr[0] == b->page_addr[0] && 1130 a->page_addr[1] == b->page_addr[1]; 1131 } 1132 1133 static void tb_htable_init(void) 1134 { 1135 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1136 1137 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1138 } 1139 1140 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1141 (in bytes) allocated to the translation buffer. Zero means default 1142 size. */ 1143 void tcg_exec_init(unsigned long tb_size) 1144 { 1145 tcg_allowed = true; 1146 cpu_gen_init(); 1147 page_init(); 1148 tb_htable_init(); 1149 code_gen_alloc(tb_size); 1150 #if defined(CONFIG_SOFTMMU) 1151 /* There's no guest base to take into account, so go ahead and 1152 initialize the prologue now. */ 1153 tcg_prologue_init(tcg_ctx); 1154 #endif 1155 } 1156 1157 /* 1158 * Allocate a new translation block. Flush the translation buffer if 1159 * too many translation blocks or too much generated code. 1160 */ 1161 static TranslationBlock *tb_alloc(target_ulong pc) 1162 { 1163 TranslationBlock *tb; 1164 1165 assert_memory_lock(); 1166 1167 tb = tcg_tb_alloc(tcg_ctx); 1168 if (unlikely(tb == NULL)) { 1169 return NULL; 1170 } 1171 return tb; 1172 } 1173 1174 /* call with @p->lock held */ 1175 static inline void invalidate_page_bitmap(PageDesc *p) 1176 { 1177 assert_page_locked(p); 1178 #ifdef CONFIG_SOFTMMU 1179 g_free(p->code_bitmap); 1180 p->code_bitmap = NULL; 1181 p->code_write_count = 0; 1182 #endif 1183 } 1184 1185 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1186 static void page_flush_tb_1(int level, void **lp) 1187 { 1188 int i; 1189 1190 if (*lp == NULL) { 1191 return; 1192 } 1193 if (level == 0) { 1194 PageDesc *pd = *lp; 1195 1196 for (i = 0; i < V_L2_SIZE; ++i) { 1197 page_lock(&pd[i]); 1198 pd[i].first_tb = (uintptr_t)NULL; 1199 invalidate_page_bitmap(pd + i); 1200 page_unlock(&pd[i]); 1201 } 1202 } else { 1203 void **pp = *lp; 1204 1205 for (i = 0; i < V_L2_SIZE; ++i) { 1206 page_flush_tb_1(level - 1, pp + i); 1207 } 1208 } 1209 } 1210 1211 static void page_flush_tb(void) 1212 { 1213 int i, l1_sz = v_l1_size; 1214 1215 for (i = 0; i < l1_sz; i++) { 1216 page_flush_tb_1(v_l2_levels, l1_map + i); 1217 } 1218 } 1219 1220 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1221 { 1222 const TranslationBlock *tb = value; 1223 size_t *size = data; 1224 1225 *size += tb->tc.size; 1226 return false; 1227 } 1228 1229 /* flush all the translation blocks */ 1230 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1231 { 1232 mmap_lock(); 1233 /* If it is already been done on request of another CPU, 1234 * just retry. 1235 */ 1236 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1237 goto done; 1238 } 1239 1240 if (DEBUG_TB_FLUSH_GATE) { 1241 size_t nb_tbs = tcg_nb_tbs(); 1242 size_t host_size = 0; 1243 1244 tcg_tb_foreach(tb_host_size_iter, &host_size); 1245 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1246 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1247 } 1248 1249 CPU_FOREACH(cpu) { 1250 cpu_tb_jmp_cache_clear(cpu); 1251 } 1252 1253 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1254 page_flush_tb(); 1255 1256 tcg_region_reset_all(); 1257 /* XXX: flush processor icache at this point if cache flush is 1258 expensive */ 1259 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1260 1261 done: 1262 mmap_unlock(); 1263 } 1264 1265 void tb_flush(CPUState *cpu) 1266 { 1267 if (tcg_enabled()) { 1268 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1269 async_safe_run_on_cpu(cpu, do_tb_flush, 1270 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1271 } 1272 } 1273 1274 /* 1275 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1276 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1277 * and let the optimizer get rid of them by wrapping their user-only callers 1278 * with if (DEBUG_TB_CHECK_GATE). 1279 */ 1280 #ifdef CONFIG_USER_ONLY 1281 1282 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1283 { 1284 TranslationBlock *tb = p; 1285 target_ulong addr = *(target_ulong *)userp; 1286 1287 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1288 printf("ERROR invalidate: address=" TARGET_FMT_lx 1289 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1290 } 1291 } 1292 1293 /* verify that all the pages have correct rights for code 1294 * 1295 * Called with mmap_lock held. 1296 */ 1297 static void tb_invalidate_check(target_ulong address) 1298 { 1299 address &= TARGET_PAGE_MASK; 1300 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1301 } 1302 1303 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1304 { 1305 TranslationBlock *tb = p; 1306 int flags1, flags2; 1307 1308 flags1 = page_get_flags(tb->pc); 1309 flags2 = page_get_flags(tb->pc + tb->size - 1); 1310 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1311 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1312 (long)tb->pc, tb->size, flags1, flags2); 1313 } 1314 } 1315 1316 /* verify that all the pages have correct rights for code */ 1317 static void tb_page_check(void) 1318 { 1319 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1320 } 1321 1322 #endif /* CONFIG_USER_ONLY */ 1323 1324 /* 1325 * user-mode: call with mmap_lock held 1326 * !user-mode: call with @pd->lock held 1327 */ 1328 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1329 { 1330 TranslationBlock *tb1; 1331 uintptr_t *pprev; 1332 unsigned int n1; 1333 1334 assert_page_locked(pd); 1335 pprev = &pd->first_tb; 1336 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1337 if (tb1 == tb) { 1338 *pprev = tb1->page_next[n1]; 1339 return; 1340 } 1341 pprev = &tb1->page_next[n1]; 1342 } 1343 g_assert_not_reached(); 1344 } 1345 1346 /* remove @orig from its @n_orig-th jump list */ 1347 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1348 { 1349 uintptr_t ptr, ptr_locked; 1350 TranslationBlock *dest; 1351 TranslationBlock *tb; 1352 uintptr_t *pprev; 1353 int n; 1354 1355 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1356 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1357 dest = (TranslationBlock *)(ptr & ~1); 1358 if (dest == NULL) { 1359 return; 1360 } 1361 1362 qemu_spin_lock(&dest->jmp_lock); 1363 /* 1364 * While acquiring the lock, the jump might have been removed if the 1365 * destination TB was invalidated; check again. 1366 */ 1367 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1368 if (ptr_locked != ptr) { 1369 qemu_spin_unlock(&dest->jmp_lock); 1370 /* 1371 * The only possibility is that the jump was unlinked via 1372 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1373 * because we set the LSB above. 1374 */ 1375 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1376 return; 1377 } 1378 /* 1379 * We first acquired the lock, and since the destination pointer matches, 1380 * we know for sure that @orig is in the jmp list. 1381 */ 1382 pprev = &dest->jmp_list_head; 1383 TB_FOR_EACH_JMP(dest, tb, n) { 1384 if (tb == orig && n == n_orig) { 1385 *pprev = tb->jmp_list_next[n]; 1386 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1387 qemu_spin_unlock(&dest->jmp_lock); 1388 return; 1389 } 1390 pprev = &tb->jmp_list_next[n]; 1391 } 1392 g_assert_not_reached(); 1393 } 1394 1395 /* reset the jump entry 'n' of a TB so that it is not chained to 1396 another TB */ 1397 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1398 { 1399 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1400 tb_set_jmp_target(tb, n, addr); 1401 } 1402 1403 /* remove any jumps to the TB */ 1404 static inline void tb_jmp_unlink(TranslationBlock *dest) 1405 { 1406 TranslationBlock *tb; 1407 int n; 1408 1409 qemu_spin_lock(&dest->jmp_lock); 1410 1411 TB_FOR_EACH_JMP(dest, tb, n) { 1412 tb_reset_jump(tb, n); 1413 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1414 /* No need to clear the list entry; setting the dest ptr is enough */ 1415 } 1416 dest->jmp_list_head = (uintptr_t)NULL; 1417 1418 qemu_spin_unlock(&dest->jmp_lock); 1419 } 1420 1421 /* 1422 * In user-mode, call with mmap_lock held. 1423 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1424 * locks held. 1425 */ 1426 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1427 { 1428 CPUState *cpu; 1429 PageDesc *p; 1430 uint32_t h; 1431 tb_page_addr_t phys_pc; 1432 1433 assert_memory_lock(); 1434 1435 /* make sure no further incoming jumps will be chained to this TB */ 1436 qemu_spin_lock(&tb->jmp_lock); 1437 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1438 qemu_spin_unlock(&tb->jmp_lock); 1439 1440 /* remove the TB from the hash list */ 1441 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1442 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1443 tb->trace_vcpu_dstate); 1444 if (!(tb->cflags & CF_NOCACHE) && 1445 !qht_remove(&tb_ctx.htable, tb, h)) { 1446 return; 1447 } 1448 1449 /* remove the TB from the page list */ 1450 if (rm_from_page_list) { 1451 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1452 tb_page_remove(p, tb); 1453 invalidate_page_bitmap(p); 1454 if (tb->page_addr[1] != -1) { 1455 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1456 tb_page_remove(p, tb); 1457 invalidate_page_bitmap(p); 1458 } 1459 } 1460 1461 /* remove the TB from the hash list */ 1462 h = tb_jmp_cache_hash_func(tb->pc); 1463 CPU_FOREACH(cpu) { 1464 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1465 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1466 } 1467 } 1468 1469 /* suppress this TB from the two jump lists */ 1470 tb_remove_from_jmp_list(tb, 0); 1471 tb_remove_from_jmp_list(tb, 1); 1472 1473 /* suppress any remaining jumps to this TB */ 1474 tb_jmp_unlink(tb); 1475 1476 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1477 tcg_ctx->tb_phys_invalidate_count + 1); 1478 } 1479 1480 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1481 { 1482 do_tb_phys_invalidate(tb, true); 1483 } 1484 1485 /* invalidate one TB 1486 * 1487 * Called with mmap_lock held in user-mode. 1488 */ 1489 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1490 { 1491 if (page_addr == -1 && tb->page_addr[0] != -1) { 1492 page_lock_tb(tb); 1493 do_tb_phys_invalidate(tb, true); 1494 page_unlock_tb(tb); 1495 } else { 1496 do_tb_phys_invalidate(tb, false); 1497 } 1498 } 1499 1500 #ifdef CONFIG_SOFTMMU 1501 /* call with @p->lock held */ 1502 static void build_page_bitmap(PageDesc *p) 1503 { 1504 int n, tb_start, tb_end; 1505 TranslationBlock *tb; 1506 1507 assert_page_locked(p); 1508 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1509 1510 PAGE_FOR_EACH_TB(p, tb, n) { 1511 /* NOTE: this is subtle as a TB may span two physical pages */ 1512 if (n == 0) { 1513 /* NOTE: tb_end may be after the end of the page, but 1514 it is not a problem */ 1515 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1516 tb_end = tb_start + tb->size; 1517 if (tb_end > TARGET_PAGE_SIZE) { 1518 tb_end = TARGET_PAGE_SIZE; 1519 } 1520 } else { 1521 tb_start = 0; 1522 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1523 } 1524 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1525 } 1526 } 1527 #endif 1528 1529 /* add the tb in the target page and protect it if necessary 1530 * 1531 * Called with mmap_lock held for user-mode emulation. 1532 * Called with @p->lock held in !user-mode. 1533 */ 1534 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1535 unsigned int n, tb_page_addr_t page_addr) 1536 { 1537 #ifndef CONFIG_USER_ONLY 1538 bool page_already_protected; 1539 #endif 1540 1541 assert_page_locked(p); 1542 1543 tb->page_addr[n] = page_addr; 1544 tb->page_next[n] = p->first_tb; 1545 #ifndef CONFIG_USER_ONLY 1546 page_already_protected = p->first_tb != (uintptr_t)NULL; 1547 #endif 1548 p->first_tb = (uintptr_t)tb | n; 1549 invalidate_page_bitmap(p); 1550 1551 #if defined(CONFIG_USER_ONLY) 1552 if (p->flags & PAGE_WRITE) { 1553 target_ulong addr; 1554 PageDesc *p2; 1555 int prot; 1556 1557 /* force the host page as non writable (writes will have a 1558 page fault + mprotect overhead) */ 1559 page_addr &= qemu_host_page_mask; 1560 prot = 0; 1561 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1562 addr += TARGET_PAGE_SIZE) { 1563 1564 p2 = page_find(addr >> TARGET_PAGE_BITS); 1565 if (!p2) { 1566 continue; 1567 } 1568 prot |= p2->flags; 1569 p2->flags &= ~PAGE_WRITE; 1570 } 1571 mprotect(g2h(page_addr), qemu_host_page_size, 1572 (prot & PAGE_BITS) & ~PAGE_WRITE); 1573 if (DEBUG_TB_INVALIDATE_GATE) { 1574 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1575 } 1576 } 1577 #else 1578 /* if some code is already present, then the pages are already 1579 protected. So we handle the case where only the first TB is 1580 allocated in a physical page */ 1581 if (!page_already_protected) { 1582 tlb_protect_code(page_addr); 1583 } 1584 #endif 1585 } 1586 1587 /* add a new TB and link it to the physical page tables. phys_page2 is 1588 * (-1) to indicate that only one page contains the TB. 1589 * 1590 * Called with mmap_lock held for user-mode emulation. 1591 * 1592 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1593 * Note that in !user-mode, another thread might have already added a TB 1594 * for the same block of guest code that @tb corresponds to. In that case, 1595 * the caller should discard the original @tb, and use instead the returned TB. 1596 */ 1597 static TranslationBlock * 1598 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1599 tb_page_addr_t phys_page2) 1600 { 1601 PageDesc *p; 1602 PageDesc *p2 = NULL; 1603 1604 assert_memory_lock(); 1605 1606 if (phys_pc == -1) { 1607 /* 1608 * If the TB is not associated with a physical RAM page then 1609 * it must be a temporary one-insn TB, and we have nothing to do 1610 * except fill in the page_addr[] fields. 1611 */ 1612 assert(tb->cflags & CF_NOCACHE); 1613 tb->page_addr[0] = tb->page_addr[1] = -1; 1614 return tb; 1615 } 1616 1617 /* 1618 * Add the TB to the page list, acquiring first the pages's locks. 1619 * We keep the locks held until after inserting the TB in the hash table, 1620 * so that if the insertion fails we know for sure that the TBs are still 1621 * in the page descriptors. 1622 * Note that inserting into the hash table first isn't an option, since 1623 * we can only insert TBs that are fully initialized. 1624 */ 1625 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1626 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1627 if (p2) { 1628 tb_page_add(p2, tb, 1, phys_page2); 1629 } else { 1630 tb->page_addr[1] = -1; 1631 } 1632 1633 if (!(tb->cflags & CF_NOCACHE)) { 1634 void *existing_tb = NULL; 1635 uint32_t h; 1636 1637 /* add in the hash table */ 1638 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1639 tb->trace_vcpu_dstate); 1640 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1641 1642 /* remove TB from the page(s) if we couldn't insert it */ 1643 if (unlikely(existing_tb)) { 1644 tb_page_remove(p, tb); 1645 invalidate_page_bitmap(p); 1646 if (p2) { 1647 tb_page_remove(p2, tb); 1648 invalidate_page_bitmap(p2); 1649 } 1650 tb = existing_tb; 1651 } 1652 } 1653 1654 if (p2 && p2 != p) { 1655 page_unlock(p2); 1656 } 1657 page_unlock(p); 1658 1659 #ifdef CONFIG_USER_ONLY 1660 if (DEBUG_TB_CHECK_GATE) { 1661 tb_page_check(); 1662 } 1663 #endif 1664 return tb; 1665 } 1666 1667 /* Called with mmap_lock held for user mode emulation. */ 1668 TranslationBlock *tb_gen_code(CPUState *cpu, 1669 target_ulong pc, target_ulong cs_base, 1670 uint32_t flags, int cflags) 1671 { 1672 CPUArchState *env = cpu->env_ptr; 1673 TranslationBlock *tb, *existing_tb; 1674 tb_page_addr_t phys_pc, phys_page2; 1675 target_ulong virt_page2; 1676 tcg_insn_unit *gen_code_buf; 1677 int gen_code_size, search_size; 1678 #ifdef CONFIG_PROFILER 1679 TCGProfile *prof = &tcg_ctx->prof; 1680 int64_t ti; 1681 #endif 1682 assert_memory_lock(); 1683 1684 phys_pc = get_page_addr_code(env, pc); 1685 1686 if (phys_pc == -1) { 1687 /* Generate a temporary TB with 1 insn in it */ 1688 cflags &= ~CF_COUNT_MASK; 1689 cflags |= CF_NOCACHE | 1; 1690 } 1691 1692 cflags &= ~CF_CLUSTER_MASK; 1693 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1694 1695 buffer_overflow: 1696 tb = tb_alloc(pc); 1697 if (unlikely(!tb)) { 1698 /* flush must be done */ 1699 tb_flush(cpu); 1700 mmap_unlock(); 1701 /* Make the execution loop process the flush as soon as possible. */ 1702 cpu->exception_index = EXCP_INTERRUPT; 1703 cpu_loop_exit(cpu); 1704 } 1705 1706 gen_code_buf = tcg_ctx->code_gen_ptr; 1707 tb->tc.ptr = gen_code_buf; 1708 tb->pc = pc; 1709 tb->cs_base = cs_base; 1710 tb->flags = flags; 1711 tb->cflags = cflags; 1712 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1713 tcg_ctx->tb_cflags = cflags; 1714 1715 #ifdef CONFIG_PROFILER 1716 /* includes aborted translations because of exceptions */ 1717 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1718 ti = profile_getclock(); 1719 #endif 1720 1721 tcg_func_start(tcg_ctx); 1722 1723 tcg_ctx->cpu = ENV_GET_CPU(env); 1724 gen_intermediate_code(cpu, tb); 1725 tcg_ctx->cpu = NULL; 1726 1727 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1728 1729 /* generate machine code */ 1730 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1731 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1732 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1733 if (TCG_TARGET_HAS_direct_jump) { 1734 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1735 tcg_ctx->tb_jmp_target_addr = NULL; 1736 } else { 1737 tcg_ctx->tb_jmp_insn_offset = NULL; 1738 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1739 } 1740 1741 #ifdef CONFIG_PROFILER 1742 atomic_set(&prof->tb_count, prof->tb_count + 1); 1743 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1744 ti = profile_getclock(); 1745 #endif 1746 1747 /* ??? Overflow could be handled better here. In particular, we 1748 don't need to re-do gen_intermediate_code, nor should we re-do 1749 the tcg optimization currently hidden inside tcg_gen_code. All 1750 that should be required is to flush the TBs, allocate a new TB, 1751 re-initialize it per above, and re-do the actual code generation. */ 1752 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1753 if (unlikely(gen_code_size < 0)) { 1754 goto buffer_overflow; 1755 } 1756 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1757 if (unlikely(search_size < 0)) { 1758 goto buffer_overflow; 1759 } 1760 tb->tc.size = gen_code_size; 1761 1762 #ifdef CONFIG_PROFILER 1763 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1764 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1765 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1766 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1767 #endif 1768 1769 #ifdef DEBUG_DISAS 1770 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1771 qemu_log_in_addr_range(tb->pc)) { 1772 qemu_log_lock(); 1773 qemu_log("OUT: [size=%d]\n", gen_code_size); 1774 if (tcg_ctx->data_gen_ptr) { 1775 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1776 size_t data_size = gen_code_size - code_size; 1777 size_t i; 1778 1779 log_disas(tb->tc.ptr, code_size); 1780 1781 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1782 if (sizeof(tcg_target_ulong) == 8) { 1783 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1784 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1785 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1786 } else { 1787 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1788 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1789 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1790 } 1791 } 1792 } else { 1793 log_disas(tb->tc.ptr, gen_code_size); 1794 } 1795 qemu_log("\n"); 1796 qemu_log_flush(); 1797 qemu_log_unlock(); 1798 } 1799 #endif 1800 1801 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1802 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1803 CODE_GEN_ALIGN)); 1804 1805 /* init jump list */ 1806 qemu_spin_init(&tb->jmp_lock); 1807 tb->jmp_list_head = (uintptr_t)NULL; 1808 tb->jmp_list_next[0] = (uintptr_t)NULL; 1809 tb->jmp_list_next[1] = (uintptr_t)NULL; 1810 tb->jmp_dest[0] = (uintptr_t)NULL; 1811 tb->jmp_dest[1] = (uintptr_t)NULL; 1812 1813 /* init original jump addresses which have been set during tcg_gen_code() */ 1814 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1815 tb_reset_jump(tb, 0); 1816 } 1817 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1818 tb_reset_jump(tb, 1); 1819 } 1820 1821 /* check next page if needed */ 1822 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1823 phys_page2 = -1; 1824 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1825 phys_page2 = get_page_addr_code(env, virt_page2); 1826 } 1827 /* 1828 * No explicit memory barrier is required -- tb_link_page() makes the 1829 * TB visible in a consistent state. 1830 */ 1831 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1832 /* if the TB already exists, discard what we just translated */ 1833 if (unlikely(existing_tb != tb)) { 1834 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1835 1836 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1837 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1838 return existing_tb; 1839 } 1840 tcg_tb_insert(tb); 1841 return tb; 1842 } 1843 1844 /* 1845 * @p must be non-NULL. 1846 * user-mode: call with mmap_lock held. 1847 * !user-mode: call with all @pages locked. 1848 */ 1849 static void 1850 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1851 PageDesc *p, tb_page_addr_t start, 1852 tb_page_addr_t end, 1853 int is_cpu_write_access) 1854 { 1855 TranslationBlock *tb; 1856 tb_page_addr_t tb_start, tb_end; 1857 int n; 1858 #ifdef TARGET_HAS_PRECISE_SMC 1859 CPUState *cpu = current_cpu; 1860 CPUArchState *env = NULL; 1861 int current_tb_not_found = is_cpu_write_access; 1862 TranslationBlock *current_tb = NULL; 1863 int current_tb_modified = 0; 1864 target_ulong current_pc = 0; 1865 target_ulong current_cs_base = 0; 1866 uint32_t current_flags = 0; 1867 #endif /* TARGET_HAS_PRECISE_SMC */ 1868 1869 assert_page_locked(p); 1870 1871 #if defined(TARGET_HAS_PRECISE_SMC) 1872 if (cpu != NULL) { 1873 env = cpu->env_ptr; 1874 } 1875 #endif 1876 1877 /* we remove all the TBs in the range [start, end[ */ 1878 /* XXX: see if in some cases it could be faster to invalidate all 1879 the code */ 1880 PAGE_FOR_EACH_TB(p, tb, n) { 1881 assert_page_locked(p); 1882 /* NOTE: this is subtle as a TB may span two physical pages */ 1883 if (n == 0) { 1884 /* NOTE: tb_end may be after the end of the page, but 1885 it is not a problem */ 1886 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1887 tb_end = tb_start + tb->size; 1888 } else { 1889 tb_start = tb->page_addr[1]; 1890 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1891 } 1892 if (!(tb_end <= start || tb_start >= end)) { 1893 #ifdef TARGET_HAS_PRECISE_SMC 1894 if (current_tb_not_found) { 1895 current_tb_not_found = 0; 1896 current_tb = NULL; 1897 if (cpu->mem_io_pc) { 1898 /* now we have a real cpu fault */ 1899 current_tb = tcg_tb_lookup(cpu->mem_io_pc); 1900 } 1901 } 1902 if (current_tb == tb && 1903 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1904 /* If we are modifying the current TB, we must stop 1905 its execution. We could be more precise by checking 1906 that the modification is after the current PC, but it 1907 would require a specialized function to partially 1908 restore the CPU state */ 1909 1910 current_tb_modified = 1; 1911 cpu_restore_state_from_tb(cpu, current_tb, 1912 cpu->mem_io_pc, true); 1913 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1914 ¤t_flags); 1915 } 1916 #endif /* TARGET_HAS_PRECISE_SMC */ 1917 tb_phys_invalidate__locked(tb); 1918 } 1919 } 1920 #if !defined(CONFIG_USER_ONLY) 1921 /* if no code remaining, no need to continue to use slow writes */ 1922 if (!p->first_tb) { 1923 invalidate_page_bitmap(p); 1924 tlb_unprotect_code(start); 1925 } 1926 #endif 1927 #ifdef TARGET_HAS_PRECISE_SMC 1928 if (current_tb_modified) { 1929 page_collection_unlock(pages); 1930 /* Force execution of one insn next time. */ 1931 cpu->cflags_next_tb = 1 | curr_cflags(); 1932 mmap_unlock(); 1933 cpu_loop_exit_noexc(cpu); 1934 } 1935 #endif 1936 } 1937 1938 /* 1939 * Invalidate all TBs which intersect with the target physical address range 1940 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1941 * 'is_cpu_write_access' should be true if called from a real cpu write 1942 * access: the virtual CPU will exit the current TB if code is modified inside 1943 * this TB. 1944 * 1945 * Called with mmap_lock held for user-mode emulation 1946 */ 1947 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, 1948 int is_cpu_write_access) 1949 { 1950 struct page_collection *pages; 1951 PageDesc *p; 1952 1953 assert_memory_lock(); 1954 1955 p = page_find(start >> TARGET_PAGE_BITS); 1956 if (p == NULL) { 1957 return; 1958 } 1959 pages = page_collection_lock(start, end); 1960 tb_invalidate_phys_page_range__locked(pages, p, start, end, 1961 is_cpu_write_access); 1962 page_collection_unlock(pages); 1963 } 1964 1965 /* 1966 * Invalidate all TBs which intersect with the target physical address range 1967 * [start;end[. NOTE: start and end may refer to *different* physical pages. 1968 * 'is_cpu_write_access' should be true if called from a real cpu write 1969 * access: the virtual CPU will exit the current TB if code is modified inside 1970 * this TB. 1971 * 1972 * Called with mmap_lock held for user-mode emulation. 1973 */ 1974 #ifdef CONFIG_SOFTMMU 1975 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 1976 #else 1977 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 1978 #endif 1979 { 1980 struct page_collection *pages; 1981 tb_page_addr_t next; 1982 1983 assert_memory_lock(); 1984 1985 pages = page_collection_lock(start, end); 1986 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 1987 start < end; 1988 start = next, next += TARGET_PAGE_SIZE) { 1989 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 1990 tb_page_addr_t bound = MIN(next, end); 1991 1992 if (pd == NULL) { 1993 continue; 1994 } 1995 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 1996 } 1997 page_collection_unlock(pages); 1998 } 1999 2000 #ifdef CONFIG_SOFTMMU 2001 /* len must be <= 8 and start must be a multiple of len. 2002 * Called via softmmu_template.h when code areas are written to with 2003 * iothread mutex not held. 2004 * 2005 * Call with all @pages in the range [@start, @start + len[ locked. 2006 */ 2007 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2008 tb_page_addr_t start, int len) 2009 { 2010 PageDesc *p; 2011 2012 assert_memory_lock(); 2013 2014 p = page_find(start >> TARGET_PAGE_BITS); 2015 if (!p) { 2016 return; 2017 } 2018 2019 assert_page_locked(p); 2020 if (!p->code_bitmap && 2021 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2022 build_page_bitmap(p); 2023 } 2024 if (p->code_bitmap) { 2025 unsigned int nr; 2026 unsigned long b; 2027 2028 nr = start & ~TARGET_PAGE_MASK; 2029 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2030 if (b & ((1 << len) - 1)) { 2031 goto do_invalidate; 2032 } 2033 } else { 2034 do_invalidate: 2035 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1); 2036 } 2037 } 2038 #else 2039 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2040 * host PC of the faulting store instruction that caused this invalidate. 2041 * Returns true if the caller needs to abort execution of the current 2042 * TB (because it was modified by this store and the guest CPU has 2043 * precise-SMC semantics). 2044 */ 2045 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2046 { 2047 TranslationBlock *tb; 2048 PageDesc *p; 2049 int n; 2050 #ifdef TARGET_HAS_PRECISE_SMC 2051 TranslationBlock *current_tb = NULL; 2052 CPUState *cpu = current_cpu; 2053 CPUArchState *env = NULL; 2054 int current_tb_modified = 0; 2055 target_ulong current_pc = 0; 2056 target_ulong current_cs_base = 0; 2057 uint32_t current_flags = 0; 2058 #endif 2059 2060 assert_memory_lock(); 2061 2062 addr &= TARGET_PAGE_MASK; 2063 p = page_find(addr >> TARGET_PAGE_BITS); 2064 if (!p) { 2065 return false; 2066 } 2067 2068 #ifdef TARGET_HAS_PRECISE_SMC 2069 if (p->first_tb && pc != 0) { 2070 current_tb = tcg_tb_lookup(pc); 2071 } 2072 if (cpu != NULL) { 2073 env = cpu->env_ptr; 2074 } 2075 #endif 2076 assert_page_locked(p); 2077 PAGE_FOR_EACH_TB(p, tb, n) { 2078 #ifdef TARGET_HAS_PRECISE_SMC 2079 if (current_tb == tb && 2080 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2081 /* If we are modifying the current TB, we must stop 2082 its execution. We could be more precise by checking 2083 that the modification is after the current PC, but it 2084 would require a specialized function to partially 2085 restore the CPU state */ 2086 2087 current_tb_modified = 1; 2088 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2089 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2090 ¤t_flags); 2091 } 2092 #endif /* TARGET_HAS_PRECISE_SMC */ 2093 tb_phys_invalidate(tb, addr); 2094 } 2095 p->first_tb = (uintptr_t)NULL; 2096 #ifdef TARGET_HAS_PRECISE_SMC 2097 if (current_tb_modified) { 2098 /* Force execution of one insn next time. */ 2099 cpu->cflags_next_tb = 1 | curr_cflags(); 2100 return true; 2101 } 2102 #endif 2103 2104 return false; 2105 } 2106 #endif 2107 2108 /* user-mode: call with mmap_lock held */ 2109 void tb_check_watchpoint(CPUState *cpu) 2110 { 2111 TranslationBlock *tb; 2112 2113 assert_memory_lock(); 2114 2115 tb = tcg_tb_lookup(cpu->mem_io_pc); 2116 if (tb) { 2117 /* We can use retranslation to find the PC. */ 2118 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true); 2119 tb_phys_invalidate(tb, -1); 2120 } else { 2121 /* The exception probably happened in a helper. The CPU state should 2122 have been saved before calling it. Fetch the PC from there. */ 2123 CPUArchState *env = cpu->env_ptr; 2124 target_ulong pc, cs_base; 2125 tb_page_addr_t addr; 2126 uint32_t flags; 2127 2128 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2129 addr = get_page_addr_code(env, pc); 2130 if (addr != -1) { 2131 tb_invalidate_phys_range(addr, addr + 1); 2132 } 2133 } 2134 } 2135 2136 #ifndef CONFIG_USER_ONLY 2137 /* in deterministic execution mode, instructions doing device I/Os 2138 * must be at the end of the TB. 2139 * 2140 * Called by softmmu_template.h, with iothread mutex not held. 2141 */ 2142 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2143 { 2144 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2145 CPUArchState *env = cpu->env_ptr; 2146 #endif 2147 TranslationBlock *tb; 2148 uint32_t n; 2149 2150 tb = tcg_tb_lookup(retaddr); 2151 if (!tb) { 2152 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2153 (void *)retaddr); 2154 } 2155 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2156 2157 /* On MIPS and SH, delay slot instructions can only be restarted if 2158 they were already the first instruction in the TB. If this is not 2159 the first instruction in a TB then re-execute the preceding 2160 branch. */ 2161 n = 1; 2162 #if defined(TARGET_MIPS) 2163 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2164 && env->active_tc.PC != tb->pc) { 2165 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2166 cpu->icount_decr.u16.low++; 2167 env->hflags &= ~MIPS_HFLAG_BMASK; 2168 n = 2; 2169 } 2170 #elif defined(TARGET_SH4) 2171 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2172 && env->pc != tb->pc) { 2173 env->pc -= 2; 2174 cpu->icount_decr.u16.low++; 2175 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2176 n = 2; 2177 } 2178 #endif 2179 2180 /* Generate a new TB executing the I/O insn. */ 2181 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2182 2183 if (tb_cflags(tb) & CF_NOCACHE) { 2184 if (tb->orig_tb) { 2185 /* Invalidate original TB if this TB was generated in 2186 * cpu_exec_nocache() */ 2187 tb_phys_invalidate(tb->orig_tb, -1); 2188 } 2189 tcg_tb_remove(tb); 2190 } 2191 2192 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2193 * the first in the TB) then we end up generating a whole new TB and 2194 * repeating the fault, which is horribly inefficient. 2195 * Better would be to execute just this insn uncached, or generate a 2196 * second new TB. 2197 */ 2198 cpu_loop_exit_noexc(cpu); 2199 } 2200 2201 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2202 { 2203 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2204 2205 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2206 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2207 } 2208 } 2209 2210 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2211 { 2212 /* Discard jump cache entries for any tb which might potentially 2213 overlap the flushed page. */ 2214 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2215 tb_jmp_cache_clear_page(cpu, addr); 2216 } 2217 2218 static void print_qht_statistics(struct qht_stats hst) 2219 { 2220 uint32_t hgram_opts; 2221 size_t hgram_bins; 2222 char *hgram; 2223 2224 if (!hst.head_buckets) { 2225 return; 2226 } 2227 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2228 hst.used_head_buckets, hst.head_buckets, 2229 (double)hst.used_head_buckets / hst.head_buckets * 100); 2230 2231 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2232 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2233 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2234 hgram_opts |= QDIST_PR_NODECIMAL; 2235 } 2236 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2237 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2238 qdist_avg(&hst.occupancy) * 100, hgram); 2239 g_free(hgram); 2240 2241 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2242 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2243 if (hgram_bins > 10) { 2244 hgram_bins = 10; 2245 } else { 2246 hgram_bins = 0; 2247 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2248 } 2249 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2250 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2251 qdist_avg(&hst.chain), hgram); 2252 g_free(hgram); 2253 } 2254 2255 struct tb_tree_stats { 2256 size_t nb_tbs; 2257 size_t host_size; 2258 size_t target_size; 2259 size_t max_target_size; 2260 size_t direct_jmp_count; 2261 size_t direct_jmp2_count; 2262 size_t cross_page; 2263 }; 2264 2265 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2266 { 2267 const TranslationBlock *tb = value; 2268 struct tb_tree_stats *tst = data; 2269 2270 tst->nb_tbs++; 2271 tst->host_size += tb->tc.size; 2272 tst->target_size += tb->size; 2273 if (tb->size > tst->max_target_size) { 2274 tst->max_target_size = tb->size; 2275 } 2276 if (tb->page_addr[1] != -1) { 2277 tst->cross_page++; 2278 } 2279 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2280 tst->direct_jmp_count++; 2281 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2282 tst->direct_jmp2_count++; 2283 } 2284 } 2285 return false; 2286 } 2287 2288 void dump_exec_info(void) 2289 { 2290 struct tb_tree_stats tst = {}; 2291 struct qht_stats hst; 2292 size_t nb_tbs, flush_full, flush_part, flush_elide; 2293 2294 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2295 nb_tbs = tst.nb_tbs; 2296 /* XXX: avoid using doubles ? */ 2297 qemu_printf("Translation buffer state:\n"); 2298 /* 2299 * Report total code size including the padding and TB structs; 2300 * otherwise users might think "-tb-size" is not honoured. 2301 * For avg host size we use the precise numbers from tb_tree_stats though. 2302 */ 2303 qemu_printf("gen code size %zu/%zu\n", 2304 tcg_code_size(), tcg_code_capacity()); 2305 qemu_printf("TB count %zu\n", nb_tbs); 2306 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2307 nb_tbs ? tst.target_size / nb_tbs : 0, 2308 tst.max_target_size); 2309 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2310 nb_tbs ? tst.host_size / nb_tbs : 0, 2311 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2312 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2313 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2314 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2315 tst.direct_jmp_count, 2316 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2317 tst.direct_jmp2_count, 2318 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2319 2320 qht_statistics_init(&tb_ctx.htable, &hst); 2321 print_qht_statistics(hst); 2322 qht_statistics_destroy(&hst); 2323 2324 qemu_printf("\nStatistics:\n"); 2325 qemu_printf("TB flush count %u\n", 2326 atomic_read(&tb_ctx.tb_flush_count)); 2327 qemu_printf("TB invalidate count %zu\n", 2328 tcg_tb_phys_invalidate_count()); 2329 2330 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2331 qemu_printf("TLB full flushes %zu\n", flush_full); 2332 qemu_printf("TLB partial flushes %zu\n", flush_part); 2333 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2334 tcg_dump_info(); 2335 } 2336 2337 void dump_opcount_info(void) 2338 { 2339 tcg_dump_op_count(); 2340 } 2341 2342 #else /* CONFIG_USER_ONLY */ 2343 2344 void cpu_interrupt(CPUState *cpu, int mask) 2345 { 2346 g_assert(qemu_mutex_iothread_locked()); 2347 cpu->interrupt_request |= mask; 2348 atomic_set(&cpu->icount_decr.u16.high, -1); 2349 } 2350 2351 /* 2352 * Walks guest process memory "regions" one by one 2353 * and calls callback function 'fn' for each region. 2354 */ 2355 struct walk_memory_regions_data { 2356 walk_memory_regions_fn fn; 2357 void *priv; 2358 target_ulong start; 2359 int prot; 2360 }; 2361 2362 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2363 target_ulong end, int new_prot) 2364 { 2365 if (data->start != -1u) { 2366 int rc = data->fn(data->priv, data->start, end, data->prot); 2367 if (rc != 0) { 2368 return rc; 2369 } 2370 } 2371 2372 data->start = (new_prot ? end : -1u); 2373 data->prot = new_prot; 2374 2375 return 0; 2376 } 2377 2378 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2379 target_ulong base, int level, void **lp) 2380 { 2381 target_ulong pa; 2382 int i, rc; 2383 2384 if (*lp == NULL) { 2385 return walk_memory_regions_end(data, base, 0); 2386 } 2387 2388 if (level == 0) { 2389 PageDesc *pd = *lp; 2390 2391 for (i = 0; i < V_L2_SIZE; ++i) { 2392 int prot = pd[i].flags; 2393 2394 pa = base | (i << TARGET_PAGE_BITS); 2395 if (prot != data->prot) { 2396 rc = walk_memory_regions_end(data, pa, prot); 2397 if (rc != 0) { 2398 return rc; 2399 } 2400 } 2401 } 2402 } else { 2403 void **pp = *lp; 2404 2405 for (i = 0; i < V_L2_SIZE; ++i) { 2406 pa = base | ((target_ulong)i << 2407 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2408 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2409 if (rc != 0) { 2410 return rc; 2411 } 2412 } 2413 } 2414 2415 return 0; 2416 } 2417 2418 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2419 { 2420 struct walk_memory_regions_data data; 2421 uintptr_t i, l1_sz = v_l1_size; 2422 2423 data.fn = fn; 2424 data.priv = priv; 2425 data.start = -1u; 2426 data.prot = 0; 2427 2428 for (i = 0; i < l1_sz; i++) { 2429 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2430 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2431 if (rc != 0) { 2432 return rc; 2433 } 2434 } 2435 2436 return walk_memory_regions_end(&data, 0, 0); 2437 } 2438 2439 static int dump_region(void *priv, target_ulong start, 2440 target_ulong end, unsigned long prot) 2441 { 2442 FILE *f = (FILE *)priv; 2443 2444 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2445 " "TARGET_FMT_lx" %c%c%c\n", 2446 start, end, end - start, 2447 ((prot & PAGE_READ) ? 'r' : '-'), 2448 ((prot & PAGE_WRITE) ? 'w' : '-'), 2449 ((prot & PAGE_EXEC) ? 'x' : '-')); 2450 2451 return 0; 2452 } 2453 2454 /* dump memory mappings */ 2455 void page_dump(FILE *f) 2456 { 2457 const int length = sizeof(target_ulong) * 2; 2458 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2459 length, "start", length, "end", length, "size", "prot"); 2460 walk_memory_regions(f, dump_region); 2461 } 2462 2463 int page_get_flags(target_ulong address) 2464 { 2465 PageDesc *p; 2466 2467 p = page_find(address >> TARGET_PAGE_BITS); 2468 if (!p) { 2469 return 0; 2470 } 2471 return p->flags; 2472 } 2473 2474 /* Modify the flags of a page and invalidate the code if necessary. 2475 The flag PAGE_WRITE_ORG is positioned automatically depending 2476 on PAGE_WRITE. The mmap_lock should already be held. */ 2477 void page_set_flags(target_ulong start, target_ulong end, int flags) 2478 { 2479 target_ulong addr, len; 2480 2481 /* This function should never be called with addresses outside the 2482 guest address space. If this assert fires, it probably indicates 2483 a missing call to h2g_valid. */ 2484 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2485 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2486 #endif 2487 assert(start < end); 2488 assert_memory_lock(); 2489 2490 start = start & TARGET_PAGE_MASK; 2491 end = TARGET_PAGE_ALIGN(end); 2492 2493 if (flags & PAGE_WRITE) { 2494 flags |= PAGE_WRITE_ORG; 2495 } 2496 2497 for (addr = start, len = end - start; 2498 len != 0; 2499 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2500 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2501 2502 /* If the write protection bit is set, then we invalidate 2503 the code inside. */ 2504 if (!(p->flags & PAGE_WRITE) && 2505 (flags & PAGE_WRITE) && 2506 p->first_tb) { 2507 tb_invalidate_phys_page(addr, 0); 2508 } 2509 p->flags = flags; 2510 } 2511 } 2512 2513 int page_check_range(target_ulong start, target_ulong len, int flags) 2514 { 2515 PageDesc *p; 2516 target_ulong end; 2517 target_ulong addr; 2518 2519 /* This function should never be called with addresses outside the 2520 guest address space. If this assert fires, it probably indicates 2521 a missing call to h2g_valid. */ 2522 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2523 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2524 #endif 2525 2526 if (len == 0) { 2527 return 0; 2528 } 2529 if (start + len - 1 < start) { 2530 /* We've wrapped around. */ 2531 return -1; 2532 } 2533 2534 /* must do before we loose bits in the next step */ 2535 end = TARGET_PAGE_ALIGN(start + len); 2536 start = start & TARGET_PAGE_MASK; 2537 2538 for (addr = start, len = end - start; 2539 len != 0; 2540 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2541 p = page_find(addr >> TARGET_PAGE_BITS); 2542 if (!p) { 2543 return -1; 2544 } 2545 if (!(p->flags & PAGE_VALID)) { 2546 return -1; 2547 } 2548 2549 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2550 return -1; 2551 } 2552 if (flags & PAGE_WRITE) { 2553 if (!(p->flags & PAGE_WRITE_ORG)) { 2554 return -1; 2555 } 2556 /* unprotect the page if it was put read-only because it 2557 contains translated code */ 2558 if (!(p->flags & PAGE_WRITE)) { 2559 if (!page_unprotect(addr, 0)) { 2560 return -1; 2561 } 2562 } 2563 } 2564 } 2565 return 0; 2566 } 2567 2568 /* called from signal handler: invalidate the code and unprotect the 2569 * page. Return 0 if the fault was not handled, 1 if it was handled, 2570 * and 2 if it was handled but the caller must cause the TB to be 2571 * immediately exited. (We can only return 2 if the 'pc' argument is 2572 * non-zero.) 2573 */ 2574 int page_unprotect(target_ulong address, uintptr_t pc) 2575 { 2576 unsigned int prot; 2577 bool current_tb_invalidated; 2578 PageDesc *p; 2579 target_ulong host_start, host_end, addr; 2580 2581 /* Technically this isn't safe inside a signal handler. However we 2582 know this only ever happens in a synchronous SEGV handler, so in 2583 practice it seems to be ok. */ 2584 mmap_lock(); 2585 2586 p = page_find(address >> TARGET_PAGE_BITS); 2587 if (!p) { 2588 mmap_unlock(); 2589 return 0; 2590 } 2591 2592 /* if the page was really writable, then we change its 2593 protection back to writable */ 2594 if (p->flags & PAGE_WRITE_ORG) { 2595 current_tb_invalidated = false; 2596 if (p->flags & PAGE_WRITE) { 2597 /* If the page is actually marked WRITE then assume this is because 2598 * this thread raced with another one which got here first and 2599 * set the page to PAGE_WRITE and did the TB invalidate for us. 2600 */ 2601 #ifdef TARGET_HAS_PRECISE_SMC 2602 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2603 if (current_tb) { 2604 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2605 } 2606 #endif 2607 } else { 2608 host_start = address & qemu_host_page_mask; 2609 host_end = host_start + qemu_host_page_size; 2610 2611 prot = 0; 2612 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2613 p = page_find(addr >> TARGET_PAGE_BITS); 2614 p->flags |= PAGE_WRITE; 2615 prot |= p->flags; 2616 2617 /* and since the content will be modified, we must invalidate 2618 the corresponding translated code. */ 2619 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2620 #ifdef CONFIG_USER_ONLY 2621 if (DEBUG_TB_CHECK_GATE) { 2622 tb_invalidate_check(addr); 2623 } 2624 #endif 2625 } 2626 mprotect((void *)g2h(host_start), qemu_host_page_size, 2627 prot & PAGE_BITS); 2628 } 2629 mmap_unlock(); 2630 /* If current TB was invalidated return to main loop */ 2631 return current_tb_invalidated ? 2 : 1; 2632 } 2633 mmap_unlock(); 2634 return 0; 2635 } 2636 #endif /* CONFIG_USER_ONLY */ 2637 2638 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2639 void tcg_flush_softmmu_tlb(CPUState *cs) 2640 { 2641 #ifdef CONFIG_SOFTMMU 2642 tlb_flush(cs); 2643 #endif 2644 } 2645