1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 #include "qemu-common.h" 23 24 #define NO_CPU_IO_DEFS 25 #include "cpu.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #if defined(CONFIG_USER_ONLY) 31 #include "qemu.h" 32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 33 #include <sys/param.h> 34 #if __FreeBSD_version >= 700104 35 #define HAVE_KINFO_GETVMMAP 36 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 37 #include <sys/proc.h> 38 #include <machine/profile.h> 39 #define _KERNEL 40 #include <sys/user.h> 41 #undef _KERNEL 42 #undef sigqueue 43 #include <libutil.h> 44 #endif 45 #endif 46 #else 47 #include "exec/ram_addr.h" 48 #endif 49 50 #include "exec/cputlb.h" 51 #include "exec/tb-hash.h" 52 #include "exec/translate-all.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/error-report.h" 55 #include "qemu/qemu-print.h" 56 #include "qemu/timer.h" 57 #include "qemu/main-loop.h" 58 #include "exec/log.h" 59 #include "sysemu/cpus.h" 60 #include "sysemu/cpu-timers.h" 61 #include "sysemu/tcg.h" 62 #include "qapi/error.h" 63 #include "internal.h" 64 65 /* #define DEBUG_TB_INVALIDATE */ 66 /* #define DEBUG_TB_FLUSH */ 67 /* make various TB consistency checks */ 68 /* #define DEBUG_TB_CHECK */ 69 70 #ifdef DEBUG_TB_INVALIDATE 71 #define DEBUG_TB_INVALIDATE_GATE 1 72 #else 73 #define DEBUG_TB_INVALIDATE_GATE 0 74 #endif 75 76 #ifdef DEBUG_TB_FLUSH 77 #define DEBUG_TB_FLUSH_GATE 1 78 #else 79 #define DEBUG_TB_FLUSH_GATE 0 80 #endif 81 82 #if !defined(CONFIG_USER_ONLY) 83 /* TB consistency checks only implemented for usermode emulation. */ 84 #undef DEBUG_TB_CHECK 85 #endif 86 87 #ifdef DEBUG_TB_CHECK 88 #define DEBUG_TB_CHECK_GATE 1 89 #else 90 #define DEBUG_TB_CHECK_GATE 0 91 #endif 92 93 /* Access to the various translations structures need to be serialised via locks 94 * for consistency. 95 * In user-mode emulation access to the memory related structures are protected 96 * with mmap_lock. 97 * In !user-mode we use per-page locks. 98 */ 99 #ifdef CONFIG_SOFTMMU 100 #define assert_memory_lock() 101 #else 102 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 103 #endif 104 105 #define SMC_BITMAP_USE_THRESHOLD 10 106 107 typedef struct PageDesc { 108 /* list of TBs intersecting this ram page */ 109 uintptr_t first_tb; 110 #ifdef CONFIG_SOFTMMU 111 /* in order to optimize self modifying code, we count the number 112 of lookups we do to a given page to use a bitmap */ 113 unsigned long *code_bitmap; 114 unsigned int code_write_count; 115 #else 116 unsigned long flags; 117 void *target_data; 118 #endif 119 #ifndef CONFIG_USER_ONLY 120 QemuSpin lock; 121 #endif 122 } PageDesc; 123 124 /** 125 * struct page_entry - page descriptor entry 126 * @pd: pointer to the &struct PageDesc of the page this entry represents 127 * @index: page index of the page 128 * @locked: whether the page is locked 129 * 130 * This struct helps us keep track of the locked state of a page, without 131 * bloating &struct PageDesc. 132 * 133 * A page lock protects accesses to all fields of &struct PageDesc. 134 * 135 * See also: &struct page_collection. 136 */ 137 struct page_entry { 138 PageDesc *pd; 139 tb_page_addr_t index; 140 bool locked; 141 }; 142 143 /** 144 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 145 * @tree: Binary search tree (BST) of the pages, with key == page index 146 * @max: Pointer to the page in @tree with the highest page index 147 * 148 * To avoid deadlock we lock pages in ascending order of page index. 149 * When operating on a set of pages, we need to keep track of them so that 150 * we can lock them in order and also unlock them later. For this we collect 151 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 152 * @tree implementation we use does not provide an O(1) operation to obtain the 153 * highest-ranked element, we use @max to keep track of the inserted page 154 * with the highest index. This is valuable because if a page is not in 155 * the tree and its index is higher than @max's, then we can lock it 156 * without breaking the locking order rule. 157 * 158 * Note on naming: 'struct page_set' would be shorter, but we already have a few 159 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 160 * 161 * See also: page_collection_lock(). 162 */ 163 struct page_collection { 164 GTree *tree; 165 struct page_entry *max; 166 }; 167 168 /* list iterators for lists of tagged pointers in TranslationBlock */ 169 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 170 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 171 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 172 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 173 174 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 175 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 176 177 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 178 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 179 180 /* 181 * In system mode we want L1_MAP to be based on ram offsets, 182 * while in user mode we want it to be based on virtual addresses. 183 * 184 * TODO: For user mode, see the caveat re host vs guest virtual 185 * address spaces near GUEST_ADDR_MAX. 186 */ 187 #if !defined(CONFIG_USER_ONLY) 188 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 189 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 190 #else 191 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 192 #endif 193 #else 194 # define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS) 195 #endif 196 197 /* Size of the L2 (and L3, etc) page tables. */ 198 #define V_L2_BITS 10 199 #define V_L2_SIZE (1 << V_L2_BITS) 200 201 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 202 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 203 sizeof_field(TranslationBlock, trace_vcpu_dstate) 204 * BITS_PER_BYTE); 205 206 /* 207 * L1 Mapping properties 208 */ 209 static int v_l1_size; 210 static int v_l1_shift; 211 static int v_l2_levels; 212 213 /* The bottom level has pointers to PageDesc, and is indexed by 214 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 215 */ 216 #define V_L1_MIN_BITS 4 217 #define V_L1_MAX_BITS (V_L2_BITS + 3) 218 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 219 220 static void *l1_map[V_L1_MAX_SIZE]; 221 222 /* code generation context */ 223 TCGContext tcg_init_ctx; 224 __thread TCGContext *tcg_ctx; 225 TBContext tb_ctx; 226 bool parallel_cpus; 227 228 static void page_table_config_init(void) 229 { 230 uint32_t v_l1_bits; 231 232 assert(TARGET_PAGE_BITS); 233 /* The bits remaining after N lower levels of page tables. */ 234 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 235 if (v_l1_bits < V_L1_MIN_BITS) { 236 v_l1_bits += V_L2_BITS; 237 } 238 239 v_l1_size = 1 << v_l1_bits; 240 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 241 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 242 243 assert(v_l1_bits <= V_L1_MAX_BITS); 244 assert(v_l1_shift % V_L2_BITS == 0); 245 assert(v_l2_levels >= 0); 246 } 247 248 static void cpu_gen_init(void) 249 { 250 tcg_context_init(&tcg_init_ctx); 251 } 252 253 /* Encode VAL as a signed leb128 sequence at P. 254 Return P incremented past the encoded value. */ 255 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 256 { 257 int more, byte; 258 259 do { 260 byte = val & 0x7f; 261 val >>= 7; 262 more = !((val == 0 && (byte & 0x40) == 0) 263 || (val == -1 && (byte & 0x40) != 0)); 264 if (more) { 265 byte |= 0x80; 266 } 267 *p++ = byte; 268 } while (more); 269 270 return p; 271 } 272 273 /* Decode a signed leb128 sequence at *PP; increment *PP past the 274 decoded value. Return the decoded value. */ 275 static target_long decode_sleb128(const uint8_t **pp) 276 { 277 const uint8_t *p = *pp; 278 target_long val = 0; 279 int byte, shift = 0; 280 281 do { 282 byte = *p++; 283 val |= (target_ulong)(byte & 0x7f) << shift; 284 shift += 7; 285 } while (byte & 0x80); 286 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 287 val |= -(target_ulong)1 << shift; 288 } 289 290 *pp = p; 291 return val; 292 } 293 294 /* Encode the data collected about the instructions while compiling TB. 295 Place the data at BLOCK, and return the number of bytes consumed. 296 297 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 298 which come from the target's insn_start data, followed by a uintptr_t 299 which comes from the host pc of the end of the code implementing the insn. 300 301 Each line of the table is encoded as sleb128 deltas from the previous 302 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 303 That is, the first column is seeded with the guest pc, the last column 304 with the host pc, and the middle columns with zeros. */ 305 306 static int encode_search(TranslationBlock *tb, uint8_t *block) 307 { 308 uint8_t *highwater = tcg_ctx->code_gen_highwater; 309 uint8_t *p = block; 310 int i, j, n; 311 312 for (i = 0, n = tb->icount; i < n; ++i) { 313 target_ulong prev; 314 315 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 316 if (i == 0) { 317 prev = (j == 0 ? tb->pc : 0); 318 } else { 319 prev = tcg_ctx->gen_insn_data[i - 1][j]; 320 } 321 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 322 } 323 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 324 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 325 326 /* Test for (pending) buffer overflow. The assumption is that any 327 one row beginning below the high water mark cannot overrun 328 the buffer completely. Thus we can test for overflow after 329 encoding a row without having to check during encoding. */ 330 if (unlikely(p > highwater)) { 331 return -1; 332 } 333 } 334 335 return p - block; 336 } 337 338 /* The cpu state corresponding to 'searched_pc' is restored. 339 * When reset_icount is true, current TB will be interrupted and 340 * icount should be recalculated. 341 */ 342 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 343 uintptr_t searched_pc, bool reset_icount) 344 { 345 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 346 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 347 CPUArchState *env = cpu->env_ptr; 348 const uint8_t *p = tb->tc.ptr + tb->tc.size; 349 int i, j, num_insns = tb->icount; 350 #ifdef CONFIG_PROFILER 351 TCGProfile *prof = &tcg_ctx->prof; 352 int64_t ti = profile_getclock(); 353 #endif 354 355 searched_pc -= GETPC_ADJ; 356 357 if (searched_pc < host_pc) { 358 return -1; 359 } 360 361 /* Reconstruct the stored insn data while looking for the point at 362 which the end of the insn exceeds the searched_pc. */ 363 for (i = 0; i < num_insns; ++i) { 364 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 365 data[j] += decode_sleb128(&p); 366 } 367 host_pc += decode_sleb128(&p); 368 if (host_pc > searched_pc) { 369 goto found; 370 } 371 } 372 return -1; 373 374 found: 375 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 376 assert(icount_enabled()); 377 /* Reset the cycle counter to the start of the block 378 and shift if to the number of actually executed instructions */ 379 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 380 } 381 restore_state_to_opc(env, tb, data); 382 383 #ifdef CONFIG_PROFILER 384 qatomic_set(&prof->restore_time, 385 prof->restore_time + profile_getclock() - ti); 386 qatomic_set(&prof->restore_count, prof->restore_count + 1); 387 #endif 388 return 0; 389 } 390 391 void tb_destroy(TranslationBlock *tb) 392 { 393 qemu_spin_destroy(&tb->jmp_lock); 394 } 395 396 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 397 { 398 /* 399 * The host_pc has to be in the rx region of the code buffer. 400 * If it is not we will not be able to resolve it here. 401 * The two cases where host_pc will not be correct are: 402 * 403 * - fault during translation (instruction fetch) 404 * - fault from helper (not using GETPC() macro) 405 * 406 * Either way we need return early as we can't resolve it here. 407 */ 408 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) { 409 TranslationBlock *tb = tcg_tb_lookup(host_pc); 410 if (tb) { 411 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 412 if (tb_cflags(tb) & CF_NOCACHE) { 413 /* one-shot translation, invalidate it immediately */ 414 tb_phys_invalidate(tb, -1); 415 tcg_tb_remove(tb); 416 tb_destroy(tb); 417 } 418 return true; 419 } 420 } 421 return false; 422 } 423 424 static void page_init(void) 425 { 426 page_size_init(); 427 page_table_config_init(); 428 429 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 430 { 431 #ifdef HAVE_KINFO_GETVMMAP 432 struct kinfo_vmentry *freep; 433 int i, cnt; 434 435 freep = kinfo_getvmmap(getpid(), &cnt); 436 if (freep) { 437 mmap_lock(); 438 for (i = 0; i < cnt; i++) { 439 unsigned long startaddr, endaddr; 440 441 startaddr = freep[i].kve_start; 442 endaddr = freep[i].kve_end; 443 if (h2g_valid(startaddr)) { 444 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 445 446 if (h2g_valid(endaddr)) { 447 endaddr = h2g(endaddr); 448 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 449 } else { 450 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 451 endaddr = ~0ul; 452 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 453 #endif 454 } 455 } 456 } 457 free(freep); 458 mmap_unlock(); 459 } 460 #else 461 FILE *f; 462 463 last_brk = (unsigned long)sbrk(0); 464 465 f = fopen("/compat/linux/proc/self/maps", "r"); 466 if (f) { 467 mmap_lock(); 468 469 do { 470 unsigned long startaddr, endaddr; 471 int n; 472 473 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 474 475 if (n == 2 && h2g_valid(startaddr)) { 476 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 477 478 if (h2g_valid(endaddr)) { 479 endaddr = h2g(endaddr); 480 } else { 481 endaddr = ~0ul; 482 } 483 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 484 } 485 } while (!feof(f)); 486 487 fclose(f); 488 mmap_unlock(); 489 } 490 #endif 491 } 492 #endif 493 } 494 495 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 496 { 497 PageDesc *pd; 498 void **lp; 499 int i; 500 501 /* Level 1. Always allocated. */ 502 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 503 504 /* Level 2..N-1. */ 505 for (i = v_l2_levels; i > 0; i--) { 506 void **p = qatomic_rcu_read(lp); 507 508 if (p == NULL) { 509 void *existing; 510 511 if (!alloc) { 512 return NULL; 513 } 514 p = g_new0(void *, V_L2_SIZE); 515 existing = qatomic_cmpxchg(lp, NULL, p); 516 if (unlikely(existing)) { 517 g_free(p); 518 p = existing; 519 } 520 } 521 522 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 523 } 524 525 pd = qatomic_rcu_read(lp); 526 if (pd == NULL) { 527 void *existing; 528 529 if (!alloc) { 530 return NULL; 531 } 532 pd = g_new0(PageDesc, V_L2_SIZE); 533 #ifndef CONFIG_USER_ONLY 534 { 535 int i; 536 537 for (i = 0; i < V_L2_SIZE; i++) { 538 qemu_spin_init(&pd[i].lock); 539 } 540 } 541 #endif 542 existing = qatomic_cmpxchg(lp, NULL, pd); 543 if (unlikely(existing)) { 544 #ifndef CONFIG_USER_ONLY 545 { 546 int i; 547 548 for (i = 0; i < V_L2_SIZE; i++) { 549 qemu_spin_destroy(&pd[i].lock); 550 } 551 } 552 #endif 553 g_free(pd); 554 pd = existing; 555 } 556 } 557 558 return pd + (index & (V_L2_SIZE - 1)); 559 } 560 561 static inline PageDesc *page_find(tb_page_addr_t index) 562 { 563 return page_find_alloc(index, 0); 564 } 565 566 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 567 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 568 569 /* In user-mode page locks aren't used; mmap_lock is enough */ 570 #ifdef CONFIG_USER_ONLY 571 572 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 573 574 static inline void page_lock(PageDesc *pd) 575 { } 576 577 static inline void page_unlock(PageDesc *pd) 578 { } 579 580 static inline void page_lock_tb(const TranslationBlock *tb) 581 { } 582 583 static inline void page_unlock_tb(const TranslationBlock *tb) 584 { } 585 586 struct page_collection * 587 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 588 { 589 return NULL; 590 } 591 592 void page_collection_unlock(struct page_collection *set) 593 { } 594 #else /* !CONFIG_USER_ONLY */ 595 596 #ifdef CONFIG_DEBUG_TCG 597 598 static __thread GHashTable *ht_pages_locked_debug; 599 600 static void ht_pages_locked_debug_init(void) 601 { 602 if (ht_pages_locked_debug) { 603 return; 604 } 605 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 606 } 607 608 static bool page_is_locked(const PageDesc *pd) 609 { 610 PageDesc *found; 611 612 ht_pages_locked_debug_init(); 613 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 614 return !!found; 615 } 616 617 static void page_lock__debug(PageDesc *pd) 618 { 619 ht_pages_locked_debug_init(); 620 g_assert(!page_is_locked(pd)); 621 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 622 } 623 624 static void page_unlock__debug(const PageDesc *pd) 625 { 626 bool removed; 627 628 ht_pages_locked_debug_init(); 629 g_assert(page_is_locked(pd)); 630 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 631 g_assert(removed); 632 } 633 634 static void 635 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 636 { 637 if (unlikely(!page_is_locked(pd))) { 638 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 639 pd, file, line); 640 abort(); 641 } 642 } 643 644 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 645 646 void assert_no_pages_locked(void) 647 { 648 ht_pages_locked_debug_init(); 649 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 650 } 651 652 #else /* !CONFIG_DEBUG_TCG */ 653 654 #define assert_page_locked(pd) 655 656 static inline void page_lock__debug(const PageDesc *pd) 657 { 658 } 659 660 static inline void page_unlock__debug(const PageDesc *pd) 661 { 662 } 663 664 #endif /* CONFIG_DEBUG_TCG */ 665 666 static inline void page_lock(PageDesc *pd) 667 { 668 page_lock__debug(pd); 669 qemu_spin_lock(&pd->lock); 670 } 671 672 static inline void page_unlock(PageDesc *pd) 673 { 674 qemu_spin_unlock(&pd->lock); 675 page_unlock__debug(pd); 676 } 677 678 /* lock the page(s) of a TB in the correct acquisition order */ 679 static inline void page_lock_tb(const TranslationBlock *tb) 680 { 681 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 682 } 683 684 static inline void page_unlock_tb(const TranslationBlock *tb) 685 { 686 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 687 688 page_unlock(p1); 689 if (unlikely(tb->page_addr[1] != -1)) { 690 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 691 692 if (p2 != p1) { 693 page_unlock(p2); 694 } 695 } 696 } 697 698 static inline struct page_entry * 699 page_entry_new(PageDesc *pd, tb_page_addr_t index) 700 { 701 struct page_entry *pe = g_malloc(sizeof(*pe)); 702 703 pe->index = index; 704 pe->pd = pd; 705 pe->locked = false; 706 return pe; 707 } 708 709 static void page_entry_destroy(gpointer p) 710 { 711 struct page_entry *pe = p; 712 713 g_assert(pe->locked); 714 page_unlock(pe->pd); 715 g_free(pe); 716 } 717 718 /* returns false on success */ 719 static bool page_entry_trylock(struct page_entry *pe) 720 { 721 bool busy; 722 723 busy = qemu_spin_trylock(&pe->pd->lock); 724 if (!busy) { 725 g_assert(!pe->locked); 726 pe->locked = true; 727 page_lock__debug(pe->pd); 728 } 729 return busy; 730 } 731 732 static void do_page_entry_lock(struct page_entry *pe) 733 { 734 page_lock(pe->pd); 735 g_assert(!pe->locked); 736 pe->locked = true; 737 } 738 739 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 740 { 741 struct page_entry *pe = value; 742 743 do_page_entry_lock(pe); 744 return FALSE; 745 } 746 747 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 748 { 749 struct page_entry *pe = value; 750 751 if (pe->locked) { 752 pe->locked = false; 753 page_unlock(pe->pd); 754 } 755 return FALSE; 756 } 757 758 /* 759 * Trylock a page, and if successful, add the page to a collection. 760 * Returns true ("busy") if the page could not be locked; false otherwise. 761 */ 762 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 763 { 764 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 765 struct page_entry *pe; 766 PageDesc *pd; 767 768 pe = g_tree_lookup(set->tree, &index); 769 if (pe) { 770 return false; 771 } 772 773 pd = page_find(index); 774 if (pd == NULL) { 775 return false; 776 } 777 778 pe = page_entry_new(pd, index); 779 g_tree_insert(set->tree, &pe->index, pe); 780 781 /* 782 * If this is either (1) the first insertion or (2) a page whose index 783 * is higher than any other so far, just lock the page and move on. 784 */ 785 if (set->max == NULL || pe->index > set->max->index) { 786 set->max = pe; 787 do_page_entry_lock(pe); 788 return false; 789 } 790 /* 791 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 792 * locks in order. 793 */ 794 return page_entry_trylock(pe); 795 } 796 797 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 798 { 799 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 800 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 801 802 if (a == b) { 803 return 0; 804 } else if (a < b) { 805 return -1; 806 } 807 return 1; 808 } 809 810 /* 811 * Lock a range of pages ([@start,@end[) as well as the pages of all 812 * intersecting TBs. 813 * Locking order: acquire locks in ascending order of page index. 814 */ 815 struct page_collection * 816 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 817 { 818 struct page_collection *set = g_malloc(sizeof(*set)); 819 tb_page_addr_t index; 820 PageDesc *pd; 821 822 start >>= TARGET_PAGE_BITS; 823 end >>= TARGET_PAGE_BITS; 824 g_assert(start <= end); 825 826 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 827 page_entry_destroy); 828 set->max = NULL; 829 assert_no_pages_locked(); 830 831 retry: 832 g_tree_foreach(set->tree, page_entry_lock, NULL); 833 834 for (index = start; index <= end; index++) { 835 TranslationBlock *tb; 836 int n; 837 838 pd = page_find(index); 839 if (pd == NULL) { 840 continue; 841 } 842 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 843 g_tree_foreach(set->tree, page_entry_unlock, NULL); 844 goto retry; 845 } 846 assert_page_locked(pd); 847 PAGE_FOR_EACH_TB(pd, tb, n) { 848 if (page_trylock_add(set, tb->page_addr[0]) || 849 (tb->page_addr[1] != -1 && 850 page_trylock_add(set, tb->page_addr[1]))) { 851 /* drop all locks, and reacquire in order */ 852 g_tree_foreach(set->tree, page_entry_unlock, NULL); 853 goto retry; 854 } 855 } 856 } 857 return set; 858 } 859 860 void page_collection_unlock(struct page_collection *set) 861 { 862 /* entries are unlocked and freed via page_entry_destroy */ 863 g_tree_destroy(set->tree); 864 g_free(set); 865 } 866 867 #endif /* !CONFIG_USER_ONLY */ 868 869 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 870 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 871 { 872 PageDesc *p1, *p2; 873 tb_page_addr_t page1; 874 tb_page_addr_t page2; 875 876 assert_memory_lock(); 877 g_assert(phys1 != -1); 878 879 page1 = phys1 >> TARGET_PAGE_BITS; 880 page2 = phys2 >> TARGET_PAGE_BITS; 881 882 p1 = page_find_alloc(page1, alloc); 883 if (ret_p1) { 884 *ret_p1 = p1; 885 } 886 if (likely(phys2 == -1)) { 887 page_lock(p1); 888 return; 889 } else if (page1 == page2) { 890 page_lock(p1); 891 if (ret_p2) { 892 *ret_p2 = p1; 893 } 894 return; 895 } 896 p2 = page_find_alloc(page2, alloc); 897 if (ret_p2) { 898 *ret_p2 = p2; 899 } 900 if (page1 < page2) { 901 page_lock(p1); 902 page_lock(p2); 903 } else { 904 page_lock(p2); 905 page_lock(p1); 906 } 907 } 908 909 /* Minimum size of the code gen buffer. This number is randomly chosen, 910 but not so small that we can't have a fair number of TB's live. */ 911 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) 912 913 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 914 indicated, this is constrained by the range of direct branches on the 915 host cpu, as used by the TCG implementation of goto_tb. */ 916 #if defined(__x86_64__) 917 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 918 #elif defined(__sparc__) 919 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 920 #elif defined(__powerpc64__) 921 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 922 #elif defined(__powerpc__) 923 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB) 924 #elif defined(__aarch64__) 925 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 926 #elif defined(__s390x__) 927 /* We have a +- 4GB range on the branches; leave some slop. */ 928 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB) 929 #elif defined(__mips__) 930 /* We have a 256MB branch region, but leave room to make sure the 931 main executable is also within that region. */ 932 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB) 933 #else 934 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 935 #endif 936 937 #if TCG_TARGET_REG_BITS == 32 938 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) 939 #ifdef CONFIG_USER_ONLY 940 /* 941 * For user mode on smaller 32 bit systems we may run into trouble 942 * allocating big chunks of data in the right place. On these systems 943 * we utilise a static code generation buffer directly in the binary. 944 */ 945 #define USE_STATIC_CODE_GEN_BUFFER 946 #endif 947 #else /* TCG_TARGET_REG_BITS == 64 */ 948 #ifdef CONFIG_USER_ONLY 949 /* 950 * As user-mode emulation typically means running multiple instances 951 * of the translator don't go too nuts with our default code gen 952 * buffer lest we make things too hard for the OS. 953 */ 954 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) 955 #else 956 /* 957 * We expect most system emulation to run one or two guests per host. 958 * Users running large scale system emulation may want to tweak their 959 * runtime setup via the tb-size control on the command line. 960 */ 961 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) 962 #endif 963 #endif 964 965 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 966 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 967 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 968 969 static size_t size_code_gen_buffer(size_t tb_size) 970 { 971 /* Size the buffer. */ 972 if (tb_size == 0) { 973 size_t phys_mem = qemu_get_host_physmem(); 974 if (phys_mem == 0) { 975 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 976 } else { 977 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8); 978 } 979 } 980 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 981 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 982 } 983 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 984 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 985 } 986 return tb_size; 987 } 988 989 #ifdef __mips__ 990 /* In order to use J and JAL within the code_gen_buffer, we require 991 that the buffer not cross a 256MB boundary. */ 992 static inline bool cross_256mb(void *addr, size_t size) 993 { 994 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 995 } 996 997 /* We weren't able to allocate a buffer without crossing that boundary, 998 so make do with the larger portion of the buffer that doesn't cross. 999 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 1000 static inline void *split_cross_256mb(void *buf1, size_t size1) 1001 { 1002 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 1003 size_t size2 = buf1 + size1 - buf2; 1004 1005 size1 = buf2 - buf1; 1006 if (size1 < size2) { 1007 size1 = size2; 1008 buf1 = buf2; 1009 } 1010 1011 tcg_ctx->code_gen_buffer_size = size1; 1012 return buf1; 1013 } 1014 #endif 1015 1016 #ifdef USE_STATIC_CODE_GEN_BUFFER 1017 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 1018 __attribute__((aligned(CODE_GEN_ALIGN))); 1019 1020 static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp) 1021 { 1022 void *buf, *end; 1023 size_t size; 1024 1025 if (splitwx > 0) { 1026 error_setg(errp, "jit split-wx not supported"); 1027 return false; 1028 } 1029 1030 /* page-align the beginning and end of the buffer */ 1031 buf = static_code_gen_buffer; 1032 end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 1033 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 1034 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 1035 1036 size = end - buf; 1037 1038 /* Honor a command-line option limiting the size of the buffer. */ 1039 if (size > tb_size) { 1040 size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size); 1041 } 1042 tcg_ctx->code_gen_buffer_size = size; 1043 1044 #ifdef __mips__ 1045 if (cross_256mb(buf, size)) { 1046 buf = split_cross_256mb(buf, size); 1047 size = tcg_ctx->code_gen_buffer_size; 1048 } 1049 #endif 1050 1051 if (qemu_mprotect_rwx(buf, size)) { 1052 error_setg_errno(errp, errno, "mprotect of jit buffer"); 1053 return false; 1054 } 1055 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1056 1057 tcg_ctx->code_gen_buffer = buf; 1058 return true; 1059 } 1060 #elif defined(_WIN32) 1061 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) 1062 { 1063 void *buf; 1064 1065 if (splitwx > 0) { 1066 error_setg(errp, "jit split-wx not supported"); 1067 return false; 1068 } 1069 1070 buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1071 PAGE_EXECUTE_READWRITE); 1072 if (buf == NULL) { 1073 error_setg_win32(errp, GetLastError(), 1074 "allocate %zu bytes for jit buffer", size); 1075 return false; 1076 } 1077 1078 tcg_ctx->code_gen_buffer = buf; 1079 tcg_ctx->code_gen_buffer_size = size; 1080 return true; 1081 } 1082 #else 1083 static bool alloc_code_gen_buffer_anon(size_t size, int prot, 1084 int flags, Error **errp) 1085 { 1086 void *buf; 1087 1088 buf = mmap(NULL, size, prot, flags, -1, 0); 1089 if (buf == MAP_FAILED) { 1090 error_setg_errno(errp, errno, 1091 "allocate %zu bytes for jit buffer", size); 1092 return false; 1093 } 1094 tcg_ctx->code_gen_buffer_size = size; 1095 1096 #ifdef __mips__ 1097 if (cross_256mb(buf, size)) { 1098 /* 1099 * Try again, with the original still mapped, to avoid re-acquiring 1100 * the same 256mb crossing. 1101 */ 1102 size_t size2; 1103 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1104 switch ((int)(buf2 != MAP_FAILED)) { 1105 case 1: 1106 if (!cross_256mb(buf2, size)) { 1107 /* Success! Use the new buffer. */ 1108 munmap(buf, size); 1109 break; 1110 } 1111 /* Failure. Work with what we had. */ 1112 munmap(buf2, size); 1113 /* fallthru */ 1114 default: 1115 /* Split the original buffer. Free the smaller half. */ 1116 buf2 = split_cross_256mb(buf, size); 1117 size2 = tcg_ctx->code_gen_buffer_size; 1118 if (buf == buf2) { 1119 munmap(buf + size2, size - size2); 1120 } else { 1121 munmap(buf, size - size2); 1122 } 1123 size = size2; 1124 break; 1125 } 1126 buf = buf2; 1127 } 1128 #endif 1129 1130 /* Request large pages for the buffer. */ 1131 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1132 1133 tcg_ctx->code_gen_buffer = buf; 1134 return true; 1135 } 1136 1137 #ifndef CONFIG_TCG_INTERPRETER 1138 #ifdef CONFIG_POSIX 1139 #include "qemu/memfd.h" 1140 1141 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp) 1142 { 1143 void *buf_rw = NULL, *buf_rx = MAP_FAILED; 1144 int fd = -1; 1145 1146 #ifdef __mips__ 1147 /* Find space for the RX mapping, vs the 256MiB regions. */ 1148 if (!alloc_code_gen_buffer_anon(size, PROT_NONE, 1149 MAP_PRIVATE | MAP_ANONYMOUS | 1150 MAP_NORESERVE, errp)) { 1151 return false; 1152 } 1153 /* The size of the mapping may have been adjusted. */ 1154 size = tcg_ctx->code_gen_buffer_size; 1155 buf_rx = tcg_ctx->code_gen_buffer; 1156 #endif 1157 1158 buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp); 1159 if (buf_rw == NULL) { 1160 goto fail; 1161 } 1162 1163 #ifdef __mips__ 1164 void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC, 1165 MAP_SHARED | MAP_FIXED, fd, 0); 1166 if (tmp != buf_rx) { 1167 goto fail_rx; 1168 } 1169 #else 1170 buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); 1171 if (buf_rx == MAP_FAILED) { 1172 goto fail_rx; 1173 } 1174 #endif 1175 1176 close(fd); 1177 tcg_ctx->code_gen_buffer = buf_rw; 1178 tcg_ctx->code_gen_buffer_size = size; 1179 tcg_splitwx_diff = buf_rx - buf_rw; 1180 1181 /* Request large pages for the buffer and the splitwx. */ 1182 qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE); 1183 qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE); 1184 return true; 1185 1186 fail_rx: 1187 error_setg_errno(errp, errno, "failed to map shared memory for execute"); 1188 fail: 1189 if (buf_rx != MAP_FAILED) { 1190 munmap(buf_rx, size); 1191 } 1192 if (buf_rw) { 1193 munmap(buf_rw, size); 1194 } 1195 if (fd >= 0) { 1196 close(fd); 1197 } 1198 return false; 1199 } 1200 #endif /* CONFIG_POSIX */ 1201 1202 #ifdef CONFIG_DARWIN 1203 #include <mach/mach.h> 1204 1205 extern kern_return_t mach_vm_remap(vm_map_t target_task, 1206 mach_vm_address_t *target_address, 1207 mach_vm_size_t size, 1208 mach_vm_offset_t mask, 1209 int flags, 1210 vm_map_t src_task, 1211 mach_vm_address_t src_address, 1212 boolean_t copy, 1213 vm_prot_t *cur_protection, 1214 vm_prot_t *max_protection, 1215 vm_inherit_t inheritance); 1216 1217 static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp) 1218 { 1219 kern_return_t ret; 1220 mach_vm_address_t buf_rw, buf_rx; 1221 vm_prot_t cur_prot, max_prot; 1222 1223 /* Map the read-write portion via normal anon memory. */ 1224 if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE, 1225 MAP_PRIVATE | MAP_ANONYMOUS, errp)) { 1226 return false; 1227 } 1228 1229 buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer; 1230 buf_rx = 0; 1231 ret = mach_vm_remap(mach_task_self(), 1232 &buf_rx, 1233 size, 1234 0, 1235 VM_FLAGS_ANYWHERE, 1236 mach_task_self(), 1237 buf_rw, 1238 false, 1239 &cur_prot, 1240 &max_prot, 1241 VM_INHERIT_NONE); 1242 if (ret != KERN_SUCCESS) { 1243 /* TODO: Convert "ret" to a human readable error message. */ 1244 error_setg(errp, "vm_remap for jit splitwx failed"); 1245 munmap((void *)buf_rw, size); 1246 return false; 1247 } 1248 1249 if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) { 1250 error_setg_errno(errp, errno, "mprotect for jit splitwx"); 1251 munmap((void *)buf_rx, size); 1252 munmap((void *)buf_rw, size); 1253 return false; 1254 } 1255 1256 tcg_splitwx_diff = buf_rx - buf_rw; 1257 return true; 1258 } 1259 #endif /* CONFIG_DARWIN */ 1260 #endif /* CONFIG_TCG_INTERPRETER */ 1261 1262 static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp) 1263 { 1264 #ifndef CONFIG_TCG_INTERPRETER 1265 # ifdef CONFIG_DARWIN 1266 return alloc_code_gen_buffer_splitwx_vmremap(size, errp); 1267 # endif 1268 # ifdef CONFIG_POSIX 1269 return alloc_code_gen_buffer_splitwx_memfd(size, errp); 1270 # endif 1271 #endif 1272 error_setg(errp, "jit split-wx not supported"); 1273 return false; 1274 } 1275 1276 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) 1277 { 1278 ERRP_GUARD(); 1279 int prot, flags; 1280 1281 if (splitwx) { 1282 if (alloc_code_gen_buffer_splitwx(size, errp)) { 1283 return true; 1284 } 1285 /* 1286 * If splitwx force-on (1), fail; 1287 * if splitwx default-on (-1), fall through to splitwx off. 1288 */ 1289 if (splitwx > 0) { 1290 return false; 1291 } 1292 error_free_or_abort(errp); 1293 } 1294 1295 prot = PROT_READ | PROT_WRITE | PROT_EXEC; 1296 flags = MAP_PRIVATE | MAP_ANONYMOUS; 1297 #ifdef CONFIG_TCG_INTERPRETER 1298 /* The tcg interpreter does not need execute permission. */ 1299 prot = PROT_READ | PROT_WRITE; 1300 #elif defined(CONFIG_DARWIN) 1301 /* Applicable to both iOS and macOS (Apple Silicon). */ 1302 if (!splitwx) { 1303 flags |= MAP_JIT; 1304 } 1305 #endif 1306 1307 return alloc_code_gen_buffer_anon(size, prot, flags, errp); 1308 } 1309 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1310 1311 static bool tb_cmp(const void *ap, const void *bp) 1312 { 1313 const TranslationBlock *a = ap; 1314 const TranslationBlock *b = bp; 1315 1316 return a->pc == b->pc && 1317 a->cs_base == b->cs_base && 1318 a->flags == b->flags && 1319 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1320 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1321 a->page_addr[0] == b->page_addr[0] && 1322 a->page_addr[1] == b->page_addr[1]; 1323 } 1324 1325 static void tb_htable_init(void) 1326 { 1327 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1328 1329 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1330 } 1331 1332 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1333 (in bytes) allocated to the translation buffer. Zero means default 1334 size. */ 1335 void tcg_exec_init(unsigned long tb_size, int splitwx) 1336 { 1337 bool ok; 1338 1339 tcg_allowed = true; 1340 cpu_gen_init(); 1341 page_init(); 1342 tb_htable_init(); 1343 1344 ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size), 1345 splitwx, &error_fatal); 1346 assert(ok); 1347 1348 #if defined(CONFIG_SOFTMMU) 1349 /* There's no guest base to take into account, so go ahead and 1350 initialize the prologue now. */ 1351 tcg_prologue_init(tcg_ctx); 1352 #endif 1353 } 1354 1355 /* call with @p->lock held */ 1356 static inline void invalidate_page_bitmap(PageDesc *p) 1357 { 1358 assert_page_locked(p); 1359 #ifdef CONFIG_SOFTMMU 1360 g_free(p->code_bitmap); 1361 p->code_bitmap = NULL; 1362 p->code_write_count = 0; 1363 #endif 1364 } 1365 1366 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1367 static void page_flush_tb_1(int level, void **lp) 1368 { 1369 int i; 1370 1371 if (*lp == NULL) { 1372 return; 1373 } 1374 if (level == 0) { 1375 PageDesc *pd = *lp; 1376 1377 for (i = 0; i < V_L2_SIZE; ++i) { 1378 page_lock(&pd[i]); 1379 pd[i].first_tb = (uintptr_t)NULL; 1380 invalidate_page_bitmap(pd + i); 1381 page_unlock(&pd[i]); 1382 } 1383 } else { 1384 void **pp = *lp; 1385 1386 for (i = 0; i < V_L2_SIZE; ++i) { 1387 page_flush_tb_1(level - 1, pp + i); 1388 } 1389 } 1390 } 1391 1392 static void page_flush_tb(void) 1393 { 1394 int i, l1_sz = v_l1_size; 1395 1396 for (i = 0; i < l1_sz; i++) { 1397 page_flush_tb_1(v_l2_levels, l1_map + i); 1398 } 1399 } 1400 1401 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1402 { 1403 const TranslationBlock *tb = value; 1404 size_t *size = data; 1405 1406 *size += tb->tc.size; 1407 return false; 1408 } 1409 1410 /* flush all the translation blocks */ 1411 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1412 { 1413 bool did_flush = false; 1414 1415 mmap_lock(); 1416 /* If it is already been done on request of another CPU, 1417 * just retry. 1418 */ 1419 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1420 goto done; 1421 } 1422 did_flush = true; 1423 1424 if (DEBUG_TB_FLUSH_GATE) { 1425 size_t nb_tbs = tcg_nb_tbs(); 1426 size_t host_size = 0; 1427 1428 tcg_tb_foreach(tb_host_size_iter, &host_size); 1429 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1430 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1431 } 1432 1433 CPU_FOREACH(cpu) { 1434 cpu_tb_jmp_cache_clear(cpu); 1435 } 1436 1437 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1438 page_flush_tb(); 1439 1440 tcg_region_reset_all(); 1441 /* XXX: flush processor icache at this point if cache flush is 1442 expensive */ 1443 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1444 1445 done: 1446 mmap_unlock(); 1447 if (did_flush) { 1448 qemu_plugin_flush_cb(); 1449 } 1450 } 1451 1452 void tb_flush(CPUState *cpu) 1453 { 1454 if (tcg_enabled()) { 1455 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count); 1456 1457 if (cpu_in_exclusive_context(cpu)) { 1458 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1459 } else { 1460 async_safe_run_on_cpu(cpu, do_tb_flush, 1461 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1462 } 1463 } 1464 } 1465 1466 /* 1467 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1468 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1469 * and let the optimizer get rid of them by wrapping their user-only callers 1470 * with if (DEBUG_TB_CHECK_GATE). 1471 */ 1472 #ifdef CONFIG_USER_ONLY 1473 1474 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1475 { 1476 TranslationBlock *tb = p; 1477 target_ulong addr = *(target_ulong *)userp; 1478 1479 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1480 printf("ERROR invalidate: address=" TARGET_FMT_lx 1481 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1482 } 1483 } 1484 1485 /* verify that all the pages have correct rights for code 1486 * 1487 * Called with mmap_lock held. 1488 */ 1489 static void tb_invalidate_check(target_ulong address) 1490 { 1491 address &= TARGET_PAGE_MASK; 1492 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1493 } 1494 1495 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1496 { 1497 TranslationBlock *tb = p; 1498 int flags1, flags2; 1499 1500 flags1 = page_get_flags(tb->pc); 1501 flags2 = page_get_flags(tb->pc + tb->size - 1); 1502 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1503 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1504 (long)tb->pc, tb->size, flags1, flags2); 1505 } 1506 } 1507 1508 /* verify that all the pages have correct rights for code */ 1509 static void tb_page_check(void) 1510 { 1511 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1512 } 1513 1514 #endif /* CONFIG_USER_ONLY */ 1515 1516 /* 1517 * user-mode: call with mmap_lock held 1518 * !user-mode: call with @pd->lock held 1519 */ 1520 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1521 { 1522 TranslationBlock *tb1; 1523 uintptr_t *pprev; 1524 unsigned int n1; 1525 1526 assert_page_locked(pd); 1527 pprev = &pd->first_tb; 1528 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1529 if (tb1 == tb) { 1530 *pprev = tb1->page_next[n1]; 1531 return; 1532 } 1533 pprev = &tb1->page_next[n1]; 1534 } 1535 g_assert_not_reached(); 1536 } 1537 1538 /* remove @orig from its @n_orig-th jump list */ 1539 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1540 { 1541 uintptr_t ptr, ptr_locked; 1542 TranslationBlock *dest; 1543 TranslationBlock *tb; 1544 uintptr_t *pprev; 1545 int n; 1546 1547 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1548 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1549 dest = (TranslationBlock *)(ptr & ~1); 1550 if (dest == NULL) { 1551 return; 1552 } 1553 1554 qemu_spin_lock(&dest->jmp_lock); 1555 /* 1556 * While acquiring the lock, the jump might have been removed if the 1557 * destination TB was invalidated; check again. 1558 */ 1559 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 1560 if (ptr_locked != ptr) { 1561 qemu_spin_unlock(&dest->jmp_lock); 1562 /* 1563 * The only possibility is that the jump was unlinked via 1564 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1565 * because we set the LSB above. 1566 */ 1567 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1568 return; 1569 } 1570 /* 1571 * We first acquired the lock, and since the destination pointer matches, 1572 * we know for sure that @orig is in the jmp list. 1573 */ 1574 pprev = &dest->jmp_list_head; 1575 TB_FOR_EACH_JMP(dest, tb, n) { 1576 if (tb == orig && n == n_orig) { 1577 *pprev = tb->jmp_list_next[n]; 1578 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1579 qemu_spin_unlock(&dest->jmp_lock); 1580 return; 1581 } 1582 pprev = &tb->jmp_list_next[n]; 1583 } 1584 g_assert_not_reached(); 1585 } 1586 1587 /* reset the jump entry 'n' of a TB so that it is not chained to 1588 another TB */ 1589 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1590 { 1591 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1592 tb_set_jmp_target(tb, n, addr); 1593 } 1594 1595 /* remove any jumps to the TB */ 1596 static inline void tb_jmp_unlink(TranslationBlock *dest) 1597 { 1598 TranslationBlock *tb; 1599 int n; 1600 1601 qemu_spin_lock(&dest->jmp_lock); 1602 1603 TB_FOR_EACH_JMP(dest, tb, n) { 1604 tb_reset_jump(tb, n); 1605 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1606 /* No need to clear the list entry; setting the dest ptr is enough */ 1607 } 1608 dest->jmp_list_head = (uintptr_t)NULL; 1609 1610 qemu_spin_unlock(&dest->jmp_lock); 1611 } 1612 1613 /* 1614 * In user-mode, call with mmap_lock held. 1615 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1616 * locks held. 1617 */ 1618 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1619 { 1620 CPUState *cpu; 1621 PageDesc *p; 1622 uint32_t h; 1623 tb_page_addr_t phys_pc; 1624 1625 assert_memory_lock(); 1626 1627 /* make sure no further incoming jumps will be chained to this TB */ 1628 qemu_spin_lock(&tb->jmp_lock); 1629 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1630 qemu_spin_unlock(&tb->jmp_lock); 1631 1632 /* remove the TB from the hash list */ 1633 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1634 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1635 tb->trace_vcpu_dstate); 1636 if (!(tb->cflags & CF_NOCACHE) && 1637 !qht_remove(&tb_ctx.htable, tb, h)) { 1638 return; 1639 } 1640 1641 /* remove the TB from the page list */ 1642 if (rm_from_page_list) { 1643 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1644 tb_page_remove(p, tb); 1645 invalidate_page_bitmap(p); 1646 if (tb->page_addr[1] != -1) { 1647 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1648 tb_page_remove(p, tb); 1649 invalidate_page_bitmap(p); 1650 } 1651 } 1652 1653 /* remove the TB from the hash list */ 1654 h = tb_jmp_cache_hash_func(tb->pc); 1655 CPU_FOREACH(cpu) { 1656 if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1657 qatomic_set(&cpu->tb_jmp_cache[h], NULL); 1658 } 1659 } 1660 1661 /* suppress this TB from the two jump lists */ 1662 tb_remove_from_jmp_list(tb, 0); 1663 tb_remove_from_jmp_list(tb, 1); 1664 1665 /* suppress any remaining jumps to this TB */ 1666 tb_jmp_unlink(tb); 1667 1668 qatomic_set(&tcg_ctx->tb_phys_invalidate_count, 1669 tcg_ctx->tb_phys_invalidate_count + 1); 1670 } 1671 1672 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1673 { 1674 qemu_thread_jit_write(); 1675 do_tb_phys_invalidate(tb, true); 1676 qemu_thread_jit_execute(); 1677 } 1678 1679 /* invalidate one TB 1680 * 1681 * Called with mmap_lock held in user-mode. 1682 */ 1683 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1684 { 1685 if (page_addr == -1 && tb->page_addr[0] != -1) { 1686 page_lock_tb(tb); 1687 do_tb_phys_invalidate(tb, true); 1688 page_unlock_tb(tb); 1689 } else { 1690 do_tb_phys_invalidate(tb, false); 1691 } 1692 } 1693 1694 #ifdef CONFIG_SOFTMMU 1695 /* call with @p->lock held */ 1696 static void build_page_bitmap(PageDesc *p) 1697 { 1698 int n, tb_start, tb_end; 1699 TranslationBlock *tb; 1700 1701 assert_page_locked(p); 1702 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1703 1704 PAGE_FOR_EACH_TB(p, tb, n) { 1705 /* NOTE: this is subtle as a TB may span two physical pages */ 1706 if (n == 0) { 1707 /* NOTE: tb_end may be after the end of the page, but 1708 it is not a problem */ 1709 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1710 tb_end = tb_start + tb->size; 1711 if (tb_end > TARGET_PAGE_SIZE) { 1712 tb_end = TARGET_PAGE_SIZE; 1713 } 1714 } else { 1715 tb_start = 0; 1716 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1717 } 1718 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1719 } 1720 } 1721 #endif 1722 1723 /* add the tb in the target page and protect it if necessary 1724 * 1725 * Called with mmap_lock held for user-mode emulation. 1726 * Called with @p->lock held in !user-mode. 1727 */ 1728 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1729 unsigned int n, tb_page_addr_t page_addr) 1730 { 1731 #ifndef CONFIG_USER_ONLY 1732 bool page_already_protected; 1733 #endif 1734 1735 assert_page_locked(p); 1736 1737 tb->page_addr[n] = page_addr; 1738 tb->page_next[n] = p->first_tb; 1739 #ifndef CONFIG_USER_ONLY 1740 page_already_protected = p->first_tb != (uintptr_t)NULL; 1741 #endif 1742 p->first_tb = (uintptr_t)tb | n; 1743 invalidate_page_bitmap(p); 1744 1745 #if defined(CONFIG_USER_ONLY) 1746 if (p->flags & PAGE_WRITE) { 1747 target_ulong addr; 1748 PageDesc *p2; 1749 int prot; 1750 1751 /* force the host page as non writable (writes will have a 1752 page fault + mprotect overhead) */ 1753 page_addr &= qemu_host_page_mask; 1754 prot = 0; 1755 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1756 addr += TARGET_PAGE_SIZE) { 1757 1758 p2 = page_find(addr >> TARGET_PAGE_BITS); 1759 if (!p2) { 1760 continue; 1761 } 1762 prot |= p2->flags; 1763 p2->flags &= ~PAGE_WRITE; 1764 } 1765 mprotect(g2h(page_addr), qemu_host_page_size, 1766 (prot & PAGE_BITS) & ~PAGE_WRITE); 1767 if (DEBUG_TB_INVALIDATE_GATE) { 1768 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1769 } 1770 } 1771 #else 1772 /* if some code is already present, then the pages are already 1773 protected. So we handle the case where only the first TB is 1774 allocated in a physical page */ 1775 if (!page_already_protected) { 1776 tlb_protect_code(page_addr); 1777 } 1778 #endif 1779 } 1780 1781 /* add a new TB and link it to the physical page tables. phys_page2 is 1782 * (-1) to indicate that only one page contains the TB. 1783 * 1784 * Called with mmap_lock held for user-mode emulation. 1785 * 1786 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1787 * Note that in !user-mode, another thread might have already added a TB 1788 * for the same block of guest code that @tb corresponds to. In that case, 1789 * the caller should discard the original @tb, and use instead the returned TB. 1790 */ 1791 static TranslationBlock * 1792 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1793 tb_page_addr_t phys_page2) 1794 { 1795 PageDesc *p; 1796 PageDesc *p2 = NULL; 1797 1798 assert_memory_lock(); 1799 1800 if (phys_pc == -1) { 1801 /* 1802 * If the TB is not associated with a physical RAM page then 1803 * it must be a temporary one-insn TB, and we have nothing to do 1804 * except fill in the page_addr[] fields. 1805 */ 1806 assert(tb->cflags & CF_NOCACHE); 1807 tb->page_addr[0] = tb->page_addr[1] = -1; 1808 return tb; 1809 } 1810 1811 /* 1812 * Add the TB to the page list, acquiring first the pages's locks. 1813 * We keep the locks held until after inserting the TB in the hash table, 1814 * so that if the insertion fails we know for sure that the TBs are still 1815 * in the page descriptors. 1816 * Note that inserting into the hash table first isn't an option, since 1817 * we can only insert TBs that are fully initialized. 1818 */ 1819 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1820 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1821 if (p2) { 1822 tb_page_add(p2, tb, 1, phys_page2); 1823 } else { 1824 tb->page_addr[1] = -1; 1825 } 1826 1827 if (!(tb->cflags & CF_NOCACHE)) { 1828 void *existing_tb = NULL; 1829 uint32_t h; 1830 1831 /* add in the hash table */ 1832 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1833 tb->trace_vcpu_dstate); 1834 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1835 1836 /* remove TB from the page(s) if we couldn't insert it */ 1837 if (unlikely(existing_tb)) { 1838 tb_page_remove(p, tb); 1839 invalidate_page_bitmap(p); 1840 if (p2) { 1841 tb_page_remove(p2, tb); 1842 invalidate_page_bitmap(p2); 1843 } 1844 tb = existing_tb; 1845 } 1846 } 1847 1848 if (p2 && p2 != p) { 1849 page_unlock(p2); 1850 } 1851 page_unlock(p); 1852 1853 #ifdef CONFIG_USER_ONLY 1854 if (DEBUG_TB_CHECK_GATE) { 1855 tb_page_check(); 1856 } 1857 #endif 1858 return tb; 1859 } 1860 1861 /* Called with mmap_lock held for user mode emulation. */ 1862 TranslationBlock *tb_gen_code(CPUState *cpu, 1863 target_ulong pc, target_ulong cs_base, 1864 uint32_t flags, int cflags) 1865 { 1866 CPUArchState *env = cpu->env_ptr; 1867 TranslationBlock *tb, *existing_tb; 1868 tb_page_addr_t phys_pc, phys_page2; 1869 target_ulong virt_page2; 1870 tcg_insn_unit *gen_code_buf; 1871 int gen_code_size, search_size, max_insns; 1872 #ifdef CONFIG_PROFILER 1873 TCGProfile *prof = &tcg_ctx->prof; 1874 int64_t ti; 1875 #endif 1876 1877 assert_memory_lock(); 1878 qemu_thread_jit_write(); 1879 1880 phys_pc = get_page_addr_code(env, pc); 1881 1882 if (phys_pc == -1) { 1883 /* Generate a temporary TB with 1 insn in it */ 1884 cflags &= ~CF_COUNT_MASK; 1885 cflags |= CF_NOCACHE | 1; 1886 } 1887 1888 cflags &= ~CF_CLUSTER_MASK; 1889 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1890 1891 max_insns = cflags & CF_COUNT_MASK; 1892 if (max_insns == 0) { 1893 max_insns = CF_COUNT_MASK; 1894 } 1895 if (max_insns > TCG_MAX_INSNS) { 1896 max_insns = TCG_MAX_INSNS; 1897 } 1898 if (cpu->singlestep_enabled || singlestep) { 1899 max_insns = 1; 1900 } 1901 1902 buffer_overflow: 1903 tb = tcg_tb_alloc(tcg_ctx); 1904 if (unlikely(!tb)) { 1905 /* flush must be done */ 1906 tb_flush(cpu); 1907 mmap_unlock(); 1908 /* Make the execution loop process the flush as soon as possible. */ 1909 cpu->exception_index = EXCP_INTERRUPT; 1910 cpu_loop_exit(cpu); 1911 } 1912 1913 gen_code_buf = tcg_ctx->code_gen_ptr; 1914 tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf); 1915 tb->pc = pc; 1916 tb->cs_base = cs_base; 1917 tb->flags = flags; 1918 tb->cflags = cflags; 1919 tb->orig_tb = NULL; 1920 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1921 tcg_ctx->tb_cflags = cflags; 1922 tb_overflow: 1923 1924 #ifdef CONFIG_PROFILER 1925 /* includes aborted translations because of exceptions */ 1926 qatomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1927 ti = profile_getclock(); 1928 #endif 1929 1930 gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0); 1931 if (unlikely(gen_code_size != 0)) { 1932 goto error_return; 1933 } 1934 1935 tcg_func_start(tcg_ctx); 1936 1937 tcg_ctx->cpu = env_cpu(env); 1938 gen_intermediate_code(cpu, tb, max_insns); 1939 tcg_ctx->cpu = NULL; 1940 max_insns = tb->icount; 1941 1942 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1943 1944 /* generate machine code */ 1945 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1946 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1947 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1948 if (TCG_TARGET_HAS_direct_jump) { 1949 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1950 tcg_ctx->tb_jmp_target_addr = NULL; 1951 } else { 1952 tcg_ctx->tb_jmp_insn_offset = NULL; 1953 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1954 } 1955 1956 #ifdef CONFIG_PROFILER 1957 qatomic_set(&prof->tb_count, prof->tb_count + 1); 1958 qatomic_set(&prof->interm_time, 1959 prof->interm_time + profile_getclock() - ti); 1960 ti = profile_getclock(); 1961 #endif 1962 1963 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1964 if (unlikely(gen_code_size < 0)) { 1965 error_return: 1966 switch (gen_code_size) { 1967 case -1: 1968 /* 1969 * Overflow of code_gen_buffer, or the current slice of it. 1970 * 1971 * TODO: We don't need to re-do gen_intermediate_code, nor 1972 * should we re-do the tcg optimization currently hidden 1973 * inside tcg_gen_code. All that should be required is to 1974 * flush the TBs, allocate a new TB, re-initialize it per 1975 * above, and re-do the actual code generation. 1976 */ 1977 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 1978 "Restarting code generation for " 1979 "code_gen_buffer overflow\n"); 1980 goto buffer_overflow; 1981 1982 case -2: 1983 /* 1984 * The code generated for the TranslationBlock is too large. 1985 * The maximum size allowed by the unwind info is 64k. 1986 * There may be stricter constraints from relocations 1987 * in the tcg backend. 1988 * 1989 * Try again with half as many insns as we attempted this time. 1990 * If a single insn overflows, there's a bug somewhere... 1991 */ 1992 assert(max_insns > 1); 1993 max_insns /= 2; 1994 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 1995 "Restarting code generation with " 1996 "smaller translation block (max %d insns)\n", 1997 max_insns); 1998 goto tb_overflow; 1999 2000 default: 2001 g_assert_not_reached(); 2002 } 2003 } 2004 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 2005 if (unlikely(search_size < 0)) { 2006 goto buffer_overflow; 2007 } 2008 tb->tc.size = gen_code_size; 2009 2010 #ifdef CONFIG_PROFILER 2011 qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 2012 qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 2013 qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 2014 qatomic_set(&prof->search_out_len, prof->search_out_len + search_size); 2015 #endif 2016 2017 #ifdef DEBUG_DISAS 2018 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 2019 qemu_log_in_addr_range(tb->pc)) { 2020 FILE *logfile = qemu_log_lock(); 2021 int code_size, data_size; 2022 const tcg_target_ulong *rx_data_gen_ptr; 2023 size_t chunk_start; 2024 int insn = 0; 2025 2026 if (tcg_ctx->data_gen_ptr) { 2027 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr); 2028 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr; 2029 data_size = gen_code_size - code_size; 2030 } else { 2031 rx_data_gen_ptr = 0; 2032 code_size = gen_code_size; 2033 data_size = 0; 2034 } 2035 2036 /* Dump header and the first instruction */ 2037 qemu_log("OUT: [size=%d]\n", gen_code_size); 2038 qemu_log(" -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n", 2039 tcg_ctx->gen_insn_data[insn][0]); 2040 chunk_start = tcg_ctx->gen_insn_end_off[insn]; 2041 log_disas(tb->tc.ptr, chunk_start); 2042 2043 /* 2044 * Dump each instruction chunk, wrapping up empty chunks into 2045 * the next instruction. The whole array is offset so the 2046 * first entry is the beginning of the 2nd instruction. 2047 */ 2048 while (insn < tb->icount) { 2049 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn]; 2050 if (chunk_end > chunk_start) { 2051 qemu_log(" -- guest addr 0x" TARGET_FMT_lx "\n", 2052 tcg_ctx->gen_insn_data[insn][0]); 2053 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start); 2054 chunk_start = chunk_end; 2055 } 2056 insn++; 2057 } 2058 2059 if (chunk_start < code_size) { 2060 qemu_log(" -- tb slow paths + alignment\n"); 2061 log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start); 2062 } 2063 2064 /* Finally dump any data we may have after the block */ 2065 if (data_size) { 2066 int i; 2067 qemu_log(" data: [size=%d]\n", data_size); 2068 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) { 2069 qemu_log("0x%08" PRIxPTR ": .quad 0x%" TCG_PRIlx "\n", 2070 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]); 2071 } 2072 } 2073 qemu_log("\n"); 2074 qemu_log_flush(); 2075 qemu_log_unlock(logfile); 2076 } 2077 #endif 2078 2079 qatomic_set(&tcg_ctx->code_gen_ptr, (void *) 2080 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 2081 CODE_GEN_ALIGN)); 2082 2083 /* init jump list */ 2084 qemu_spin_init(&tb->jmp_lock); 2085 tb->jmp_list_head = (uintptr_t)NULL; 2086 tb->jmp_list_next[0] = (uintptr_t)NULL; 2087 tb->jmp_list_next[1] = (uintptr_t)NULL; 2088 tb->jmp_dest[0] = (uintptr_t)NULL; 2089 tb->jmp_dest[1] = (uintptr_t)NULL; 2090 2091 /* init original jump addresses which have been set during tcg_gen_code() */ 2092 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2093 tb_reset_jump(tb, 0); 2094 } 2095 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2096 tb_reset_jump(tb, 1); 2097 } 2098 2099 /* check next page if needed */ 2100 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 2101 phys_page2 = -1; 2102 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 2103 phys_page2 = get_page_addr_code(env, virt_page2); 2104 } 2105 /* 2106 * No explicit memory barrier is required -- tb_link_page() makes the 2107 * TB visible in a consistent state. 2108 */ 2109 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 2110 /* if the TB already exists, discard what we just translated */ 2111 if (unlikely(existing_tb != tb)) { 2112 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 2113 2114 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 2115 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 2116 tb_destroy(tb); 2117 return existing_tb; 2118 } 2119 tcg_tb_insert(tb); 2120 return tb; 2121 } 2122 2123 /* 2124 * @p must be non-NULL. 2125 * user-mode: call with mmap_lock held. 2126 * !user-mode: call with all @pages locked. 2127 */ 2128 static void 2129 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 2130 PageDesc *p, tb_page_addr_t start, 2131 tb_page_addr_t end, 2132 uintptr_t retaddr) 2133 { 2134 TranslationBlock *tb; 2135 tb_page_addr_t tb_start, tb_end; 2136 int n; 2137 #ifdef TARGET_HAS_PRECISE_SMC 2138 CPUState *cpu = current_cpu; 2139 CPUArchState *env = NULL; 2140 bool current_tb_not_found = retaddr != 0; 2141 bool current_tb_modified = false; 2142 TranslationBlock *current_tb = NULL; 2143 target_ulong current_pc = 0; 2144 target_ulong current_cs_base = 0; 2145 uint32_t current_flags = 0; 2146 #endif /* TARGET_HAS_PRECISE_SMC */ 2147 2148 assert_page_locked(p); 2149 2150 #if defined(TARGET_HAS_PRECISE_SMC) 2151 if (cpu != NULL) { 2152 env = cpu->env_ptr; 2153 } 2154 #endif 2155 2156 /* we remove all the TBs in the range [start, end[ */ 2157 /* XXX: see if in some cases it could be faster to invalidate all 2158 the code */ 2159 PAGE_FOR_EACH_TB(p, tb, n) { 2160 assert_page_locked(p); 2161 /* NOTE: this is subtle as a TB may span two physical pages */ 2162 if (n == 0) { 2163 /* NOTE: tb_end may be after the end of the page, but 2164 it is not a problem */ 2165 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 2166 tb_end = tb_start + tb->size; 2167 } else { 2168 tb_start = tb->page_addr[1]; 2169 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 2170 } 2171 if (!(tb_end <= start || tb_start >= end)) { 2172 #ifdef TARGET_HAS_PRECISE_SMC 2173 if (current_tb_not_found) { 2174 current_tb_not_found = false; 2175 /* now we have a real cpu fault */ 2176 current_tb = tcg_tb_lookup(retaddr); 2177 } 2178 if (current_tb == tb && 2179 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2180 /* 2181 * If we are modifying the current TB, we must stop 2182 * its execution. We could be more precise by checking 2183 * that the modification is after the current PC, but it 2184 * would require a specialized function to partially 2185 * restore the CPU state. 2186 */ 2187 current_tb_modified = true; 2188 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 2189 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2190 ¤t_flags); 2191 } 2192 #endif /* TARGET_HAS_PRECISE_SMC */ 2193 tb_phys_invalidate__locked(tb); 2194 } 2195 } 2196 #if !defined(CONFIG_USER_ONLY) 2197 /* if no code remaining, no need to continue to use slow writes */ 2198 if (!p->first_tb) { 2199 invalidate_page_bitmap(p); 2200 tlb_unprotect_code(start); 2201 } 2202 #endif 2203 #ifdef TARGET_HAS_PRECISE_SMC 2204 if (current_tb_modified) { 2205 page_collection_unlock(pages); 2206 /* Force execution of one insn next time. */ 2207 cpu->cflags_next_tb = 1 | curr_cflags(); 2208 mmap_unlock(); 2209 cpu_loop_exit_noexc(cpu); 2210 } 2211 #endif 2212 } 2213 2214 /* 2215 * Invalidate all TBs which intersect with the target physical address range 2216 * [start;end[. NOTE: start and end must refer to the *same* physical page. 2217 * 'is_cpu_write_access' should be true if called from a real cpu write 2218 * access: the virtual CPU will exit the current TB if code is modified inside 2219 * this TB. 2220 * 2221 * Called with mmap_lock held for user-mode emulation 2222 */ 2223 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 2224 { 2225 struct page_collection *pages; 2226 PageDesc *p; 2227 2228 assert_memory_lock(); 2229 2230 p = page_find(start >> TARGET_PAGE_BITS); 2231 if (p == NULL) { 2232 return; 2233 } 2234 pages = page_collection_lock(start, end); 2235 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 2236 page_collection_unlock(pages); 2237 } 2238 2239 /* 2240 * Invalidate all TBs which intersect with the target physical address range 2241 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2242 * 'is_cpu_write_access' should be true if called from a real cpu write 2243 * access: the virtual CPU will exit the current TB if code is modified inside 2244 * this TB. 2245 * 2246 * Called with mmap_lock held for user-mode emulation. 2247 */ 2248 #ifdef CONFIG_SOFTMMU 2249 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2250 #else 2251 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2252 #endif 2253 { 2254 struct page_collection *pages; 2255 tb_page_addr_t next; 2256 2257 assert_memory_lock(); 2258 2259 pages = page_collection_lock(start, end); 2260 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2261 start < end; 2262 start = next, next += TARGET_PAGE_SIZE) { 2263 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2264 tb_page_addr_t bound = MIN(next, end); 2265 2266 if (pd == NULL) { 2267 continue; 2268 } 2269 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2270 } 2271 page_collection_unlock(pages); 2272 } 2273 2274 #ifdef CONFIG_SOFTMMU 2275 /* len must be <= 8 and start must be a multiple of len. 2276 * Called via softmmu_template.h when code areas are written to with 2277 * iothread mutex not held. 2278 * 2279 * Call with all @pages in the range [@start, @start + len[ locked. 2280 */ 2281 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2282 tb_page_addr_t start, int len, 2283 uintptr_t retaddr) 2284 { 2285 PageDesc *p; 2286 2287 assert_memory_lock(); 2288 2289 p = page_find(start >> TARGET_PAGE_BITS); 2290 if (!p) { 2291 return; 2292 } 2293 2294 assert_page_locked(p); 2295 if (!p->code_bitmap && 2296 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2297 build_page_bitmap(p); 2298 } 2299 if (p->code_bitmap) { 2300 unsigned int nr; 2301 unsigned long b; 2302 2303 nr = start & ~TARGET_PAGE_MASK; 2304 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2305 if (b & ((1 << len) - 1)) { 2306 goto do_invalidate; 2307 } 2308 } else { 2309 do_invalidate: 2310 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2311 retaddr); 2312 } 2313 } 2314 #else 2315 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2316 * host PC of the faulting store instruction that caused this invalidate. 2317 * Returns true if the caller needs to abort execution of the current 2318 * TB (because it was modified by this store and the guest CPU has 2319 * precise-SMC semantics). 2320 */ 2321 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2322 { 2323 TranslationBlock *tb; 2324 PageDesc *p; 2325 int n; 2326 #ifdef TARGET_HAS_PRECISE_SMC 2327 TranslationBlock *current_tb = NULL; 2328 CPUState *cpu = current_cpu; 2329 CPUArchState *env = NULL; 2330 int current_tb_modified = 0; 2331 target_ulong current_pc = 0; 2332 target_ulong current_cs_base = 0; 2333 uint32_t current_flags = 0; 2334 #endif 2335 2336 assert_memory_lock(); 2337 2338 addr &= TARGET_PAGE_MASK; 2339 p = page_find(addr >> TARGET_PAGE_BITS); 2340 if (!p) { 2341 return false; 2342 } 2343 2344 #ifdef TARGET_HAS_PRECISE_SMC 2345 if (p->first_tb && pc != 0) { 2346 current_tb = tcg_tb_lookup(pc); 2347 } 2348 if (cpu != NULL) { 2349 env = cpu->env_ptr; 2350 } 2351 #endif 2352 assert_page_locked(p); 2353 PAGE_FOR_EACH_TB(p, tb, n) { 2354 #ifdef TARGET_HAS_PRECISE_SMC 2355 if (current_tb == tb && 2356 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2357 /* If we are modifying the current TB, we must stop 2358 its execution. We could be more precise by checking 2359 that the modification is after the current PC, but it 2360 would require a specialized function to partially 2361 restore the CPU state */ 2362 2363 current_tb_modified = 1; 2364 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2365 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2366 ¤t_flags); 2367 } 2368 #endif /* TARGET_HAS_PRECISE_SMC */ 2369 tb_phys_invalidate(tb, addr); 2370 } 2371 p->first_tb = (uintptr_t)NULL; 2372 #ifdef TARGET_HAS_PRECISE_SMC 2373 if (current_tb_modified) { 2374 /* Force execution of one insn next time. */ 2375 cpu->cflags_next_tb = 1 | curr_cflags(); 2376 return true; 2377 } 2378 #endif 2379 2380 return false; 2381 } 2382 #endif 2383 2384 /* user-mode: call with mmap_lock held */ 2385 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2386 { 2387 TranslationBlock *tb; 2388 2389 assert_memory_lock(); 2390 2391 tb = tcg_tb_lookup(retaddr); 2392 if (tb) { 2393 /* We can use retranslation to find the PC. */ 2394 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2395 tb_phys_invalidate(tb, -1); 2396 } else { 2397 /* The exception probably happened in a helper. The CPU state should 2398 have been saved before calling it. Fetch the PC from there. */ 2399 CPUArchState *env = cpu->env_ptr; 2400 target_ulong pc, cs_base; 2401 tb_page_addr_t addr; 2402 uint32_t flags; 2403 2404 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2405 addr = get_page_addr_code(env, pc); 2406 if (addr != -1) { 2407 tb_invalidate_phys_range(addr, addr + 1); 2408 } 2409 } 2410 } 2411 2412 #ifndef CONFIG_USER_ONLY 2413 /* in deterministic execution mode, instructions doing device I/Os 2414 * must be at the end of the TB. 2415 * 2416 * Called by softmmu_template.h, with iothread mutex not held. 2417 */ 2418 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2419 { 2420 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2421 CPUArchState *env = cpu->env_ptr; 2422 #endif 2423 TranslationBlock *tb; 2424 uint32_t n; 2425 2426 tb = tcg_tb_lookup(retaddr); 2427 if (!tb) { 2428 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2429 (void *)retaddr); 2430 } 2431 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2432 2433 /* On MIPS and SH, delay slot instructions can only be restarted if 2434 they were already the first instruction in the TB. If this is not 2435 the first instruction in a TB then re-execute the preceding 2436 branch. */ 2437 n = 1; 2438 #if defined(TARGET_MIPS) 2439 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2440 && env->active_tc.PC != tb->pc) { 2441 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2442 cpu_neg(cpu)->icount_decr.u16.low++; 2443 env->hflags &= ~MIPS_HFLAG_BMASK; 2444 n = 2; 2445 } 2446 #elif defined(TARGET_SH4) 2447 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2448 && env->pc != tb->pc) { 2449 env->pc -= 2; 2450 cpu_neg(cpu)->icount_decr.u16.low++; 2451 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2452 n = 2; 2453 } 2454 #endif 2455 2456 /* Generate a new TB executing the I/O insn. */ 2457 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2458 2459 if (tb_cflags(tb) & CF_NOCACHE) { 2460 if (tb->orig_tb) { 2461 /* Invalidate original TB if this TB was generated in 2462 * cpu_exec_nocache() */ 2463 tb_phys_invalidate(tb->orig_tb, -1); 2464 } 2465 tcg_tb_remove(tb); 2466 tb_destroy(tb); 2467 } 2468 2469 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 2470 "cpu_io_recompile: rewound execution of TB to " 2471 TARGET_FMT_lx "\n", tb->pc); 2472 2473 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2474 * the first in the TB) then we end up generating a whole new TB and 2475 * repeating the fault, which is horribly inefficient. 2476 * Better would be to execute just this insn uncached, or generate a 2477 * second new TB. 2478 */ 2479 cpu_loop_exit_noexc(cpu); 2480 } 2481 2482 static void print_qht_statistics(struct qht_stats hst) 2483 { 2484 uint32_t hgram_opts; 2485 size_t hgram_bins; 2486 char *hgram; 2487 2488 if (!hst.head_buckets) { 2489 return; 2490 } 2491 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2492 hst.used_head_buckets, hst.head_buckets, 2493 (double)hst.used_head_buckets / hst.head_buckets * 100); 2494 2495 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2496 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2497 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2498 hgram_opts |= QDIST_PR_NODECIMAL; 2499 } 2500 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2501 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2502 qdist_avg(&hst.occupancy) * 100, hgram); 2503 g_free(hgram); 2504 2505 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2506 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2507 if (hgram_bins > 10) { 2508 hgram_bins = 10; 2509 } else { 2510 hgram_bins = 0; 2511 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2512 } 2513 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2514 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2515 qdist_avg(&hst.chain), hgram); 2516 g_free(hgram); 2517 } 2518 2519 struct tb_tree_stats { 2520 size_t nb_tbs; 2521 size_t host_size; 2522 size_t target_size; 2523 size_t max_target_size; 2524 size_t direct_jmp_count; 2525 size_t direct_jmp2_count; 2526 size_t cross_page; 2527 }; 2528 2529 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2530 { 2531 const TranslationBlock *tb = value; 2532 struct tb_tree_stats *tst = data; 2533 2534 tst->nb_tbs++; 2535 tst->host_size += tb->tc.size; 2536 tst->target_size += tb->size; 2537 if (tb->size > tst->max_target_size) { 2538 tst->max_target_size = tb->size; 2539 } 2540 if (tb->page_addr[1] != -1) { 2541 tst->cross_page++; 2542 } 2543 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2544 tst->direct_jmp_count++; 2545 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2546 tst->direct_jmp2_count++; 2547 } 2548 } 2549 return false; 2550 } 2551 2552 void dump_exec_info(void) 2553 { 2554 struct tb_tree_stats tst = {}; 2555 struct qht_stats hst; 2556 size_t nb_tbs, flush_full, flush_part, flush_elide; 2557 2558 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2559 nb_tbs = tst.nb_tbs; 2560 /* XXX: avoid using doubles ? */ 2561 qemu_printf("Translation buffer state:\n"); 2562 /* 2563 * Report total code size including the padding and TB structs; 2564 * otherwise users might think "-accel tcg,tb-size" is not honoured. 2565 * For avg host size we use the precise numbers from tb_tree_stats though. 2566 */ 2567 qemu_printf("gen code size %zu/%zu\n", 2568 tcg_code_size(), tcg_code_capacity()); 2569 qemu_printf("TB count %zu\n", nb_tbs); 2570 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2571 nb_tbs ? tst.target_size / nb_tbs : 0, 2572 tst.max_target_size); 2573 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2574 nb_tbs ? tst.host_size / nb_tbs : 0, 2575 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2576 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2577 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2578 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2579 tst.direct_jmp_count, 2580 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2581 tst.direct_jmp2_count, 2582 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2583 2584 qht_statistics_init(&tb_ctx.htable, &hst); 2585 print_qht_statistics(hst); 2586 qht_statistics_destroy(&hst); 2587 2588 qemu_printf("\nStatistics:\n"); 2589 qemu_printf("TB flush count %u\n", 2590 qatomic_read(&tb_ctx.tb_flush_count)); 2591 qemu_printf("TB invalidate count %zu\n", 2592 tcg_tb_phys_invalidate_count()); 2593 2594 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2595 qemu_printf("TLB full flushes %zu\n", flush_full); 2596 qemu_printf("TLB partial flushes %zu\n", flush_part); 2597 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2598 tcg_dump_info(); 2599 } 2600 2601 void dump_opcount_info(void) 2602 { 2603 tcg_dump_op_count(); 2604 } 2605 2606 #else /* CONFIG_USER_ONLY */ 2607 2608 void cpu_interrupt(CPUState *cpu, int mask) 2609 { 2610 g_assert(qemu_mutex_iothread_locked()); 2611 cpu->interrupt_request |= mask; 2612 qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2613 } 2614 2615 /* 2616 * Walks guest process memory "regions" one by one 2617 * and calls callback function 'fn' for each region. 2618 */ 2619 struct walk_memory_regions_data { 2620 walk_memory_regions_fn fn; 2621 void *priv; 2622 target_ulong start; 2623 int prot; 2624 }; 2625 2626 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2627 target_ulong end, int new_prot) 2628 { 2629 if (data->start != -1u) { 2630 int rc = data->fn(data->priv, data->start, end, data->prot); 2631 if (rc != 0) { 2632 return rc; 2633 } 2634 } 2635 2636 data->start = (new_prot ? end : -1u); 2637 data->prot = new_prot; 2638 2639 return 0; 2640 } 2641 2642 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2643 target_ulong base, int level, void **lp) 2644 { 2645 target_ulong pa; 2646 int i, rc; 2647 2648 if (*lp == NULL) { 2649 return walk_memory_regions_end(data, base, 0); 2650 } 2651 2652 if (level == 0) { 2653 PageDesc *pd = *lp; 2654 2655 for (i = 0; i < V_L2_SIZE; ++i) { 2656 int prot = pd[i].flags; 2657 2658 pa = base | (i << TARGET_PAGE_BITS); 2659 if (prot != data->prot) { 2660 rc = walk_memory_regions_end(data, pa, prot); 2661 if (rc != 0) { 2662 return rc; 2663 } 2664 } 2665 } 2666 } else { 2667 void **pp = *lp; 2668 2669 for (i = 0; i < V_L2_SIZE; ++i) { 2670 pa = base | ((target_ulong)i << 2671 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2672 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2673 if (rc != 0) { 2674 return rc; 2675 } 2676 } 2677 } 2678 2679 return 0; 2680 } 2681 2682 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2683 { 2684 struct walk_memory_regions_data data; 2685 uintptr_t i, l1_sz = v_l1_size; 2686 2687 data.fn = fn; 2688 data.priv = priv; 2689 data.start = -1u; 2690 data.prot = 0; 2691 2692 for (i = 0; i < l1_sz; i++) { 2693 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2694 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2695 if (rc != 0) { 2696 return rc; 2697 } 2698 } 2699 2700 return walk_memory_regions_end(&data, 0, 0); 2701 } 2702 2703 static int dump_region(void *priv, target_ulong start, 2704 target_ulong end, unsigned long prot) 2705 { 2706 FILE *f = (FILE *)priv; 2707 2708 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2709 " "TARGET_FMT_lx" %c%c%c\n", 2710 start, end, end - start, 2711 ((prot & PAGE_READ) ? 'r' : '-'), 2712 ((prot & PAGE_WRITE) ? 'w' : '-'), 2713 ((prot & PAGE_EXEC) ? 'x' : '-')); 2714 2715 return 0; 2716 } 2717 2718 /* dump memory mappings */ 2719 void page_dump(FILE *f) 2720 { 2721 const int length = sizeof(target_ulong) * 2; 2722 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2723 length, "start", length, "end", length, "size", "prot"); 2724 walk_memory_regions(f, dump_region); 2725 } 2726 2727 int page_get_flags(target_ulong address) 2728 { 2729 PageDesc *p; 2730 2731 p = page_find(address >> TARGET_PAGE_BITS); 2732 if (!p) { 2733 return 0; 2734 } 2735 return p->flags; 2736 } 2737 2738 /* Modify the flags of a page and invalidate the code if necessary. 2739 The flag PAGE_WRITE_ORG is positioned automatically depending 2740 on PAGE_WRITE. The mmap_lock should already be held. */ 2741 void page_set_flags(target_ulong start, target_ulong end, int flags) 2742 { 2743 target_ulong addr, len; 2744 bool reset_target_data; 2745 2746 /* This function should never be called with addresses outside the 2747 guest address space. If this assert fires, it probably indicates 2748 a missing call to h2g_valid. */ 2749 assert(end - 1 <= GUEST_ADDR_MAX); 2750 assert(start < end); 2751 assert_memory_lock(); 2752 2753 start = start & TARGET_PAGE_MASK; 2754 end = TARGET_PAGE_ALIGN(end); 2755 2756 if (flags & PAGE_WRITE) { 2757 flags |= PAGE_WRITE_ORG; 2758 } 2759 reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET); 2760 flags &= ~PAGE_RESET; 2761 2762 for (addr = start, len = end - start; 2763 len != 0; 2764 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2765 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2766 2767 /* If the write protection bit is set, then we invalidate 2768 the code inside. */ 2769 if (!(p->flags & PAGE_WRITE) && 2770 (flags & PAGE_WRITE) && 2771 p->first_tb) { 2772 tb_invalidate_phys_page(addr, 0); 2773 } 2774 if (reset_target_data && p->target_data) { 2775 g_free(p->target_data); 2776 p->target_data = NULL; 2777 } 2778 p->flags = flags; 2779 } 2780 } 2781 2782 void *page_get_target_data(target_ulong address) 2783 { 2784 PageDesc *p = page_find(address >> TARGET_PAGE_BITS); 2785 return p ? p->target_data : NULL; 2786 } 2787 2788 void *page_alloc_target_data(target_ulong address, size_t size) 2789 { 2790 PageDesc *p = page_find(address >> TARGET_PAGE_BITS); 2791 void *ret = NULL; 2792 2793 if (p->flags & PAGE_VALID) { 2794 ret = p->target_data; 2795 if (!ret) { 2796 p->target_data = ret = g_malloc0(size); 2797 } 2798 } 2799 return ret; 2800 } 2801 2802 int page_check_range(target_ulong start, target_ulong len, int flags) 2803 { 2804 PageDesc *p; 2805 target_ulong end; 2806 target_ulong addr; 2807 2808 /* This function should never be called with addresses outside the 2809 guest address space. If this assert fires, it probably indicates 2810 a missing call to h2g_valid. */ 2811 if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) { 2812 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2813 } 2814 2815 if (len == 0) { 2816 return 0; 2817 } 2818 if (start + len - 1 < start) { 2819 /* We've wrapped around. */ 2820 return -1; 2821 } 2822 2823 /* must do before we loose bits in the next step */ 2824 end = TARGET_PAGE_ALIGN(start + len); 2825 start = start & TARGET_PAGE_MASK; 2826 2827 for (addr = start, len = end - start; 2828 len != 0; 2829 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2830 p = page_find(addr >> TARGET_PAGE_BITS); 2831 if (!p) { 2832 return -1; 2833 } 2834 if (!(p->flags & PAGE_VALID)) { 2835 return -1; 2836 } 2837 2838 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2839 return -1; 2840 } 2841 if (flags & PAGE_WRITE) { 2842 if (!(p->flags & PAGE_WRITE_ORG)) { 2843 return -1; 2844 } 2845 /* unprotect the page if it was put read-only because it 2846 contains translated code */ 2847 if (!(p->flags & PAGE_WRITE)) { 2848 if (!page_unprotect(addr, 0)) { 2849 return -1; 2850 } 2851 } 2852 } 2853 } 2854 return 0; 2855 } 2856 2857 /* called from signal handler: invalidate the code and unprotect the 2858 * page. Return 0 if the fault was not handled, 1 if it was handled, 2859 * and 2 if it was handled but the caller must cause the TB to be 2860 * immediately exited. (We can only return 2 if the 'pc' argument is 2861 * non-zero.) 2862 */ 2863 int page_unprotect(target_ulong address, uintptr_t pc) 2864 { 2865 unsigned int prot; 2866 bool current_tb_invalidated; 2867 PageDesc *p; 2868 target_ulong host_start, host_end, addr; 2869 2870 /* Technically this isn't safe inside a signal handler. However we 2871 know this only ever happens in a synchronous SEGV handler, so in 2872 practice it seems to be ok. */ 2873 mmap_lock(); 2874 2875 p = page_find(address >> TARGET_PAGE_BITS); 2876 if (!p) { 2877 mmap_unlock(); 2878 return 0; 2879 } 2880 2881 /* if the page was really writable, then we change its 2882 protection back to writable */ 2883 if (p->flags & PAGE_WRITE_ORG) { 2884 current_tb_invalidated = false; 2885 if (p->flags & PAGE_WRITE) { 2886 /* If the page is actually marked WRITE then assume this is because 2887 * this thread raced with another one which got here first and 2888 * set the page to PAGE_WRITE and did the TB invalidate for us. 2889 */ 2890 #ifdef TARGET_HAS_PRECISE_SMC 2891 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2892 if (current_tb) { 2893 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2894 } 2895 #endif 2896 } else { 2897 host_start = address & qemu_host_page_mask; 2898 host_end = host_start + qemu_host_page_size; 2899 2900 prot = 0; 2901 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2902 p = page_find(addr >> TARGET_PAGE_BITS); 2903 p->flags |= PAGE_WRITE; 2904 prot |= p->flags; 2905 2906 /* and since the content will be modified, we must invalidate 2907 the corresponding translated code. */ 2908 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2909 #ifdef CONFIG_USER_ONLY 2910 if (DEBUG_TB_CHECK_GATE) { 2911 tb_invalidate_check(addr); 2912 } 2913 #endif 2914 } 2915 mprotect((void *)g2h(host_start), qemu_host_page_size, 2916 prot & PAGE_BITS); 2917 } 2918 mmap_unlock(); 2919 /* If current TB was invalidated return to main loop */ 2920 return current_tb_invalidated ? 2 : 1; 2921 } 2922 mmap_unlock(); 2923 return 0; 2924 } 2925 #endif /* CONFIG_USER_ONLY */ 2926 2927 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2928 void tcg_flush_softmmu_tlb(CPUState *cs) 2929 { 2930 #ifdef CONFIG_SOFTMMU 2931 tlb_flush(cs); 2932 #endif 2933 } 2934