1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 23 #define NO_CPU_IO_DEFS 24 #include "cpu.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg.h" 29 #if defined(CONFIG_USER_ONLY) 30 #include "qemu.h" 31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 32 #include <sys/param.h> 33 #if __FreeBSD_version >= 700104 34 #define HAVE_KINFO_GETVMMAP 35 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 36 #include <sys/proc.h> 37 #include <machine/profile.h> 38 #define _KERNEL 39 #include <sys/user.h> 40 #undef _KERNEL 41 #undef sigqueue 42 #include <libutil.h> 43 #endif 44 #endif 45 #else 46 #include "exec/ram_addr.h" 47 #endif 48 49 #include "exec/cputlb.h" 50 #include "exec/tb-hash.h" 51 #include "translate-all.h" 52 #include "qemu/bitmap.h" 53 #include "qemu/error-report.h" 54 #include "qemu/qemu-print.h" 55 #include "qemu/timer.h" 56 #include "qemu/main-loop.h" 57 #include "exec/log.h" 58 #include "sysemu/cpus.h" 59 #include "sysemu/tcg.h" 60 61 /* #define DEBUG_TB_INVALIDATE */ 62 /* #define DEBUG_TB_FLUSH */ 63 /* make various TB consistency checks */ 64 /* #define DEBUG_TB_CHECK */ 65 66 #ifdef DEBUG_TB_INVALIDATE 67 #define DEBUG_TB_INVALIDATE_GATE 1 68 #else 69 #define DEBUG_TB_INVALIDATE_GATE 0 70 #endif 71 72 #ifdef DEBUG_TB_FLUSH 73 #define DEBUG_TB_FLUSH_GATE 1 74 #else 75 #define DEBUG_TB_FLUSH_GATE 0 76 #endif 77 78 #if !defined(CONFIG_USER_ONLY) 79 /* TB consistency checks only implemented for usermode emulation. */ 80 #undef DEBUG_TB_CHECK 81 #endif 82 83 #ifdef DEBUG_TB_CHECK 84 #define DEBUG_TB_CHECK_GATE 1 85 #else 86 #define DEBUG_TB_CHECK_GATE 0 87 #endif 88 89 /* Access to the various translations structures need to be serialised via locks 90 * for consistency. 91 * In user-mode emulation access to the memory related structures are protected 92 * with mmap_lock. 93 * In !user-mode we use per-page locks. 94 */ 95 #ifdef CONFIG_SOFTMMU 96 #define assert_memory_lock() 97 #else 98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 99 #endif 100 101 #define SMC_BITMAP_USE_THRESHOLD 10 102 103 typedef struct PageDesc { 104 /* list of TBs intersecting this ram page */ 105 uintptr_t first_tb; 106 #ifdef CONFIG_SOFTMMU 107 /* in order to optimize self modifying code, we count the number 108 of lookups we do to a given page to use a bitmap */ 109 unsigned long *code_bitmap; 110 unsigned int code_write_count; 111 #else 112 unsigned long flags; 113 #endif 114 #ifndef CONFIG_USER_ONLY 115 QemuSpin lock; 116 #endif 117 } PageDesc; 118 119 /** 120 * struct page_entry - page descriptor entry 121 * @pd: pointer to the &struct PageDesc of the page this entry represents 122 * @index: page index of the page 123 * @locked: whether the page is locked 124 * 125 * This struct helps us keep track of the locked state of a page, without 126 * bloating &struct PageDesc. 127 * 128 * A page lock protects accesses to all fields of &struct PageDesc. 129 * 130 * See also: &struct page_collection. 131 */ 132 struct page_entry { 133 PageDesc *pd; 134 tb_page_addr_t index; 135 bool locked; 136 }; 137 138 /** 139 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 140 * @tree: Binary search tree (BST) of the pages, with key == page index 141 * @max: Pointer to the page in @tree with the highest page index 142 * 143 * To avoid deadlock we lock pages in ascending order of page index. 144 * When operating on a set of pages, we need to keep track of them so that 145 * we can lock them in order and also unlock them later. For this we collect 146 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 147 * @tree implementation we use does not provide an O(1) operation to obtain the 148 * highest-ranked element, we use @max to keep track of the inserted page 149 * with the highest index. This is valuable because if a page is not in 150 * the tree and its index is higher than @max's, then we can lock it 151 * without breaking the locking order rule. 152 * 153 * Note on naming: 'struct page_set' would be shorter, but we already have a few 154 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 155 * 156 * See also: page_collection_lock(). 157 */ 158 struct page_collection { 159 GTree *tree; 160 struct page_entry *max; 161 }; 162 163 /* list iterators for lists of tagged pointers in TranslationBlock */ 164 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 165 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 166 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 167 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 168 169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 170 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 171 172 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 173 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 174 175 /* In system mode we want L1_MAP to be based on ram offsets, 176 while in user mode we want it to be based on virtual addresses. */ 177 #if !defined(CONFIG_USER_ONLY) 178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 179 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 180 #else 181 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 182 #endif 183 #else 184 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 185 #endif 186 187 /* Size of the L2 (and L3, etc) page tables. */ 188 #define V_L2_BITS 10 189 #define V_L2_SIZE (1 << V_L2_BITS) 190 191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 193 sizeof_field(TranslationBlock, trace_vcpu_dstate) 194 * BITS_PER_BYTE); 195 196 /* 197 * L1 Mapping properties 198 */ 199 static int v_l1_size; 200 static int v_l1_shift; 201 static int v_l2_levels; 202 203 /* The bottom level has pointers to PageDesc, and is indexed by 204 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 205 */ 206 #define V_L1_MIN_BITS 4 207 #define V_L1_MAX_BITS (V_L2_BITS + 3) 208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 209 210 static void *l1_map[V_L1_MAX_SIZE]; 211 212 /* code generation context */ 213 TCGContext tcg_init_ctx; 214 __thread TCGContext *tcg_ctx; 215 TBContext tb_ctx; 216 bool parallel_cpus; 217 218 static void page_table_config_init(void) 219 { 220 uint32_t v_l1_bits; 221 222 assert(TARGET_PAGE_BITS); 223 /* The bits remaining after N lower levels of page tables. */ 224 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 225 if (v_l1_bits < V_L1_MIN_BITS) { 226 v_l1_bits += V_L2_BITS; 227 } 228 229 v_l1_size = 1 << v_l1_bits; 230 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 231 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 232 233 assert(v_l1_bits <= V_L1_MAX_BITS); 234 assert(v_l1_shift % V_L2_BITS == 0); 235 assert(v_l2_levels >= 0); 236 } 237 238 void cpu_gen_init(void) 239 { 240 tcg_context_init(&tcg_init_ctx); 241 } 242 243 /* Encode VAL as a signed leb128 sequence at P. 244 Return P incremented past the encoded value. */ 245 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 246 { 247 int more, byte; 248 249 do { 250 byte = val & 0x7f; 251 val >>= 7; 252 more = !((val == 0 && (byte & 0x40) == 0) 253 || (val == -1 && (byte & 0x40) != 0)); 254 if (more) { 255 byte |= 0x80; 256 } 257 *p++ = byte; 258 } while (more); 259 260 return p; 261 } 262 263 /* Decode a signed leb128 sequence at *PP; increment *PP past the 264 decoded value. Return the decoded value. */ 265 static target_long decode_sleb128(uint8_t **pp) 266 { 267 uint8_t *p = *pp; 268 target_long val = 0; 269 int byte, shift = 0; 270 271 do { 272 byte = *p++; 273 val |= (target_ulong)(byte & 0x7f) << shift; 274 shift += 7; 275 } while (byte & 0x80); 276 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 277 val |= -(target_ulong)1 << shift; 278 } 279 280 *pp = p; 281 return val; 282 } 283 284 /* Encode the data collected about the instructions while compiling TB. 285 Place the data at BLOCK, and return the number of bytes consumed. 286 287 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 288 which come from the target's insn_start data, followed by a uintptr_t 289 which comes from the host pc of the end of the code implementing the insn. 290 291 Each line of the table is encoded as sleb128 deltas from the previous 292 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 293 That is, the first column is seeded with the guest pc, the last column 294 with the host pc, and the middle columns with zeros. */ 295 296 static int encode_search(TranslationBlock *tb, uint8_t *block) 297 { 298 uint8_t *highwater = tcg_ctx->code_gen_highwater; 299 uint8_t *p = block; 300 int i, j, n; 301 302 for (i = 0, n = tb->icount; i < n; ++i) { 303 target_ulong prev; 304 305 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 306 if (i == 0) { 307 prev = (j == 0 ? tb->pc : 0); 308 } else { 309 prev = tcg_ctx->gen_insn_data[i - 1][j]; 310 } 311 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 312 } 313 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 314 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 315 316 /* Test for (pending) buffer overflow. The assumption is that any 317 one row beginning below the high water mark cannot overrun 318 the buffer completely. Thus we can test for overflow after 319 encoding a row without having to check during encoding. */ 320 if (unlikely(p > highwater)) { 321 return -1; 322 } 323 } 324 325 return p - block; 326 } 327 328 /* The cpu state corresponding to 'searched_pc' is restored. 329 * When reset_icount is true, current TB will be interrupted and 330 * icount should be recalculated. 331 */ 332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 333 uintptr_t searched_pc, bool reset_icount) 334 { 335 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 336 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 337 CPUArchState *env = cpu->env_ptr; 338 uint8_t *p = tb->tc.ptr + tb->tc.size; 339 int i, j, num_insns = tb->icount; 340 #ifdef CONFIG_PROFILER 341 TCGProfile *prof = &tcg_ctx->prof; 342 int64_t ti = profile_getclock(); 343 #endif 344 345 searched_pc -= GETPC_ADJ; 346 347 if (searched_pc < host_pc) { 348 return -1; 349 } 350 351 /* Reconstruct the stored insn data while looking for the point at 352 which the end of the insn exceeds the searched_pc. */ 353 for (i = 0; i < num_insns; ++i) { 354 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 355 data[j] += decode_sleb128(&p); 356 } 357 host_pc += decode_sleb128(&p); 358 if (host_pc > searched_pc) { 359 goto found; 360 } 361 } 362 return -1; 363 364 found: 365 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 366 assert(use_icount); 367 /* Reset the cycle counter to the start of the block 368 and shift if to the number of actually executed instructions */ 369 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 370 } 371 restore_state_to_opc(env, tb, data); 372 373 #ifdef CONFIG_PROFILER 374 atomic_set(&prof->restore_time, 375 prof->restore_time + profile_getclock() - ti); 376 atomic_set(&prof->restore_count, prof->restore_count + 1); 377 #endif 378 return 0; 379 } 380 381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 382 { 383 TranslationBlock *tb; 384 bool r = false; 385 uintptr_t check_offset; 386 387 /* The host_pc has to be in the region of current code buffer. If 388 * it is not we will not be able to resolve it here. The two cases 389 * where host_pc will not be correct are: 390 * 391 * - fault during translation (instruction fetch) 392 * - fault from helper (not using GETPC() macro) 393 * 394 * Either way we need return early as we can't resolve it here. 395 * 396 * We are using unsigned arithmetic so if host_pc < 397 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 398 * above the code_gen_buffer_size 399 */ 400 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 401 402 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 403 tb = tcg_tb_lookup(host_pc); 404 if (tb) { 405 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 406 if (tb_cflags(tb) & CF_NOCACHE) { 407 /* one-shot translation, invalidate it immediately */ 408 tb_phys_invalidate(tb, -1); 409 tcg_tb_remove(tb); 410 } 411 r = true; 412 } 413 } 414 415 return r; 416 } 417 418 static void page_init(void) 419 { 420 page_size_init(); 421 page_table_config_init(); 422 423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 424 { 425 #ifdef HAVE_KINFO_GETVMMAP 426 struct kinfo_vmentry *freep; 427 int i, cnt; 428 429 freep = kinfo_getvmmap(getpid(), &cnt); 430 if (freep) { 431 mmap_lock(); 432 for (i = 0; i < cnt; i++) { 433 unsigned long startaddr, endaddr; 434 435 startaddr = freep[i].kve_start; 436 endaddr = freep[i].kve_end; 437 if (h2g_valid(startaddr)) { 438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 439 440 if (h2g_valid(endaddr)) { 441 endaddr = h2g(endaddr); 442 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 443 } else { 444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 445 endaddr = ~0ul; 446 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 447 #endif 448 } 449 } 450 } 451 free(freep); 452 mmap_unlock(); 453 } 454 #else 455 FILE *f; 456 457 last_brk = (unsigned long)sbrk(0); 458 459 f = fopen("/compat/linux/proc/self/maps", "r"); 460 if (f) { 461 mmap_lock(); 462 463 do { 464 unsigned long startaddr, endaddr; 465 int n; 466 467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 468 469 if (n == 2 && h2g_valid(startaddr)) { 470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 471 472 if (h2g_valid(endaddr)) { 473 endaddr = h2g(endaddr); 474 } else { 475 endaddr = ~0ul; 476 } 477 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 478 } 479 } while (!feof(f)); 480 481 fclose(f); 482 mmap_unlock(); 483 } 484 #endif 485 } 486 #endif 487 } 488 489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 490 { 491 PageDesc *pd; 492 void **lp; 493 int i; 494 495 /* Level 1. Always allocated. */ 496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 497 498 /* Level 2..N-1. */ 499 for (i = v_l2_levels; i > 0; i--) { 500 void **p = atomic_rcu_read(lp); 501 502 if (p == NULL) { 503 void *existing; 504 505 if (!alloc) { 506 return NULL; 507 } 508 p = g_new0(void *, V_L2_SIZE); 509 existing = atomic_cmpxchg(lp, NULL, p); 510 if (unlikely(existing)) { 511 g_free(p); 512 p = existing; 513 } 514 } 515 516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 517 } 518 519 pd = atomic_rcu_read(lp); 520 if (pd == NULL) { 521 void *existing; 522 523 if (!alloc) { 524 return NULL; 525 } 526 pd = g_new0(PageDesc, V_L2_SIZE); 527 #ifndef CONFIG_USER_ONLY 528 { 529 int i; 530 531 for (i = 0; i < V_L2_SIZE; i++) { 532 qemu_spin_init(&pd[i].lock); 533 } 534 } 535 #endif 536 existing = atomic_cmpxchg(lp, NULL, pd); 537 if (unlikely(existing)) { 538 g_free(pd); 539 pd = existing; 540 } 541 } 542 543 return pd + (index & (V_L2_SIZE - 1)); 544 } 545 546 static inline PageDesc *page_find(tb_page_addr_t index) 547 { 548 return page_find_alloc(index, 0); 549 } 550 551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 552 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 553 554 /* In user-mode page locks aren't used; mmap_lock is enough */ 555 #ifdef CONFIG_USER_ONLY 556 557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 558 559 static inline void page_lock(PageDesc *pd) 560 { } 561 562 static inline void page_unlock(PageDesc *pd) 563 { } 564 565 static inline void page_lock_tb(const TranslationBlock *tb) 566 { } 567 568 static inline void page_unlock_tb(const TranslationBlock *tb) 569 { } 570 571 struct page_collection * 572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 573 { 574 return NULL; 575 } 576 577 void page_collection_unlock(struct page_collection *set) 578 { } 579 #else /* !CONFIG_USER_ONLY */ 580 581 #ifdef CONFIG_DEBUG_TCG 582 583 static __thread GHashTable *ht_pages_locked_debug; 584 585 static void ht_pages_locked_debug_init(void) 586 { 587 if (ht_pages_locked_debug) { 588 return; 589 } 590 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 591 } 592 593 static bool page_is_locked(const PageDesc *pd) 594 { 595 PageDesc *found; 596 597 ht_pages_locked_debug_init(); 598 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 599 return !!found; 600 } 601 602 static void page_lock__debug(PageDesc *pd) 603 { 604 ht_pages_locked_debug_init(); 605 g_assert(!page_is_locked(pd)); 606 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 607 } 608 609 static void page_unlock__debug(const PageDesc *pd) 610 { 611 bool removed; 612 613 ht_pages_locked_debug_init(); 614 g_assert(page_is_locked(pd)); 615 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 616 g_assert(removed); 617 } 618 619 static void 620 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 621 { 622 if (unlikely(!page_is_locked(pd))) { 623 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 624 pd, file, line); 625 abort(); 626 } 627 } 628 629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 630 631 void assert_no_pages_locked(void) 632 { 633 ht_pages_locked_debug_init(); 634 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 635 } 636 637 #else /* !CONFIG_DEBUG_TCG */ 638 639 #define assert_page_locked(pd) 640 641 static inline void page_lock__debug(const PageDesc *pd) 642 { 643 } 644 645 static inline void page_unlock__debug(const PageDesc *pd) 646 { 647 } 648 649 #endif /* CONFIG_DEBUG_TCG */ 650 651 static inline void page_lock(PageDesc *pd) 652 { 653 page_lock__debug(pd); 654 qemu_spin_lock(&pd->lock); 655 } 656 657 static inline void page_unlock(PageDesc *pd) 658 { 659 qemu_spin_unlock(&pd->lock); 660 page_unlock__debug(pd); 661 } 662 663 /* lock the page(s) of a TB in the correct acquisition order */ 664 static inline void page_lock_tb(const TranslationBlock *tb) 665 { 666 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 667 } 668 669 static inline void page_unlock_tb(const TranslationBlock *tb) 670 { 671 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 672 673 page_unlock(p1); 674 if (unlikely(tb->page_addr[1] != -1)) { 675 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 676 677 if (p2 != p1) { 678 page_unlock(p2); 679 } 680 } 681 } 682 683 static inline struct page_entry * 684 page_entry_new(PageDesc *pd, tb_page_addr_t index) 685 { 686 struct page_entry *pe = g_malloc(sizeof(*pe)); 687 688 pe->index = index; 689 pe->pd = pd; 690 pe->locked = false; 691 return pe; 692 } 693 694 static void page_entry_destroy(gpointer p) 695 { 696 struct page_entry *pe = p; 697 698 g_assert(pe->locked); 699 page_unlock(pe->pd); 700 g_free(pe); 701 } 702 703 /* returns false on success */ 704 static bool page_entry_trylock(struct page_entry *pe) 705 { 706 bool busy; 707 708 busy = qemu_spin_trylock(&pe->pd->lock); 709 if (!busy) { 710 g_assert(!pe->locked); 711 pe->locked = true; 712 page_lock__debug(pe->pd); 713 } 714 return busy; 715 } 716 717 static void do_page_entry_lock(struct page_entry *pe) 718 { 719 page_lock(pe->pd); 720 g_assert(!pe->locked); 721 pe->locked = true; 722 } 723 724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 725 { 726 struct page_entry *pe = value; 727 728 do_page_entry_lock(pe); 729 return FALSE; 730 } 731 732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 733 { 734 struct page_entry *pe = value; 735 736 if (pe->locked) { 737 pe->locked = false; 738 page_unlock(pe->pd); 739 } 740 return FALSE; 741 } 742 743 /* 744 * Trylock a page, and if successful, add the page to a collection. 745 * Returns true ("busy") if the page could not be locked; false otherwise. 746 */ 747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 748 { 749 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 750 struct page_entry *pe; 751 PageDesc *pd; 752 753 pe = g_tree_lookup(set->tree, &index); 754 if (pe) { 755 return false; 756 } 757 758 pd = page_find(index); 759 if (pd == NULL) { 760 return false; 761 } 762 763 pe = page_entry_new(pd, index); 764 g_tree_insert(set->tree, &pe->index, pe); 765 766 /* 767 * If this is either (1) the first insertion or (2) a page whose index 768 * is higher than any other so far, just lock the page and move on. 769 */ 770 if (set->max == NULL || pe->index > set->max->index) { 771 set->max = pe; 772 do_page_entry_lock(pe); 773 return false; 774 } 775 /* 776 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 777 * locks in order. 778 */ 779 return page_entry_trylock(pe); 780 } 781 782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 783 { 784 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 785 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 786 787 if (a == b) { 788 return 0; 789 } else if (a < b) { 790 return -1; 791 } 792 return 1; 793 } 794 795 /* 796 * Lock a range of pages ([@start,@end[) as well as the pages of all 797 * intersecting TBs. 798 * Locking order: acquire locks in ascending order of page index. 799 */ 800 struct page_collection * 801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 802 { 803 struct page_collection *set = g_malloc(sizeof(*set)); 804 tb_page_addr_t index; 805 PageDesc *pd; 806 807 start >>= TARGET_PAGE_BITS; 808 end >>= TARGET_PAGE_BITS; 809 g_assert(start <= end); 810 811 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 812 page_entry_destroy); 813 set->max = NULL; 814 assert_no_pages_locked(); 815 816 retry: 817 g_tree_foreach(set->tree, page_entry_lock, NULL); 818 819 for (index = start; index <= end; index++) { 820 TranslationBlock *tb; 821 int n; 822 823 pd = page_find(index); 824 if (pd == NULL) { 825 continue; 826 } 827 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 828 g_tree_foreach(set->tree, page_entry_unlock, NULL); 829 goto retry; 830 } 831 assert_page_locked(pd); 832 PAGE_FOR_EACH_TB(pd, tb, n) { 833 if (page_trylock_add(set, tb->page_addr[0]) || 834 (tb->page_addr[1] != -1 && 835 page_trylock_add(set, tb->page_addr[1]))) { 836 /* drop all locks, and reacquire in order */ 837 g_tree_foreach(set->tree, page_entry_unlock, NULL); 838 goto retry; 839 } 840 } 841 } 842 return set; 843 } 844 845 void page_collection_unlock(struct page_collection *set) 846 { 847 /* entries are unlocked and freed via page_entry_destroy */ 848 g_tree_destroy(set->tree); 849 g_free(set); 850 } 851 852 #endif /* !CONFIG_USER_ONLY */ 853 854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 855 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 856 { 857 PageDesc *p1, *p2; 858 tb_page_addr_t page1; 859 tb_page_addr_t page2; 860 861 assert_memory_lock(); 862 g_assert(phys1 != -1); 863 864 page1 = phys1 >> TARGET_PAGE_BITS; 865 page2 = phys2 >> TARGET_PAGE_BITS; 866 867 p1 = page_find_alloc(page1, alloc); 868 if (ret_p1) { 869 *ret_p1 = p1; 870 } 871 if (likely(phys2 == -1)) { 872 page_lock(p1); 873 return; 874 } else if (page1 == page2) { 875 page_lock(p1); 876 if (ret_p2) { 877 *ret_p2 = p1; 878 } 879 return; 880 } 881 p2 = page_find_alloc(page2, alloc); 882 if (ret_p2) { 883 *ret_p2 = p2; 884 } 885 if (page1 < page2) { 886 page_lock(p1); 887 page_lock(p2); 888 } else { 889 page_lock(p2); 890 page_lock(p1); 891 } 892 } 893 894 #if defined(CONFIG_USER_ONLY) 895 /* Currently it is not recommended to allocate big chunks of data in 896 user mode. It will change when a dedicated libc will be used. */ 897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 898 region in which the guest needs to run. Revisit this. */ 899 #define USE_STATIC_CODE_GEN_BUFFER 900 #endif 901 902 /* Minimum size of the code gen buffer. This number is randomly chosen, 903 but not so small that we can't have a fair number of TB's live. */ 904 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) 905 906 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 907 indicated, this is constrained by the range of direct branches on the 908 host cpu, as used by the TCG implementation of goto_tb. */ 909 #if defined(__x86_64__) 910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 911 #elif defined(__sparc__) 912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 913 #elif defined(__powerpc64__) 914 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 915 #elif defined(__powerpc__) 916 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) 917 #elif defined(__aarch64__) 918 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 919 #elif defined(__s390x__) 920 /* We have a +- 4GB range on the branches; leave some slop. */ 921 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) 922 #elif defined(__mips__) 923 /* We have a 256MB branch region, but leave room to make sure the 924 main executable is also within that region. */ 925 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) 926 #else 927 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 928 #endif 929 930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) 931 932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 933 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 934 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 935 936 static inline size_t size_code_gen_buffer(size_t tb_size) 937 { 938 /* Size the buffer. */ 939 if (tb_size == 0) { 940 #ifdef USE_STATIC_CODE_GEN_BUFFER 941 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 942 #else 943 /* ??? Needs adjustments. */ 944 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 945 static buffer, we could size this on RESERVED_VA, on the text 946 segment size of the executable, or continue to use the default. */ 947 tb_size = (unsigned long)(ram_size / 4); 948 #endif 949 } 950 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 951 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 952 } 953 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 954 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 955 } 956 return tb_size; 957 } 958 959 #ifdef __mips__ 960 /* In order to use J and JAL within the code_gen_buffer, we require 961 that the buffer not cross a 256MB boundary. */ 962 static inline bool cross_256mb(void *addr, size_t size) 963 { 964 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 965 } 966 967 /* We weren't able to allocate a buffer without crossing that boundary, 968 so make do with the larger portion of the buffer that doesn't cross. 969 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 970 static inline void *split_cross_256mb(void *buf1, size_t size1) 971 { 972 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 973 size_t size2 = buf1 + size1 - buf2; 974 975 size1 = buf2 - buf1; 976 if (size1 < size2) { 977 size1 = size2; 978 buf1 = buf2; 979 } 980 981 tcg_ctx->code_gen_buffer_size = size1; 982 return buf1; 983 } 984 #endif 985 986 #ifdef USE_STATIC_CODE_GEN_BUFFER 987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 988 __attribute__((aligned(CODE_GEN_ALIGN))); 989 990 static inline void *alloc_code_gen_buffer(void) 991 { 992 void *buf = static_code_gen_buffer; 993 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 994 size_t size; 995 996 /* page-align the beginning and end of the buffer */ 997 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 998 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 999 1000 size = end - buf; 1001 1002 /* Honor a command-line option limiting the size of the buffer. */ 1003 if (size > tcg_ctx->code_gen_buffer_size) { 1004 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1005 qemu_real_host_page_size); 1006 } 1007 tcg_ctx->code_gen_buffer_size = size; 1008 1009 #ifdef __mips__ 1010 if (cross_256mb(buf, size)) { 1011 buf = split_cross_256mb(buf, size); 1012 size = tcg_ctx->code_gen_buffer_size; 1013 } 1014 #endif 1015 1016 if (qemu_mprotect_rwx(buf, size)) { 1017 abort(); 1018 } 1019 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1020 1021 return buf; 1022 } 1023 #elif defined(_WIN32) 1024 static inline void *alloc_code_gen_buffer(void) 1025 { 1026 size_t size = tcg_ctx->code_gen_buffer_size; 1027 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1028 PAGE_EXECUTE_READWRITE); 1029 } 1030 #else 1031 static inline void *alloc_code_gen_buffer(void) 1032 { 1033 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1034 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1035 uintptr_t start = 0; 1036 size_t size = tcg_ctx->code_gen_buffer_size; 1037 void *buf; 1038 1039 /* Constrain the position of the buffer based on the host cpu. 1040 Note that these addresses are chosen in concert with the 1041 addresses assigned in the relevant linker script file. */ 1042 # if defined(__PIE__) || defined(__PIC__) 1043 /* Don't bother setting a preferred location if we're building 1044 a position-independent executable. We're more likely to get 1045 an address near the main executable if we let the kernel 1046 choose the address. */ 1047 # elif defined(__x86_64__) && defined(MAP_32BIT) 1048 /* Force the memory down into low memory with the executable. 1049 Leave the choice of exact location with the kernel. */ 1050 flags |= MAP_32BIT; 1051 /* Cannot expect to map more than 800MB in low memory. */ 1052 if (size > 800u * 1024 * 1024) { 1053 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1054 } 1055 # elif defined(__sparc__) 1056 start = 0x40000000ul; 1057 # elif defined(__s390x__) 1058 start = 0x90000000ul; 1059 # elif defined(__mips__) 1060 # if _MIPS_SIM == _ABI64 1061 start = 0x128000000ul; 1062 # else 1063 start = 0x08000000ul; 1064 # endif 1065 # endif 1066 1067 buf = mmap((void *)start, size, prot, flags, -1, 0); 1068 if (buf == MAP_FAILED) { 1069 return NULL; 1070 } 1071 1072 #ifdef __mips__ 1073 if (cross_256mb(buf, size)) { 1074 /* Try again, with the original still mapped, to avoid re-acquiring 1075 that 256mb crossing. This time don't specify an address. */ 1076 size_t size2; 1077 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1078 switch ((int)(buf2 != MAP_FAILED)) { 1079 case 1: 1080 if (!cross_256mb(buf2, size)) { 1081 /* Success! Use the new buffer. */ 1082 munmap(buf, size); 1083 break; 1084 } 1085 /* Failure. Work with what we had. */ 1086 munmap(buf2, size); 1087 /* fallthru */ 1088 default: 1089 /* Split the original buffer. Free the smaller half. */ 1090 buf2 = split_cross_256mb(buf, size); 1091 size2 = tcg_ctx->code_gen_buffer_size; 1092 if (buf == buf2) { 1093 munmap(buf + size2, size - size2); 1094 } else { 1095 munmap(buf, size - size2); 1096 } 1097 size = size2; 1098 break; 1099 } 1100 buf = buf2; 1101 } 1102 #endif 1103 1104 /* Request large pages for the buffer. */ 1105 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1106 1107 return buf; 1108 } 1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1110 1111 static inline void code_gen_alloc(size_t tb_size) 1112 { 1113 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1114 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1115 if (tcg_ctx->code_gen_buffer == NULL) { 1116 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1117 exit(1); 1118 } 1119 } 1120 1121 static bool tb_cmp(const void *ap, const void *bp) 1122 { 1123 const TranslationBlock *a = ap; 1124 const TranslationBlock *b = bp; 1125 1126 return a->pc == b->pc && 1127 a->cs_base == b->cs_base && 1128 a->flags == b->flags && 1129 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1130 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1131 a->page_addr[0] == b->page_addr[0] && 1132 a->page_addr[1] == b->page_addr[1]; 1133 } 1134 1135 static void tb_htable_init(void) 1136 { 1137 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1138 1139 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1140 } 1141 1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1143 (in bytes) allocated to the translation buffer. Zero means default 1144 size. */ 1145 void tcg_exec_init(unsigned long tb_size) 1146 { 1147 tcg_allowed = true; 1148 cpu_gen_init(); 1149 page_init(); 1150 tb_htable_init(); 1151 code_gen_alloc(tb_size); 1152 #if defined(CONFIG_SOFTMMU) 1153 /* There's no guest base to take into account, so go ahead and 1154 initialize the prologue now. */ 1155 tcg_prologue_init(tcg_ctx); 1156 #endif 1157 } 1158 1159 /* 1160 * Allocate a new translation block. Flush the translation buffer if 1161 * too many translation blocks or too much generated code. 1162 */ 1163 static TranslationBlock *tb_alloc(target_ulong pc) 1164 { 1165 TranslationBlock *tb; 1166 1167 assert_memory_lock(); 1168 1169 tb = tcg_tb_alloc(tcg_ctx); 1170 if (unlikely(tb == NULL)) { 1171 return NULL; 1172 } 1173 return tb; 1174 } 1175 1176 /* call with @p->lock held */ 1177 static inline void invalidate_page_bitmap(PageDesc *p) 1178 { 1179 assert_page_locked(p); 1180 #ifdef CONFIG_SOFTMMU 1181 g_free(p->code_bitmap); 1182 p->code_bitmap = NULL; 1183 p->code_write_count = 0; 1184 #endif 1185 } 1186 1187 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1188 static void page_flush_tb_1(int level, void **lp) 1189 { 1190 int i; 1191 1192 if (*lp == NULL) { 1193 return; 1194 } 1195 if (level == 0) { 1196 PageDesc *pd = *lp; 1197 1198 for (i = 0; i < V_L2_SIZE; ++i) { 1199 page_lock(&pd[i]); 1200 pd[i].first_tb = (uintptr_t)NULL; 1201 invalidate_page_bitmap(pd + i); 1202 page_unlock(&pd[i]); 1203 } 1204 } else { 1205 void **pp = *lp; 1206 1207 for (i = 0; i < V_L2_SIZE; ++i) { 1208 page_flush_tb_1(level - 1, pp + i); 1209 } 1210 } 1211 } 1212 1213 static void page_flush_tb(void) 1214 { 1215 int i, l1_sz = v_l1_size; 1216 1217 for (i = 0; i < l1_sz; i++) { 1218 page_flush_tb_1(v_l2_levels, l1_map + i); 1219 } 1220 } 1221 1222 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1223 { 1224 const TranslationBlock *tb = value; 1225 size_t *size = data; 1226 1227 *size += tb->tc.size; 1228 return false; 1229 } 1230 1231 /* flush all the translation blocks */ 1232 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1233 { 1234 mmap_lock(); 1235 /* If it is already been done on request of another CPU, 1236 * just retry. 1237 */ 1238 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1239 goto done; 1240 } 1241 1242 if (DEBUG_TB_FLUSH_GATE) { 1243 size_t nb_tbs = tcg_nb_tbs(); 1244 size_t host_size = 0; 1245 1246 tcg_tb_foreach(tb_host_size_iter, &host_size); 1247 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1248 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1249 } 1250 1251 CPU_FOREACH(cpu) { 1252 cpu_tb_jmp_cache_clear(cpu); 1253 } 1254 1255 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1256 page_flush_tb(); 1257 1258 tcg_region_reset_all(); 1259 /* XXX: flush processor icache at this point if cache flush is 1260 expensive */ 1261 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1262 1263 done: 1264 mmap_unlock(); 1265 } 1266 1267 void tb_flush(CPUState *cpu) 1268 { 1269 if (tcg_enabled()) { 1270 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1271 async_safe_run_on_cpu(cpu, do_tb_flush, 1272 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1273 } 1274 } 1275 1276 /* 1277 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1278 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1279 * and let the optimizer get rid of them by wrapping their user-only callers 1280 * with if (DEBUG_TB_CHECK_GATE). 1281 */ 1282 #ifdef CONFIG_USER_ONLY 1283 1284 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1285 { 1286 TranslationBlock *tb = p; 1287 target_ulong addr = *(target_ulong *)userp; 1288 1289 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1290 printf("ERROR invalidate: address=" TARGET_FMT_lx 1291 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1292 } 1293 } 1294 1295 /* verify that all the pages have correct rights for code 1296 * 1297 * Called with mmap_lock held. 1298 */ 1299 static void tb_invalidate_check(target_ulong address) 1300 { 1301 address &= TARGET_PAGE_MASK; 1302 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1303 } 1304 1305 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1306 { 1307 TranslationBlock *tb = p; 1308 int flags1, flags2; 1309 1310 flags1 = page_get_flags(tb->pc); 1311 flags2 = page_get_flags(tb->pc + tb->size - 1); 1312 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1313 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1314 (long)tb->pc, tb->size, flags1, flags2); 1315 } 1316 } 1317 1318 /* verify that all the pages have correct rights for code */ 1319 static void tb_page_check(void) 1320 { 1321 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1322 } 1323 1324 #endif /* CONFIG_USER_ONLY */ 1325 1326 /* 1327 * user-mode: call with mmap_lock held 1328 * !user-mode: call with @pd->lock held 1329 */ 1330 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1331 { 1332 TranslationBlock *tb1; 1333 uintptr_t *pprev; 1334 unsigned int n1; 1335 1336 assert_page_locked(pd); 1337 pprev = &pd->first_tb; 1338 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1339 if (tb1 == tb) { 1340 *pprev = tb1->page_next[n1]; 1341 return; 1342 } 1343 pprev = &tb1->page_next[n1]; 1344 } 1345 g_assert_not_reached(); 1346 } 1347 1348 /* remove @orig from its @n_orig-th jump list */ 1349 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1350 { 1351 uintptr_t ptr, ptr_locked; 1352 TranslationBlock *dest; 1353 TranslationBlock *tb; 1354 uintptr_t *pprev; 1355 int n; 1356 1357 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1358 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1359 dest = (TranslationBlock *)(ptr & ~1); 1360 if (dest == NULL) { 1361 return; 1362 } 1363 1364 qemu_spin_lock(&dest->jmp_lock); 1365 /* 1366 * While acquiring the lock, the jump might have been removed if the 1367 * destination TB was invalidated; check again. 1368 */ 1369 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1370 if (ptr_locked != ptr) { 1371 qemu_spin_unlock(&dest->jmp_lock); 1372 /* 1373 * The only possibility is that the jump was unlinked via 1374 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1375 * because we set the LSB above. 1376 */ 1377 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1378 return; 1379 } 1380 /* 1381 * We first acquired the lock, and since the destination pointer matches, 1382 * we know for sure that @orig is in the jmp list. 1383 */ 1384 pprev = &dest->jmp_list_head; 1385 TB_FOR_EACH_JMP(dest, tb, n) { 1386 if (tb == orig && n == n_orig) { 1387 *pprev = tb->jmp_list_next[n]; 1388 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1389 qemu_spin_unlock(&dest->jmp_lock); 1390 return; 1391 } 1392 pprev = &tb->jmp_list_next[n]; 1393 } 1394 g_assert_not_reached(); 1395 } 1396 1397 /* reset the jump entry 'n' of a TB so that it is not chained to 1398 another TB */ 1399 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1400 { 1401 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1402 tb_set_jmp_target(tb, n, addr); 1403 } 1404 1405 /* remove any jumps to the TB */ 1406 static inline void tb_jmp_unlink(TranslationBlock *dest) 1407 { 1408 TranslationBlock *tb; 1409 int n; 1410 1411 qemu_spin_lock(&dest->jmp_lock); 1412 1413 TB_FOR_EACH_JMP(dest, tb, n) { 1414 tb_reset_jump(tb, n); 1415 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1416 /* No need to clear the list entry; setting the dest ptr is enough */ 1417 } 1418 dest->jmp_list_head = (uintptr_t)NULL; 1419 1420 qemu_spin_unlock(&dest->jmp_lock); 1421 } 1422 1423 /* 1424 * In user-mode, call with mmap_lock held. 1425 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1426 * locks held. 1427 */ 1428 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1429 { 1430 CPUState *cpu; 1431 PageDesc *p; 1432 uint32_t h; 1433 tb_page_addr_t phys_pc; 1434 1435 assert_memory_lock(); 1436 1437 /* make sure no further incoming jumps will be chained to this TB */ 1438 qemu_spin_lock(&tb->jmp_lock); 1439 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1440 qemu_spin_unlock(&tb->jmp_lock); 1441 1442 /* remove the TB from the hash list */ 1443 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1444 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1445 tb->trace_vcpu_dstate); 1446 if (!(tb->cflags & CF_NOCACHE) && 1447 !qht_remove(&tb_ctx.htable, tb, h)) { 1448 return; 1449 } 1450 1451 /* remove the TB from the page list */ 1452 if (rm_from_page_list) { 1453 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1454 tb_page_remove(p, tb); 1455 invalidate_page_bitmap(p); 1456 if (tb->page_addr[1] != -1) { 1457 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1458 tb_page_remove(p, tb); 1459 invalidate_page_bitmap(p); 1460 } 1461 } 1462 1463 /* remove the TB from the hash list */ 1464 h = tb_jmp_cache_hash_func(tb->pc); 1465 CPU_FOREACH(cpu) { 1466 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1467 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1468 } 1469 } 1470 1471 /* suppress this TB from the two jump lists */ 1472 tb_remove_from_jmp_list(tb, 0); 1473 tb_remove_from_jmp_list(tb, 1); 1474 1475 /* suppress any remaining jumps to this TB */ 1476 tb_jmp_unlink(tb); 1477 1478 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1479 tcg_ctx->tb_phys_invalidate_count + 1); 1480 } 1481 1482 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1483 { 1484 do_tb_phys_invalidate(tb, true); 1485 } 1486 1487 /* invalidate one TB 1488 * 1489 * Called with mmap_lock held in user-mode. 1490 */ 1491 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1492 { 1493 if (page_addr == -1 && tb->page_addr[0] != -1) { 1494 page_lock_tb(tb); 1495 do_tb_phys_invalidate(tb, true); 1496 page_unlock_tb(tb); 1497 } else { 1498 do_tb_phys_invalidate(tb, false); 1499 } 1500 } 1501 1502 #ifdef CONFIG_SOFTMMU 1503 /* call with @p->lock held */ 1504 static void build_page_bitmap(PageDesc *p) 1505 { 1506 int n, tb_start, tb_end; 1507 TranslationBlock *tb; 1508 1509 assert_page_locked(p); 1510 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1511 1512 PAGE_FOR_EACH_TB(p, tb, n) { 1513 /* NOTE: this is subtle as a TB may span two physical pages */ 1514 if (n == 0) { 1515 /* NOTE: tb_end may be after the end of the page, but 1516 it is not a problem */ 1517 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1518 tb_end = tb_start + tb->size; 1519 if (tb_end > TARGET_PAGE_SIZE) { 1520 tb_end = TARGET_PAGE_SIZE; 1521 } 1522 } else { 1523 tb_start = 0; 1524 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1525 } 1526 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1527 } 1528 } 1529 #endif 1530 1531 /* add the tb in the target page and protect it if necessary 1532 * 1533 * Called with mmap_lock held for user-mode emulation. 1534 * Called with @p->lock held in !user-mode. 1535 */ 1536 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1537 unsigned int n, tb_page_addr_t page_addr) 1538 { 1539 #ifndef CONFIG_USER_ONLY 1540 bool page_already_protected; 1541 #endif 1542 1543 assert_page_locked(p); 1544 1545 tb->page_addr[n] = page_addr; 1546 tb->page_next[n] = p->first_tb; 1547 #ifndef CONFIG_USER_ONLY 1548 page_already_protected = p->first_tb != (uintptr_t)NULL; 1549 #endif 1550 p->first_tb = (uintptr_t)tb | n; 1551 invalidate_page_bitmap(p); 1552 1553 #if defined(CONFIG_USER_ONLY) 1554 if (p->flags & PAGE_WRITE) { 1555 target_ulong addr; 1556 PageDesc *p2; 1557 int prot; 1558 1559 /* force the host page as non writable (writes will have a 1560 page fault + mprotect overhead) */ 1561 page_addr &= qemu_host_page_mask; 1562 prot = 0; 1563 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1564 addr += TARGET_PAGE_SIZE) { 1565 1566 p2 = page_find(addr >> TARGET_PAGE_BITS); 1567 if (!p2) { 1568 continue; 1569 } 1570 prot |= p2->flags; 1571 p2->flags &= ~PAGE_WRITE; 1572 } 1573 mprotect(g2h(page_addr), qemu_host_page_size, 1574 (prot & PAGE_BITS) & ~PAGE_WRITE); 1575 if (DEBUG_TB_INVALIDATE_GATE) { 1576 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1577 } 1578 } 1579 #else 1580 /* if some code is already present, then the pages are already 1581 protected. So we handle the case where only the first TB is 1582 allocated in a physical page */ 1583 if (!page_already_protected) { 1584 tlb_protect_code(page_addr); 1585 } 1586 #endif 1587 } 1588 1589 /* add a new TB and link it to the physical page tables. phys_page2 is 1590 * (-1) to indicate that only one page contains the TB. 1591 * 1592 * Called with mmap_lock held for user-mode emulation. 1593 * 1594 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1595 * Note that in !user-mode, another thread might have already added a TB 1596 * for the same block of guest code that @tb corresponds to. In that case, 1597 * the caller should discard the original @tb, and use instead the returned TB. 1598 */ 1599 static TranslationBlock * 1600 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1601 tb_page_addr_t phys_page2) 1602 { 1603 PageDesc *p; 1604 PageDesc *p2 = NULL; 1605 1606 assert_memory_lock(); 1607 1608 if (phys_pc == -1) { 1609 /* 1610 * If the TB is not associated with a physical RAM page then 1611 * it must be a temporary one-insn TB, and we have nothing to do 1612 * except fill in the page_addr[] fields. 1613 */ 1614 assert(tb->cflags & CF_NOCACHE); 1615 tb->page_addr[0] = tb->page_addr[1] = -1; 1616 return tb; 1617 } 1618 1619 /* 1620 * Add the TB to the page list, acquiring first the pages's locks. 1621 * We keep the locks held until after inserting the TB in the hash table, 1622 * so that if the insertion fails we know for sure that the TBs are still 1623 * in the page descriptors. 1624 * Note that inserting into the hash table first isn't an option, since 1625 * we can only insert TBs that are fully initialized. 1626 */ 1627 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1628 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1629 if (p2) { 1630 tb_page_add(p2, tb, 1, phys_page2); 1631 } else { 1632 tb->page_addr[1] = -1; 1633 } 1634 1635 if (!(tb->cflags & CF_NOCACHE)) { 1636 void *existing_tb = NULL; 1637 uint32_t h; 1638 1639 /* add in the hash table */ 1640 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1641 tb->trace_vcpu_dstate); 1642 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1643 1644 /* remove TB from the page(s) if we couldn't insert it */ 1645 if (unlikely(existing_tb)) { 1646 tb_page_remove(p, tb); 1647 invalidate_page_bitmap(p); 1648 if (p2) { 1649 tb_page_remove(p2, tb); 1650 invalidate_page_bitmap(p2); 1651 } 1652 tb = existing_tb; 1653 } 1654 } 1655 1656 if (p2 && p2 != p) { 1657 page_unlock(p2); 1658 } 1659 page_unlock(p); 1660 1661 #ifdef CONFIG_USER_ONLY 1662 if (DEBUG_TB_CHECK_GATE) { 1663 tb_page_check(); 1664 } 1665 #endif 1666 return tb; 1667 } 1668 1669 /* Called with mmap_lock held for user mode emulation. */ 1670 TranslationBlock *tb_gen_code(CPUState *cpu, 1671 target_ulong pc, target_ulong cs_base, 1672 uint32_t flags, int cflags) 1673 { 1674 CPUArchState *env = cpu->env_ptr; 1675 TranslationBlock *tb, *existing_tb; 1676 tb_page_addr_t phys_pc, phys_page2; 1677 target_ulong virt_page2; 1678 tcg_insn_unit *gen_code_buf; 1679 int gen_code_size, search_size, max_insns; 1680 #ifdef CONFIG_PROFILER 1681 TCGProfile *prof = &tcg_ctx->prof; 1682 int64_t ti; 1683 #endif 1684 assert_memory_lock(); 1685 1686 phys_pc = get_page_addr_code(env, pc); 1687 1688 if (phys_pc == -1) { 1689 /* Generate a temporary TB with 1 insn in it */ 1690 cflags &= ~CF_COUNT_MASK; 1691 cflags |= CF_NOCACHE | 1; 1692 } 1693 1694 cflags &= ~CF_CLUSTER_MASK; 1695 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1696 1697 max_insns = cflags & CF_COUNT_MASK; 1698 if (max_insns == 0) { 1699 max_insns = CF_COUNT_MASK; 1700 } 1701 if (max_insns > TCG_MAX_INSNS) { 1702 max_insns = TCG_MAX_INSNS; 1703 } 1704 if (cpu->singlestep_enabled || singlestep) { 1705 max_insns = 1; 1706 } 1707 1708 buffer_overflow: 1709 tb = tb_alloc(pc); 1710 if (unlikely(!tb)) { 1711 /* flush must be done */ 1712 tb_flush(cpu); 1713 mmap_unlock(); 1714 /* Make the execution loop process the flush as soon as possible. */ 1715 cpu->exception_index = EXCP_INTERRUPT; 1716 cpu_loop_exit(cpu); 1717 } 1718 1719 gen_code_buf = tcg_ctx->code_gen_ptr; 1720 tb->tc.ptr = gen_code_buf; 1721 tb->pc = pc; 1722 tb->cs_base = cs_base; 1723 tb->flags = flags; 1724 tb->cflags = cflags; 1725 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1726 tcg_ctx->tb_cflags = cflags; 1727 tb_overflow: 1728 1729 #ifdef CONFIG_PROFILER 1730 /* includes aborted translations because of exceptions */ 1731 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1732 ti = profile_getclock(); 1733 #endif 1734 1735 tcg_func_start(tcg_ctx); 1736 1737 tcg_ctx->cpu = env_cpu(env); 1738 gen_intermediate_code(cpu, tb, max_insns); 1739 tcg_ctx->cpu = NULL; 1740 1741 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1742 1743 /* generate machine code */ 1744 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1745 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1746 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1747 if (TCG_TARGET_HAS_direct_jump) { 1748 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1749 tcg_ctx->tb_jmp_target_addr = NULL; 1750 } else { 1751 tcg_ctx->tb_jmp_insn_offset = NULL; 1752 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1753 } 1754 1755 #ifdef CONFIG_PROFILER 1756 atomic_set(&prof->tb_count, prof->tb_count + 1); 1757 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1758 ti = profile_getclock(); 1759 #endif 1760 1761 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1762 if (unlikely(gen_code_size < 0)) { 1763 switch (gen_code_size) { 1764 case -1: 1765 /* 1766 * Overflow of code_gen_buffer, or the current slice of it. 1767 * 1768 * TODO: We don't need to re-do gen_intermediate_code, nor 1769 * should we re-do the tcg optimization currently hidden 1770 * inside tcg_gen_code. All that should be required is to 1771 * flush the TBs, allocate a new TB, re-initialize it per 1772 * above, and re-do the actual code generation. 1773 */ 1774 goto buffer_overflow; 1775 1776 case -2: 1777 /* 1778 * The code generated for the TranslationBlock is too large. 1779 * The maximum size allowed by the unwind info is 64k. 1780 * There may be stricter constraints from relocations 1781 * in the tcg backend. 1782 * 1783 * Try again with half as many insns as we attempted this time. 1784 * If a single insn overflows, there's a bug somewhere... 1785 */ 1786 max_insns = tb->icount; 1787 assert(max_insns > 1); 1788 max_insns /= 2; 1789 goto tb_overflow; 1790 1791 default: 1792 g_assert_not_reached(); 1793 } 1794 } 1795 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1796 if (unlikely(search_size < 0)) { 1797 goto buffer_overflow; 1798 } 1799 tb->tc.size = gen_code_size; 1800 1801 #ifdef CONFIG_PROFILER 1802 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1803 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1804 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1805 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1806 #endif 1807 1808 #ifdef DEBUG_DISAS 1809 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1810 qemu_log_in_addr_range(tb->pc)) { 1811 qemu_log_lock(); 1812 qemu_log("OUT: [size=%d]\n", gen_code_size); 1813 if (tcg_ctx->data_gen_ptr) { 1814 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1815 size_t data_size = gen_code_size - code_size; 1816 size_t i; 1817 1818 log_disas(tb->tc.ptr, code_size); 1819 1820 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1821 if (sizeof(tcg_target_ulong) == 8) { 1822 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1823 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1824 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1825 } else { 1826 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1827 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1828 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1829 } 1830 } 1831 } else { 1832 log_disas(tb->tc.ptr, gen_code_size); 1833 } 1834 qemu_log("\n"); 1835 qemu_log_flush(); 1836 qemu_log_unlock(); 1837 } 1838 #endif 1839 1840 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1841 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1842 CODE_GEN_ALIGN)); 1843 1844 /* init jump list */ 1845 qemu_spin_init(&tb->jmp_lock); 1846 tb->jmp_list_head = (uintptr_t)NULL; 1847 tb->jmp_list_next[0] = (uintptr_t)NULL; 1848 tb->jmp_list_next[1] = (uintptr_t)NULL; 1849 tb->jmp_dest[0] = (uintptr_t)NULL; 1850 tb->jmp_dest[1] = (uintptr_t)NULL; 1851 1852 /* init original jump addresses which have been set during tcg_gen_code() */ 1853 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1854 tb_reset_jump(tb, 0); 1855 } 1856 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1857 tb_reset_jump(tb, 1); 1858 } 1859 1860 /* check next page if needed */ 1861 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1862 phys_page2 = -1; 1863 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1864 phys_page2 = get_page_addr_code(env, virt_page2); 1865 } 1866 /* 1867 * No explicit memory barrier is required -- tb_link_page() makes the 1868 * TB visible in a consistent state. 1869 */ 1870 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1871 /* if the TB already exists, discard what we just translated */ 1872 if (unlikely(existing_tb != tb)) { 1873 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1874 1875 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1876 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1877 return existing_tb; 1878 } 1879 tcg_tb_insert(tb); 1880 return tb; 1881 } 1882 1883 /* 1884 * @p must be non-NULL. 1885 * user-mode: call with mmap_lock held. 1886 * !user-mode: call with all @pages locked. 1887 */ 1888 static void 1889 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1890 PageDesc *p, tb_page_addr_t start, 1891 tb_page_addr_t end, 1892 uintptr_t retaddr) 1893 { 1894 TranslationBlock *tb; 1895 tb_page_addr_t tb_start, tb_end; 1896 int n; 1897 #ifdef TARGET_HAS_PRECISE_SMC 1898 CPUState *cpu = current_cpu; 1899 CPUArchState *env = NULL; 1900 bool current_tb_not_found = retaddr != 0; 1901 bool current_tb_modified = false; 1902 TranslationBlock *current_tb = NULL; 1903 target_ulong current_pc = 0; 1904 target_ulong current_cs_base = 0; 1905 uint32_t current_flags = 0; 1906 #endif /* TARGET_HAS_PRECISE_SMC */ 1907 1908 assert_page_locked(p); 1909 1910 #if defined(TARGET_HAS_PRECISE_SMC) 1911 if (cpu != NULL) { 1912 env = cpu->env_ptr; 1913 } 1914 #endif 1915 1916 /* we remove all the TBs in the range [start, end[ */ 1917 /* XXX: see if in some cases it could be faster to invalidate all 1918 the code */ 1919 PAGE_FOR_EACH_TB(p, tb, n) { 1920 assert_page_locked(p); 1921 /* NOTE: this is subtle as a TB may span two physical pages */ 1922 if (n == 0) { 1923 /* NOTE: tb_end may be after the end of the page, but 1924 it is not a problem */ 1925 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1926 tb_end = tb_start + tb->size; 1927 } else { 1928 tb_start = tb->page_addr[1]; 1929 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1930 } 1931 if (!(tb_end <= start || tb_start >= end)) { 1932 #ifdef TARGET_HAS_PRECISE_SMC 1933 if (current_tb_not_found) { 1934 current_tb_not_found = false; 1935 /* now we have a real cpu fault */ 1936 current_tb = tcg_tb_lookup(retaddr); 1937 } 1938 if (current_tb == tb && 1939 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1940 /* 1941 * If we are modifying the current TB, we must stop 1942 * its execution. We could be more precise by checking 1943 * that the modification is after the current PC, but it 1944 * would require a specialized function to partially 1945 * restore the CPU state. 1946 */ 1947 current_tb_modified = true; 1948 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1949 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1950 ¤t_flags); 1951 } 1952 #endif /* TARGET_HAS_PRECISE_SMC */ 1953 tb_phys_invalidate__locked(tb); 1954 } 1955 } 1956 #if !defined(CONFIG_USER_ONLY) 1957 /* if no code remaining, no need to continue to use slow writes */ 1958 if (!p->first_tb) { 1959 invalidate_page_bitmap(p); 1960 tlb_unprotect_code(start); 1961 } 1962 #endif 1963 #ifdef TARGET_HAS_PRECISE_SMC 1964 if (current_tb_modified) { 1965 page_collection_unlock(pages); 1966 /* Force execution of one insn next time. */ 1967 cpu->cflags_next_tb = 1 | curr_cflags(); 1968 mmap_unlock(); 1969 cpu_loop_exit_noexc(cpu); 1970 } 1971 #endif 1972 } 1973 1974 /* 1975 * Invalidate all TBs which intersect with the target physical address range 1976 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1977 * 'is_cpu_write_access' should be true if called from a real cpu write 1978 * access: the virtual CPU will exit the current TB if code is modified inside 1979 * this TB. 1980 * 1981 * Called with mmap_lock held for user-mode emulation 1982 */ 1983 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 1984 { 1985 struct page_collection *pages; 1986 PageDesc *p; 1987 1988 assert_memory_lock(); 1989 1990 p = page_find(start >> TARGET_PAGE_BITS); 1991 if (p == NULL) { 1992 return; 1993 } 1994 pages = page_collection_lock(start, end); 1995 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 1996 page_collection_unlock(pages); 1997 } 1998 1999 /* 2000 * Invalidate all TBs which intersect with the target physical address range 2001 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2002 * 'is_cpu_write_access' should be true if called from a real cpu write 2003 * access: the virtual CPU will exit the current TB if code is modified inside 2004 * this TB. 2005 * 2006 * Called with mmap_lock held for user-mode emulation. 2007 */ 2008 #ifdef CONFIG_SOFTMMU 2009 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2010 #else 2011 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2012 #endif 2013 { 2014 struct page_collection *pages; 2015 tb_page_addr_t next; 2016 2017 assert_memory_lock(); 2018 2019 pages = page_collection_lock(start, end); 2020 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2021 start < end; 2022 start = next, next += TARGET_PAGE_SIZE) { 2023 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2024 tb_page_addr_t bound = MIN(next, end); 2025 2026 if (pd == NULL) { 2027 continue; 2028 } 2029 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2030 } 2031 page_collection_unlock(pages); 2032 } 2033 2034 #ifdef CONFIG_SOFTMMU 2035 /* len must be <= 8 and start must be a multiple of len. 2036 * Called via softmmu_template.h when code areas are written to with 2037 * iothread mutex not held. 2038 * 2039 * Call with all @pages in the range [@start, @start + len[ locked. 2040 */ 2041 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2042 tb_page_addr_t start, int len, 2043 uintptr_t retaddr) 2044 { 2045 PageDesc *p; 2046 2047 assert_memory_lock(); 2048 2049 p = page_find(start >> TARGET_PAGE_BITS); 2050 if (!p) { 2051 return; 2052 } 2053 2054 assert_page_locked(p); 2055 if (!p->code_bitmap && 2056 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2057 build_page_bitmap(p); 2058 } 2059 if (p->code_bitmap) { 2060 unsigned int nr; 2061 unsigned long b; 2062 2063 nr = start & ~TARGET_PAGE_MASK; 2064 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2065 if (b & ((1 << len) - 1)) { 2066 goto do_invalidate; 2067 } 2068 } else { 2069 do_invalidate: 2070 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2071 retaddr); 2072 } 2073 } 2074 #else 2075 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2076 * host PC of the faulting store instruction that caused this invalidate. 2077 * Returns true if the caller needs to abort execution of the current 2078 * TB (because it was modified by this store and the guest CPU has 2079 * precise-SMC semantics). 2080 */ 2081 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2082 { 2083 TranslationBlock *tb; 2084 PageDesc *p; 2085 int n; 2086 #ifdef TARGET_HAS_PRECISE_SMC 2087 TranslationBlock *current_tb = NULL; 2088 CPUState *cpu = current_cpu; 2089 CPUArchState *env = NULL; 2090 int current_tb_modified = 0; 2091 target_ulong current_pc = 0; 2092 target_ulong current_cs_base = 0; 2093 uint32_t current_flags = 0; 2094 #endif 2095 2096 assert_memory_lock(); 2097 2098 addr &= TARGET_PAGE_MASK; 2099 p = page_find(addr >> TARGET_PAGE_BITS); 2100 if (!p) { 2101 return false; 2102 } 2103 2104 #ifdef TARGET_HAS_PRECISE_SMC 2105 if (p->first_tb && pc != 0) { 2106 current_tb = tcg_tb_lookup(pc); 2107 } 2108 if (cpu != NULL) { 2109 env = cpu->env_ptr; 2110 } 2111 #endif 2112 assert_page_locked(p); 2113 PAGE_FOR_EACH_TB(p, tb, n) { 2114 #ifdef TARGET_HAS_PRECISE_SMC 2115 if (current_tb == tb && 2116 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2117 /* If we are modifying the current TB, we must stop 2118 its execution. We could be more precise by checking 2119 that the modification is after the current PC, but it 2120 would require a specialized function to partially 2121 restore the CPU state */ 2122 2123 current_tb_modified = 1; 2124 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2125 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2126 ¤t_flags); 2127 } 2128 #endif /* TARGET_HAS_PRECISE_SMC */ 2129 tb_phys_invalidate(tb, addr); 2130 } 2131 p->first_tb = (uintptr_t)NULL; 2132 #ifdef TARGET_HAS_PRECISE_SMC 2133 if (current_tb_modified) { 2134 /* Force execution of one insn next time. */ 2135 cpu->cflags_next_tb = 1 | curr_cflags(); 2136 return true; 2137 } 2138 #endif 2139 2140 return false; 2141 } 2142 #endif 2143 2144 /* user-mode: call with mmap_lock held */ 2145 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2146 { 2147 TranslationBlock *tb; 2148 2149 assert_memory_lock(); 2150 2151 tb = tcg_tb_lookup(retaddr); 2152 if (tb) { 2153 /* We can use retranslation to find the PC. */ 2154 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2155 tb_phys_invalidate(tb, -1); 2156 } else { 2157 /* The exception probably happened in a helper. The CPU state should 2158 have been saved before calling it. Fetch the PC from there. */ 2159 CPUArchState *env = cpu->env_ptr; 2160 target_ulong pc, cs_base; 2161 tb_page_addr_t addr; 2162 uint32_t flags; 2163 2164 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2165 addr = get_page_addr_code(env, pc); 2166 if (addr != -1) { 2167 tb_invalidate_phys_range(addr, addr + 1); 2168 } 2169 } 2170 } 2171 2172 #ifndef CONFIG_USER_ONLY 2173 /* in deterministic execution mode, instructions doing device I/Os 2174 * must be at the end of the TB. 2175 * 2176 * Called by softmmu_template.h, with iothread mutex not held. 2177 */ 2178 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2179 { 2180 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2181 CPUArchState *env = cpu->env_ptr; 2182 #endif 2183 TranslationBlock *tb; 2184 uint32_t n; 2185 2186 tb = tcg_tb_lookup(retaddr); 2187 if (!tb) { 2188 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2189 (void *)retaddr); 2190 } 2191 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2192 2193 /* On MIPS and SH, delay slot instructions can only be restarted if 2194 they were already the first instruction in the TB. If this is not 2195 the first instruction in a TB then re-execute the preceding 2196 branch. */ 2197 n = 1; 2198 #if defined(TARGET_MIPS) 2199 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2200 && env->active_tc.PC != tb->pc) { 2201 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2202 cpu_neg(cpu)->icount_decr.u16.low++; 2203 env->hflags &= ~MIPS_HFLAG_BMASK; 2204 n = 2; 2205 } 2206 #elif defined(TARGET_SH4) 2207 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2208 && env->pc != tb->pc) { 2209 env->pc -= 2; 2210 cpu_neg(cpu)->icount_decr.u16.low++; 2211 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2212 n = 2; 2213 } 2214 #endif 2215 2216 /* Generate a new TB executing the I/O insn. */ 2217 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2218 2219 if (tb_cflags(tb) & CF_NOCACHE) { 2220 if (tb->orig_tb) { 2221 /* Invalidate original TB if this TB was generated in 2222 * cpu_exec_nocache() */ 2223 tb_phys_invalidate(tb->orig_tb, -1); 2224 } 2225 tcg_tb_remove(tb); 2226 } 2227 2228 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2229 * the first in the TB) then we end up generating a whole new TB and 2230 * repeating the fault, which is horribly inefficient. 2231 * Better would be to execute just this insn uncached, or generate a 2232 * second new TB. 2233 */ 2234 cpu_loop_exit_noexc(cpu); 2235 } 2236 2237 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2238 { 2239 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2240 2241 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2242 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2243 } 2244 } 2245 2246 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2247 { 2248 /* Discard jump cache entries for any tb which might potentially 2249 overlap the flushed page. */ 2250 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2251 tb_jmp_cache_clear_page(cpu, addr); 2252 } 2253 2254 static void print_qht_statistics(struct qht_stats hst) 2255 { 2256 uint32_t hgram_opts; 2257 size_t hgram_bins; 2258 char *hgram; 2259 2260 if (!hst.head_buckets) { 2261 return; 2262 } 2263 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2264 hst.used_head_buckets, hst.head_buckets, 2265 (double)hst.used_head_buckets / hst.head_buckets * 100); 2266 2267 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2268 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2269 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2270 hgram_opts |= QDIST_PR_NODECIMAL; 2271 } 2272 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2273 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2274 qdist_avg(&hst.occupancy) * 100, hgram); 2275 g_free(hgram); 2276 2277 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2278 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2279 if (hgram_bins > 10) { 2280 hgram_bins = 10; 2281 } else { 2282 hgram_bins = 0; 2283 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2284 } 2285 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2286 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2287 qdist_avg(&hst.chain), hgram); 2288 g_free(hgram); 2289 } 2290 2291 struct tb_tree_stats { 2292 size_t nb_tbs; 2293 size_t host_size; 2294 size_t target_size; 2295 size_t max_target_size; 2296 size_t direct_jmp_count; 2297 size_t direct_jmp2_count; 2298 size_t cross_page; 2299 }; 2300 2301 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2302 { 2303 const TranslationBlock *tb = value; 2304 struct tb_tree_stats *tst = data; 2305 2306 tst->nb_tbs++; 2307 tst->host_size += tb->tc.size; 2308 tst->target_size += tb->size; 2309 if (tb->size > tst->max_target_size) { 2310 tst->max_target_size = tb->size; 2311 } 2312 if (tb->page_addr[1] != -1) { 2313 tst->cross_page++; 2314 } 2315 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2316 tst->direct_jmp_count++; 2317 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2318 tst->direct_jmp2_count++; 2319 } 2320 } 2321 return false; 2322 } 2323 2324 void dump_exec_info(void) 2325 { 2326 struct tb_tree_stats tst = {}; 2327 struct qht_stats hst; 2328 size_t nb_tbs, flush_full, flush_part, flush_elide; 2329 2330 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2331 nb_tbs = tst.nb_tbs; 2332 /* XXX: avoid using doubles ? */ 2333 qemu_printf("Translation buffer state:\n"); 2334 /* 2335 * Report total code size including the padding and TB structs; 2336 * otherwise users might think "-tb-size" is not honoured. 2337 * For avg host size we use the precise numbers from tb_tree_stats though. 2338 */ 2339 qemu_printf("gen code size %zu/%zu\n", 2340 tcg_code_size(), tcg_code_capacity()); 2341 qemu_printf("TB count %zu\n", nb_tbs); 2342 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2343 nb_tbs ? tst.target_size / nb_tbs : 0, 2344 tst.max_target_size); 2345 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2346 nb_tbs ? tst.host_size / nb_tbs : 0, 2347 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2348 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2349 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2350 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2351 tst.direct_jmp_count, 2352 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2353 tst.direct_jmp2_count, 2354 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2355 2356 qht_statistics_init(&tb_ctx.htable, &hst); 2357 print_qht_statistics(hst); 2358 qht_statistics_destroy(&hst); 2359 2360 qemu_printf("\nStatistics:\n"); 2361 qemu_printf("TB flush count %u\n", 2362 atomic_read(&tb_ctx.tb_flush_count)); 2363 qemu_printf("TB invalidate count %zu\n", 2364 tcg_tb_phys_invalidate_count()); 2365 2366 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2367 qemu_printf("TLB full flushes %zu\n", flush_full); 2368 qemu_printf("TLB partial flushes %zu\n", flush_part); 2369 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2370 tcg_dump_info(); 2371 } 2372 2373 void dump_opcount_info(void) 2374 { 2375 tcg_dump_op_count(); 2376 } 2377 2378 #else /* CONFIG_USER_ONLY */ 2379 2380 void cpu_interrupt(CPUState *cpu, int mask) 2381 { 2382 g_assert(qemu_mutex_iothread_locked()); 2383 cpu->interrupt_request |= mask; 2384 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2385 } 2386 2387 /* 2388 * Walks guest process memory "regions" one by one 2389 * and calls callback function 'fn' for each region. 2390 */ 2391 struct walk_memory_regions_data { 2392 walk_memory_regions_fn fn; 2393 void *priv; 2394 target_ulong start; 2395 int prot; 2396 }; 2397 2398 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2399 target_ulong end, int new_prot) 2400 { 2401 if (data->start != -1u) { 2402 int rc = data->fn(data->priv, data->start, end, data->prot); 2403 if (rc != 0) { 2404 return rc; 2405 } 2406 } 2407 2408 data->start = (new_prot ? end : -1u); 2409 data->prot = new_prot; 2410 2411 return 0; 2412 } 2413 2414 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2415 target_ulong base, int level, void **lp) 2416 { 2417 target_ulong pa; 2418 int i, rc; 2419 2420 if (*lp == NULL) { 2421 return walk_memory_regions_end(data, base, 0); 2422 } 2423 2424 if (level == 0) { 2425 PageDesc *pd = *lp; 2426 2427 for (i = 0; i < V_L2_SIZE; ++i) { 2428 int prot = pd[i].flags; 2429 2430 pa = base | (i << TARGET_PAGE_BITS); 2431 if (prot != data->prot) { 2432 rc = walk_memory_regions_end(data, pa, prot); 2433 if (rc != 0) { 2434 return rc; 2435 } 2436 } 2437 } 2438 } else { 2439 void **pp = *lp; 2440 2441 for (i = 0; i < V_L2_SIZE; ++i) { 2442 pa = base | ((target_ulong)i << 2443 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2444 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2445 if (rc != 0) { 2446 return rc; 2447 } 2448 } 2449 } 2450 2451 return 0; 2452 } 2453 2454 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2455 { 2456 struct walk_memory_regions_data data; 2457 uintptr_t i, l1_sz = v_l1_size; 2458 2459 data.fn = fn; 2460 data.priv = priv; 2461 data.start = -1u; 2462 data.prot = 0; 2463 2464 for (i = 0; i < l1_sz; i++) { 2465 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2466 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2467 if (rc != 0) { 2468 return rc; 2469 } 2470 } 2471 2472 return walk_memory_regions_end(&data, 0, 0); 2473 } 2474 2475 static int dump_region(void *priv, target_ulong start, 2476 target_ulong end, unsigned long prot) 2477 { 2478 FILE *f = (FILE *)priv; 2479 2480 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2481 " "TARGET_FMT_lx" %c%c%c\n", 2482 start, end, end - start, 2483 ((prot & PAGE_READ) ? 'r' : '-'), 2484 ((prot & PAGE_WRITE) ? 'w' : '-'), 2485 ((prot & PAGE_EXEC) ? 'x' : '-')); 2486 2487 return 0; 2488 } 2489 2490 /* dump memory mappings */ 2491 void page_dump(FILE *f) 2492 { 2493 const int length = sizeof(target_ulong) * 2; 2494 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2495 length, "start", length, "end", length, "size", "prot"); 2496 walk_memory_regions(f, dump_region); 2497 } 2498 2499 int page_get_flags(target_ulong address) 2500 { 2501 PageDesc *p; 2502 2503 p = page_find(address >> TARGET_PAGE_BITS); 2504 if (!p) { 2505 return 0; 2506 } 2507 return p->flags; 2508 } 2509 2510 /* Modify the flags of a page and invalidate the code if necessary. 2511 The flag PAGE_WRITE_ORG is positioned automatically depending 2512 on PAGE_WRITE. The mmap_lock should already be held. */ 2513 void page_set_flags(target_ulong start, target_ulong end, int flags) 2514 { 2515 target_ulong addr, len; 2516 2517 /* This function should never be called with addresses outside the 2518 guest address space. If this assert fires, it probably indicates 2519 a missing call to h2g_valid. */ 2520 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2521 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2522 #endif 2523 assert(start < end); 2524 assert_memory_lock(); 2525 2526 start = start & TARGET_PAGE_MASK; 2527 end = TARGET_PAGE_ALIGN(end); 2528 2529 if (flags & PAGE_WRITE) { 2530 flags |= PAGE_WRITE_ORG; 2531 } 2532 2533 for (addr = start, len = end - start; 2534 len != 0; 2535 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2536 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2537 2538 /* If the write protection bit is set, then we invalidate 2539 the code inside. */ 2540 if (!(p->flags & PAGE_WRITE) && 2541 (flags & PAGE_WRITE) && 2542 p->first_tb) { 2543 tb_invalidate_phys_page(addr, 0); 2544 } 2545 p->flags = flags; 2546 } 2547 } 2548 2549 int page_check_range(target_ulong start, target_ulong len, int flags) 2550 { 2551 PageDesc *p; 2552 target_ulong end; 2553 target_ulong addr; 2554 2555 /* This function should never be called with addresses outside the 2556 guest address space. If this assert fires, it probably indicates 2557 a missing call to h2g_valid. */ 2558 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2559 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2560 #endif 2561 2562 if (len == 0) { 2563 return 0; 2564 } 2565 if (start + len - 1 < start) { 2566 /* We've wrapped around. */ 2567 return -1; 2568 } 2569 2570 /* must do before we loose bits in the next step */ 2571 end = TARGET_PAGE_ALIGN(start + len); 2572 start = start & TARGET_PAGE_MASK; 2573 2574 for (addr = start, len = end - start; 2575 len != 0; 2576 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2577 p = page_find(addr >> TARGET_PAGE_BITS); 2578 if (!p) { 2579 return -1; 2580 } 2581 if (!(p->flags & PAGE_VALID)) { 2582 return -1; 2583 } 2584 2585 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2586 return -1; 2587 } 2588 if (flags & PAGE_WRITE) { 2589 if (!(p->flags & PAGE_WRITE_ORG)) { 2590 return -1; 2591 } 2592 /* unprotect the page if it was put read-only because it 2593 contains translated code */ 2594 if (!(p->flags & PAGE_WRITE)) { 2595 if (!page_unprotect(addr, 0)) { 2596 return -1; 2597 } 2598 } 2599 } 2600 } 2601 return 0; 2602 } 2603 2604 /* called from signal handler: invalidate the code and unprotect the 2605 * page. Return 0 if the fault was not handled, 1 if it was handled, 2606 * and 2 if it was handled but the caller must cause the TB to be 2607 * immediately exited. (We can only return 2 if the 'pc' argument is 2608 * non-zero.) 2609 */ 2610 int page_unprotect(target_ulong address, uintptr_t pc) 2611 { 2612 unsigned int prot; 2613 bool current_tb_invalidated; 2614 PageDesc *p; 2615 target_ulong host_start, host_end, addr; 2616 2617 /* Technically this isn't safe inside a signal handler. However we 2618 know this only ever happens in a synchronous SEGV handler, so in 2619 practice it seems to be ok. */ 2620 mmap_lock(); 2621 2622 p = page_find(address >> TARGET_PAGE_BITS); 2623 if (!p) { 2624 mmap_unlock(); 2625 return 0; 2626 } 2627 2628 /* if the page was really writable, then we change its 2629 protection back to writable */ 2630 if (p->flags & PAGE_WRITE_ORG) { 2631 current_tb_invalidated = false; 2632 if (p->flags & PAGE_WRITE) { 2633 /* If the page is actually marked WRITE then assume this is because 2634 * this thread raced with another one which got here first and 2635 * set the page to PAGE_WRITE and did the TB invalidate for us. 2636 */ 2637 #ifdef TARGET_HAS_PRECISE_SMC 2638 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2639 if (current_tb) { 2640 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2641 } 2642 #endif 2643 } else { 2644 host_start = address & qemu_host_page_mask; 2645 host_end = host_start + qemu_host_page_size; 2646 2647 prot = 0; 2648 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2649 p = page_find(addr >> TARGET_PAGE_BITS); 2650 p->flags |= PAGE_WRITE; 2651 prot |= p->flags; 2652 2653 /* and since the content will be modified, we must invalidate 2654 the corresponding translated code. */ 2655 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2656 #ifdef CONFIG_USER_ONLY 2657 if (DEBUG_TB_CHECK_GATE) { 2658 tb_invalidate_check(addr); 2659 } 2660 #endif 2661 } 2662 mprotect((void *)g2h(host_start), qemu_host_page_size, 2663 prot & PAGE_BITS); 2664 } 2665 mmap_unlock(); 2666 /* If current TB was invalidated return to main loop */ 2667 return current_tb_invalidated ? 2 : 1; 2668 } 2669 mmap_unlock(); 2670 return 0; 2671 } 2672 #endif /* CONFIG_USER_ONLY */ 2673 2674 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2675 void tcg_flush_softmmu_tlb(CPUState *cs) 2676 { 2677 #ifdef CONFIG_SOFTMMU 2678 tlb_flush(cs); 2679 #endif 2680 } 2681