1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "qemu-common.h" 22 #define NO_CPU_IO_DEFS 23 #include "cpu.h" 24 #include "trace.h" 25 #include "disas/disas.h" 26 #include "exec/exec-all.h" 27 #include "tcg.h" 28 #if defined(CONFIG_USER_ONLY) 29 #include "qemu.h" 30 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 31 #include <sys/param.h> 32 #if __FreeBSD_version >= 700104 33 #define HAVE_KINFO_GETVMMAP 34 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 35 #include <sys/proc.h> 36 #include <machine/profile.h> 37 #define _KERNEL 38 #include <sys/user.h> 39 #undef _KERNEL 40 #undef sigqueue 41 #include <libutil.h> 42 #endif 43 #endif 44 #else 45 #include "exec/ram_addr.h" 46 #endif 47 48 #include "exec/cputlb.h" 49 #include "exec/tb-hash.h" 50 #include "translate-all.h" 51 #include "qemu/bitmap.h" 52 #include "qemu/error-report.h" 53 #include "qemu/timer.h" 54 #include "qemu/main-loop.h" 55 #include "exec/log.h" 56 #include "sysemu/cpus.h" 57 58 /* #define DEBUG_TB_INVALIDATE */ 59 /* #define DEBUG_TB_FLUSH */ 60 /* make various TB consistency checks */ 61 /* #define DEBUG_TB_CHECK */ 62 63 #ifdef DEBUG_TB_INVALIDATE 64 #define DEBUG_TB_INVALIDATE_GATE 1 65 #else 66 #define DEBUG_TB_INVALIDATE_GATE 0 67 #endif 68 69 #ifdef DEBUG_TB_FLUSH 70 #define DEBUG_TB_FLUSH_GATE 1 71 #else 72 #define DEBUG_TB_FLUSH_GATE 0 73 #endif 74 75 #if !defined(CONFIG_USER_ONLY) 76 /* TB consistency checks only implemented for usermode emulation. */ 77 #undef DEBUG_TB_CHECK 78 #endif 79 80 #ifdef DEBUG_TB_CHECK 81 #define DEBUG_TB_CHECK_GATE 1 82 #else 83 #define DEBUG_TB_CHECK_GATE 0 84 #endif 85 86 /* Access to the various translations structures need to be serialised via locks 87 * for consistency. 88 * In user-mode emulation access to the memory related structures are protected 89 * with mmap_lock. 90 * In !user-mode we use per-page locks. 91 */ 92 #ifdef CONFIG_SOFTMMU 93 #define assert_memory_lock() 94 #else 95 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 96 #endif 97 98 #define SMC_BITMAP_USE_THRESHOLD 10 99 100 typedef struct PageDesc { 101 /* list of TBs intersecting this ram page */ 102 uintptr_t first_tb; 103 #ifdef CONFIG_SOFTMMU 104 /* in order to optimize self modifying code, we count the number 105 of lookups we do to a given page to use a bitmap */ 106 unsigned long *code_bitmap; 107 unsigned int code_write_count; 108 #else 109 unsigned long flags; 110 #endif 111 #ifndef CONFIG_USER_ONLY 112 QemuSpin lock; 113 #endif 114 } PageDesc; 115 116 /** 117 * struct page_entry - page descriptor entry 118 * @pd: pointer to the &struct PageDesc of the page this entry represents 119 * @index: page index of the page 120 * @locked: whether the page is locked 121 * 122 * This struct helps us keep track of the locked state of a page, without 123 * bloating &struct PageDesc. 124 * 125 * A page lock protects accesses to all fields of &struct PageDesc. 126 * 127 * See also: &struct page_collection. 128 */ 129 struct page_entry { 130 PageDesc *pd; 131 tb_page_addr_t index; 132 bool locked; 133 }; 134 135 /** 136 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 137 * @tree: Binary search tree (BST) of the pages, with key == page index 138 * @max: Pointer to the page in @tree with the highest page index 139 * 140 * To avoid deadlock we lock pages in ascending order of page index. 141 * When operating on a set of pages, we need to keep track of them so that 142 * we can lock them in order and also unlock them later. For this we collect 143 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 144 * @tree implementation we use does not provide an O(1) operation to obtain the 145 * highest-ranked element, we use @max to keep track of the inserted page 146 * with the highest index. This is valuable because if a page is not in 147 * the tree and its index is higher than @max's, then we can lock it 148 * without breaking the locking order rule. 149 * 150 * Note on naming: 'struct page_set' would be shorter, but we already have a few 151 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 152 * 153 * See also: page_collection_lock(). 154 */ 155 struct page_collection { 156 GTree *tree; 157 struct page_entry *max; 158 }; 159 160 /* list iterators for lists of tagged pointers in TranslationBlock */ 161 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 162 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 163 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 164 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 165 166 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 167 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 168 169 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 170 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 171 172 /* In system mode we want L1_MAP to be based on ram offsets, 173 while in user mode we want it to be based on virtual addresses. */ 174 #if !defined(CONFIG_USER_ONLY) 175 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 176 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 177 #else 178 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 179 #endif 180 #else 181 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 182 #endif 183 184 /* Size of the L2 (and L3, etc) page tables. */ 185 #define V_L2_BITS 10 186 #define V_L2_SIZE (1 << V_L2_BITS) 187 188 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 189 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 190 sizeof_field(TranslationBlock, trace_vcpu_dstate) 191 * BITS_PER_BYTE); 192 193 /* 194 * L1 Mapping properties 195 */ 196 static int v_l1_size; 197 static int v_l1_shift; 198 static int v_l2_levels; 199 200 /* The bottom level has pointers to PageDesc, and is indexed by 201 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 202 */ 203 #define V_L1_MIN_BITS 4 204 #define V_L1_MAX_BITS (V_L2_BITS + 3) 205 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 206 207 static void *l1_map[V_L1_MAX_SIZE]; 208 209 /* code generation context */ 210 TCGContext tcg_init_ctx; 211 __thread TCGContext *tcg_ctx; 212 TBContext tb_ctx; 213 bool parallel_cpus; 214 215 static void page_table_config_init(void) 216 { 217 uint32_t v_l1_bits; 218 219 assert(TARGET_PAGE_BITS); 220 /* The bits remaining after N lower levels of page tables. */ 221 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 222 if (v_l1_bits < V_L1_MIN_BITS) { 223 v_l1_bits += V_L2_BITS; 224 } 225 226 v_l1_size = 1 << v_l1_bits; 227 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 228 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 229 230 assert(v_l1_bits <= V_L1_MAX_BITS); 231 assert(v_l1_shift % V_L2_BITS == 0); 232 assert(v_l2_levels >= 0); 233 } 234 235 void cpu_gen_init(void) 236 { 237 tcg_context_init(&tcg_init_ctx); 238 } 239 240 /* Encode VAL as a signed leb128 sequence at P. 241 Return P incremented past the encoded value. */ 242 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 243 { 244 int more, byte; 245 246 do { 247 byte = val & 0x7f; 248 val >>= 7; 249 more = !((val == 0 && (byte & 0x40) == 0) 250 || (val == -1 && (byte & 0x40) != 0)); 251 if (more) { 252 byte |= 0x80; 253 } 254 *p++ = byte; 255 } while (more); 256 257 return p; 258 } 259 260 /* Decode a signed leb128 sequence at *PP; increment *PP past the 261 decoded value. Return the decoded value. */ 262 static target_long decode_sleb128(uint8_t **pp) 263 { 264 uint8_t *p = *pp; 265 target_long val = 0; 266 int byte, shift = 0; 267 268 do { 269 byte = *p++; 270 val |= (target_ulong)(byte & 0x7f) << shift; 271 shift += 7; 272 } while (byte & 0x80); 273 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 274 val |= -(target_ulong)1 << shift; 275 } 276 277 *pp = p; 278 return val; 279 } 280 281 /* Encode the data collected about the instructions while compiling TB. 282 Place the data at BLOCK, and return the number of bytes consumed. 283 284 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 285 which come from the target's insn_start data, followed by a uintptr_t 286 which comes from the host pc of the end of the code implementing the insn. 287 288 Each line of the table is encoded as sleb128 deltas from the previous 289 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 290 That is, the first column is seeded with the guest pc, the last column 291 with the host pc, and the middle columns with zeros. */ 292 293 static int encode_search(TranslationBlock *tb, uint8_t *block) 294 { 295 uint8_t *highwater = tcg_ctx->code_gen_highwater; 296 uint8_t *p = block; 297 int i, j, n; 298 299 for (i = 0, n = tb->icount; i < n; ++i) { 300 target_ulong prev; 301 302 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 303 if (i == 0) { 304 prev = (j == 0 ? tb->pc : 0); 305 } else { 306 prev = tcg_ctx->gen_insn_data[i - 1][j]; 307 } 308 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 309 } 310 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 311 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 312 313 /* Test for (pending) buffer overflow. The assumption is that any 314 one row beginning below the high water mark cannot overrun 315 the buffer completely. Thus we can test for overflow after 316 encoding a row without having to check during encoding. */ 317 if (unlikely(p > highwater)) { 318 return -1; 319 } 320 } 321 322 return p - block; 323 } 324 325 /* The cpu state corresponding to 'searched_pc' is restored. 326 * When reset_icount is true, current TB will be interrupted and 327 * icount should be recalculated. 328 */ 329 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 330 uintptr_t searched_pc, bool reset_icount) 331 { 332 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 333 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 334 CPUArchState *env = cpu->env_ptr; 335 uint8_t *p = tb->tc.ptr + tb->tc.size; 336 int i, j, num_insns = tb->icount; 337 #ifdef CONFIG_PROFILER 338 TCGProfile *prof = &tcg_ctx->prof; 339 int64_t ti = profile_getclock(); 340 #endif 341 342 searched_pc -= GETPC_ADJ; 343 344 if (searched_pc < host_pc) { 345 return -1; 346 } 347 348 /* Reconstruct the stored insn data while looking for the point at 349 which the end of the insn exceeds the searched_pc. */ 350 for (i = 0; i < num_insns; ++i) { 351 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 352 data[j] += decode_sleb128(&p); 353 } 354 host_pc += decode_sleb128(&p); 355 if (host_pc > searched_pc) { 356 goto found; 357 } 358 } 359 return -1; 360 361 found: 362 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 363 assert(use_icount); 364 /* Reset the cycle counter to the start of the block 365 and shift if to the number of actually executed instructions */ 366 cpu->icount_decr.u16.low += num_insns - i; 367 } 368 restore_state_to_opc(env, tb, data); 369 370 #ifdef CONFIG_PROFILER 371 atomic_set(&prof->restore_time, 372 prof->restore_time + profile_getclock() - ti); 373 atomic_set(&prof->restore_count, prof->restore_count + 1); 374 #endif 375 return 0; 376 } 377 378 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 379 { 380 TranslationBlock *tb; 381 bool r = false; 382 uintptr_t check_offset; 383 384 /* The host_pc has to be in the region of current code buffer. If 385 * it is not we will not be able to resolve it here. The two cases 386 * where host_pc will not be correct are: 387 * 388 * - fault during translation (instruction fetch) 389 * - fault from helper (not using GETPC() macro) 390 * 391 * Either way we need return early as we can't resolve it here. 392 * 393 * We are using unsigned arithmetic so if host_pc < 394 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 395 * above the code_gen_buffer_size 396 */ 397 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 398 399 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 400 tb = tcg_tb_lookup(host_pc); 401 if (tb) { 402 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 403 if (tb_cflags(tb) & CF_NOCACHE) { 404 /* one-shot translation, invalidate it immediately */ 405 tb_phys_invalidate(tb, -1); 406 tcg_tb_remove(tb); 407 } 408 r = true; 409 } 410 } 411 412 return r; 413 } 414 415 static void page_init(void) 416 { 417 page_size_init(); 418 page_table_config_init(); 419 420 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 421 { 422 #ifdef HAVE_KINFO_GETVMMAP 423 struct kinfo_vmentry *freep; 424 int i, cnt; 425 426 freep = kinfo_getvmmap(getpid(), &cnt); 427 if (freep) { 428 mmap_lock(); 429 for (i = 0; i < cnt; i++) { 430 unsigned long startaddr, endaddr; 431 432 startaddr = freep[i].kve_start; 433 endaddr = freep[i].kve_end; 434 if (h2g_valid(startaddr)) { 435 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 436 437 if (h2g_valid(endaddr)) { 438 endaddr = h2g(endaddr); 439 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 440 } else { 441 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 442 endaddr = ~0ul; 443 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 444 #endif 445 } 446 } 447 } 448 free(freep); 449 mmap_unlock(); 450 } 451 #else 452 FILE *f; 453 454 last_brk = (unsigned long)sbrk(0); 455 456 f = fopen("/compat/linux/proc/self/maps", "r"); 457 if (f) { 458 mmap_lock(); 459 460 do { 461 unsigned long startaddr, endaddr; 462 int n; 463 464 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 465 466 if (n == 2 && h2g_valid(startaddr)) { 467 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 468 469 if (h2g_valid(endaddr)) { 470 endaddr = h2g(endaddr); 471 } else { 472 endaddr = ~0ul; 473 } 474 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 475 } 476 } while (!feof(f)); 477 478 fclose(f); 479 mmap_unlock(); 480 } 481 #endif 482 } 483 #endif 484 } 485 486 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 487 { 488 PageDesc *pd; 489 void **lp; 490 int i; 491 492 /* Level 1. Always allocated. */ 493 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 494 495 /* Level 2..N-1. */ 496 for (i = v_l2_levels; i > 0; i--) { 497 void **p = atomic_rcu_read(lp); 498 499 if (p == NULL) { 500 void *existing; 501 502 if (!alloc) { 503 return NULL; 504 } 505 p = g_new0(void *, V_L2_SIZE); 506 existing = atomic_cmpxchg(lp, NULL, p); 507 if (unlikely(existing)) { 508 g_free(p); 509 p = existing; 510 } 511 } 512 513 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 514 } 515 516 pd = atomic_rcu_read(lp); 517 if (pd == NULL) { 518 void *existing; 519 520 if (!alloc) { 521 return NULL; 522 } 523 pd = g_new0(PageDesc, V_L2_SIZE); 524 #ifndef CONFIG_USER_ONLY 525 { 526 int i; 527 528 for (i = 0; i < V_L2_SIZE; i++) { 529 qemu_spin_init(&pd[i].lock); 530 } 531 } 532 #endif 533 existing = atomic_cmpxchg(lp, NULL, pd); 534 if (unlikely(existing)) { 535 g_free(pd); 536 pd = existing; 537 } 538 } 539 540 return pd + (index & (V_L2_SIZE - 1)); 541 } 542 543 static inline PageDesc *page_find(tb_page_addr_t index) 544 { 545 return page_find_alloc(index, 0); 546 } 547 548 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 549 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 550 551 /* In user-mode page locks aren't used; mmap_lock is enough */ 552 #ifdef CONFIG_USER_ONLY 553 554 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 555 556 static inline void page_lock(PageDesc *pd) 557 { } 558 559 static inline void page_unlock(PageDesc *pd) 560 { } 561 562 static inline void page_lock_tb(const TranslationBlock *tb) 563 { } 564 565 static inline void page_unlock_tb(const TranslationBlock *tb) 566 { } 567 568 struct page_collection * 569 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 570 { 571 return NULL; 572 } 573 574 void page_collection_unlock(struct page_collection *set) 575 { } 576 #else /* !CONFIG_USER_ONLY */ 577 578 #ifdef CONFIG_DEBUG_TCG 579 580 static __thread GHashTable *ht_pages_locked_debug; 581 582 static void ht_pages_locked_debug_init(void) 583 { 584 if (ht_pages_locked_debug) { 585 return; 586 } 587 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 588 } 589 590 static bool page_is_locked(const PageDesc *pd) 591 { 592 PageDesc *found; 593 594 ht_pages_locked_debug_init(); 595 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 596 return !!found; 597 } 598 599 static void page_lock__debug(PageDesc *pd) 600 { 601 ht_pages_locked_debug_init(); 602 g_assert(!page_is_locked(pd)); 603 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 604 } 605 606 static void page_unlock__debug(const PageDesc *pd) 607 { 608 bool removed; 609 610 ht_pages_locked_debug_init(); 611 g_assert(page_is_locked(pd)); 612 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 613 g_assert(removed); 614 } 615 616 static void 617 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 618 { 619 if (unlikely(!page_is_locked(pd))) { 620 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 621 pd, file, line); 622 abort(); 623 } 624 } 625 626 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 627 628 void assert_no_pages_locked(void) 629 { 630 ht_pages_locked_debug_init(); 631 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 632 } 633 634 #else /* !CONFIG_DEBUG_TCG */ 635 636 #define assert_page_locked(pd) 637 638 static inline void page_lock__debug(const PageDesc *pd) 639 { 640 } 641 642 static inline void page_unlock__debug(const PageDesc *pd) 643 { 644 } 645 646 #endif /* CONFIG_DEBUG_TCG */ 647 648 static inline void page_lock(PageDesc *pd) 649 { 650 page_lock__debug(pd); 651 qemu_spin_lock(&pd->lock); 652 } 653 654 static inline void page_unlock(PageDesc *pd) 655 { 656 qemu_spin_unlock(&pd->lock); 657 page_unlock__debug(pd); 658 } 659 660 /* lock the page(s) of a TB in the correct acquisition order */ 661 static inline void page_lock_tb(const TranslationBlock *tb) 662 { 663 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 664 } 665 666 static inline void page_unlock_tb(const TranslationBlock *tb) 667 { 668 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 669 670 page_unlock(p1); 671 if (unlikely(tb->page_addr[1] != -1)) { 672 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 673 674 if (p2 != p1) { 675 page_unlock(p2); 676 } 677 } 678 } 679 680 static inline struct page_entry * 681 page_entry_new(PageDesc *pd, tb_page_addr_t index) 682 { 683 struct page_entry *pe = g_malloc(sizeof(*pe)); 684 685 pe->index = index; 686 pe->pd = pd; 687 pe->locked = false; 688 return pe; 689 } 690 691 static void page_entry_destroy(gpointer p) 692 { 693 struct page_entry *pe = p; 694 695 g_assert(pe->locked); 696 page_unlock(pe->pd); 697 g_free(pe); 698 } 699 700 /* returns false on success */ 701 static bool page_entry_trylock(struct page_entry *pe) 702 { 703 bool busy; 704 705 busy = qemu_spin_trylock(&pe->pd->lock); 706 if (!busy) { 707 g_assert(!pe->locked); 708 pe->locked = true; 709 page_lock__debug(pe->pd); 710 } 711 return busy; 712 } 713 714 static void do_page_entry_lock(struct page_entry *pe) 715 { 716 page_lock(pe->pd); 717 g_assert(!pe->locked); 718 pe->locked = true; 719 } 720 721 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 722 { 723 struct page_entry *pe = value; 724 725 do_page_entry_lock(pe); 726 return FALSE; 727 } 728 729 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 730 { 731 struct page_entry *pe = value; 732 733 if (pe->locked) { 734 pe->locked = false; 735 page_unlock(pe->pd); 736 } 737 return FALSE; 738 } 739 740 /* 741 * Trylock a page, and if successful, add the page to a collection. 742 * Returns true ("busy") if the page could not be locked; false otherwise. 743 */ 744 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 745 { 746 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 747 struct page_entry *pe; 748 PageDesc *pd; 749 750 pe = g_tree_lookup(set->tree, &index); 751 if (pe) { 752 return false; 753 } 754 755 pd = page_find(index); 756 if (pd == NULL) { 757 return false; 758 } 759 760 pe = page_entry_new(pd, index); 761 g_tree_insert(set->tree, &pe->index, pe); 762 763 /* 764 * If this is either (1) the first insertion or (2) a page whose index 765 * is higher than any other so far, just lock the page and move on. 766 */ 767 if (set->max == NULL || pe->index > set->max->index) { 768 set->max = pe; 769 do_page_entry_lock(pe); 770 return false; 771 } 772 /* 773 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 774 * locks in order. 775 */ 776 return page_entry_trylock(pe); 777 } 778 779 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 780 { 781 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 782 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 783 784 if (a == b) { 785 return 0; 786 } else if (a < b) { 787 return -1; 788 } 789 return 1; 790 } 791 792 /* 793 * Lock a range of pages ([@start,@end[) as well as the pages of all 794 * intersecting TBs. 795 * Locking order: acquire locks in ascending order of page index. 796 */ 797 struct page_collection * 798 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 799 { 800 struct page_collection *set = g_malloc(sizeof(*set)); 801 tb_page_addr_t index; 802 PageDesc *pd; 803 804 start >>= TARGET_PAGE_BITS; 805 end >>= TARGET_PAGE_BITS; 806 g_assert(start <= end); 807 808 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 809 page_entry_destroy); 810 set->max = NULL; 811 assert_no_pages_locked(); 812 813 retry: 814 g_tree_foreach(set->tree, page_entry_lock, NULL); 815 816 for (index = start; index <= end; index++) { 817 TranslationBlock *tb; 818 int n; 819 820 pd = page_find(index); 821 if (pd == NULL) { 822 continue; 823 } 824 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 825 g_tree_foreach(set->tree, page_entry_unlock, NULL); 826 goto retry; 827 } 828 assert_page_locked(pd); 829 PAGE_FOR_EACH_TB(pd, tb, n) { 830 if (page_trylock_add(set, tb->page_addr[0]) || 831 (tb->page_addr[1] != -1 && 832 page_trylock_add(set, tb->page_addr[1]))) { 833 /* drop all locks, and reacquire in order */ 834 g_tree_foreach(set->tree, page_entry_unlock, NULL); 835 goto retry; 836 } 837 } 838 } 839 return set; 840 } 841 842 void page_collection_unlock(struct page_collection *set) 843 { 844 /* entries are unlocked and freed via page_entry_destroy */ 845 g_tree_destroy(set->tree); 846 g_free(set); 847 } 848 849 #endif /* !CONFIG_USER_ONLY */ 850 851 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 852 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 853 { 854 PageDesc *p1, *p2; 855 tb_page_addr_t page1; 856 tb_page_addr_t page2; 857 858 assert_memory_lock(); 859 g_assert(phys1 != -1); 860 861 page1 = phys1 >> TARGET_PAGE_BITS; 862 page2 = phys2 >> TARGET_PAGE_BITS; 863 864 p1 = page_find_alloc(page1, alloc); 865 if (ret_p1) { 866 *ret_p1 = p1; 867 } 868 if (likely(phys2 == -1)) { 869 page_lock(p1); 870 return; 871 } else if (page1 == page2) { 872 page_lock(p1); 873 if (ret_p2) { 874 *ret_p2 = p1; 875 } 876 return; 877 } 878 p2 = page_find_alloc(page2, alloc); 879 if (ret_p2) { 880 *ret_p2 = p2; 881 } 882 if (page1 < page2) { 883 page_lock(p1); 884 page_lock(p2); 885 } else { 886 page_lock(p2); 887 page_lock(p1); 888 } 889 } 890 891 #if defined(CONFIG_USER_ONLY) 892 /* Currently it is not recommended to allocate big chunks of data in 893 user mode. It will change when a dedicated libc will be used. */ 894 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 895 region in which the guest needs to run. Revisit this. */ 896 #define USE_STATIC_CODE_GEN_BUFFER 897 #endif 898 899 /* Minimum size of the code gen buffer. This number is randomly chosen, 900 but not so small that we can't have a fair number of TB's live. */ 901 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) 902 903 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 904 indicated, this is constrained by the range of direct branches on the 905 host cpu, as used by the TCG implementation of goto_tb. */ 906 #if defined(__x86_64__) 907 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 908 #elif defined(__sparc__) 909 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 910 #elif defined(__powerpc64__) 911 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 912 #elif defined(__powerpc__) 913 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) 914 #elif defined(__aarch64__) 915 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 916 #elif defined(__s390x__) 917 /* We have a +- 4GB range on the branches; leave some slop. */ 918 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) 919 #elif defined(__mips__) 920 /* We have a 256MB branch region, but leave room to make sure the 921 main executable is also within that region. */ 922 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) 923 #else 924 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 925 #endif 926 927 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) 928 929 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 930 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 931 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 932 933 static inline size_t size_code_gen_buffer(size_t tb_size) 934 { 935 /* Size the buffer. */ 936 if (tb_size == 0) { 937 #ifdef USE_STATIC_CODE_GEN_BUFFER 938 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 939 #else 940 /* ??? Needs adjustments. */ 941 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 942 static buffer, we could size this on RESERVED_VA, on the text 943 segment size of the executable, or continue to use the default. */ 944 tb_size = (unsigned long)(ram_size / 4); 945 #endif 946 } 947 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 948 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 949 } 950 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 951 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 952 } 953 return tb_size; 954 } 955 956 #ifdef __mips__ 957 /* In order to use J and JAL within the code_gen_buffer, we require 958 that the buffer not cross a 256MB boundary. */ 959 static inline bool cross_256mb(void *addr, size_t size) 960 { 961 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 962 } 963 964 /* We weren't able to allocate a buffer without crossing that boundary, 965 so make do with the larger portion of the buffer that doesn't cross. 966 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 967 static inline void *split_cross_256mb(void *buf1, size_t size1) 968 { 969 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 970 size_t size2 = buf1 + size1 - buf2; 971 972 size1 = buf2 - buf1; 973 if (size1 < size2) { 974 size1 = size2; 975 buf1 = buf2; 976 } 977 978 tcg_ctx->code_gen_buffer_size = size1; 979 return buf1; 980 } 981 #endif 982 983 #ifdef USE_STATIC_CODE_GEN_BUFFER 984 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 985 __attribute__((aligned(CODE_GEN_ALIGN))); 986 987 static inline void *alloc_code_gen_buffer(void) 988 { 989 void *buf = static_code_gen_buffer; 990 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 991 size_t size; 992 993 /* page-align the beginning and end of the buffer */ 994 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 995 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 996 997 size = end - buf; 998 999 /* Honor a command-line option limiting the size of the buffer. */ 1000 if (size > tcg_ctx->code_gen_buffer_size) { 1001 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1002 qemu_real_host_page_size); 1003 } 1004 tcg_ctx->code_gen_buffer_size = size; 1005 1006 #ifdef __mips__ 1007 if (cross_256mb(buf, size)) { 1008 buf = split_cross_256mb(buf, size); 1009 size = tcg_ctx->code_gen_buffer_size; 1010 } 1011 #endif 1012 1013 if (qemu_mprotect_rwx(buf, size)) { 1014 abort(); 1015 } 1016 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1017 1018 return buf; 1019 } 1020 #elif defined(_WIN32) 1021 static inline void *alloc_code_gen_buffer(void) 1022 { 1023 size_t size = tcg_ctx->code_gen_buffer_size; 1024 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1025 PAGE_EXECUTE_READWRITE); 1026 } 1027 #else 1028 static inline void *alloc_code_gen_buffer(void) 1029 { 1030 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1031 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1032 uintptr_t start = 0; 1033 size_t size = tcg_ctx->code_gen_buffer_size; 1034 void *buf; 1035 1036 /* Constrain the position of the buffer based on the host cpu. 1037 Note that these addresses are chosen in concert with the 1038 addresses assigned in the relevant linker script file. */ 1039 # if defined(__PIE__) || defined(__PIC__) 1040 /* Don't bother setting a preferred location if we're building 1041 a position-independent executable. We're more likely to get 1042 an address near the main executable if we let the kernel 1043 choose the address. */ 1044 # elif defined(__x86_64__) && defined(MAP_32BIT) 1045 /* Force the memory down into low memory with the executable. 1046 Leave the choice of exact location with the kernel. */ 1047 flags |= MAP_32BIT; 1048 /* Cannot expect to map more than 800MB in low memory. */ 1049 if (size > 800u * 1024 * 1024) { 1050 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1051 } 1052 # elif defined(__sparc__) 1053 start = 0x40000000ul; 1054 # elif defined(__s390x__) 1055 start = 0x90000000ul; 1056 # elif defined(__mips__) 1057 # if _MIPS_SIM == _ABI64 1058 start = 0x128000000ul; 1059 # else 1060 start = 0x08000000ul; 1061 # endif 1062 # endif 1063 1064 buf = mmap((void *)start, size, prot, flags, -1, 0); 1065 if (buf == MAP_FAILED) { 1066 return NULL; 1067 } 1068 1069 #ifdef __mips__ 1070 if (cross_256mb(buf, size)) { 1071 /* Try again, with the original still mapped, to avoid re-acquiring 1072 that 256mb crossing. This time don't specify an address. */ 1073 size_t size2; 1074 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1075 switch ((int)(buf2 != MAP_FAILED)) { 1076 case 1: 1077 if (!cross_256mb(buf2, size)) { 1078 /* Success! Use the new buffer. */ 1079 munmap(buf, size); 1080 break; 1081 } 1082 /* Failure. Work with what we had. */ 1083 munmap(buf2, size); 1084 /* fallthru */ 1085 default: 1086 /* Split the original buffer. Free the smaller half. */ 1087 buf2 = split_cross_256mb(buf, size); 1088 size2 = tcg_ctx->code_gen_buffer_size; 1089 if (buf == buf2) { 1090 munmap(buf + size2, size - size2); 1091 } else { 1092 munmap(buf, size - size2); 1093 } 1094 size = size2; 1095 break; 1096 } 1097 buf = buf2; 1098 } 1099 #endif 1100 1101 /* Request large pages for the buffer. */ 1102 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1103 1104 return buf; 1105 } 1106 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1107 1108 static inline void code_gen_alloc(size_t tb_size) 1109 { 1110 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1111 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1112 if (tcg_ctx->code_gen_buffer == NULL) { 1113 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1114 exit(1); 1115 } 1116 } 1117 1118 static bool tb_cmp(const void *ap, const void *bp) 1119 { 1120 const TranslationBlock *a = ap; 1121 const TranslationBlock *b = bp; 1122 1123 return a->pc == b->pc && 1124 a->cs_base == b->cs_base && 1125 a->flags == b->flags && 1126 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1127 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1128 a->page_addr[0] == b->page_addr[0] && 1129 a->page_addr[1] == b->page_addr[1]; 1130 } 1131 1132 static void tb_htable_init(void) 1133 { 1134 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1135 1136 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1137 } 1138 1139 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1140 (in bytes) allocated to the translation buffer. Zero means default 1141 size. */ 1142 void tcg_exec_init(unsigned long tb_size) 1143 { 1144 tcg_allowed = true; 1145 cpu_gen_init(); 1146 page_init(); 1147 tb_htable_init(); 1148 code_gen_alloc(tb_size); 1149 #if defined(CONFIG_SOFTMMU) 1150 /* There's no guest base to take into account, so go ahead and 1151 initialize the prologue now. */ 1152 tcg_prologue_init(tcg_ctx); 1153 #endif 1154 } 1155 1156 /* 1157 * Allocate a new translation block. Flush the translation buffer if 1158 * too many translation blocks or too much generated code. 1159 */ 1160 static TranslationBlock *tb_alloc(target_ulong pc) 1161 { 1162 TranslationBlock *tb; 1163 1164 assert_memory_lock(); 1165 1166 tb = tcg_tb_alloc(tcg_ctx); 1167 if (unlikely(tb == NULL)) { 1168 return NULL; 1169 } 1170 return tb; 1171 } 1172 1173 /* call with @p->lock held */ 1174 static inline void invalidate_page_bitmap(PageDesc *p) 1175 { 1176 assert_page_locked(p); 1177 #ifdef CONFIG_SOFTMMU 1178 g_free(p->code_bitmap); 1179 p->code_bitmap = NULL; 1180 p->code_write_count = 0; 1181 #endif 1182 } 1183 1184 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1185 static void page_flush_tb_1(int level, void **lp) 1186 { 1187 int i; 1188 1189 if (*lp == NULL) { 1190 return; 1191 } 1192 if (level == 0) { 1193 PageDesc *pd = *lp; 1194 1195 for (i = 0; i < V_L2_SIZE; ++i) { 1196 page_lock(&pd[i]); 1197 pd[i].first_tb = (uintptr_t)NULL; 1198 invalidate_page_bitmap(pd + i); 1199 page_unlock(&pd[i]); 1200 } 1201 } else { 1202 void **pp = *lp; 1203 1204 for (i = 0; i < V_L2_SIZE; ++i) { 1205 page_flush_tb_1(level - 1, pp + i); 1206 } 1207 } 1208 } 1209 1210 static void page_flush_tb(void) 1211 { 1212 int i, l1_sz = v_l1_size; 1213 1214 for (i = 0; i < l1_sz; i++) { 1215 page_flush_tb_1(v_l2_levels, l1_map + i); 1216 } 1217 } 1218 1219 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1220 { 1221 const TranslationBlock *tb = value; 1222 size_t *size = data; 1223 1224 *size += tb->tc.size; 1225 return false; 1226 } 1227 1228 /* flush all the translation blocks */ 1229 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1230 { 1231 mmap_lock(); 1232 /* If it is already been done on request of another CPU, 1233 * just retry. 1234 */ 1235 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1236 goto done; 1237 } 1238 1239 if (DEBUG_TB_FLUSH_GATE) { 1240 size_t nb_tbs = tcg_nb_tbs(); 1241 size_t host_size = 0; 1242 1243 tcg_tb_foreach(tb_host_size_iter, &host_size); 1244 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1245 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1246 } 1247 1248 CPU_FOREACH(cpu) { 1249 cpu_tb_jmp_cache_clear(cpu); 1250 } 1251 1252 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1253 page_flush_tb(); 1254 1255 tcg_region_reset_all(); 1256 /* XXX: flush processor icache at this point if cache flush is 1257 expensive */ 1258 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1259 1260 done: 1261 mmap_unlock(); 1262 } 1263 1264 void tb_flush(CPUState *cpu) 1265 { 1266 if (tcg_enabled()) { 1267 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1268 async_safe_run_on_cpu(cpu, do_tb_flush, 1269 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1270 } 1271 } 1272 1273 /* 1274 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1275 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1276 * and let the optimizer get rid of them by wrapping their user-only callers 1277 * with if (DEBUG_TB_CHECK_GATE). 1278 */ 1279 #ifdef CONFIG_USER_ONLY 1280 1281 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1282 { 1283 TranslationBlock *tb = p; 1284 target_ulong addr = *(target_ulong *)userp; 1285 1286 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1287 printf("ERROR invalidate: address=" TARGET_FMT_lx 1288 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1289 } 1290 } 1291 1292 /* verify that all the pages have correct rights for code 1293 * 1294 * Called with mmap_lock held. 1295 */ 1296 static void tb_invalidate_check(target_ulong address) 1297 { 1298 address &= TARGET_PAGE_MASK; 1299 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1300 } 1301 1302 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1303 { 1304 TranslationBlock *tb = p; 1305 int flags1, flags2; 1306 1307 flags1 = page_get_flags(tb->pc); 1308 flags2 = page_get_flags(tb->pc + tb->size - 1); 1309 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1310 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1311 (long)tb->pc, tb->size, flags1, flags2); 1312 } 1313 } 1314 1315 /* verify that all the pages have correct rights for code */ 1316 static void tb_page_check(void) 1317 { 1318 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1319 } 1320 1321 #endif /* CONFIG_USER_ONLY */ 1322 1323 /* 1324 * user-mode: call with mmap_lock held 1325 * !user-mode: call with @pd->lock held 1326 */ 1327 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1328 { 1329 TranslationBlock *tb1; 1330 uintptr_t *pprev; 1331 unsigned int n1; 1332 1333 assert_page_locked(pd); 1334 pprev = &pd->first_tb; 1335 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1336 if (tb1 == tb) { 1337 *pprev = tb1->page_next[n1]; 1338 return; 1339 } 1340 pprev = &tb1->page_next[n1]; 1341 } 1342 g_assert_not_reached(); 1343 } 1344 1345 /* remove @orig from its @n_orig-th jump list */ 1346 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1347 { 1348 uintptr_t ptr, ptr_locked; 1349 TranslationBlock *dest; 1350 TranslationBlock *tb; 1351 uintptr_t *pprev; 1352 int n; 1353 1354 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1355 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1356 dest = (TranslationBlock *)(ptr & ~1); 1357 if (dest == NULL) { 1358 return; 1359 } 1360 1361 qemu_spin_lock(&dest->jmp_lock); 1362 /* 1363 * While acquiring the lock, the jump might have been removed if the 1364 * destination TB was invalidated; check again. 1365 */ 1366 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1367 if (ptr_locked != ptr) { 1368 qemu_spin_unlock(&dest->jmp_lock); 1369 /* 1370 * The only possibility is that the jump was unlinked via 1371 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1372 * because we set the LSB above. 1373 */ 1374 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1375 return; 1376 } 1377 /* 1378 * We first acquired the lock, and since the destination pointer matches, 1379 * we know for sure that @orig is in the jmp list. 1380 */ 1381 pprev = &dest->jmp_list_head; 1382 TB_FOR_EACH_JMP(dest, tb, n) { 1383 if (tb == orig && n == n_orig) { 1384 *pprev = tb->jmp_list_next[n]; 1385 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1386 qemu_spin_unlock(&dest->jmp_lock); 1387 return; 1388 } 1389 pprev = &tb->jmp_list_next[n]; 1390 } 1391 g_assert_not_reached(); 1392 } 1393 1394 /* reset the jump entry 'n' of a TB so that it is not chained to 1395 another TB */ 1396 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1397 { 1398 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1399 tb_set_jmp_target(tb, n, addr); 1400 } 1401 1402 /* remove any jumps to the TB */ 1403 static inline void tb_jmp_unlink(TranslationBlock *dest) 1404 { 1405 TranslationBlock *tb; 1406 int n; 1407 1408 qemu_spin_lock(&dest->jmp_lock); 1409 1410 TB_FOR_EACH_JMP(dest, tb, n) { 1411 tb_reset_jump(tb, n); 1412 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1413 /* No need to clear the list entry; setting the dest ptr is enough */ 1414 } 1415 dest->jmp_list_head = (uintptr_t)NULL; 1416 1417 qemu_spin_unlock(&dest->jmp_lock); 1418 } 1419 1420 /* 1421 * In user-mode, call with mmap_lock held. 1422 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1423 * locks held. 1424 */ 1425 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1426 { 1427 CPUState *cpu; 1428 PageDesc *p; 1429 uint32_t h; 1430 tb_page_addr_t phys_pc; 1431 1432 assert_memory_lock(); 1433 1434 /* make sure no further incoming jumps will be chained to this TB */ 1435 qemu_spin_lock(&tb->jmp_lock); 1436 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1437 qemu_spin_unlock(&tb->jmp_lock); 1438 1439 /* remove the TB from the hash list */ 1440 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1441 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1442 tb->trace_vcpu_dstate); 1443 if (!(tb->cflags & CF_NOCACHE) && 1444 !qht_remove(&tb_ctx.htable, tb, h)) { 1445 return; 1446 } 1447 1448 /* remove the TB from the page list */ 1449 if (rm_from_page_list) { 1450 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1451 tb_page_remove(p, tb); 1452 invalidate_page_bitmap(p); 1453 if (tb->page_addr[1] != -1) { 1454 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1455 tb_page_remove(p, tb); 1456 invalidate_page_bitmap(p); 1457 } 1458 } 1459 1460 /* remove the TB from the hash list */ 1461 h = tb_jmp_cache_hash_func(tb->pc); 1462 CPU_FOREACH(cpu) { 1463 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1464 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1465 } 1466 } 1467 1468 /* suppress this TB from the two jump lists */ 1469 tb_remove_from_jmp_list(tb, 0); 1470 tb_remove_from_jmp_list(tb, 1); 1471 1472 /* suppress any remaining jumps to this TB */ 1473 tb_jmp_unlink(tb); 1474 1475 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1476 tcg_ctx->tb_phys_invalidate_count + 1); 1477 } 1478 1479 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1480 { 1481 do_tb_phys_invalidate(tb, true); 1482 } 1483 1484 /* invalidate one TB 1485 * 1486 * Called with mmap_lock held in user-mode. 1487 */ 1488 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1489 { 1490 if (page_addr == -1 && tb->page_addr[0] != -1) { 1491 page_lock_tb(tb); 1492 do_tb_phys_invalidate(tb, true); 1493 page_unlock_tb(tb); 1494 } else { 1495 do_tb_phys_invalidate(tb, false); 1496 } 1497 } 1498 1499 #ifdef CONFIG_SOFTMMU 1500 /* call with @p->lock held */ 1501 static void build_page_bitmap(PageDesc *p) 1502 { 1503 int n, tb_start, tb_end; 1504 TranslationBlock *tb; 1505 1506 assert_page_locked(p); 1507 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1508 1509 PAGE_FOR_EACH_TB(p, tb, n) { 1510 /* NOTE: this is subtle as a TB may span two physical pages */ 1511 if (n == 0) { 1512 /* NOTE: tb_end may be after the end of the page, but 1513 it is not a problem */ 1514 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1515 tb_end = tb_start + tb->size; 1516 if (tb_end > TARGET_PAGE_SIZE) { 1517 tb_end = TARGET_PAGE_SIZE; 1518 } 1519 } else { 1520 tb_start = 0; 1521 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1522 } 1523 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1524 } 1525 } 1526 #endif 1527 1528 /* add the tb in the target page and protect it if necessary 1529 * 1530 * Called with mmap_lock held for user-mode emulation. 1531 * Called with @p->lock held in !user-mode. 1532 */ 1533 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1534 unsigned int n, tb_page_addr_t page_addr) 1535 { 1536 #ifndef CONFIG_USER_ONLY 1537 bool page_already_protected; 1538 #endif 1539 1540 assert_page_locked(p); 1541 1542 tb->page_addr[n] = page_addr; 1543 tb->page_next[n] = p->first_tb; 1544 #ifndef CONFIG_USER_ONLY 1545 page_already_protected = p->first_tb != (uintptr_t)NULL; 1546 #endif 1547 p->first_tb = (uintptr_t)tb | n; 1548 invalidate_page_bitmap(p); 1549 1550 #if defined(CONFIG_USER_ONLY) 1551 if (p->flags & PAGE_WRITE) { 1552 target_ulong addr; 1553 PageDesc *p2; 1554 int prot; 1555 1556 /* force the host page as non writable (writes will have a 1557 page fault + mprotect overhead) */ 1558 page_addr &= qemu_host_page_mask; 1559 prot = 0; 1560 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1561 addr += TARGET_PAGE_SIZE) { 1562 1563 p2 = page_find(addr >> TARGET_PAGE_BITS); 1564 if (!p2) { 1565 continue; 1566 } 1567 prot |= p2->flags; 1568 p2->flags &= ~PAGE_WRITE; 1569 } 1570 mprotect(g2h(page_addr), qemu_host_page_size, 1571 (prot & PAGE_BITS) & ~PAGE_WRITE); 1572 if (DEBUG_TB_INVALIDATE_GATE) { 1573 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1574 } 1575 } 1576 #else 1577 /* if some code is already present, then the pages are already 1578 protected. So we handle the case where only the first TB is 1579 allocated in a physical page */ 1580 if (!page_already_protected) { 1581 tlb_protect_code(page_addr); 1582 } 1583 #endif 1584 } 1585 1586 /* add a new TB and link it to the physical page tables. phys_page2 is 1587 * (-1) to indicate that only one page contains the TB. 1588 * 1589 * Called with mmap_lock held for user-mode emulation. 1590 * 1591 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1592 * Note that in !user-mode, another thread might have already added a TB 1593 * for the same block of guest code that @tb corresponds to. In that case, 1594 * the caller should discard the original @tb, and use instead the returned TB. 1595 */ 1596 static TranslationBlock * 1597 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1598 tb_page_addr_t phys_page2) 1599 { 1600 PageDesc *p; 1601 PageDesc *p2 = NULL; 1602 1603 assert_memory_lock(); 1604 1605 if (phys_pc == -1) { 1606 /* 1607 * If the TB is not associated with a physical RAM page then 1608 * it must be a temporary one-insn TB, and we have nothing to do 1609 * except fill in the page_addr[] fields. 1610 */ 1611 assert(tb->cflags & CF_NOCACHE); 1612 tb->page_addr[0] = tb->page_addr[1] = -1; 1613 return tb; 1614 } 1615 1616 /* 1617 * Add the TB to the page list, acquiring first the pages's locks. 1618 * We keep the locks held until after inserting the TB in the hash table, 1619 * so that if the insertion fails we know for sure that the TBs are still 1620 * in the page descriptors. 1621 * Note that inserting into the hash table first isn't an option, since 1622 * we can only insert TBs that are fully initialized. 1623 */ 1624 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1625 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1626 if (p2) { 1627 tb_page_add(p2, tb, 1, phys_page2); 1628 } else { 1629 tb->page_addr[1] = -1; 1630 } 1631 1632 if (!(tb->cflags & CF_NOCACHE)) { 1633 void *existing_tb = NULL; 1634 uint32_t h; 1635 1636 /* add in the hash table */ 1637 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1638 tb->trace_vcpu_dstate); 1639 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1640 1641 /* remove TB from the page(s) if we couldn't insert it */ 1642 if (unlikely(existing_tb)) { 1643 tb_page_remove(p, tb); 1644 invalidate_page_bitmap(p); 1645 if (p2) { 1646 tb_page_remove(p2, tb); 1647 invalidate_page_bitmap(p2); 1648 } 1649 tb = existing_tb; 1650 } 1651 } 1652 1653 if (p2 && p2 != p) { 1654 page_unlock(p2); 1655 } 1656 page_unlock(p); 1657 1658 #ifdef CONFIG_USER_ONLY 1659 if (DEBUG_TB_CHECK_GATE) { 1660 tb_page_check(); 1661 } 1662 #endif 1663 return tb; 1664 } 1665 1666 /* Called with mmap_lock held for user mode emulation. */ 1667 TranslationBlock *tb_gen_code(CPUState *cpu, 1668 target_ulong pc, target_ulong cs_base, 1669 uint32_t flags, int cflags) 1670 { 1671 CPUArchState *env = cpu->env_ptr; 1672 TranslationBlock *tb, *existing_tb; 1673 tb_page_addr_t phys_pc, phys_page2; 1674 target_ulong virt_page2; 1675 tcg_insn_unit *gen_code_buf; 1676 int gen_code_size, search_size; 1677 #ifdef CONFIG_PROFILER 1678 TCGProfile *prof = &tcg_ctx->prof; 1679 int64_t ti; 1680 #endif 1681 assert_memory_lock(); 1682 1683 phys_pc = get_page_addr_code(env, pc); 1684 1685 if (phys_pc == -1) { 1686 /* Generate a temporary TB with 1 insn in it */ 1687 cflags &= ~CF_COUNT_MASK; 1688 cflags |= CF_NOCACHE | 1; 1689 } 1690 1691 buffer_overflow: 1692 tb = tb_alloc(pc); 1693 if (unlikely(!tb)) { 1694 /* flush must be done */ 1695 tb_flush(cpu); 1696 mmap_unlock(); 1697 /* Make the execution loop process the flush as soon as possible. */ 1698 cpu->exception_index = EXCP_INTERRUPT; 1699 cpu_loop_exit(cpu); 1700 } 1701 1702 gen_code_buf = tcg_ctx->code_gen_ptr; 1703 tb->tc.ptr = gen_code_buf; 1704 tb->pc = pc; 1705 tb->cs_base = cs_base; 1706 tb->flags = flags; 1707 tb->cflags = cflags; 1708 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1709 tcg_ctx->tb_cflags = cflags; 1710 1711 #ifdef CONFIG_PROFILER 1712 /* includes aborted translations because of exceptions */ 1713 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1714 ti = profile_getclock(); 1715 #endif 1716 1717 tcg_func_start(tcg_ctx); 1718 1719 tcg_ctx->cpu = ENV_GET_CPU(env); 1720 gen_intermediate_code(cpu, tb); 1721 tcg_ctx->cpu = NULL; 1722 1723 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1724 1725 /* generate machine code */ 1726 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1727 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1728 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1729 if (TCG_TARGET_HAS_direct_jump) { 1730 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1731 tcg_ctx->tb_jmp_target_addr = NULL; 1732 } else { 1733 tcg_ctx->tb_jmp_insn_offset = NULL; 1734 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1735 } 1736 1737 #ifdef CONFIG_PROFILER 1738 atomic_set(&prof->tb_count, prof->tb_count + 1); 1739 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1740 ti = profile_getclock(); 1741 #endif 1742 1743 /* ??? Overflow could be handled better here. In particular, we 1744 don't need to re-do gen_intermediate_code, nor should we re-do 1745 the tcg optimization currently hidden inside tcg_gen_code. All 1746 that should be required is to flush the TBs, allocate a new TB, 1747 re-initialize it per above, and re-do the actual code generation. */ 1748 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1749 if (unlikely(gen_code_size < 0)) { 1750 goto buffer_overflow; 1751 } 1752 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1753 if (unlikely(search_size < 0)) { 1754 goto buffer_overflow; 1755 } 1756 tb->tc.size = gen_code_size; 1757 1758 #ifdef CONFIG_PROFILER 1759 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1760 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1761 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1762 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1763 #endif 1764 1765 #ifdef DEBUG_DISAS 1766 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1767 qemu_log_in_addr_range(tb->pc)) { 1768 qemu_log_lock(); 1769 qemu_log("OUT: [size=%d]\n", gen_code_size); 1770 if (tcg_ctx->data_gen_ptr) { 1771 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1772 size_t data_size = gen_code_size - code_size; 1773 size_t i; 1774 1775 log_disas(tb->tc.ptr, code_size); 1776 1777 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1778 if (sizeof(tcg_target_ulong) == 8) { 1779 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1780 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1781 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1782 } else { 1783 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1784 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1785 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1786 } 1787 } 1788 } else { 1789 log_disas(tb->tc.ptr, gen_code_size); 1790 } 1791 qemu_log("\n"); 1792 qemu_log_flush(); 1793 qemu_log_unlock(); 1794 } 1795 #endif 1796 1797 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1798 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1799 CODE_GEN_ALIGN)); 1800 1801 /* init jump list */ 1802 qemu_spin_init(&tb->jmp_lock); 1803 tb->jmp_list_head = (uintptr_t)NULL; 1804 tb->jmp_list_next[0] = (uintptr_t)NULL; 1805 tb->jmp_list_next[1] = (uintptr_t)NULL; 1806 tb->jmp_dest[0] = (uintptr_t)NULL; 1807 tb->jmp_dest[1] = (uintptr_t)NULL; 1808 1809 /* init original jump addresses which have been set during tcg_gen_code() */ 1810 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1811 tb_reset_jump(tb, 0); 1812 } 1813 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1814 tb_reset_jump(tb, 1); 1815 } 1816 1817 /* check next page if needed */ 1818 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1819 phys_page2 = -1; 1820 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1821 phys_page2 = get_page_addr_code(env, virt_page2); 1822 } 1823 /* 1824 * No explicit memory barrier is required -- tb_link_page() makes the 1825 * TB visible in a consistent state. 1826 */ 1827 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1828 /* if the TB already exists, discard what we just translated */ 1829 if (unlikely(existing_tb != tb)) { 1830 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1831 1832 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1833 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1834 return existing_tb; 1835 } 1836 tcg_tb_insert(tb); 1837 return tb; 1838 } 1839 1840 /* 1841 * @p must be non-NULL. 1842 * user-mode: call with mmap_lock held. 1843 * !user-mode: call with all @pages locked. 1844 */ 1845 static void 1846 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1847 PageDesc *p, tb_page_addr_t start, 1848 tb_page_addr_t end, 1849 int is_cpu_write_access) 1850 { 1851 TranslationBlock *tb; 1852 tb_page_addr_t tb_start, tb_end; 1853 int n; 1854 #ifdef TARGET_HAS_PRECISE_SMC 1855 CPUState *cpu = current_cpu; 1856 CPUArchState *env = NULL; 1857 int current_tb_not_found = is_cpu_write_access; 1858 TranslationBlock *current_tb = NULL; 1859 int current_tb_modified = 0; 1860 target_ulong current_pc = 0; 1861 target_ulong current_cs_base = 0; 1862 uint32_t current_flags = 0; 1863 #endif /* TARGET_HAS_PRECISE_SMC */ 1864 1865 assert_page_locked(p); 1866 1867 #if defined(TARGET_HAS_PRECISE_SMC) 1868 if (cpu != NULL) { 1869 env = cpu->env_ptr; 1870 } 1871 #endif 1872 1873 /* we remove all the TBs in the range [start, end[ */ 1874 /* XXX: see if in some cases it could be faster to invalidate all 1875 the code */ 1876 PAGE_FOR_EACH_TB(p, tb, n) { 1877 assert_page_locked(p); 1878 /* NOTE: this is subtle as a TB may span two physical pages */ 1879 if (n == 0) { 1880 /* NOTE: tb_end may be after the end of the page, but 1881 it is not a problem */ 1882 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1883 tb_end = tb_start + tb->size; 1884 } else { 1885 tb_start = tb->page_addr[1]; 1886 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1887 } 1888 if (!(tb_end <= start || tb_start >= end)) { 1889 #ifdef TARGET_HAS_PRECISE_SMC 1890 if (current_tb_not_found) { 1891 current_tb_not_found = 0; 1892 current_tb = NULL; 1893 if (cpu->mem_io_pc) { 1894 /* now we have a real cpu fault */ 1895 current_tb = tcg_tb_lookup(cpu->mem_io_pc); 1896 } 1897 } 1898 if (current_tb == tb && 1899 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1900 /* If we are modifying the current TB, we must stop 1901 its execution. We could be more precise by checking 1902 that the modification is after the current PC, but it 1903 would require a specialized function to partially 1904 restore the CPU state */ 1905 1906 current_tb_modified = 1; 1907 cpu_restore_state_from_tb(cpu, current_tb, 1908 cpu->mem_io_pc, true); 1909 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1910 ¤t_flags); 1911 } 1912 #endif /* TARGET_HAS_PRECISE_SMC */ 1913 tb_phys_invalidate__locked(tb); 1914 } 1915 } 1916 #if !defined(CONFIG_USER_ONLY) 1917 /* if no code remaining, no need to continue to use slow writes */ 1918 if (!p->first_tb) { 1919 invalidate_page_bitmap(p); 1920 tlb_unprotect_code(start); 1921 } 1922 #endif 1923 #ifdef TARGET_HAS_PRECISE_SMC 1924 if (current_tb_modified) { 1925 page_collection_unlock(pages); 1926 /* Force execution of one insn next time. */ 1927 cpu->cflags_next_tb = 1 | curr_cflags(); 1928 mmap_unlock(); 1929 cpu_loop_exit_noexc(cpu); 1930 } 1931 #endif 1932 } 1933 1934 /* 1935 * Invalidate all TBs which intersect with the target physical address range 1936 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1937 * 'is_cpu_write_access' should be true if called from a real cpu write 1938 * access: the virtual CPU will exit the current TB if code is modified inside 1939 * this TB. 1940 * 1941 * Called with mmap_lock held for user-mode emulation 1942 */ 1943 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, 1944 int is_cpu_write_access) 1945 { 1946 struct page_collection *pages; 1947 PageDesc *p; 1948 1949 assert_memory_lock(); 1950 1951 p = page_find(start >> TARGET_PAGE_BITS); 1952 if (p == NULL) { 1953 return; 1954 } 1955 pages = page_collection_lock(start, end); 1956 tb_invalidate_phys_page_range__locked(pages, p, start, end, 1957 is_cpu_write_access); 1958 page_collection_unlock(pages); 1959 } 1960 1961 /* 1962 * Invalidate all TBs which intersect with the target physical address range 1963 * [start;end[. NOTE: start and end may refer to *different* physical pages. 1964 * 'is_cpu_write_access' should be true if called from a real cpu write 1965 * access: the virtual CPU will exit the current TB if code is modified inside 1966 * this TB. 1967 * 1968 * Called with mmap_lock held for user-mode emulation. 1969 */ 1970 #ifdef CONFIG_SOFTMMU 1971 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 1972 #else 1973 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 1974 #endif 1975 { 1976 struct page_collection *pages; 1977 tb_page_addr_t next; 1978 1979 assert_memory_lock(); 1980 1981 pages = page_collection_lock(start, end); 1982 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 1983 start < end; 1984 start = next, next += TARGET_PAGE_SIZE) { 1985 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 1986 tb_page_addr_t bound = MIN(next, end); 1987 1988 if (pd == NULL) { 1989 continue; 1990 } 1991 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 1992 } 1993 page_collection_unlock(pages); 1994 } 1995 1996 #ifdef CONFIG_SOFTMMU 1997 /* len must be <= 8 and start must be a multiple of len. 1998 * Called via softmmu_template.h when code areas are written to with 1999 * iothread mutex not held. 2000 * 2001 * Call with all @pages in the range [@start, @start + len[ locked. 2002 */ 2003 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2004 tb_page_addr_t start, int len) 2005 { 2006 PageDesc *p; 2007 2008 assert_memory_lock(); 2009 2010 p = page_find(start >> TARGET_PAGE_BITS); 2011 if (!p) { 2012 return; 2013 } 2014 2015 assert_page_locked(p); 2016 if (!p->code_bitmap && 2017 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2018 build_page_bitmap(p); 2019 } 2020 if (p->code_bitmap) { 2021 unsigned int nr; 2022 unsigned long b; 2023 2024 nr = start & ~TARGET_PAGE_MASK; 2025 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2026 if (b & ((1 << len) - 1)) { 2027 goto do_invalidate; 2028 } 2029 } else { 2030 do_invalidate: 2031 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1); 2032 } 2033 } 2034 #else 2035 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2036 * host PC of the faulting store instruction that caused this invalidate. 2037 * Returns true if the caller needs to abort execution of the current 2038 * TB (because it was modified by this store and the guest CPU has 2039 * precise-SMC semantics). 2040 */ 2041 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2042 { 2043 TranslationBlock *tb; 2044 PageDesc *p; 2045 int n; 2046 #ifdef TARGET_HAS_PRECISE_SMC 2047 TranslationBlock *current_tb = NULL; 2048 CPUState *cpu = current_cpu; 2049 CPUArchState *env = NULL; 2050 int current_tb_modified = 0; 2051 target_ulong current_pc = 0; 2052 target_ulong current_cs_base = 0; 2053 uint32_t current_flags = 0; 2054 #endif 2055 2056 assert_memory_lock(); 2057 2058 addr &= TARGET_PAGE_MASK; 2059 p = page_find(addr >> TARGET_PAGE_BITS); 2060 if (!p) { 2061 return false; 2062 } 2063 2064 #ifdef TARGET_HAS_PRECISE_SMC 2065 if (p->first_tb && pc != 0) { 2066 current_tb = tcg_tb_lookup(pc); 2067 } 2068 if (cpu != NULL) { 2069 env = cpu->env_ptr; 2070 } 2071 #endif 2072 assert_page_locked(p); 2073 PAGE_FOR_EACH_TB(p, tb, n) { 2074 #ifdef TARGET_HAS_PRECISE_SMC 2075 if (current_tb == tb && 2076 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2077 /* If we are modifying the current TB, we must stop 2078 its execution. We could be more precise by checking 2079 that the modification is after the current PC, but it 2080 would require a specialized function to partially 2081 restore the CPU state */ 2082 2083 current_tb_modified = 1; 2084 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2085 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2086 ¤t_flags); 2087 } 2088 #endif /* TARGET_HAS_PRECISE_SMC */ 2089 tb_phys_invalidate(tb, addr); 2090 } 2091 p->first_tb = (uintptr_t)NULL; 2092 #ifdef TARGET_HAS_PRECISE_SMC 2093 if (current_tb_modified) { 2094 /* Force execution of one insn next time. */ 2095 cpu->cflags_next_tb = 1 | curr_cflags(); 2096 return true; 2097 } 2098 #endif 2099 2100 return false; 2101 } 2102 #endif 2103 2104 /* user-mode: call with mmap_lock held */ 2105 void tb_check_watchpoint(CPUState *cpu) 2106 { 2107 TranslationBlock *tb; 2108 2109 assert_memory_lock(); 2110 2111 tb = tcg_tb_lookup(cpu->mem_io_pc); 2112 if (tb) { 2113 /* We can use retranslation to find the PC. */ 2114 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true); 2115 tb_phys_invalidate(tb, -1); 2116 } else { 2117 /* The exception probably happened in a helper. The CPU state should 2118 have been saved before calling it. Fetch the PC from there. */ 2119 CPUArchState *env = cpu->env_ptr; 2120 target_ulong pc, cs_base; 2121 tb_page_addr_t addr; 2122 uint32_t flags; 2123 2124 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2125 addr = get_page_addr_code(env, pc); 2126 if (addr != -1) { 2127 tb_invalidate_phys_range(addr, addr + 1); 2128 } 2129 } 2130 } 2131 2132 #ifndef CONFIG_USER_ONLY 2133 /* in deterministic execution mode, instructions doing device I/Os 2134 * must be at the end of the TB. 2135 * 2136 * Called by softmmu_template.h, with iothread mutex not held. 2137 */ 2138 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2139 { 2140 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2141 CPUArchState *env = cpu->env_ptr; 2142 #endif 2143 TranslationBlock *tb; 2144 uint32_t n; 2145 2146 tb = tcg_tb_lookup(retaddr); 2147 if (!tb) { 2148 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2149 (void *)retaddr); 2150 } 2151 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2152 2153 /* On MIPS and SH, delay slot instructions can only be restarted if 2154 they were already the first instruction in the TB. If this is not 2155 the first instruction in a TB then re-execute the preceding 2156 branch. */ 2157 n = 1; 2158 #if defined(TARGET_MIPS) 2159 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2160 && env->active_tc.PC != tb->pc) { 2161 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2162 cpu->icount_decr.u16.low++; 2163 env->hflags &= ~MIPS_HFLAG_BMASK; 2164 n = 2; 2165 } 2166 #elif defined(TARGET_SH4) 2167 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2168 && env->pc != tb->pc) { 2169 env->pc -= 2; 2170 cpu->icount_decr.u16.low++; 2171 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2172 n = 2; 2173 } 2174 #endif 2175 2176 /* Generate a new TB executing the I/O insn. */ 2177 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2178 2179 if (tb_cflags(tb) & CF_NOCACHE) { 2180 if (tb->orig_tb) { 2181 /* Invalidate original TB if this TB was generated in 2182 * cpu_exec_nocache() */ 2183 tb_phys_invalidate(tb->orig_tb, -1); 2184 } 2185 tcg_tb_remove(tb); 2186 } 2187 2188 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2189 * the first in the TB) then we end up generating a whole new TB and 2190 * repeating the fault, which is horribly inefficient. 2191 * Better would be to execute just this insn uncached, or generate a 2192 * second new TB. 2193 */ 2194 cpu_loop_exit_noexc(cpu); 2195 } 2196 2197 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2198 { 2199 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2200 2201 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2202 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2203 } 2204 } 2205 2206 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2207 { 2208 /* Discard jump cache entries for any tb which might potentially 2209 overlap the flushed page. */ 2210 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2211 tb_jmp_cache_clear_page(cpu, addr); 2212 } 2213 2214 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf, 2215 struct qht_stats hst) 2216 { 2217 uint32_t hgram_opts; 2218 size_t hgram_bins; 2219 char *hgram; 2220 2221 if (!hst.head_buckets) { 2222 return; 2223 } 2224 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2225 hst.used_head_buckets, hst.head_buckets, 2226 (double)hst.used_head_buckets / hst.head_buckets * 100); 2227 2228 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2229 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2230 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2231 hgram_opts |= QDIST_PR_NODECIMAL; 2232 } 2233 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2234 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2235 qdist_avg(&hst.occupancy) * 100, hgram); 2236 g_free(hgram); 2237 2238 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2239 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2240 if (hgram_bins > 10) { 2241 hgram_bins = 10; 2242 } else { 2243 hgram_bins = 0; 2244 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2245 } 2246 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2247 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n", 2248 qdist_avg(&hst.chain), hgram); 2249 g_free(hgram); 2250 } 2251 2252 struct tb_tree_stats { 2253 size_t nb_tbs; 2254 size_t host_size; 2255 size_t target_size; 2256 size_t max_target_size; 2257 size_t direct_jmp_count; 2258 size_t direct_jmp2_count; 2259 size_t cross_page; 2260 }; 2261 2262 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2263 { 2264 const TranslationBlock *tb = value; 2265 struct tb_tree_stats *tst = data; 2266 2267 tst->nb_tbs++; 2268 tst->host_size += tb->tc.size; 2269 tst->target_size += tb->size; 2270 if (tb->size > tst->max_target_size) { 2271 tst->max_target_size = tb->size; 2272 } 2273 if (tb->page_addr[1] != -1) { 2274 tst->cross_page++; 2275 } 2276 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2277 tst->direct_jmp_count++; 2278 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2279 tst->direct_jmp2_count++; 2280 } 2281 } 2282 return false; 2283 } 2284 2285 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) 2286 { 2287 struct tb_tree_stats tst = {}; 2288 struct qht_stats hst; 2289 size_t nb_tbs, flush_full, flush_part, flush_elide; 2290 2291 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2292 nb_tbs = tst.nb_tbs; 2293 /* XXX: avoid using doubles ? */ 2294 cpu_fprintf(f, "Translation buffer state:\n"); 2295 /* 2296 * Report total code size including the padding and TB structs; 2297 * otherwise users might think "-tb-size" is not honoured. 2298 * For avg host size we use the precise numbers from tb_tree_stats though. 2299 */ 2300 cpu_fprintf(f, "gen code size %zu/%zu\n", 2301 tcg_code_size(), tcg_code_capacity()); 2302 cpu_fprintf(f, "TB count %zu\n", nb_tbs); 2303 cpu_fprintf(f, "TB avg target size %zu max=%zu bytes\n", 2304 nb_tbs ? tst.target_size / nb_tbs : 0, 2305 tst.max_target_size); 2306 cpu_fprintf(f, "TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2307 nb_tbs ? tst.host_size / nb_tbs : 0, 2308 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2309 cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page, 2310 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2311 cpu_fprintf(f, "direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2312 tst.direct_jmp_count, 2313 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2314 tst.direct_jmp2_count, 2315 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2316 2317 qht_statistics_init(&tb_ctx.htable, &hst); 2318 print_qht_statistics(f, cpu_fprintf, hst); 2319 qht_statistics_destroy(&hst); 2320 2321 cpu_fprintf(f, "\nStatistics:\n"); 2322 cpu_fprintf(f, "TB flush count %u\n", 2323 atomic_read(&tb_ctx.tb_flush_count)); 2324 cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count()); 2325 2326 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2327 cpu_fprintf(f, "TLB full flushes %zu\n", flush_full); 2328 cpu_fprintf(f, "TLB partial flushes %zu\n", flush_part); 2329 cpu_fprintf(f, "TLB elided flushes %zu\n", flush_elide); 2330 tcg_dump_info(f, cpu_fprintf); 2331 } 2332 2333 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf) 2334 { 2335 tcg_dump_op_count(f, cpu_fprintf); 2336 } 2337 2338 #else /* CONFIG_USER_ONLY */ 2339 2340 void cpu_interrupt(CPUState *cpu, int mask) 2341 { 2342 g_assert(qemu_mutex_iothread_locked()); 2343 cpu->interrupt_request |= mask; 2344 atomic_set(&cpu->icount_decr.u16.high, -1); 2345 } 2346 2347 /* 2348 * Walks guest process memory "regions" one by one 2349 * and calls callback function 'fn' for each region. 2350 */ 2351 struct walk_memory_regions_data { 2352 walk_memory_regions_fn fn; 2353 void *priv; 2354 target_ulong start; 2355 int prot; 2356 }; 2357 2358 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2359 target_ulong end, int new_prot) 2360 { 2361 if (data->start != -1u) { 2362 int rc = data->fn(data->priv, data->start, end, data->prot); 2363 if (rc != 0) { 2364 return rc; 2365 } 2366 } 2367 2368 data->start = (new_prot ? end : -1u); 2369 data->prot = new_prot; 2370 2371 return 0; 2372 } 2373 2374 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2375 target_ulong base, int level, void **lp) 2376 { 2377 target_ulong pa; 2378 int i, rc; 2379 2380 if (*lp == NULL) { 2381 return walk_memory_regions_end(data, base, 0); 2382 } 2383 2384 if (level == 0) { 2385 PageDesc *pd = *lp; 2386 2387 for (i = 0; i < V_L2_SIZE; ++i) { 2388 int prot = pd[i].flags; 2389 2390 pa = base | (i << TARGET_PAGE_BITS); 2391 if (prot != data->prot) { 2392 rc = walk_memory_regions_end(data, pa, prot); 2393 if (rc != 0) { 2394 return rc; 2395 } 2396 } 2397 } 2398 } else { 2399 void **pp = *lp; 2400 2401 for (i = 0; i < V_L2_SIZE; ++i) { 2402 pa = base | ((target_ulong)i << 2403 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2404 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2405 if (rc != 0) { 2406 return rc; 2407 } 2408 } 2409 } 2410 2411 return 0; 2412 } 2413 2414 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2415 { 2416 struct walk_memory_regions_data data; 2417 uintptr_t i, l1_sz = v_l1_size; 2418 2419 data.fn = fn; 2420 data.priv = priv; 2421 data.start = -1u; 2422 data.prot = 0; 2423 2424 for (i = 0; i < l1_sz; i++) { 2425 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2426 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2427 if (rc != 0) { 2428 return rc; 2429 } 2430 } 2431 2432 return walk_memory_regions_end(&data, 0, 0); 2433 } 2434 2435 static int dump_region(void *priv, target_ulong start, 2436 target_ulong end, unsigned long prot) 2437 { 2438 FILE *f = (FILE *)priv; 2439 2440 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2441 " "TARGET_FMT_lx" %c%c%c\n", 2442 start, end, end - start, 2443 ((prot & PAGE_READ) ? 'r' : '-'), 2444 ((prot & PAGE_WRITE) ? 'w' : '-'), 2445 ((prot & PAGE_EXEC) ? 'x' : '-')); 2446 2447 return 0; 2448 } 2449 2450 /* dump memory mappings */ 2451 void page_dump(FILE *f) 2452 { 2453 const int length = sizeof(target_ulong) * 2; 2454 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2455 length, "start", length, "end", length, "size", "prot"); 2456 walk_memory_regions(f, dump_region); 2457 } 2458 2459 int page_get_flags(target_ulong address) 2460 { 2461 PageDesc *p; 2462 2463 p = page_find(address >> TARGET_PAGE_BITS); 2464 if (!p) { 2465 return 0; 2466 } 2467 return p->flags; 2468 } 2469 2470 /* Modify the flags of a page and invalidate the code if necessary. 2471 The flag PAGE_WRITE_ORG is positioned automatically depending 2472 on PAGE_WRITE. The mmap_lock should already be held. */ 2473 void page_set_flags(target_ulong start, target_ulong end, int flags) 2474 { 2475 target_ulong addr, len; 2476 2477 /* This function should never be called with addresses outside the 2478 guest address space. If this assert fires, it probably indicates 2479 a missing call to h2g_valid. */ 2480 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2481 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2482 #endif 2483 assert(start < end); 2484 assert_memory_lock(); 2485 2486 start = start & TARGET_PAGE_MASK; 2487 end = TARGET_PAGE_ALIGN(end); 2488 2489 if (flags & PAGE_WRITE) { 2490 flags |= PAGE_WRITE_ORG; 2491 } 2492 2493 for (addr = start, len = end - start; 2494 len != 0; 2495 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2496 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2497 2498 /* If the write protection bit is set, then we invalidate 2499 the code inside. */ 2500 if (!(p->flags & PAGE_WRITE) && 2501 (flags & PAGE_WRITE) && 2502 p->first_tb) { 2503 tb_invalidate_phys_page(addr, 0); 2504 } 2505 p->flags = flags; 2506 } 2507 } 2508 2509 int page_check_range(target_ulong start, target_ulong len, int flags) 2510 { 2511 PageDesc *p; 2512 target_ulong end; 2513 target_ulong addr; 2514 2515 /* This function should never be called with addresses outside the 2516 guest address space. If this assert fires, it probably indicates 2517 a missing call to h2g_valid. */ 2518 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2519 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2520 #endif 2521 2522 if (len == 0) { 2523 return 0; 2524 } 2525 if (start + len - 1 < start) { 2526 /* We've wrapped around. */ 2527 return -1; 2528 } 2529 2530 /* must do before we loose bits in the next step */ 2531 end = TARGET_PAGE_ALIGN(start + len); 2532 start = start & TARGET_PAGE_MASK; 2533 2534 for (addr = start, len = end - start; 2535 len != 0; 2536 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2537 p = page_find(addr >> TARGET_PAGE_BITS); 2538 if (!p) { 2539 return -1; 2540 } 2541 if (!(p->flags & PAGE_VALID)) { 2542 return -1; 2543 } 2544 2545 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2546 return -1; 2547 } 2548 if (flags & PAGE_WRITE) { 2549 if (!(p->flags & PAGE_WRITE_ORG)) { 2550 return -1; 2551 } 2552 /* unprotect the page if it was put read-only because it 2553 contains translated code */ 2554 if (!(p->flags & PAGE_WRITE)) { 2555 if (!page_unprotect(addr, 0)) { 2556 return -1; 2557 } 2558 } 2559 } 2560 } 2561 return 0; 2562 } 2563 2564 /* called from signal handler: invalidate the code and unprotect the 2565 * page. Return 0 if the fault was not handled, 1 if it was handled, 2566 * and 2 if it was handled but the caller must cause the TB to be 2567 * immediately exited. (We can only return 2 if the 'pc' argument is 2568 * non-zero.) 2569 */ 2570 int page_unprotect(target_ulong address, uintptr_t pc) 2571 { 2572 unsigned int prot; 2573 bool current_tb_invalidated; 2574 PageDesc *p; 2575 target_ulong host_start, host_end, addr; 2576 2577 /* Technically this isn't safe inside a signal handler. However we 2578 know this only ever happens in a synchronous SEGV handler, so in 2579 practice it seems to be ok. */ 2580 mmap_lock(); 2581 2582 p = page_find(address >> TARGET_PAGE_BITS); 2583 if (!p) { 2584 mmap_unlock(); 2585 return 0; 2586 } 2587 2588 /* if the page was really writable, then we change its 2589 protection back to writable */ 2590 if (p->flags & PAGE_WRITE_ORG) { 2591 current_tb_invalidated = false; 2592 if (p->flags & PAGE_WRITE) { 2593 /* If the page is actually marked WRITE then assume this is because 2594 * this thread raced with another one which got here first and 2595 * set the page to PAGE_WRITE and did the TB invalidate for us. 2596 */ 2597 #ifdef TARGET_HAS_PRECISE_SMC 2598 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2599 if (current_tb) { 2600 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2601 } 2602 #endif 2603 } else { 2604 host_start = address & qemu_host_page_mask; 2605 host_end = host_start + qemu_host_page_size; 2606 2607 prot = 0; 2608 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2609 p = page_find(addr >> TARGET_PAGE_BITS); 2610 p->flags |= PAGE_WRITE; 2611 prot |= p->flags; 2612 2613 /* and since the content will be modified, we must invalidate 2614 the corresponding translated code. */ 2615 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2616 #ifdef CONFIG_USER_ONLY 2617 if (DEBUG_TB_CHECK_GATE) { 2618 tb_invalidate_check(addr); 2619 } 2620 #endif 2621 } 2622 mprotect((void *)g2h(host_start), qemu_host_page_size, 2623 prot & PAGE_BITS); 2624 } 2625 mmap_unlock(); 2626 /* If current TB was invalidated return to main loop */ 2627 return current_tb_invalidated ? 2 : 1; 2628 } 2629 mmap_unlock(); 2630 return 0; 2631 } 2632 #endif /* CONFIG_USER_ONLY */ 2633 2634 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2635 void tcg_flush_softmmu_tlb(CPUState *cs) 2636 { 2637 #ifdef CONFIG_SOFTMMU 2638 tlb_flush(cs); 2639 #endif 2640 } 2641