1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 #include "qemu-common.h" 23 24 #define NO_CPU_IO_DEFS 25 #include "cpu.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #if defined(CONFIG_USER_ONLY) 31 #include "qemu.h" 32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 33 #include <sys/param.h> 34 #if __FreeBSD_version >= 700104 35 #define HAVE_KINFO_GETVMMAP 36 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 37 #include <sys/proc.h> 38 #include <machine/profile.h> 39 #define _KERNEL 40 #include <sys/user.h> 41 #undef _KERNEL 42 #undef sigqueue 43 #include <libutil.h> 44 #endif 45 #endif 46 #else 47 #include "exec/ram_addr.h" 48 #endif 49 50 #include "exec/cputlb.h" 51 #include "exec/tb-hash.h" 52 #include "translate-all.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/error-report.h" 55 #include "qemu/qemu-print.h" 56 #include "qemu/timer.h" 57 #include "qemu/main-loop.h" 58 #include "exec/log.h" 59 #include "sysemu/cpus.h" 60 #include "sysemu/cpu-timers.h" 61 #include "sysemu/tcg.h" 62 63 /* #define DEBUG_TB_INVALIDATE */ 64 /* #define DEBUG_TB_FLUSH */ 65 /* make various TB consistency checks */ 66 /* #define DEBUG_TB_CHECK */ 67 68 #ifdef DEBUG_TB_INVALIDATE 69 #define DEBUG_TB_INVALIDATE_GATE 1 70 #else 71 #define DEBUG_TB_INVALIDATE_GATE 0 72 #endif 73 74 #ifdef DEBUG_TB_FLUSH 75 #define DEBUG_TB_FLUSH_GATE 1 76 #else 77 #define DEBUG_TB_FLUSH_GATE 0 78 #endif 79 80 #if !defined(CONFIG_USER_ONLY) 81 /* TB consistency checks only implemented for usermode emulation. */ 82 #undef DEBUG_TB_CHECK 83 #endif 84 85 #ifdef DEBUG_TB_CHECK 86 #define DEBUG_TB_CHECK_GATE 1 87 #else 88 #define DEBUG_TB_CHECK_GATE 0 89 #endif 90 91 /* Access to the various translations structures need to be serialised via locks 92 * for consistency. 93 * In user-mode emulation access to the memory related structures are protected 94 * with mmap_lock. 95 * In !user-mode we use per-page locks. 96 */ 97 #ifdef CONFIG_SOFTMMU 98 #define assert_memory_lock() 99 #else 100 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 101 #endif 102 103 #define SMC_BITMAP_USE_THRESHOLD 10 104 105 typedef struct PageDesc { 106 /* list of TBs intersecting this ram page */ 107 uintptr_t first_tb; 108 #ifdef CONFIG_SOFTMMU 109 /* in order to optimize self modifying code, we count the number 110 of lookups we do to a given page to use a bitmap */ 111 unsigned long *code_bitmap; 112 unsigned int code_write_count; 113 #else 114 unsigned long flags; 115 #endif 116 #ifndef CONFIG_USER_ONLY 117 QemuSpin lock; 118 #endif 119 } PageDesc; 120 121 /** 122 * struct page_entry - page descriptor entry 123 * @pd: pointer to the &struct PageDesc of the page this entry represents 124 * @index: page index of the page 125 * @locked: whether the page is locked 126 * 127 * This struct helps us keep track of the locked state of a page, without 128 * bloating &struct PageDesc. 129 * 130 * A page lock protects accesses to all fields of &struct PageDesc. 131 * 132 * See also: &struct page_collection. 133 */ 134 struct page_entry { 135 PageDesc *pd; 136 tb_page_addr_t index; 137 bool locked; 138 }; 139 140 /** 141 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 142 * @tree: Binary search tree (BST) of the pages, with key == page index 143 * @max: Pointer to the page in @tree with the highest page index 144 * 145 * To avoid deadlock we lock pages in ascending order of page index. 146 * When operating on a set of pages, we need to keep track of them so that 147 * we can lock them in order and also unlock them later. For this we collect 148 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 149 * @tree implementation we use does not provide an O(1) operation to obtain the 150 * highest-ranked element, we use @max to keep track of the inserted page 151 * with the highest index. This is valuable because if a page is not in 152 * the tree and its index is higher than @max's, then we can lock it 153 * without breaking the locking order rule. 154 * 155 * Note on naming: 'struct page_set' would be shorter, but we already have a few 156 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 157 * 158 * See also: page_collection_lock(). 159 */ 160 struct page_collection { 161 GTree *tree; 162 struct page_entry *max; 163 }; 164 165 /* list iterators for lists of tagged pointers in TranslationBlock */ 166 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 167 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 168 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 169 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 170 171 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 172 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 173 174 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 175 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 176 177 /* 178 * In system mode we want L1_MAP to be based on ram offsets, 179 * while in user mode we want it to be based on virtual addresses. 180 * 181 * TODO: For user mode, see the caveat re host vs guest virtual 182 * address spaces near GUEST_ADDR_MAX. 183 */ 184 #if !defined(CONFIG_USER_ONLY) 185 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 186 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 187 #else 188 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 189 #endif 190 #else 191 # define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS) 192 #endif 193 194 /* Size of the L2 (and L3, etc) page tables. */ 195 #define V_L2_BITS 10 196 #define V_L2_SIZE (1 << V_L2_BITS) 197 198 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 199 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 200 sizeof_field(TranslationBlock, trace_vcpu_dstate) 201 * BITS_PER_BYTE); 202 203 /* 204 * L1 Mapping properties 205 */ 206 static int v_l1_size; 207 static int v_l1_shift; 208 static int v_l2_levels; 209 210 /* The bottom level has pointers to PageDesc, and is indexed by 211 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 212 */ 213 #define V_L1_MIN_BITS 4 214 #define V_L1_MAX_BITS (V_L2_BITS + 3) 215 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 216 217 static void *l1_map[V_L1_MAX_SIZE]; 218 219 /* code generation context */ 220 TCGContext tcg_init_ctx; 221 __thread TCGContext *tcg_ctx; 222 TBContext tb_ctx; 223 bool parallel_cpus; 224 225 static void page_table_config_init(void) 226 { 227 uint32_t v_l1_bits; 228 229 assert(TARGET_PAGE_BITS); 230 /* The bits remaining after N lower levels of page tables. */ 231 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 232 if (v_l1_bits < V_L1_MIN_BITS) { 233 v_l1_bits += V_L2_BITS; 234 } 235 236 v_l1_size = 1 << v_l1_bits; 237 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 238 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 239 240 assert(v_l1_bits <= V_L1_MAX_BITS); 241 assert(v_l1_shift % V_L2_BITS == 0); 242 assert(v_l2_levels >= 0); 243 } 244 245 void cpu_gen_init(void) 246 { 247 tcg_context_init(&tcg_init_ctx); 248 } 249 250 /* Encode VAL as a signed leb128 sequence at P. 251 Return P incremented past the encoded value. */ 252 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 253 { 254 int more, byte; 255 256 do { 257 byte = val & 0x7f; 258 val >>= 7; 259 more = !((val == 0 && (byte & 0x40) == 0) 260 || (val == -1 && (byte & 0x40) != 0)); 261 if (more) { 262 byte |= 0x80; 263 } 264 *p++ = byte; 265 } while (more); 266 267 return p; 268 } 269 270 /* Decode a signed leb128 sequence at *PP; increment *PP past the 271 decoded value. Return the decoded value. */ 272 static target_long decode_sleb128(uint8_t **pp) 273 { 274 uint8_t *p = *pp; 275 target_long val = 0; 276 int byte, shift = 0; 277 278 do { 279 byte = *p++; 280 val |= (target_ulong)(byte & 0x7f) << shift; 281 shift += 7; 282 } while (byte & 0x80); 283 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 284 val |= -(target_ulong)1 << shift; 285 } 286 287 *pp = p; 288 return val; 289 } 290 291 /* Encode the data collected about the instructions while compiling TB. 292 Place the data at BLOCK, and return the number of bytes consumed. 293 294 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 295 which come from the target's insn_start data, followed by a uintptr_t 296 which comes from the host pc of the end of the code implementing the insn. 297 298 Each line of the table is encoded as sleb128 deltas from the previous 299 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 300 That is, the first column is seeded with the guest pc, the last column 301 with the host pc, and the middle columns with zeros. */ 302 303 static int encode_search(TranslationBlock *tb, uint8_t *block) 304 { 305 uint8_t *highwater = tcg_ctx->code_gen_highwater; 306 uint8_t *p = block; 307 int i, j, n; 308 309 for (i = 0, n = tb->icount; i < n; ++i) { 310 target_ulong prev; 311 312 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 313 if (i == 0) { 314 prev = (j == 0 ? tb->pc : 0); 315 } else { 316 prev = tcg_ctx->gen_insn_data[i - 1][j]; 317 } 318 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 319 } 320 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 321 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 322 323 /* Test for (pending) buffer overflow. The assumption is that any 324 one row beginning below the high water mark cannot overrun 325 the buffer completely. Thus we can test for overflow after 326 encoding a row without having to check during encoding. */ 327 if (unlikely(p > highwater)) { 328 return -1; 329 } 330 } 331 332 return p - block; 333 } 334 335 /* The cpu state corresponding to 'searched_pc' is restored. 336 * When reset_icount is true, current TB will be interrupted and 337 * icount should be recalculated. 338 */ 339 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 340 uintptr_t searched_pc, bool reset_icount) 341 { 342 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 343 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 344 CPUArchState *env = cpu->env_ptr; 345 uint8_t *p = tb->tc.ptr + tb->tc.size; 346 int i, j, num_insns = tb->icount; 347 #ifdef CONFIG_PROFILER 348 TCGProfile *prof = &tcg_ctx->prof; 349 int64_t ti = profile_getclock(); 350 #endif 351 352 searched_pc -= GETPC_ADJ; 353 354 if (searched_pc < host_pc) { 355 return -1; 356 } 357 358 /* Reconstruct the stored insn data while looking for the point at 359 which the end of the insn exceeds the searched_pc. */ 360 for (i = 0; i < num_insns; ++i) { 361 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 362 data[j] += decode_sleb128(&p); 363 } 364 host_pc += decode_sleb128(&p); 365 if (host_pc > searched_pc) { 366 goto found; 367 } 368 } 369 return -1; 370 371 found: 372 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 373 assert(icount_enabled()); 374 /* Reset the cycle counter to the start of the block 375 and shift if to the number of actually executed instructions */ 376 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 377 } 378 restore_state_to_opc(env, tb, data); 379 380 #ifdef CONFIG_PROFILER 381 qatomic_set(&prof->restore_time, 382 prof->restore_time + profile_getclock() - ti); 383 qatomic_set(&prof->restore_count, prof->restore_count + 1); 384 #endif 385 return 0; 386 } 387 388 void tb_destroy(TranslationBlock *tb) 389 { 390 qemu_spin_destroy(&tb->jmp_lock); 391 } 392 393 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 394 { 395 TranslationBlock *tb; 396 bool r = false; 397 uintptr_t check_offset; 398 399 /* The host_pc has to be in the region of current code buffer. If 400 * it is not we will not be able to resolve it here. The two cases 401 * where host_pc will not be correct are: 402 * 403 * - fault during translation (instruction fetch) 404 * - fault from helper (not using GETPC() macro) 405 * 406 * Either way we need return early as we can't resolve it here. 407 * 408 * We are using unsigned arithmetic so if host_pc < 409 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 410 * above the code_gen_buffer_size 411 */ 412 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 413 414 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 415 tb = tcg_tb_lookup(host_pc); 416 if (tb) { 417 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 418 if (tb_cflags(tb) & CF_NOCACHE) { 419 /* one-shot translation, invalidate it immediately */ 420 tb_phys_invalidate(tb, -1); 421 tcg_tb_remove(tb); 422 tb_destroy(tb); 423 } 424 r = true; 425 } 426 } 427 428 return r; 429 } 430 431 static void page_init(void) 432 { 433 page_size_init(); 434 page_table_config_init(); 435 436 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 437 { 438 #ifdef HAVE_KINFO_GETVMMAP 439 struct kinfo_vmentry *freep; 440 int i, cnt; 441 442 freep = kinfo_getvmmap(getpid(), &cnt); 443 if (freep) { 444 mmap_lock(); 445 for (i = 0; i < cnt; i++) { 446 unsigned long startaddr, endaddr; 447 448 startaddr = freep[i].kve_start; 449 endaddr = freep[i].kve_end; 450 if (h2g_valid(startaddr)) { 451 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 452 453 if (h2g_valid(endaddr)) { 454 endaddr = h2g(endaddr); 455 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 456 } else { 457 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 458 endaddr = ~0ul; 459 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 460 #endif 461 } 462 } 463 } 464 free(freep); 465 mmap_unlock(); 466 } 467 #else 468 FILE *f; 469 470 last_brk = (unsigned long)sbrk(0); 471 472 f = fopen("/compat/linux/proc/self/maps", "r"); 473 if (f) { 474 mmap_lock(); 475 476 do { 477 unsigned long startaddr, endaddr; 478 int n; 479 480 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 481 482 if (n == 2 && h2g_valid(startaddr)) { 483 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 484 485 if (h2g_valid(endaddr)) { 486 endaddr = h2g(endaddr); 487 } else { 488 endaddr = ~0ul; 489 } 490 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 491 } 492 } while (!feof(f)); 493 494 fclose(f); 495 mmap_unlock(); 496 } 497 #endif 498 } 499 #endif 500 } 501 502 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 503 { 504 PageDesc *pd; 505 void **lp; 506 int i; 507 508 /* Level 1. Always allocated. */ 509 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 510 511 /* Level 2..N-1. */ 512 for (i = v_l2_levels; i > 0; i--) { 513 void **p = qatomic_rcu_read(lp); 514 515 if (p == NULL) { 516 void *existing; 517 518 if (!alloc) { 519 return NULL; 520 } 521 p = g_new0(void *, V_L2_SIZE); 522 existing = qatomic_cmpxchg(lp, NULL, p); 523 if (unlikely(existing)) { 524 g_free(p); 525 p = existing; 526 } 527 } 528 529 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 530 } 531 532 pd = qatomic_rcu_read(lp); 533 if (pd == NULL) { 534 void *existing; 535 536 if (!alloc) { 537 return NULL; 538 } 539 pd = g_new0(PageDesc, V_L2_SIZE); 540 #ifndef CONFIG_USER_ONLY 541 { 542 int i; 543 544 for (i = 0; i < V_L2_SIZE; i++) { 545 qemu_spin_init(&pd[i].lock); 546 } 547 } 548 #endif 549 existing = qatomic_cmpxchg(lp, NULL, pd); 550 if (unlikely(existing)) { 551 #ifndef CONFIG_USER_ONLY 552 { 553 int i; 554 555 for (i = 0; i < V_L2_SIZE; i++) { 556 qemu_spin_destroy(&pd[i].lock); 557 } 558 } 559 #endif 560 g_free(pd); 561 pd = existing; 562 } 563 } 564 565 return pd + (index & (V_L2_SIZE - 1)); 566 } 567 568 static inline PageDesc *page_find(tb_page_addr_t index) 569 { 570 return page_find_alloc(index, 0); 571 } 572 573 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 574 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 575 576 /* In user-mode page locks aren't used; mmap_lock is enough */ 577 #ifdef CONFIG_USER_ONLY 578 579 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 580 581 static inline void page_lock(PageDesc *pd) 582 { } 583 584 static inline void page_unlock(PageDesc *pd) 585 { } 586 587 static inline void page_lock_tb(const TranslationBlock *tb) 588 { } 589 590 static inline void page_unlock_tb(const TranslationBlock *tb) 591 { } 592 593 struct page_collection * 594 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 595 { 596 return NULL; 597 } 598 599 void page_collection_unlock(struct page_collection *set) 600 { } 601 #else /* !CONFIG_USER_ONLY */ 602 603 #ifdef CONFIG_DEBUG_TCG 604 605 static __thread GHashTable *ht_pages_locked_debug; 606 607 static void ht_pages_locked_debug_init(void) 608 { 609 if (ht_pages_locked_debug) { 610 return; 611 } 612 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 613 } 614 615 static bool page_is_locked(const PageDesc *pd) 616 { 617 PageDesc *found; 618 619 ht_pages_locked_debug_init(); 620 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 621 return !!found; 622 } 623 624 static void page_lock__debug(PageDesc *pd) 625 { 626 ht_pages_locked_debug_init(); 627 g_assert(!page_is_locked(pd)); 628 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 629 } 630 631 static void page_unlock__debug(const PageDesc *pd) 632 { 633 bool removed; 634 635 ht_pages_locked_debug_init(); 636 g_assert(page_is_locked(pd)); 637 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 638 g_assert(removed); 639 } 640 641 static void 642 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 643 { 644 if (unlikely(!page_is_locked(pd))) { 645 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 646 pd, file, line); 647 abort(); 648 } 649 } 650 651 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 652 653 void assert_no_pages_locked(void) 654 { 655 ht_pages_locked_debug_init(); 656 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 657 } 658 659 #else /* !CONFIG_DEBUG_TCG */ 660 661 #define assert_page_locked(pd) 662 663 static inline void page_lock__debug(const PageDesc *pd) 664 { 665 } 666 667 static inline void page_unlock__debug(const PageDesc *pd) 668 { 669 } 670 671 #endif /* CONFIG_DEBUG_TCG */ 672 673 static inline void page_lock(PageDesc *pd) 674 { 675 page_lock__debug(pd); 676 qemu_spin_lock(&pd->lock); 677 } 678 679 static inline void page_unlock(PageDesc *pd) 680 { 681 qemu_spin_unlock(&pd->lock); 682 page_unlock__debug(pd); 683 } 684 685 /* lock the page(s) of a TB in the correct acquisition order */ 686 static inline void page_lock_tb(const TranslationBlock *tb) 687 { 688 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 689 } 690 691 static inline void page_unlock_tb(const TranslationBlock *tb) 692 { 693 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 694 695 page_unlock(p1); 696 if (unlikely(tb->page_addr[1] != -1)) { 697 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 698 699 if (p2 != p1) { 700 page_unlock(p2); 701 } 702 } 703 } 704 705 static inline struct page_entry * 706 page_entry_new(PageDesc *pd, tb_page_addr_t index) 707 { 708 struct page_entry *pe = g_malloc(sizeof(*pe)); 709 710 pe->index = index; 711 pe->pd = pd; 712 pe->locked = false; 713 return pe; 714 } 715 716 static void page_entry_destroy(gpointer p) 717 { 718 struct page_entry *pe = p; 719 720 g_assert(pe->locked); 721 page_unlock(pe->pd); 722 g_free(pe); 723 } 724 725 /* returns false on success */ 726 static bool page_entry_trylock(struct page_entry *pe) 727 { 728 bool busy; 729 730 busy = qemu_spin_trylock(&pe->pd->lock); 731 if (!busy) { 732 g_assert(!pe->locked); 733 pe->locked = true; 734 page_lock__debug(pe->pd); 735 } 736 return busy; 737 } 738 739 static void do_page_entry_lock(struct page_entry *pe) 740 { 741 page_lock(pe->pd); 742 g_assert(!pe->locked); 743 pe->locked = true; 744 } 745 746 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 747 { 748 struct page_entry *pe = value; 749 750 do_page_entry_lock(pe); 751 return FALSE; 752 } 753 754 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 755 { 756 struct page_entry *pe = value; 757 758 if (pe->locked) { 759 pe->locked = false; 760 page_unlock(pe->pd); 761 } 762 return FALSE; 763 } 764 765 /* 766 * Trylock a page, and if successful, add the page to a collection. 767 * Returns true ("busy") if the page could not be locked; false otherwise. 768 */ 769 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 770 { 771 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 772 struct page_entry *pe; 773 PageDesc *pd; 774 775 pe = g_tree_lookup(set->tree, &index); 776 if (pe) { 777 return false; 778 } 779 780 pd = page_find(index); 781 if (pd == NULL) { 782 return false; 783 } 784 785 pe = page_entry_new(pd, index); 786 g_tree_insert(set->tree, &pe->index, pe); 787 788 /* 789 * If this is either (1) the first insertion or (2) a page whose index 790 * is higher than any other so far, just lock the page and move on. 791 */ 792 if (set->max == NULL || pe->index > set->max->index) { 793 set->max = pe; 794 do_page_entry_lock(pe); 795 return false; 796 } 797 /* 798 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 799 * locks in order. 800 */ 801 return page_entry_trylock(pe); 802 } 803 804 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 805 { 806 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 807 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 808 809 if (a == b) { 810 return 0; 811 } else if (a < b) { 812 return -1; 813 } 814 return 1; 815 } 816 817 /* 818 * Lock a range of pages ([@start,@end[) as well as the pages of all 819 * intersecting TBs. 820 * Locking order: acquire locks in ascending order of page index. 821 */ 822 struct page_collection * 823 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 824 { 825 struct page_collection *set = g_malloc(sizeof(*set)); 826 tb_page_addr_t index; 827 PageDesc *pd; 828 829 start >>= TARGET_PAGE_BITS; 830 end >>= TARGET_PAGE_BITS; 831 g_assert(start <= end); 832 833 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 834 page_entry_destroy); 835 set->max = NULL; 836 assert_no_pages_locked(); 837 838 retry: 839 g_tree_foreach(set->tree, page_entry_lock, NULL); 840 841 for (index = start; index <= end; index++) { 842 TranslationBlock *tb; 843 int n; 844 845 pd = page_find(index); 846 if (pd == NULL) { 847 continue; 848 } 849 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 850 g_tree_foreach(set->tree, page_entry_unlock, NULL); 851 goto retry; 852 } 853 assert_page_locked(pd); 854 PAGE_FOR_EACH_TB(pd, tb, n) { 855 if (page_trylock_add(set, tb->page_addr[0]) || 856 (tb->page_addr[1] != -1 && 857 page_trylock_add(set, tb->page_addr[1]))) { 858 /* drop all locks, and reacquire in order */ 859 g_tree_foreach(set->tree, page_entry_unlock, NULL); 860 goto retry; 861 } 862 } 863 } 864 return set; 865 } 866 867 void page_collection_unlock(struct page_collection *set) 868 { 869 /* entries are unlocked and freed via page_entry_destroy */ 870 g_tree_destroy(set->tree); 871 g_free(set); 872 } 873 874 #endif /* !CONFIG_USER_ONLY */ 875 876 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 877 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 878 { 879 PageDesc *p1, *p2; 880 tb_page_addr_t page1; 881 tb_page_addr_t page2; 882 883 assert_memory_lock(); 884 g_assert(phys1 != -1); 885 886 page1 = phys1 >> TARGET_PAGE_BITS; 887 page2 = phys2 >> TARGET_PAGE_BITS; 888 889 p1 = page_find_alloc(page1, alloc); 890 if (ret_p1) { 891 *ret_p1 = p1; 892 } 893 if (likely(phys2 == -1)) { 894 page_lock(p1); 895 return; 896 } else if (page1 == page2) { 897 page_lock(p1); 898 if (ret_p2) { 899 *ret_p2 = p1; 900 } 901 return; 902 } 903 p2 = page_find_alloc(page2, alloc); 904 if (ret_p2) { 905 *ret_p2 = p2; 906 } 907 if (page1 < page2) { 908 page_lock(p1); 909 page_lock(p2); 910 } else { 911 page_lock(p2); 912 page_lock(p1); 913 } 914 } 915 916 /* Minimum size of the code gen buffer. This number is randomly chosen, 917 but not so small that we can't have a fair number of TB's live. */ 918 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) 919 920 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 921 indicated, this is constrained by the range of direct branches on the 922 host cpu, as used by the TCG implementation of goto_tb. */ 923 #if defined(__x86_64__) 924 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 925 #elif defined(__sparc__) 926 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 927 #elif defined(__powerpc64__) 928 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 929 #elif defined(__powerpc__) 930 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB) 931 #elif defined(__aarch64__) 932 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 933 #elif defined(__s390x__) 934 /* We have a +- 4GB range on the branches; leave some slop. */ 935 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB) 936 #elif defined(__mips__) 937 /* We have a 256MB branch region, but leave room to make sure the 938 main executable is also within that region. */ 939 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB) 940 #else 941 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 942 #endif 943 944 #if TCG_TARGET_REG_BITS == 32 945 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) 946 #ifdef CONFIG_USER_ONLY 947 /* 948 * For user mode on smaller 32 bit systems we may run into trouble 949 * allocating big chunks of data in the right place. On these systems 950 * we utilise a static code generation buffer directly in the binary. 951 */ 952 #define USE_STATIC_CODE_GEN_BUFFER 953 #endif 954 #else /* TCG_TARGET_REG_BITS == 64 */ 955 #ifdef CONFIG_USER_ONLY 956 /* 957 * As user-mode emulation typically means running multiple instances 958 * of the translator don't go too nuts with our default code gen 959 * buffer lest we make things too hard for the OS. 960 */ 961 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) 962 #else 963 /* 964 * We expect most system emulation to run one or two guests per host. 965 * Users running large scale system emulation may want to tweak their 966 * runtime setup via the tb-size control on the command line. 967 */ 968 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) 969 #endif 970 #endif 971 972 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 973 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 974 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 975 976 static inline size_t size_code_gen_buffer(size_t tb_size) 977 { 978 /* Size the buffer. */ 979 if (tb_size == 0) { 980 size_t phys_mem = qemu_get_host_physmem(); 981 if (phys_mem == 0) { 982 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 983 } else { 984 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8); 985 } 986 } 987 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 988 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 989 } 990 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 991 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 992 } 993 return tb_size; 994 } 995 996 #ifdef __mips__ 997 /* In order to use J and JAL within the code_gen_buffer, we require 998 that the buffer not cross a 256MB boundary. */ 999 static inline bool cross_256mb(void *addr, size_t size) 1000 { 1001 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 1002 } 1003 1004 /* We weren't able to allocate a buffer without crossing that boundary, 1005 so make do with the larger portion of the buffer that doesn't cross. 1006 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 1007 static inline void *split_cross_256mb(void *buf1, size_t size1) 1008 { 1009 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 1010 size_t size2 = buf1 + size1 - buf2; 1011 1012 size1 = buf2 - buf1; 1013 if (size1 < size2) { 1014 size1 = size2; 1015 buf1 = buf2; 1016 } 1017 1018 tcg_ctx->code_gen_buffer_size = size1; 1019 return buf1; 1020 } 1021 #endif 1022 1023 #ifdef USE_STATIC_CODE_GEN_BUFFER 1024 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 1025 __attribute__((aligned(CODE_GEN_ALIGN))); 1026 1027 static inline void *alloc_code_gen_buffer(void) 1028 { 1029 void *buf = static_code_gen_buffer; 1030 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 1031 size_t size; 1032 1033 /* page-align the beginning and end of the buffer */ 1034 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 1035 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 1036 1037 size = end - buf; 1038 1039 /* Honor a command-line option limiting the size of the buffer. */ 1040 if (size > tcg_ctx->code_gen_buffer_size) { 1041 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1042 qemu_real_host_page_size); 1043 } 1044 tcg_ctx->code_gen_buffer_size = size; 1045 1046 #ifdef __mips__ 1047 if (cross_256mb(buf, size)) { 1048 buf = split_cross_256mb(buf, size); 1049 size = tcg_ctx->code_gen_buffer_size; 1050 } 1051 #endif 1052 1053 if (qemu_mprotect_rwx(buf, size)) { 1054 abort(); 1055 } 1056 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1057 1058 return buf; 1059 } 1060 #elif defined(_WIN32) 1061 static inline void *alloc_code_gen_buffer(void) 1062 { 1063 size_t size = tcg_ctx->code_gen_buffer_size; 1064 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1065 PAGE_EXECUTE_READWRITE); 1066 } 1067 #else 1068 static inline void *alloc_code_gen_buffer(void) 1069 { 1070 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1071 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1072 size_t size = tcg_ctx->code_gen_buffer_size; 1073 void *buf; 1074 1075 buf = mmap(NULL, size, prot, flags, -1, 0); 1076 if (buf == MAP_FAILED) { 1077 return NULL; 1078 } 1079 1080 #ifdef __mips__ 1081 if (cross_256mb(buf, size)) { 1082 /* 1083 * Try again, with the original still mapped, to avoid re-acquiring 1084 * the same 256mb crossing. 1085 */ 1086 size_t size2; 1087 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1088 switch ((int)(buf2 != MAP_FAILED)) { 1089 case 1: 1090 if (!cross_256mb(buf2, size)) { 1091 /* Success! Use the new buffer. */ 1092 munmap(buf, size); 1093 break; 1094 } 1095 /* Failure. Work with what we had. */ 1096 munmap(buf2, size); 1097 /* fallthru */ 1098 default: 1099 /* Split the original buffer. Free the smaller half. */ 1100 buf2 = split_cross_256mb(buf, size); 1101 size2 = tcg_ctx->code_gen_buffer_size; 1102 if (buf == buf2) { 1103 munmap(buf + size2, size - size2); 1104 } else { 1105 munmap(buf, size - size2); 1106 } 1107 size = size2; 1108 break; 1109 } 1110 buf = buf2; 1111 } 1112 #endif 1113 1114 /* Request large pages for the buffer. */ 1115 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1116 1117 return buf; 1118 } 1119 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1120 1121 static inline void code_gen_alloc(size_t tb_size) 1122 { 1123 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1124 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1125 if (tcg_ctx->code_gen_buffer == NULL) { 1126 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1127 exit(1); 1128 } 1129 } 1130 1131 static bool tb_cmp(const void *ap, const void *bp) 1132 { 1133 const TranslationBlock *a = ap; 1134 const TranslationBlock *b = bp; 1135 1136 return a->pc == b->pc && 1137 a->cs_base == b->cs_base && 1138 a->flags == b->flags && 1139 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1140 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1141 a->page_addr[0] == b->page_addr[0] && 1142 a->page_addr[1] == b->page_addr[1]; 1143 } 1144 1145 static void tb_htable_init(void) 1146 { 1147 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1148 1149 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1150 } 1151 1152 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1153 (in bytes) allocated to the translation buffer. Zero means default 1154 size. */ 1155 void tcg_exec_init(unsigned long tb_size) 1156 { 1157 tcg_allowed = true; 1158 cpu_gen_init(); 1159 page_init(); 1160 tb_htable_init(); 1161 code_gen_alloc(tb_size); 1162 #if defined(CONFIG_SOFTMMU) 1163 /* There's no guest base to take into account, so go ahead and 1164 initialize the prologue now. */ 1165 tcg_prologue_init(tcg_ctx); 1166 #endif 1167 } 1168 1169 /* call with @p->lock held */ 1170 static inline void invalidate_page_bitmap(PageDesc *p) 1171 { 1172 assert_page_locked(p); 1173 #ifdef CONFIG_SOFTMMU 1174 g_free(p->code_bitmap); 1175 p->code_bitmap = NULL; 1176 p->code_write_count = 0; 1177 #endif 1178 } 1179 1180 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1181 static void page_flush_tb_1(int level, void **lp) 1182 { 1183 int i; 1184 1185 if (*lp == NULL) { 1186 return; 1187 } 1188 if (level == 0) { 1189 PageDesc *pd = *lp; 1190 1191 for (i = 0; i < V_L2_SIZE; ++i) { 1192 page_lock(&pd[i]); 1193 pd[i].first_tb = (uintptr_t)NULL; 1194 invalidate_page_bitmap(pd + i); 1195 page_unlock(&pd[i]); 1196 } 1197 } else { 1198 void **pp = *lp; 1199 1200 for (i = 0; i < V_L2_SIZE; ++i) { 1201 page_flush_tb_1(level - 1, pp + i); 1202 } 1203 } 1204 } 1205 1206 static void page_flush_tb(void) 1207 { 1208 int i, l1_sz = v_l1_size; 1209 1210 for (i = 0; i < l1_sz; i++) { 1211 page_flush_tb_1(v_l2_levels, l1_map + i); 1212 } 1213 } 1214 1215 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1216 { 1217 const TranslationBlock *tb = value; 1218 size_t *size = data; 1219 1220 *size += tb->tc.size; 1221 return false; 1222 } 1223 1224 /* flush all the translation blocks */ 1225 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1226 { 1227 bool did_flush = false; 1228 1229 mmap_lock(); 1230 /* If it is already been done on request of another CPU, 1231 * just retry. 1232 */ 1233 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1234 goto done; 1235 } 1236 did_flush = true; 1237 1238 if (DEBUG_TB_FLUSH_GATE) { 1239 size_t nb_tbs = tcg_nb_tbs(); 1240 size_t host_size = 0; 1241 1242 tcg_tb_foreach(tb_host_size_iter, &host_size); 1243 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1244 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1245 } 1246 1247 CPU_FOREACH(cpu) { 1248 cpu_tb_jmp_cache_clear(cpu); 1249 } 1250 1251 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1252 page_flush_tb(); 1253 1254 tcg_region_reset_all(); 1255 /* XXX: flush processor icache at this point if cache flush is 1256 expensive */ 1257 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1258 1259 done: 1260 mmap_unlock(); 1261 if (did_flush) { 1262 qemu_plugin_flush_cb(); 1263 } 1264 } 1265 1266 void tb_flush(CPUState *cpu) 1267 { 1268 if (tcg_enabled()) { 1269 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count); 1270 1271 if (cpu_in_exclusive_context(cpu)) { 1272 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1273 } else { 1274 async_safe_run_on_cpu(cpu, do_tb_flush, 1275 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1276 } 1277 } 1278 } 1279 1280 /* 1281 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1282 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1283 * and let the optimizer get rid of them by wrapping their user-only callers 1284 * with if (DEBUG_TB_CHECK_GATE). 1285 */ 1286 #ifdef CONFIG_USER_ONLY 1287 1288 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1289 { 1290 TranslationBlock *tb = p; 1291 target_ulong addr = *(target_ulong *)userp; 1292 1293 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1294 printf("ERROR invalidate: address=" TARGET_FMT_lx 1295 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1296 } 1297 } 1298 1299 /* verify that all the pages have correct rights for code 1300 * 1301 * Called with mmap_lock held. 1302 */ 1303 static void tb_invalidate_check(target_ulong address) 1304 { 1305 address &= TARGET_PAGE_MASK; 1306 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1307 } 1308 1309 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1310 { 1311 TranslationBlock *tb = p; 1312 int flags1, flags2; 1313 1314 flags1 = page_get_flags(tb->pc); 1315 flags2 = page_get_flags(tb->pc + tb->size - 1); 1316 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1317 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1318 (long)tb->pc, tb->size, flags1, flags2); 1319 } 1320 } 1321 1322 /* verify that all the pages have correct rights for code */ 1323 static void tb_page_check(void) 1324 { 1325 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1326 } 1327 1328 #endif /* CONFIG_USER_ONLY */ 1329 1330 /* 1331 * user-mode: call with mmap_lock held 1332 * !user-mode: call with @pd->lock held 1333 */ 1334 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1335 { 1336 TranslationBlock *tb1; 1337 uintptr_t *pprev; 1338 unsigned int n1; 1339 1340 assert_page_locked(pd); 1341 pprev = &pd->first_tb; 1342 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1343 if (tb1 == tb) { 1344 *pprev = tb1->page_next[n1]; 1345 return; 1346 } 1347 pprev = &tb1->page_next[n1]; 1348 } 1349 g_assert_not_reached(); 1350 } 1351 1352 /* remove @orig from its @n_orig-th jump list */ 1353 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1354 { 1355 uintptr_t ptr, ptr_locked; 1356 TranslationBlock *dest; 1357 TranslationBlock *tb; 1358 uintptr_t *pprev; 1359 int n; 1360 1361 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1362 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1363 dest = (TranslationBlock *)(ptr & ~1); 1364 if (dest == NULL) { 1365 return; 1366 } 1367 1368 qemu_spin_lock(&dest->jmp_lock); 1369 /* 1370 * While acquiring the lock, the jump might have been removed if the 1371 * destination TB was invalidated; check again. 1372 */ 1373 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 1374 if (ptr_locked != ptr) { 1375 qemu_spin_unlock(&dest->jmp_lock); 1376 /* 1377 * The only possibility is that the jump was unlinked via 1378 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1379 * because we set the LSB above. 1380 */ 1381 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1382 return; 1383 } 1384 /* 1385 * We first acquired the lock, and since the destination pointer matches, 1386 * we know for sure that @orig is in the jmp list. 1387 */ 1388 pprev = &dest->jmp_list_head; 1389 TB_FOR_EACH_JMP(dest, tb, n) { 1390 if (tb == orig && n == n_orig) { 1391 *pprev = tb->jmp_list_next[n]; 1392 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1393 qemu_spin_unlock(&dest->jmp_lock); 1394 return; 1395 } 1396 pprev = &tb->jmp_list_next[n]; 1397 } 1398 g_assert_not_reached(); 1399 } 1400 1401 /* reset the jump entry 'n' of a TB so that it is not chained to 1402 another TB */ 1403 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1404 { 1405 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1406 tb_set_jmp_target(tb, n, addr); 1407 } 1408 1409 /* remove any jumps to the TB */ 1410 static inline void tb_jmp_unlink(TranslationBlock *dest) 1411 { 1412 TranslationBlock *tb; 1413 int n; 1414 1415 qemu_spin_lock(&dest->jmp_lock); 1416 1417 TB_FOR_EACH_JMP(dest, tb, n) { 1418 tb_reset_jump(tb, n); 1419 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1420 /* No need to clear the list entry; setting the dest ptr is enough */ 1421 } 1422 dest->jmp_list_head = (uintptr_t)NULL; 1423 1424 qemu_spin_unlock(&dest->jmp_lock); 1425 } 1426 1427 /* 1428 * In user-mode, call with mmap_lock held. 1429 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1430 * locks held. 1431 */ 1432 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1433 { 1434 CPUState *cpu; 1435 PageDesc *p; 1436 uint32_t h; 1437 tb_page_addr_t phys_pc; 1438 1439 assert_memory_lock(); 1440 1441 /* make sure no further incoming jumps will be chained to this TB */ 1442 qemu_spin_lock(&tb->jmp_lock); 1443 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1444 qemu_spin_unlock(&tb->jmp_lock); 1445 1446 /* remove the TB from the hash list */ 1447 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1448 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1449 tb->trace_vcpu_dstate); 1450 if (!(tb->cflags & CF_NOCACHE) && 1451 !qht_remove(&tb_ctx.htable, tb, h)) { 1452 return; 1453 } 1454 1455 /* remove the TB from the page list */ 1456 if (rm_from_page_list) { 1457 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1458 tb_page_remove(p, tb); 1459 invalidate_page_bitmap(p); 1460 if (tb->page_addr[1] != -1) { 1461 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1462 tb_page_remove(p, tb); 1463 invalidate_page_bitmap(p); 1464 } 1465 } 1466 1467 /* remove the TB from the hash list */ 1468 h = tb_jmp_cache_hash_func(tb->pc); 1469 CPU_FOREACH(cpu) { 1470 if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1471 qatomic_set(&cpu->tb_jmp_cache[h], NULL); 1472 } 1473 } 1474 1475 /* suppress this TB from the two jump lists */ 1476 tb_remove_from_jmp_list(tb, 0); 1477 tb_remove_from_jmp_list(tb, 1); 1478 1479 /* suppress any remaining jumps to this TB */ 1480 tb_jmp_unlink(tb); 1481 1482 qatomic_set(&tcg_ctx->tb_phys_invalidate_count, 1483 tcg_ctx->tb_phys_invalidate_count + 1); 1484 } 1485 1486 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1487 { 1488 do_tb_phys_invalidate(tb, true); 1489 } 1490 1491 /* invalidate one TB 1492 * 1493 * Called with mmap_lock held in user-mode. 1494 */ 1495 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1496 { 1497 if (page_addr == -1 && tb->page_addr[0] != -1) { 1498 page_lock_tb(tb); 1499 do_tb_phys_invalidate(tb, true); 1500 page_unlock_tb(tb); 1501 } else { 1502 do_tb_phys_invalidate(tb, false); 1503 } 1504 } 1505 1506 #ifdef CONFIG_SOFTMMU 1507 /* call with @p->lock held */ 1508 static void build_page_bitmap(PageDesc *p) 1509 { 1510 int n, tb_start, tb_end; 1511 TranslationBlock *tb; 1512 1513 assert_page_locked(p); 1514 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1515 1516 PAGE_FOR_EACH_TB(p, tb, n) { 1517 /* NOTE: this is subtle as a TB may span two physical pages */ 1518 if (n == 0) { 1519 /* NOTE: tb_end may be after the end of the page, but 1520 it is not a problem */ 1521 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1522 tb_end = tb_start + tb->size; 1523 if (tb_end > TARGET_PAGE_SIZE) { 1524 tb_end = TARGET_PAGE_SIZE; 1525 } 1526 } else { 1527 tb_start = 0; 1528 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1529 } 1530 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1531 } 1532 } 1533 #endif 1534 1535 /* add the tb in the target page and protect it if necessary 1536 * 1537 * Called with mmap_lock held for user-mode emulation. 1538 * Called with @p->lock held in !user-mode. 1539 */ 1540 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1541 unsigned int n, tb_page_addr_t page_addr) 1542 { 1543 #ifndef CONFIG_USER_ONLY 1544 bool page_already_protected; 1545 #endif 1546 1547 assert_page_locked(p); 1548 1549 tb->page_addr[n] = page_addr; 1550 tb->page_next[n] = p->first_tb; 1551 #ifndef CONFIG_USER_ONLY 1552 page_already_protected = p->first_tb != (uintptr_t)NULL; 1553 #endif 1554 p->first_tb = (uintptr_t)tb | n; 1555 invalidate_page_bitmap(p); 1556 1557 #if defined(CONFIG_USER_ONLY) 1558 if (p->flags & PAGE_WRITE) { 1559 target_ulong addr; 1560 PageDesc *p2; 1561 int prot; 1562 1563 /* force the host page as non writable (writes will have a 1564 page fault + mprotect overhead) */ 1565 page_addr &= qemu_host_page_mask; 1566 prot = 0; 1567 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1568 addr += TARGET_PAGE_SIZE) { 1569 1570 p2 = page_find(addr >> TARGET_PAGE_BITS); 1571 if (!p2) { 1572 continue; 1573 } 1574 prot |= p2->flags; 1575 p2->flags &= ~PAGE_WRITE; 1576 } 1577 mprotect(g2h(page_addr), qemu_host_page_size, 1578 (prot & PAGE_BITS) & ~PAGE_WRITE); 1579 if (DEBUG_TB_INVALIDATE_GATE) { 1580 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1581 } 1582 } 1583 #else 1584 /* if some code is already present, then the pages are already 1585 protected. So we handle the case where only the first TB is 1586 allocated in a physical page */ 1587 if (!page_already_protected) { 1588 tlb_protect_code(page_addr); 1589 } 1590 #endif 1591 } 1592 1593 /* add a new TB and link it to the physical page tables. phys_page2 is 1594 * (-1) to indicate that only one page contains the TB. 1595 * 1596 * Called with mmap_lock held for user-mode emulation. 1597 * 1598 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1599 * Note that in !user-mode, another thread might have already added a TB 1600 * for the same block of guest code that @tb corresponds to. In that case, 1601 * the caller should discard the original @tb, and use instead the returned TB. 1602 */ 1603 static TranslationBlock * 1604 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1605 tb_page_addr_t phys_page2) 1606 { 1607 PageDesc *p; 1608 PageDesc *p2 = NULL; 1609 1610 assert_memory_lock(); 1611 1612 if (phys_pc == -1) { 1613 /* 1614 * If the TB is not associated with a physical RAM page then 1615 * it must be a temporary one-insn TB, and we have nothing to do 1616 * except fill in the page_addr[] fields. 1617 */ 1618 assert(tb->cflags & CF_NOCACHE); 1619 tb->page_addr[0] = tb->page_addr[1] = -1; 1620 return tb; 1621 } 1622 1623 /* 1624 * Add the TB to the page list, acquiring first the pages's locks. 1625 * We keep the locks held until after inserting the TB in the hash table, 1626 * so that if the insertion fails we know for sure that the TBs are still 1627 * in the page descriptors. 1628 * Note that inserting into the hash table first isn't an option, since 1629 * we can only insert TBs that are fully initialized. 1630 */ 1631 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1632 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1633 if (p2) { 1634 tb_page_add(p2, tb, 1, phys_page2); 1635 } else { 1636 tb->page_addr[1] = -1; 1637 } 1638 1639 if (!(tb->cflags & CF_NOCACHE)) { 1640 void *existing_tb = NULL; 1641 uint32_t h; 1642 1643 /* add in the hash table */ 1644 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1645 tb->trace_vcpu_dstate); 1646 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1647 1648 /* remove TB from the page(s) if we couldn't insert it */ 1649 if (unlikely(existing_tb)) { 1650 tb_page_remove(p, tb); 1651 invalidate_page_bitmap(p); 1652 if (p2) { 1653 tb_page_remove(p2, tb); 1654 invalidate_page_bitmap(p2); 1655 } 1656 tb = existing_tb; 1657 } 1658 } 1659 1660 if (p2 && p2 != p) { 1661 page_unlock(p2); 1662 } 1663 page_unlock(p); 1664 1665 #ifdef CONFIG_USER_ONLY 1666 if (DEBUG_TB_CHECK_GATE) { 1667 tb_page_check(); 1668 } 1669 #endif 1670 return tb; 1671 } 1672 1673 /* Called with mmap_lock held for user mode emulation. */ 1674 TranslationBlock *tb_gen_code(CPUState *cpu, 1675 target_ulong pc, target_ulong cs_base, 1676 uint32_t flags, int cflags) 1677 { 1678 CPUArchState *env = cpu->env_ptr; 1679 TranslationBlock *tb, *existing_tb; 1680 tb_page_addr_t phys_pc, phys_page2; 1681 target_ulong virt_page2; 1682 tcg_insn_unit *gen_code_buf; 1683 int gen_code_size, search_size, max_insns; 1684 #ifdef CONFIG_PROFILER 1685 TCGProfile *prof = &tcg_ctx->prof; 1686 int64_t ti; 1687 #endif 1688 1689 assert_memory_lock(); 1690 1691 phys_pc = get_page_addr_code(env, pc); 1692 1693 if (phys_pc == -1) { 1694 /* Generate a temporary TB with 1 insn in it */ 1695 cflags &= ~CF_COUNT_MASK; 1696 cflags |= CF_NOCACHE | 1; 1697 } 1698 1699 cflags &= ~CF_CLUSTER_MASK; 1700 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1701 1702 max_insns = cflags & CF_COUNT_MASK; 1703 if (max_insns == 0) { 1704 max_insns = CF_COUNT_MASK; 1705 } 1706 if (max_insns > TCG_MAX_INSNS) { 1707 max_insns = TCG_MAX_INSNS; 1708 } 1709 if (cpu->singlestep_enabled || singlestep) { 1710 max_insns = 1; 1711 } 1712 1713 buffer_overflow: 1714 tb = tcg_tb_alloc(tcg_ctx); 1715 if (unlikely(!tb)) { 1716 /* flush must be done */ 1717 tb_flush(cpu); 1718 mmap_unlock(); 1719 /* Make the execution loop process the flush as soon as possible. */ 1720 cpu->exception_index = EXCP_INTERRUPT; 1721 cpu_loop_exit(cpu); 1722 } 1723 1724 gen_code_buf = tcg_ctx->code_gen_ptr; 1725 tb->tc.ptr = gen_code_buf; 1726 tb->pc = pc; 1727 tb->cs_base = cs_base; 1728 tb->flags = flags; 1729 tb->cflags = cflags; 1730 tb->orig_tb = NULL; 1731 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1732 tcg_ctx->tb_cflags = cflags; 1733 tb_overflow: 1734 1735 #ifdef CONFIG_PROFILER 1736 /* includes aborted translations because of exceptions */ 1737 qatomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1738 ti = profile_getclock(); 1739 #endif 1740 1741 tcg_func_start(tcg_ctx); 1742 1743 tcg_ctx->cpu = env_cpu(env); 1744 gen_intermediate_code(cpu, tb, max_insns); 1745 tcg_ctx->cpu = NULL; 1746 1747 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1748 1749 /* generate machine code */ 1750 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1751 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1752 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1753 if (TCG_TARGET_HAS_direct_jump) { 1754 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1755 tcg_ctx->tb_jmp_target_addr = NULL; 1756 } else { 1757 tcg_ctx->tb_jmp_insn_offset = NULL; 1758 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1759 } 1760 1761 #ifdef CONFIG_PROFILER 1762 qatomic_set(&prof->tb_count, prof->tb_count + 1); 1763 qatomic_set(&prof->interm_time, 1764 prof->interm_time + profile_getclock() - ti); 1765 ti = profile_getclock(); 1766 #endif 1767 1768 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1769 if (unlikely(gen_code_size < 0)) { 1770 switch (gen_code_size) { 1771 case -1: 1772 /* 1773 * Overflow of code_gen_buffer, or the current slice of it. 1774 * 1775 * TODO: We don't need to re-do gen_intermediate_code, nor 1776 * should we re-do the tcg optimization currently hidden 1777 * inside tcg_gen_code. All that should be required is to 1778 * flush the TBs, allocate a new TB, re-initialize it per 1779 * above, and re-do the actual code generation. 1780 */ 1781 goto buffer_overflow; 1782 1783 case -2: 1784 /* 1785 * The code generated for the TranslationBlock is too large. 1786 * The maximum size allowed by the unwind info is 64k. 1787 * There may be stricter constraints from relocations 1788 * in the tcg backend. 1789 * 1790 * Try again with half as many insns as we attempted this time. 1791 * If a single insn overflows, there's a bug somewhere... 1792 */ 1793 max_insns = tb->icount; 1794 assert(max_insns > 1); 1795 max_insns /= 2; 1796 goto tb_overflow; 1797 1798 default: 1799 g_assert_not_reached(); 1800 } 1801 } 1802 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1803 if (unlikely(search_size < 0)) { 1804 goto buffer_overflow; 1805 } 1806 tb->tc.size = gen_code_size; 1807 1808 #ifdef CONFIG_PROFILER 1809 qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1810 qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1811 qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1812 qatomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1813 #endif 1814 1815 #ifdef DEBUG_DISAS 1816 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1817 qemu_log_in_addr_range(tb->pc)) { 1818 FILE *logfile = qemu_log_lock(); 1819 int code_size, data_size = 0; 1820 size_t chunk_start; 1821 int insn = 0; 1822 1823 if (tcg_ctx->data_gen_ptr) { 1824 code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1825 data_size = gen_code_size - code_size; 1826 } else { 1827 code_size = gen_code_size; 1828 } 1829 1830 /* Dump header and the first instruction */ 1831 qemu_log("OUT: [size=%d]\n", gen_code_size); 1832 qemu_log(" -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n", 1833 tcg_ctx->gen_insn_data[insn][0]); 1834 chunk_start = tcg_ctx->gen_insn_end_off[insn]; 1835 log_disas(tb->tc.ptr, chunk_start); 1836 1837 /* 1838 * Dump each instruction chunk, wrapping up empty chunks into 1839 * the next instruction. The whole array is offset so the 1840 * first entry is the beginning of the 2nd instruction. 1841 */ 1842 while (insn < tb->icount) { 1843 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn]; 1844 if (chunk_end > chunk_start) { 1845 qemu_log(" -- guest addr 0x" TARGET_FMT_lx "\n", 1846 tcg_ctx->gen_insn_data[insn][0]); 1847 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start); 1848 chunk_start = chunk_end; 1849 } 1850 insn++; 1851 } 1852 1853 if (chunk_start < code_size) { 1854 qemu_log(" -- tb slow paths + alignment\n"); 1855 log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start); 1856 } 1857 1858 /* Finally dump any data we may have after the block */ 1859 if (data_size) { 1860 int i; 1861 qemu_log(" data: [size=%d]\n", data_size); 1862 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1863 if (sizeof(tcg_target_ulong) == 8) { 1864 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1865 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1866 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1867 } else { 1868 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1869 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1870 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1871 } 1872 } 1873 } 1874 qemu_log("\n"); 1875 qemu_log_flush(); 1876 qemu_log_unlock(logfile); 1877 } 1878 #endif 1879 1880 qatomic_set(&tcg_ctx->code_gen_ptr, (void *) 1881 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1882 CODE_GEN_ALIGN)); 1883 1884 /* init jump list */ 1885 qemu_spin_init(&tb->jmp_lock); 1886 tb->jmp_list_head = (uintptr_t)NULL; 1887 tb->jmp_list_next[0] = (uintptr_t)NULL; 1888 tb->jmp_list_next[1] = (uintptr_t)NULL; 1889 tb->jmp_dest[0] = (uintptr_t)NULL; 1890 tb->jmp_dest[1] = (uintptr_t)NULL; 1891 1892 /* init original jump addresses which have been set during tcg_gen_code() */ 1893 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1894 tb_reset_jump(tb, 0); 1895 } 1896 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1897 tb_reset_jump(tb, 1); 1898 } 1899 1900 /* check next page if needed */ 1901 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1902 phys_page2 = -1; 1903 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1904 phys_page2 = get_page_addr_code(env, virt_page2); 1905 } 1906 /* 1907 * No explicit memory barrier is required -- tb_link_page() makes the 1908 * TB visible in a consistent state. 1909 */ 1910 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1911 /* if the TB already exists, discard what we just translated */ 1912 if (unlikely(existing_tb != tb)) { 1913 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1914 1915 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1916 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1917 tb_destroy(tb); 1918 return existing_tb; 1919 } 1920 tcg_tb_insert(tb); 1921 return tb; 1922 } 1923 1924 /* 1925 * @p must be non-NULL. 1926 * user-mode: call with mmap_lock held. 1927 * !user-mode: call with all @pages locked. 1928 */ 1929 static void 1930 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1931 PageDesc *p, tb_page_addr_t start, 1932 tb_page_addr_t end, 1933 uintptr_t retaddr) 1934 { 1935 TranslationBlock *tb; 1936 tb_page_addr_t tb_start, tb_end; 1937 int n; 1938 #ifdef TARGET_HAS_PRECISE_SMC 1939 CPUState *cpu = current_cpu; 1940 CPUArchState *env = NULL; 1941 bool current_tb_not_found = retaddr != 0; 1942 bool current_tb_modified = false; 1943 TranslationBlock *current_tb = NULL; 1944 target_ulong current_pc = 0; 1945 target_ulong current_cs_base = 0; 1946 uint32_t current_flags = 0; 1947 #endif /* TARGET_HAS_PRECISE_SMC */ 1948 1949 assert_page_locked(p); 1950 1951 #if defined(TARGET_HAS_PRECISE_SMC) 1952 if (cpu != NULL) { 1953 env = cpu->env_ptr; 1954 } 1955 #endif 1956 1957 /* we remove all the TBs in the range [start, end[ */ 1958 /* XXX: see if in some cases it could be faster to invalidate all 1959 the code */ 1960 PAGE_FOR_EACH_TB(p, tb, n) { 1961 assert_page_locked(p); 1962 /* NOTE: this is subtle as a TB may span two physical pages */ 1963 if (n == 0) { 1964 /* NOTE: tb_end may be after the end of the page, but 1965 it is not a problem */ 1966 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1967 tb_end = tb_start + tb->size; 1968 } else { 1969 tb_start = tb->page_addr[1]; 1970 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1971 } 1972 if (!(tb_end <= start || tb_start >= end)) { 1973 #ifdef TARGET_HAS_PRECISE_SMC 1974 if (current_tb_not_found) { 1975 current_tb_not_found = false; 1976 /* now we have a real cpu fault */ 1977 current_tb = tcg_tb_lookup(retaddr); 1978 } 1979 if (current_tb == tb && 1980 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1981 /* 1982 * If we are modifying the current TB, we must stop 1983 * its execution. We could be more precise by checking 1984 * that the modification is after the current PC, but it 1985 * would require a specialized function to partially 1986 * restore the CPU state. 1987 */ 1988 current_tb_modified = true; 1989 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1990 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1991 ¤t_flags); 1992 } 1993 #endif /* TARGET_HAS_PRECISE_SMC */ 1994 tb_phys_invalidate__locked(tb); 1995 } 1996 } 1997 #if !defined(CONFIG_USER_ONLY) 1998 /* if no code remaining, no need to continue to use slow writes */ 1999 if (!p->first_tb) { 2000 invalidate_page_bitmap(p); 2001 tlb_unprotect_code(start); 2002 } 2003 #endif 2004 #ifdef TARGET_HAS_PRECISE_SMC 2005 if (current_tb_modified) { 2006 page_collection_unlock(pages); 2007 /* Force execution of one insn next time. */ 2008 cpu->cflags_next_tb = 1 | curr_cflags(); 2009 mmap_unlock(); 2010 cpu_loop_exit_noexc(cpu); 2011 } 2012 #endif 2013 } 2014 2015 /* 2016 * Invalidate all TBs which intersect with the target physical address range 2017 * [start;end[. NOTE: start and end must refer to the *same* physical page. 2018 * 'is_cpu_write_access' should be true if called from a real cpu write 2019 * access: the virtual CPU will exit the current TB if code is modified inside 2020 * this TB. 2021 * 2022 * Called with mmap_lock held for user-mode emulation 2023 */ 2024 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 2025 { 2026 struct page_collection *pages; 2027 PageDesc *p; 2028 2029 assert_memory_lock(); 2030 2031 p = page_find(start >> TARGET_PAGE_BITS); 2032 if (p == NULL) { 2033 return; 2034 } 2035 pages = page_collection_lock(start, end); 2036 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 2037 page_collection_unlock(pages); 2038 } 2039 2040 /* 2041 * Invalidate all TBs which intersect with the target physical address range 2042 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2043 * 'is_cpu_write_access' should be true if called from a real cpu write 2044 * access: the virtual CPU will exit the current TB if code is modified inside 2045 * this TB. 2046 * 2047 * Called with mmap_lock held for user-mode emulation. 2048 */ 2049 #ifdef CONFIG_SOFTMMU 2050 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2051 #else 2052 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2053 #endif 2054 { 2055 struct page_collection *pages; 2056 tb_page_addr_t next; 2057 2058 assert_memory_lock(); 2059 2060 pages = page_collection_lock(start, end); 2061 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2062 start < end; 2063 start = next, next += TARGET_PAGE_SIZE) { 2064 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2065 tb_page_addr_t bound = MIN(next, end); 2066 2067 if (pd == NULL) { 2068 continue; 2069 } 2070 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2071 } 2072 page_collection_unlock(pages); 2073 } 2074 2075 #ifdef CONFIG_SOFTMMU 2076 /* len must be <= 8 and start must be a multiple of len. 2077 * Called via softmmu_template.h when code areas are written to with 2078 * iothread mutex not held. 2079 * 2080 * Call with all @pages in the range [@start, @start + len[ locked. 2081 */ 2082 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2083 tb_page_addr_t start, int len, 2084 uintptr_t retaddr) 2085 { 2086 PageDesc *p; 2087 2088 assert_memory_lock(); 2089 2090 p = page_find(start >> TARGET_PAGE_BITS); 2091 if (!p) { 2092 return; 2093 } 2094 2095 assert_page_locked(p); 2096 if (!p->code_bitmap && 2097 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2098 build_page_bitmap(p); 2099 } 2100 if (p->code_bitmap) { 2101 unsigned int nr; 2102 unsigned long b; 2103 2104 nr = start & ~TARGET_PAGE_MASK; 2105 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2106 if (b & ((1 << len) - 1)) { 2107 goto do_invalidate; 2108 } 2109 } else { 2110 do_invalidate: 2111 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2112 retaddr); 2113 } 2114 } 2115 #else 2116 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2117 * host PC of the faulting store instruction that caused this invalidate. 2118 * Returns true if the caller needs to abort execution of the current 2119 * TB (because it was modified by this store and the guest CPU has 2120 * precise-SMC semantics). 2121 */ 2122 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2123 { 2124 TranslationBlock *tb; 2125 PageDesc *p; 2126 int n; 2127 #ifdef TARGET_HAS_PRECISE_SMC 2128 TranslationBlock *current_tb = NULL; 2129 CPUState *cpu = current_cpu; 2130 CPUArchState *env = NULL; 2131 int current_tb_modified = 0; 2132 target_ulong current_pc = 0; 2133 target_ulong current_cs_base = 0; 2134 uint32_t current_flags = 0; 2135 #endif 2136 2137 assert_memory_lock(); 2138 2139 addr &= TARGET_PAGE_MASK; 2140 p = page_find(addr >> TARGET_PAGE_BITS); 2141 if (!p) { 2142 return false; 2143 } 2144 2145 #ifdef TARGET_HAS_PRECISE_SMC 2146 if (p->first_tb && pc != 0) { 2147 current_tb = tcg_tb_lookup(pc); 2148 } 2149 if (cpu != NULL) { 2150 env = cpu->env_ptr; 2151 } 2152 #endif 2153 assert_page_locked(p); 2154 PAGE_FOR_EACH_TB(p, tb, n) { 2155 #ifdef TARGET_HAS_PRECISE_SMC 2156 if (current_tb == tb && 2157 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2158 /* If we are modifying the current TB, we must stop 2159 its execution. We could be more precise by checking 2160 that the modification is after the current PC, but it 2161 would require a specialized function to partially 2162 restore the CPU state */ 2163 2164 current_tb_modified = 1; 2165 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2166 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2167 ¤t_flags); 2168 } 2169 #endif /* TARGET_HAS_PRECISE_SMC */ 2170 tb_phys_invalidate(tb, addr); 2171 } 2172 p->first_tb = (uintptr_t)NULL; 2173 #ifdef TARGET_HAS_PRECISE_SMC 2174 if (current_tb_modified) { 2175 /* Force execution of one insn next time. */ 2176 cpu->cflags_next_tb = 1 | curr_cflags(); 2177 return true; 2178 } 2179 #endif 2180 2181 return false; 2182 } 2183 #endif 2184 2185 /* user-mode: call with mmap_lock held */ 2186 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2187 { 2188 TranslationBlock *tb; 2189 2190 assert_memory_lock(); 2191 2192 tb = tcg_tb_lookup(retaddr); 2193 if (tb) { 2194 /* We can use retranslation to find the PC. */ 2195 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2196 tb_phys_invalidate(tb, -1); 2197 } else { 2198 /* The exception probably happened in a helper. The CPU state should 2199 have been saved before calling it. Fetch the PC from there. */ 2200 CPUArchState *env = cpu->env_ptr; 2201 target_ulong pc, cs_base; 2202 tb_page_addr_t addr; 2203 uint32_t flags; 2204 2205 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2206 addr = get_page_addr_code(env, pc); 2207 if (addr != -1) { 2208 tb_invalidate_phys_range(addr, addr + 1); 2209 } 2210 } 2211 } 2212 2213 #ifndef CONFIG_USER_ONLY 2214 /* in deterministic execution mode, instructions doing device I/Os 2215 * must be at the end of the TB. 2216 * 2217 * Called by softmmu_template.h, with iothread mutex not held. 2218 */ 2219 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2220 { 2221 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2222 CPUArchState *env = cpu->env_ptr; 2223 #endif 2224 TranslationBlock *tb; 2225 uint32_t n; 2226 2227 tb = tcg_tb_lookup(retaddr); 2228 if (!tb) { 2229 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2230 (void *)retaddr); 2231 } 2232 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2233 2234 /* On MIPS and SH, delay slot instructions can only be restarted if 2235 they were already the first instruction in the TB. If this is not 2236 the first instruction in a TB then re-execute the preceding 2237 branch. */ 2238 n = 1; 2239 #if defined(TARGET_MIPS) 2240 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2241 && env->active_tc.PC != tb->pc) { 2242 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2243 cpu_neg(cpu)->icount_decr.u16.low++; 2244 env->hflags &= ~MIPS_HFLAG_BMASK; 2245 n = 2; 2246 } 2247 #elif defined(TARGET_SH4) 2248 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2249 && env->pc != tb->pc) { 2250 env->pc -= 2; 2251 cpu_neg(cpu)->icount_decr.u16.low++; 2252 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2253 n = 2; 2254 } 2255 #endif 2256 2257 /* Generate a new TB executing the I/O insn. */ 2258 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2259 2260 if (tb_cflags(tb) & CF_NOCACHE) { 2261 if (tb->orig_tb) { 2262 /* Invalidate original TB if this TB was generated in 2263 * cpu_exec_nocache() */ 2264 tb_phys_invalidate(tb->orig_tb, -1); 2265 } 2266 tcg_tb_remove(tb); 2267 tb_destroy(tb); 2268 } 2269 2270 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 2271 "cpu_io_recompile: rewound execution of TB to " 2272 TARGET_FMT_lx "\n", tb->pc); 2273 2274 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2275 * the first in the TB) then we end up generating a whole new TB and 2276 * repeating the fault, which is horribly inefficient. 2277 * Better would be to execute just this insn uncached, or generate a 2278 * second new TB. 2279 */ 2280 cpu_loop_exit_noexc(cpu); 2281 } 2282 2283 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2284 { 2285 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2286 2287 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2288 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2289 } 2290 } 2291 2292 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2293 { 2294 /* Discard jump cache entries for any tb which might potentially 2295 overlap the flushed page. */ 2296 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2297 tb_jmp_cache_clear_page(cpu, addr); 2298 } 2299 2300 static void print_qht_statistics(struct qht_stats hst) 2301 { 2302 uint32_t hgram_opts; 2303 size_t hgram_bins; 2304 char *hgram; 2305 2306 if (!hst.head_buckets) { 2307 return; 2308 } 2309 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2310 hst.used_head_buckets, hst.head_buckets, 2311 (double)hst.used_head_buckets / hst.head_buckets * 100); 2312 2313 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2314 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2315 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2316 hgram_opts |= QDIST_PR_NODECIMAL; 2317 } 2318 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2319 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2320 qdist_avg(&hst.occupancy) * 100, hgram); 2321 g_free(hgram); 2322 2323 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2324 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2325 if (hgram_bins > 10) { 2326 hgram_bins = 10; 2327 } else { 2328 hgram_bins = 0; 2329 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2330 } 2331 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2332 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2333 qdist_avg(&hst.chain), hgram); 2334 g_free(hgram); 2335 } 2336 2337 struct tb_tree_stats { 2338 size_t nb_tbs; 2339 size_t host_size; 2340 size_t target_size; 2341 size_t max_target_size; 2342 size_t direct_jmp_count; 2343 size_t direct_jmp2_count; 2344 size_t cross_page; 2345 }; 2346 2347 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2348 { 2349 const TranslationBlock *tb = value; 2350 struct tb_tree_stats *tst = data; 2351 2352 tst->nb_tbs++; 2353 tst->host_size += tb->tc.size; 2354 tst->target_size += tb->size; 2355 if (tb->size > tst->max_target_size) { 2356 tst->max_target_size = tb->size; 2357 } 2358 if (tb->page_addr[1] != -1) { 2359 tst->cross_page++; 2360 } 2361 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2362 tst->direct_jmp_count++; 2363 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2364 tst->direct_jmp2_count++; 2365 } 2366 } 2367 return false; 2368 } 2369 2370 void dump_exec_info(void) 2371 { 2372 struct tb_tree_stats tst = {}; 2373 struct qht_stats hst; 2374 size_t nb_tbs, flush_full, flush_part, flush_elide; 2375 2376 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2377 nb_tbs = tst.nb_tbs; 2378 /* XXX: avoid using doubles ? */ 2379 qemu_printf("Translation buffer state:\n"); 2380 /* 2381 * Report total code size including the padding and TB structs; 2382 * otherwise users might think "-accel tcg,tb-size" is not honoured. 2383 * For avg host size we use the precise numbers from tb_tree_stats though. 2384 */ 2385 qemu_printf("gen code size %zu/%zu\n", 2386 tcg_code_size(), tcg_code_capacity()); 2387 qemu_printf("TB count %zu\n", nb_tbs); 2388 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2389 nb_tbs ? tst.target_size / nb_tbs : 0, 2390 tst.max_target_size); 2391 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2392 nb_tbs ? tst.host_size / nb_tbs : 0, 2393 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2394 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2395 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2396 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2397 tst.direct_jmp_count, 2398 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2399 tst.direct_jmp2_count, 2400 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2401 2402 qht_statistics_init(&tb_ctx.htable, &hst); 2403 print_qht_statistics(hst); 2404 qht_statistics_destroy(&hst); 2405 2406 qemu_printf("\nStatistics:\n"); 2407 qemu_printf("TB flush count %u\n", 2408 qatomic_read(&tb_ctx.tb_flush_count)); 2409 qemu_printf("TB invalidate count %zu\n", 2410 tcg_tb_phys_invalidate_count()); 2411 2412 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2413 qemu_printf("TLB full flushes %zu\n", flush_full); 2414 qemu_printf("TLB partial flushes %zu\n", flush_part); 2415 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2416 tcg_dump_info(); 2417 } 2418 2419 void dump_opcount_info(void) 2420 { 2421 tcg_dump_op_count(); 2422 } 2423 2424 #else /* CONFIG_USER_ONLY */ 2425 2426 void cpu_interrupt(CPUState *cpu, int mask) 2427 { 2428 g_assert(qemu_mutex_iothread_locked()); 2429 cpu->interrupt_request |= mask; 2430 qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2431 } 2432 2433 /* 2434 * Walks guest process memory "regions" one by one 2435 * and calls callback function 'fn' for each region. 2436 */ 2437 struct walk_memory_regions_data { 2438 walk_memory_regions_fn fn; 2439 void *priv; 2440 target_ulong start; 2441 int prot; 2442 }; 2443 2444 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2445 target_ulong end, int new_prot) 2446 { 2447 if (data->start != -1u) { 2448 int rc = data->fn(data->priv, data->start, end, data->prot); 2449 if (rc != 0) { 2450 return rc; 2451 } 2452 } 2453 2454 data->start = (new_prot ? end : -1u); 2455 data->prot = new_prot; 2456 2457 return 0; 2458 } 2459 2460 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2461 target_ulong base, int level, void **lp) 2462 { 2463 target_ulong pa; 2464 int i, rc; 2465 2466 if (*lp == NULL) { 2467 return walk_memory_regions_end(data, base, 0); 2468 } 2469 2470 if (level == 0) { 2471 PageDesc *pd = *lp; 2472 2473 for (i = 0; i < V_L2_SIZE; ++i) { 2474 int prot = pd[i].flags; 2475 2476 pa = base | (i << TARGET_PAGE_BITS); 2477 if (prot != data->prot) { 2478 rc = walk_memory_regions_end(data, pa, prot); 2479 if (rc != 0) { 2480 return rc; 2481 } 2482 } 2483 } 2484 } else { 2485 void **pp = *lp; 2486 2487 for (i = 0; i < V_L2_SIZE; ++i) { 2488 pa = base | ((target_ulong)i << 2489 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2490 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2491 if (rc != 0) { 2492 return rc; 2493 } 2494 } 2495 } 2496 2497 return 0; 2498 } 2499 2500 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2501 { 2502 struct walk_memory_regions_data data; 2503 uintptr_t i, l1_sz = v_l1_size; 2504 2505 data.fn = fn; 2506 data.priv = priv; 2507 data.start = -1u; 2508 data.prot = 0; 2509 2510 for (i = 0; i < l1_sz; i++) { 2511 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2512 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2513 if (rc != 0) { 2514 return rc; 2515 } 2516 } 2517 2518 return walk_memory_regions_end(&data, 0, 0); 2519 } 2520 2521 static int dump_region(void *priv, target_ulong start, 2522 target_ulong end, unsigned long prot) 2523 { 2524 FILE *f = (FILE *)priv; 2525 2526 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2527 " "TARGET_FMT_lx" %c%c%c\n", 2528 start, end, end - start, 2529 ((prot & PAGE_READ) ? 'r' : '-'), 2530 ((prot & PAGE_WRITE) ? 'w' : '-'), 2531 ((prot & PAGE_EXEC) ? 'x' : '-')); 2532 2533 return 0; 2534 } 2535 2536 /* dump memory mappings */ 2537 void page_dump(FILE *f) 2538 { 2539 const int length = sizeof(target_ulong) * 2; 2540 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2541 length, "start", length, "end", length, "size", "prot"); 2542 walk_memory_regions(f, dump_region); 2543 } 2544 2545 int page_get_flags(target_ulong address) 2546 { 2547 PageDesc *p; 2548 2549 p = page_find(address >> TARGET_PAGE_BITS); 2550 if (!p) { 2551 return 0; 2552 } 2553 return p->flags; 2554 } 2555 2556 /* Modify the flags of a page and invalidate the code if necessary. 2557 The flag PAGE_WRITE_ORG is positioned automatically depending 2558 on PAGE_WRITE. The mmap_lock should already be held. */ 2559 void page_set_flags(target_ulong start, target_ulong end, int flags) 2560 { 2561 target_ulong addr, len; 2562 2563 /* This function should never be called with addresses outside the 2564 guest address space. If this assert fires, it probably indicates 2565 a missing call to h2g_valid. */ 2566 assert(end - 1 <= GUEST_ADDR_MAX); 2567 assert(start < end); 2568 assert_memory_lock(); 2569 2570 start = start & TARGET_PAGE_MASK; 2571 end = TARGET_PAGE_ALIGN(end); 2572 2573 if (flags & PAGE_WRITE) { 2574 flags |= PAGE_WRITE_ORG; 2575 } 2576 2577 for (addr = start, len = end - start; 2578 len != 0; 2579 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2580 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2581 2582 /* If the write protection bit is set, then we invalidate 2583 the code inside. */ 2584 if (!(p->flags & PAGE_WRITE) && 2585 (flags & PAGE_WRITE) && 2586 p->first_tb) { 2587 tb_invalidate_phys_page(addr, 0); 2588 } 2589 p->flags = flags; 2590 } 2591 } 2592 2593 int page_check_range(target_ulong start, target_ulong len, int flags) 2594 { 2595 PageDesc *p; 2596 target_ulong end; 2597 target_ulong addr; 2598 2599 /* This function should never be called with addresses outside the 2600 guest address space. If this assert fires, it probably indicates 2601 a missing call to h2g_valid. */ 2602 if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) { 2603 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2604 } 2605 2606 if (len == 0) { 2607 return 0; 2608 } 2609 if (start + len - 1 < start) { 2610 /* We've wrapped around. */ 2611 return -1; 2612 } 2613 2614 /* must do before we loose bits in the next step */ 2615 end = TARGET_PAGE_ALIGN(start + len); 2616 start = start & TARGET_PAGE_MASK; 2617 2618 for (addr = start, len = end - start; 2619 len != 0; 2620 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2621 p = page_find(addr >> TARGET_PAGE_BITS); 2622 if (!p) { 2623 return -1; 2624 } 2625 if (!(p->flags & PAGE_VALID)) { 2626 return -1; 2627 } 2628 2629 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2630 return -1; 2631 } 2632 if (flags & PAGE_WRITE) { 2633 if (!(p->flags & PAGE_WRITE_ORG)) { 2634 return -1; 2635 } 2636 /* unprotect the page if it was put read-only because it 2637 contains translated code */ 2638 if (!(p->flags & PAGE_WRITE)) { 2639 if (!page_unprotect(addr, 0)) { 2640 return -1; 2641 } 2642 } 2643 } 2644 } 2645 return 0; 2646 } 2647 2648 /* called from signal handler: invalidate the code and unprotect the 2649 * page. Return 0 if the fault was not handled, 1 if it was handled, 2650 * and 2 if it was handled but the caller must cause the TB to be 2651 * immediately exited. (We can only return 2 if the 'pc' argument is 2652 * non-zero.) 2653 */ 2654 int page_unprotect(target_ulong address, uintptr_t pc) 2655 { 2656 unsigned int prot; 2657 bool current_tb_invalidated; 2658 PageDesc *p; 2659 target_ulong host_start, host_end, addr; 2660 2661 /* Technically this isn't safe inside a signal handler. However we 2662 know this only ever happens in a synchronous SEGV handler, so in 2663 practice it seems to be ok. */ 2664 mmap_lock(); 2665 2666 p = page_find(address >> TARGET_PAGE_BITS); 2667 if (!p) { 2668 mmap_unlock(); 2669 return 0; 2670 } 2671 2672 /* if the page was really writable, then we change its 2673 protection back to writable */ 2674 if (p->flags & PAGE_WRITE_ORG) { 2675 current_tb_invalidated = false; 2676 if (p->flags & PAGE_WRITE) { 2677 /* If the page is actually marked WRITE then assume this is because 2678 * this thread raced with another one which got here first and 2679 * set the page to PAGE_WRITE and did the TB invalidate for us. 2680 */ 2681 #ifdef TARGET_HAS_PRECISE_SMC 2682 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2683 if (current_tb) { 2684 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2685 } 2686 #endif 2687 } else { 2688 host_start = address & qemu_host_page_mask; 2689 host_end = host_start + qemu_host_page_size; 2690 2691 prot = 0; 2692 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2693 p = page_find(addr >> TARGET_PAGE_BITS); 2694 p->flags |= PAGE_WRITE; 2695 prot |= p->flags; 2696 2697 /* and since the content will be modified, we must invalidate 2698 the corresponding translated code. */ 2699 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2700 #ifdef CONFIG_USER_ONLY 2701 if (DEBUG_TB_CHECK_GATE) { 2702 tb_invalidate_check(addr); 2703 } 2704 #endif 2705 } 2706 mprotect((void *)g2h(host_start), qemu_host_page_size, 2707 prot & PAGE_BITS); 2708 } 2709 mmap_unlock(); 2710 /* If current TB was invalidated return to main loop */ 2711 return current_tb_invalidated ? 2 : 1; 2712 } 2713 mmap_unlock(); 2714 return 0; 2715 } 2716 #endif /* CONFIG_USER_ONLY */ 2717 2718 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2719 void tcg_flush_softmmu_tlb(CPUState *cs) 2720 { 2721 #ifdef CONFIG_SOFTMMU 2722 tlb_flush(cs); 2723 #endif 2724 } 2725