1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 #include "qemu-common.h" 23 24 #define NO_CPU_IO_DEFS 25 #include "cpu.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #if defined(CONFIG_USER_ONLY) 31 #include "qemu.h" 32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 33 #include <sys/param.h> 34 #if __FreeBSD_version >= 700104 35 #define HAVE_KINFO_GETVMMAP 36 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 37 #include <sys/proc.h> 38 #include <machine/profile.h> 39 #define _KERNEL 40 #include <sys/user.h> 41 #undef _KERNEL 42 #undef sigqueue 43 #include <libutil.h> 44 #endif 45 #endif 46 #else 47 #include "exec/ram_addr.h" 48 #endif 49 50 #include "exec/cputlb.h" 51 #include "exec/tb-hash.h" 52 #include "translate-all.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/error-report.h" 55 #include "qemu/qemu-print.h" 56 #include "qemu/timer.h" 57 #include "qemu/main-loop.h" 58 #include "exec/log.h" 59 #include "sysemu/cpus.h" 60 #include "sysemu/tcg.h" 61 62 /* #define DEBUG_TB_INVALIDATE */ 63 /* #define DEBUG_TB_FLUSH */ 64 /* make various TB consistency checks */ 65 /* #define DEBUG_TB_CHECK */ 66 67 #ifdef DEBUG_TB_INVALIDATE 68 #define DEBUG_TB_INVALIDATE_GATE 1 69 #else 70 #define DEBUG_TB_INVALIDATE_GATE 0 71 #endif 72 73 #ifdef DEBUG_TB_FLUSH 74 #define DEBUG_TB_FLUSH_GATE 1 75 #else 76 #define DEBUG_TB_FLUSH_GATE 0 77 #endif 78 79 #if !defined(CONFIG_USER_ONLY) 80 /* TB consistency checks only implemented for usermode emulation. */ 81 #undef DEBUG_TB_CHECK 82 #endif 83 84 #ifdef DEBUG_TB_CHECK 85 #define DEBUG_TB_CHECK_GATE 1 86 #else 87 #define DEBUG_TB_CHECK_GATE 0 88 #endif 89 90 /* Access to the various translations structures need to be serialised via locks 91 * for consistency. 92 * In user-mode emulation access to the memory related structures are protected 93 * with mmap_lock. 94 * In !user-mode we use per-page locks. 95 */ 96 #ifdef CONFIG_SOFTMMU 97 #define assert_memory_lock() 98 #else 99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 100 #endif 101 102 #define SMC_BITMAP_USE_THRESHOLD 10 103 104 typedef struct PageDesc { 105 /* list of TBs intersecting this ram page */ 106 uintptr_t first_tb; 107 #ifdef CONFIG_SOFTMMU 108 /* in order to optimize self modifying code, we count the number 109 of lookups we do to a given page to use a bitmap */ 110 unsigned long *code_bitmap; 111 unsigned int code_write_count; 112 #else 113 unsigned long flags; 114 #endif 115 #ifndef CONFIG_USER_ONLY 116 QemuSpin lock; 117 #endif 118 } PageDesc; 119 120 /** 121 * struct page_entry - page descriptor entry 122 * @pd: pointer to the &struct PageDesc of the page this entry represents 123 * @index: page index of the page 124 * @locked: whether the page is locked 125 * 126 * This struct helps us keep track of the locked state of a page, without 127 * bloating &struct PageDesc. 128 * 129 * A page lock protects accesses to all fields of &struct PageDesc. 130 * 131 * See also: &struct page_collection. 132 */ 133 struct page_entry { 134 PageDesc *pd; 135 tb_page_addr_t index; 136 bool locked; 137 }; 138 139 /** 140 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 141 * @tree: Binary search tree (BST) of the pages, with key == page index 142 * @max: Pointer to the page in @tree with the highest page index 143 * 144 * To avoid deadlock we lock pages in ascending order of page index. 145 * When operating on a set of pages, we need to keep track of them so that 146 * we can lock them in order and also unlock them later. For this we collect 147 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 148 * @tree implementation we use does not provide an O(1) operation to obtain the 149 * highest-ranked element, we use @max to keep track of the inserted page 150 * with the highest index. This is valuable because if a page is not in 151 * the tree and its index is higher than @max's, then we can lock it 152 * without breaking the locking order rule. 153 * 154 * Note on naming: 'struct page_set' would be shorter, but we already have a few 155 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 156 * 157 * See also: page_collection_lock(). 158 */ 159 struct page_collection { 160 GTree *tree; 161 struct page_entry *max; 162 }; 163 164 /* list iterators for lists of tagged pointers in TranslationBlock */ 165 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 166 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 167 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 168 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 169 170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 171 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 172 173 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 174 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 175 176 /* In system mode we want L1_MAP to be based on ram offsets, 177 while in user mode we want it to be based on virtual addresses. */ 178 #if !defined(CONFIG_USER_ONLY) 179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 180 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 181 #else 182 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 183 #endif 184 #else 185 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 186 #endif 187 188 /* Size of the L2 (and L3, etc) page tables. */ 189 #define V_L2_BITS 10 190 #define V_L2_SIZE (1 << V_L2_BITS) 191 192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 194 sizeof_field(TranslationBlock, trace_vcpu_dstate) 195 * BITS_PER_BYTE); 196 197 /* 198 * L1 Mapping properties 199 */ 200 static int v_l1_size; 201 static int v_l1_shift; 202 static int v_l2_levels; 203 204 /* The bottom level has pointers to PageDesc, and is indexed by 205 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 206 */ 207 #define V_L1_MIN_BITS 4 208 #define V_L1_MAX_BITS (V_L2_BITS + 3) 209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 210 211 static void *l1_map[V_L1_MAX_SIZE]; 212 213 /* code generation context */ 214 TCGContext tcg_init_ctx; 215 __thread TCGContext *tcg_ctx; 216 TBContext tb_ctx; 217 bool parallel_cpus; 218 219 static void page_table_config_init(void) 220 { 221 uint32_t v_l1_bits; 222 223 assert(TARGET_PAGE_BITS); 224 /* The bits remaining after N lower levels of page tables. */ 225 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 226 if (v_l1_bits < V_L1_MIN_BITS) { 227 v_l1_bits += V_L2_BITS; 228 } 229 230 v_l1_size = 1 << v_l1_bits; 231 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 232 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 233 234 assert(v_l1_bits <= V_L1_MAX_BITS); 235 assert(v_l1_shift % V_L2_BITS == 0); 236 assert(v_l2_levels >= 0); 237 } 238 239 void cpu_gen_init(void) 240 { 241 tcg_context_init(&tcg_init_ctx); 242 } 243 244 /* Encode VAL as a signed leb128 sequence at P. 245 Return P incremented past the encoded value. */ 246 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 247 { 248 int more, byte; 249 250 do { 251 byte = val & 0x7f; 252 val >>= 7; 253 more = !((val == 0 && (byte & 0x40) == 0) 254 || (val == -1 && (byte & 0x40) != 0)); 255 if (more) { 256 byte |= 0x80; 257 } 258 *p++ = byte; 259 } while (more); 260 261 return p; 262 } 263 264 /* Decode a signed leb128 sequence at *PP; increment *PP past the 265 decoded value. Return the decoded value. */ 266 static target_long decode_sleb128(uint8_t **pp) 267 { 268 uint8_t *p = *pp; 269 target_long val = 0; 270 int byte, shift = 0; 271 272 do { 273 byte = *p++; 274 val |= (target_ulong)(byte & 0x7f) << shift; 275 shift += 7; 276 } while (byte & 0x80); 277 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 278 val |= -(target_ulong)1 << shift; 279 } 280 281 *pp = p; 282 return val; 283 } 284 285 /* Encode the data collected about the instructions while compiling TB. 286 Place the data at BLOCK, and return the number of bytes consumed. 287 288 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 289 which come from the target's insn_start data, followed by a uintptr_t 290 which comes from the host pc of the end of the code implementing the insn. 291 292 Each line of the table is encoded as sleb128 deltas from the previous 293 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 294 That is, the first column is seeded with the guest pc, the last column 295 with the host pc, and the middle columns with zeros. */ 296 297 static int encode_search(TranslationBlock *tb, uint8_t *block) 298 { 299 uint8_t *highwater = tcg_ctx->code_gen_highwater; 300 uint8_t *p = block; 301 int i, j, n; 302 303 for (i = 0, n = tb->icount; i < n; ++i) { 304 target_ulong prev; 305 306 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 307 if (i == 0) { 308 prev = (j == 0 ? tb->pc : 0); 309 } else { 310 prev = tcg_ctx->gen_insn_data[i - 1][j]; 311 } 312 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 313 } 314 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 315 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 316 317 /* Test for (pending) buffer overflow. The assumption is that any 318 one row beginning below the high water mark cannot overrun 319 the buffer completely. Thus we can test for overflow after 320 encoding a row without having to check during encoding. */ 321 if (unlikely(p > highwater)) { 322 return -1; 323 } 324 } 325 326 return p - block; 327 } 328 329 /* The cpu state corresponding to 'searched_pc' is restored. 330 * When reset_icount is true, current TB will be interrupted and 331 * icount should be recalculated. 332 */ 333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 334 uintptr_t searched_pc, bool reset_icount) 335 { 336 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 337 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 338 CPUArchState *env = cpu->env_ptr; 339 uint8_t *p = tb->tc.ptr + tb->tc.size; 340 int i, j, num_insns = tb->icount; 341 #ifdef CONFIG_PROFILER 342 TCGProfile *prof = &tcg_ctx->prof; 343 int64_t ti = profile_getclock(); 344 #endif 345 346 searched_pc -= GETPC_ADJ; 347 348 if (searched_pc < host_pc) { 349 return -1; 350 } 351 352 /* Reconstruct the stored insn data while looking for the point at 353 which the end of the insn exceeds the searched_pc. */ 354 for (i = 0; i < num_insns; ++i) { 355 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 356 data[j] += decode_sleb128(&p); 357 } 358 host_pc += decode_sleb128(&p); 359 if (host_pc > searched_pc) { 360 goto found; 361 } 362 } 363 return -1; 364 365 found: 366 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 367 assert(use_icount); 368 /* Reset the cycle counter to the start of the block 369 and shift if to the number of actually executed instructions */ 370 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 371 } 372 restore_state_to_opc(env, tb, data); 373 374 #ifdef CONFIG_PROFILER 375 atomic_set(&prof->restore_time, 376 prof->restore_time + profile_getclock() - ti); 377 atomic_set(&prof->restore_count, prof->restore_count + 1); 378 #endif 379 return 0; 380 } 381 382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 383 { 384 TranslationBlock *tb; 385 bool r = false; 386 uintptr_t check_offset; 387 388 /* The host_pc has to be in the region of current code buffer. If 389 * it is not we will not be able to resolve it here. The two cases 390 * where host_pc will not be correct are: 391 * 392 * - fault during translation (instruction fetch) 393 * - fault from helper (not using GETPC() macro) 394 * 395 * Either way we need return early as we can't resolve it here. 396 * 397 * We are using unsigned arithmetic so if host_pc < 398 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 399 * above the code_gen_buffer_size 400 */ 401 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 402 403 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 404 tb = tcg_tb_lookup(host_pc); 405 if (tb) { 406 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 407 if (tb_cflags(tb) & CF_NOCACHE) { 408 /* one-shot translation, invalidate it immediately */ 409 tb_phys_invalidate(tb, -1); 410 tcg_tb_remove(tb); 411 } 412 r = true; 413 } 414 } 415 416 return r; 417 } 418 419 static void page_init(void) 420 { 421 page_size_init(); 422 page_table_config_init(); 423 424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 425 { 426 #ifdef HAVE_KINFO_GETVMMAP 427 struct kinfo_vmentry *freep; 428 int i, cnt; 429 430 freep = kinfo_getvmmap(getpid(), &cnt); 431 if (freep) { 432 mmap_lock(); 433 for (i = 0; i < cnt; i++) { 434 unsigned long startaddr, endaddr; 435 436 startaddr = freep[i].kve_start; 437 endaddr = freep[i].kve_end; 438 if (h2g_valid(startaddr)) { 439 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 440 441 if (h2g_valid(endaddr)) { 442 endaddr = h2g(endaddr); 443 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 444 } else { 445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 446 endaddr = ~0ul; 447 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 448 #endif 449 } 450 } 451 } 452 free(freep); 453 mmap_unlock(); 454 } 455 #else 456 FILE *f; 457 458 last_brk = (unsigned long)sbrk(0); 459 460 f = fopen("/compat/linux/proc/self/maps", "r"); 461 if (f) { 462 mmap_lock(); 463 464 do { 465 unsigned long startaddr, endaddr; 466 int n; 467 468 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 469 470 if (n == 2 && h2g_valid(startaddr)) { 471 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 472 473 if (h2g_valid(endaddr)) { 474 endaddr = h2g(endaddr); 475 } else { 476 endaddr = ~0ul; 477 } 478 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 479 } 480 } while (!feof(f)); 481 482 fclose(f); 483 mmap_unlock(); 484 } 485 #endif 486 } 487 #endif 488 } 489 490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 491 { 492 PageDesc *pd; 493 void **lp; 494 int i; 495 496 /* Level 1. Always allocated. */ 497 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 498 499 /* Level 2..N-1. */ 500 for (i = v_l2_levels; i > 0; i--) { 501 void **p = atomic_rcu_read(lp); 502 503 if (p == NULL) { 504 void *existing; 505 506 if (!alloc) { 507 return NULL; 508 } 509 p = g_new0(void *, V_L2_SIZE); 510 existing = atomic_cmpxchg(lp, NULL, p); 511 if (unlikely(existing)) { 512 g_free(p); 513 p = existing; 514 } 515 } 516 517 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 518 } 519 520 pd = atomic_rcu_read(lp); 521 if (pd == NULL) { 522 void *existing; 523 524 if (!alloc) { 525 return NULL; 526 } 527 pd = g_new0(PageDesc, V_L2_SIZE); 528 #ifndef CONFIG_USER_ONLY 529 { 530 int i; 531 532 for (i = 0; i < V_L2_SIZE; i++) { 533 qemu_spin_init(&pd[i].lock); 534 } 535 } 536 #endif 537 existing = atomic_cmpxchg(lp, NULL, pd); 538 if (unlikely(existing)) { 539 g_free(pd); 540 pd = existing; 541 } 542 } 543 544 return pd + (index & (V_L2_SIZE - 1)); 545 } 546 547 static inline PageDesc *page_find(tb_page_addr_t index) 548 { 549 return page_find_alloc(index, 0); 550 } 551 552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 553 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 554 555 /* In user-mode page locks aren't used; mmap_lock is enough */ 556 #ifdef CONFIG_USER_ONLY 557 558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 559 560 static inline void page_lock(PageDesc *pd) 561 { } 562 563 static inline void page_unlock(PageDesc *pd) 564 { } 565 566 static inline void page_lock_tb(const TranslationBlock *tb) 567 { } 568 569 static inline void page_unlock_tb(const TranslationBlock *tb) 570 { } 571 572 struct page_collection * 573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 574 { 575 return NULL; 576 } 577 578 void page_collection_unlock(struct page_collection *set) 579 { } 580 #else /* !CONFIG_USER_ONLY */ 581 582 #ifdef CONFIG_DEBUG_TCG 583 584 static __thread GHashTable *ht_pages_locked_debug; 585 586 static void ht_pages_locked_debug_init(void) 587 { 588 if (ht_pages_locked_debug) { 589 return; 590 } 591 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 592 } 593 594 static bool page_is_locked(const PageDesc *pd) 595 { 596 PageDesc *found; 597 598 ht_pages_locked_debug_init(); 599 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 600 return !!found; 601 } 602 603 static void page_lock__debug(PageDesc *pd) 604 { 605 ht_pages_locked_debug_init(); 606 g_assert(!page_is_locked(pd)); 607 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 608 } 609 610 static void page_unlock__debug(const PageDesc *pd) 611 { 612 bool removed; 613 614 ht_pages_locked_debug_init(); 615 g_assert(page_is_locked(pd)); 616 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 617 g_assert(removed); 618 } 619 620 static void 621 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 622 { 623 if (unlikely(!page_is_locked(pd))) { 624 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 625 pd, file, line); 626 abort(); 627 } 628 } 629 630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 631 632 void assert_no_pages_locked(void) 633 { 634 ht_pages_locked_debug_init(); 635 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 636 } 637 638 #else /* !CONFIG_DEBUG_TCG */ 639 640 #define assert_page_locked(pd) 641 642 static inline void page_lock__debug(const PageDesc *pd) 643 { 644 } 645 646 static inline void page_unlock__debug(const PageDesc *pd) 647 { 648 } 649 650 #endif /* CONFIG_DEBUG_TCG */ 651 652 static inline void page_lock(PageDesc *pd) 653 { 654 page_lock__debug(pd); 655 qemu_spin_lock(&pd->lock); 656 } 657 658 static inline void page_unlock(PageDesc *pd) 659 { 660 qemu_spin_unlock(&pd->lock); 661 page_unlock__debug(pd); 662 } 663 664 /* lock the page(s) of a TB in the correct acquisition order */ 665 static inline void page_lock_tb(const TranslationBlock *tb) 666 { 667 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 668 } 669 670 static inline void page_unlock_tb(const TranslationBlock *tb) 671 { 672 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 673 674 page_unlock(p1); 675 if (unlikely(tb->page_addr[1] != -1)) { 676 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 677 678 if (p2 != p1) { 679 page_unlock(p2); 680 } 681 } 682 } 683 684 static inline struct page_entry * 685 page_entry_new(PageDesc *pd, tb_page_addr_t index) 686 { 687 struct page_entry *pe = g_malloc(sizeof(*pe)); 688 689 pe->index = index; 690 pe->pd = pd; 691 pe->locked = false; 692 return pe; 693 } 694 695 static void page_entry_destroy(gpointer p) 696 { 697 struct page_entry *pe = p; 698 699 g_assert(pe->locked); 700 page_unlock(pe->pd); 701 g_free(pe); 702 } 703 704 /* returns false on success */ 705 static bool page_entry_trylock(struct page_entry *pe) 706 { 707 bool busy; 708 709 busy = qemu_spin_trylock(&pe->pd->lock); 710 if (!busy) { 711 g_assert(!pe->locked); 712 pe->locked = true; 713 page_lock__debug(pe->pd); 714 } 715 return busy; 716 } 717 718 static void do_page_entry_lock(struct page_entry *pe) 719 { 720 page_lock(pe->pd); 721 g_assert(!pe->locked); 722 pe->locked = true; 723 } 724 725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 726 { 727 struct page_entry *pe = value; 728 729 do_page_entry_lock(pe); 730 return FALSE; 731 } 732 733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 734 { 735 struct page_entry *pe = value; 736 737 if (pe->locked) { 738 pe->locked = false; 739 page_unlock(pe->pd); 740 } 741 return FALSE; 742 } 743 744 /* 745 * Trylock a page, and if successful, add the page to a collection. 746 * Returns true ("busy") if the page could not be locked; false otherwise. 747 */ 748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 749 { 750 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 751 struct page_entry *pe; 752 PageDesc *pd; 753 754 pe = g_tree_lookup(set->tree, &index); 755 if (pe) { 756 return false; 757 } 758 759 pd = page_find(index); 760 if (pd == NULL) { 761 return false; 762 } 763 764 pe = page_entry_new(pd, index); 765 g_tree_insert(set->tree, &pe->index, pe); 766 767 /* 768 * If this is either (1) the first insertion or (2) a page whose index 769 * is higher than any other so far, just lock the page and move on. 770 */ 771 if (set->max == NULL || pe->index > set->max->index) { 772 set->max = pe; 773 do_page_entry_lock(pe); 774 return false; 775 } 776 /* 777 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 778 * locks in order. 779 */ 780 return page_entry_trylock(pe); 781 } 782 783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 784 { 785 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 786 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 787 788 if (a == b) { 789 return 0; 790 } else if (a < b) { 791 return -1; 792 } 793 return 1; 794 } 795 796 /* 797 * Lock a range of pages ([@start,@end[) as well as the pages of all 798 * intersecting TBs. 799 * Locking order: acquire locks in ascending order of page index. 800 */ 801 struct page_collection * 802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 803 { 804 struct page_collection *set = g_malloc(sizeof(*set)); 805 tb_page_addr_t index; 806 PageDesc *pd; 807 808 start >>= TARGET_PAGE_BITS; 809 end >>= TARGET_PAGE_BITS; 810 g_assert(start <= end); 811 812 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 813 page_entry_destroy); 814 set->max = NULL; 815 assert_no_pages_locked(); 816 817 retry: 818 g_tree_foreach(set->tree, page_entry_lock, NULL); 819 820 for (index = start; index <= end; index++) { 821 TranslationBlock *tb; 822 int n; 823 824 pd = page_find(index); 825 if (pd == NULL) { 826 continue; 827 } 828 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 829 g_tree_foreach(set->tree, page_entry_unlock, NULL); 830 goto retry; 831 } 832 assert_page_locked(pd); 833 PAGE_FOR_EACH_TB(pd, tb, n) { 834 if (page_trylock_add(set, tb->page_addr[0]) || 835 (tb->page_addr[1] != -1 && 836 page_trylock_add(set, tb->page_addr[1]))) { 837 /* drop all locks, and reacquire in order */ 838 g_tree_foreach(set->tree, page_entry_unlock, NULL); 839 goto retry; 840 } 841 } 842 } 843 return set; 844 } 845 846 void page_collection_unlock(struct page_collection *set) 847 { 848 /* entries are unlocked and freed via page_entry_destroy */ 849 g_tree_destroy(set->tree); 850 g_free(set); 851 } 852 853 #endif /* !CONFIG_USER_ONLY */ 854 855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 856 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 857 { 858 PageDesc *p1, *p2; 859 tb_page_addr_t page1; 860 tb_page_addr_t page2; 861 862 assert_memory_lock(); 863 g_assert(phys1 != -1); 864 865 page1 = phys1 >> TARGET_PAGE_BITS; 866 page2 = phys2 >> TARGET_PAGE_BITS; 867 868 p1 = page_find_alloc(page1, alloc); 869 if (ret_p1) { 870 *ret_p1 = p1; 871 } 872 if (likely(phys2 == -1)) { 873 page_lock(p1); 874 return; 875 } else if (page1 == page2) { 876 page_lock(p1); 877 if (ret_p2) { 878 *ret_p2 = p1; 879 } 880 return; 881 } 882 p2 = page_find_alloc(page2, alloc); 883 if (ret_p2) { 884 *ret_p2 = p2; 885 } 886 if (page1 < page2) { 887 page_lock(p1); 888 page_lock(p2); 889 } else { 890 page_lock(p2); 891 page_lock(p1); 892 } 893 } 894 895 #if defined(CONFIG_USER_ONLY) 896 /* Currently it is not recommended to allocate big chunks of data in 897 user mode. It will change when a dedicated libc will be used. */ 898 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 899 region in which the guest needs to run. Revisit this. */ 900 #define USE_STATIC_CODE_GEN_BUFFER 901 #endif 902 903 /* Minimum size of the code gen buffer. This number is randomly chosen, 904 but not so small that we can't have a fair number of TB's live. */ 905 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) 906 907 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 908 indicated, this is constrained by the range of direct branches on the 909 host cpu, as used by the TCG implementation of goto_tb. */ 910 #if defined(__x86_64__) 911 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 912 #elif defined(__sparc__) 913 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 914 #elif defined(__powerpc64__) 915 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 916 #elif defined(__powerpc__) 917 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB) 918 #elif defined(__aarch64__) 919 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 920 #elif defined(__s390x__) 921 /* We have a +- 4GB range on the branches; leave some slop. */ 922 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB) 923 #elif defined(__mips__) 924 /* We have a 256MB branch region, but leave room to make sure the 925 main executable is also within that region. */ 926 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB) 927 #else 928 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 929 #endif 930 931 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) 932 933 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 934 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 935 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 936 937 static inline size_t size_code_gen_buffer(size_t tb_size) 938 { 939 /* Size the buffer. */ 940 if (tb_size == 0) { 941 #ifdef USE_STATIC_CODE_GEN_BUFFER 942 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 943 #else 944 /* ??? Needs adjustments. */ 945 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 946 static buffer, we could size this on RESERVED_VA, on the text 947 segment size of the executable, or continue to use the default. */ 948 tb_size = (unsigned long)(ram_size / 4); 949 #endif 950 } 951 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 952 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 953 } 954 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 955 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 956 } 957 return tb_size; 958 } 959 960 #ifdef __mips__ 961 /* In order to use J and JAL within the code_gen_buffer, we require 962 that the buffer not cross a 256MB boundary. */ 963 static inline bool cross_256mb(void *addr, size_t size) 964 { 965 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 966 } 967 968 /* We weren't able to allocate a buffer without crossing that boundary, 969 so make do with the larger portion of the buffer that doesn't cross. 970 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 971 static inline void *split_cross_256mb(void *buf1, size_t size1) 972 { 973 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 974 size_t size2 = buf1 + size1 - buf2; 975 976 size1 = buf2 - buf1; 977 if (size1 < size2) { 978 size1 = size2; 979 buf1 = buf2; 980 } 981 982 tcg_ctx->code_gen_buffer_size = size1; 983 return buf1; 984 } 985 #endif 986 987 #ifdef USE_STATIC_CODE_GEN_BUFFER 988 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 989 __attribute__((aligned(CODE_GEN_ALIGN))); 990 991 static inline void *alloc_code_gen_buffer(void) 992 { 993 void *buf = static_code_gen_buffer; 994 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 995 size_t size; 996 997 /* page-align the beginning and end of the buffer */ 998 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 999 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 1000 1001 size = end - buf; 1002 1003 /* Honor a command-line option limiting the size of the buffer. */ 1004 if (size > tcg_ctx->code_gen_buffer_size) { 1005 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1006 qemu_real_host_page_size); 1007 } 1008 tcg_ctx->code_gen_buffer_size = size; 1009 1010 #ifdef __mips__ 1011 if (cross_256mb(buf, size)) { 1012 buf = split_cross_256mb(buf, size); 1013 size = tcg_ctx->code_gen_buffer_size; 1014 } 1015 #endif 1016 1017 if (qemu_mprotect_rwx(buf, size)) { 1018 abort(); 1019 } 1020 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1021 1022 return buf; 1023 } 1024 #elif defined(_WIN32) 1025 static inline void *alloc_code_gen_buffer(void) 1026 { 1027 size_t size = tcg_ctx->code_gen_buffer_size; 1028 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1029 PAGE_EXECUTE_READWRITE); 1030 } 1031 #else 1032 static inline void *alloc_code_gen_buffer(void) 1033 { 1034 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1035 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1036 uintptr_t start = 0; 1037 size_t size = tcg_ctx->code_gen_buffer_size; 1038 void *buf; 1039 1040 /* Constrain the position of the buffer based on the host cpu. 1041 Note that these addresses are chosen in concert with the 1042 addresses assigned in the relevant linker script file. */ 1043 # if defined(__PIE__) || defined(__PIC__) 1044 /* Don't bother setting a preferred location if we're building 1045 a position-independent executable. We're more likely to get 1046 an address near the main executable if we let the kernel 1047 choose the address. */ 1048 # elif defined(__x86_64__) && defined(MAP_32BIT) 1049 /* Force the memory down into low memory with the executable. 1050 Leave the choice of exact location with the kernel. */ 1051 flags |= MAP_32BIT; 1052 /* Cannot expect to map more than 800MB in low memory. */ 1053 if (size > 800u * 1024 * 1024) { 1054 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1055 } 1056 # elif defined(__sparc__) 1057 start = 0x40000000ul; 1058 # elif defined(__s390x__) 1059 start = 0x90000000ul; 1060 # elif defined(__mips__) 1061 # if _MIPS_SIM == _ABI64 1062 start = 0x128000000ul; 1063 # else 1064 start = 0x08000000ul; 1065 # endif 1066 # endif 1067 1068 buf = mmap((void *)start, size, prot, flags, -1, 0); 1069 if (buf == MAP_FAILED) { 1070 return NULL; 1071 } 1072 1073 #ifdef __mips__ 1074 if (cross_256mb(buf, size)) { 1075 /* Try again, with the original still mapped, to avoid re-acquiring 1076 that 256mb crossing. This time don't specify an address. */ 1077 size_t size2; 1078 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1079 switch ((int)(buf2 != MAP_FAILED)) { 1080 case 1: 1081 if (!cross_256mb(buf2, size)) { 1082 /* Success! Use the new buffer. */ 1083 munmap(buf, size); 1084 break; 1085 } 1086 /* Failure. Work with what we had. */ 1087 munmap(buf2, size); 1088 /* fallthru */ 1089 default: 1090 /* Split the original buffer. Free the smaller half. */ 1091 buf2 = split_cross_256mb(buf, size); 1092 size2 = tcg_ctx->code_gen_buffer_size; 1093 if (buf == buf2) { 1094 munmap(buf + size2, size - size2); 1095 } else { 1096 munmap(buf, size - size2); 1097 } 1098 size = size2; 1099 break; 1100 } 1101 buf = buf2; 1102 } 1103 #endif 1104 1105 /* Request large pages for the buffer. */ 1106 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1107 1108 return buf; 1109 } 1110 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1111 1112 static inline void code_gen_alloc(size_t tb_size) 1113 { 1114 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1115 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1116 if (tcg_ctx->code_gen_buffer == NULL) { 1117 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1118 exit(1); 1119 } 1120 } 1121 1122 static bool tb_cmp(const void *ap, const void *bp) 1123 { 1124 const TranslationBlock *a = ap; 1125 const TranslationBlock *b = bp; 1126 1127 return a->pc == b->pc && 1128 a->cs_base == b->cs_base && 1129 a->flags == b->flags && 1130 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1131 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1132 a->page_addr[0] == b->page_addr[0] && 1133 a->page_addr[1] == b->page_addr[1]; 1134 } 1135 1136 static void tb_htable_init(void) 1137 { 1138 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1139 1140 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1141 } 1142 1143 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1144 (in bytes) allocated to the translation buffer. Zero means default 1145 size. */ 1146 void tcg_exec_init(unsigned long tb_size) 1147 { 1148 tcg_allowed = true; 1149 cpu_gen_init(); 1150 page_init(); 1151 tb_htable_init(); 1152 code_gen_alloc(tb_size); 1153 #if defined(CONFIG_SOFTMMU) 1154 /* There's no guest base to take into account, so go ahead and 1155 initialize the prologue now. */ 1156 tcg_prologue_init(tcg_ctx); 1157 #endif 1158 } 1159 1160 /* call with @p->lock held */ 1161 static inline void invalidate_page_bitmap(PageDesc *p) 1162 { 1163 assert_page_locked(p); 1164 #ifdef CONFIG_SOFTMMU 1165 g_free(p->code_bitmap); 1166 p->code_bitmap = NULL; 1167 p->code_write_count = 0; 1168 #endif 1169 } 1170 1171 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1172 static void page_flush_tb_1(int level, void **lp) 1173 { 1174 int i; 1175 1176 if (*lp == NULL) { 1177 return; 1178 } 1179 if (level == 0) { 1180 PageDesc *pd = *lp; 1181 1182 for (i = 0; i < V_L2_SIZE; ++i) { 1183 page_lock(&pd[i]); 1184 pd[i].first_tb = (uintptr_t)NULL; 1185 invalidate_page_bitmap(pd + i); 1186 page_unlock(&pd[i]); 1187 } 1188 } else { 1189 void **pp = *lp; 1190 1191 for (i = 0; i < V_L2_SIZE; ++i) { 1192 page_flush_tb_1(level - 1, pp + i); 1193 } 1194 } 1195 } 1196 1197 static void page_flush_tb(void) 1198 { 1199 int i, l1_sz = v_l1_size; 1200 1201 for (i = 0; i < l1_sz; i++) { 1202 page_flush_tb_1(v_l2_levels, l1_map + i); 1203 } 1204 } 1205 1206 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1207 { 1208 const TranslationBlock *tb = value; 1209 size_t *size = data; 1210 1211 *size += tb->tc.size; 1212 return false; 1213 } 1214 1215 /* flush all the translation blocks */ 1216 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1217 { 1218 bool did_flush = false; 1219 1220 mmap_lock(); 1221 /* If it is already been done on request of another CPU, 1222 * just retry. 1223 */ 1224 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1225 goto done; 1226 } 1227 did_flush = true; 1228 1229 if (DEBUG_TB_FLUSH_GATE) { 1230 size_t nb_tbs = tcg_nb_tbs(); 1231 size_t host_size = 0; 1232 1233 tcg_tb_foreach(tb_host_size_iter, &host_size); 1234 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1235 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1236 } 1237 1238 CPU_FOREACH(cpu) { 1239 cpu_tb_jmp_cache_clear(cpu); 1240 } 1241 1242 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1243 page_flush_tb(); 1244 1245 tcg_region_reset_all(); 1246 /* XXX: flush processor icache at this point if cache flush is 1247 expensive */ 1248 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1249 1250 done: 1251 mmap_unlock(); 1252 if (did_flush) { 1253 qemu_plugin_flush_cb(); 1254 } 1255 } 1256 1257 void tb_flush(CPUState *cpu) 1258 { 1259 if (tcg_enabled()) { 1260 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1261 1262 if (cpu_in_exclusive_context(cpu)) { 1263 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1264 } else { 1265 async_safe_run_on_cpu(cpu, do_tb_flush, 1266 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1267 } 1268 } 1269 } 1270 1271 /* 1272 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1273 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1274 * and let the optimizer get rid of them by wrapping their user-only callers 1275 * with if (DEBUG_TB_CHECK_GATE). 1276 */ 1277 #ifdef CONFIG_USER_ONLY 1278 1279 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1280 { 1281 TranslationBlock *tb = p; 1282 target_ulong addr = *(target_ulong *)userp; 1283 1284 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1285 printf("ERROR invalidate: address=" TARGET_FMT_lx 1286 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1287 } 1288 } 1289 1290 /* verify that all the pages have correct rights for code 1291 * 1292 * Called with mmap_lock held. 1293 */ 1294 static void tb_invalidate_check(target_ulong address) 1295 { 1296 address &= TARGET_PAGE_MASK; 1297 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1298 } 1299 1300 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1301 { 1302 TranslationBlock *tb = p; 1303 int flags1, flags2; 1304 1305 flags1 = page_get_flags(tb->pc); 1306 flags2 = page_get_flags(tb->pc + tb->size - 1); 1307 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1308 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1309 (long)tb->pc, tb->size, flags1, flags2); 1310 } 1311 } 1312 1313 /* verify that all the pages have correct rights for code */ 1314 static void tb_page_check(void) 1315 { 1316 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1317 } 1318 1319 #endif /* CONFIG_USER_ONLY */ 1320 1321 /* 1322 * user-mode: call with mmap_lock held 1323 * !user-mode: call with @pd->lock held 1324 */ 1325 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1326 { 1327 TranslationBlock *tb1; 1328 uintptr_t *pprev; 1329 unsigned int n1; 1330 1331 assert_page_locked(pd); 1332 pprev = &pd->first_tb; 1333 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1334 if (tb1 == tb) { 1335 *pprev = tb1->page_next[n1]; 1336 return; 1337 } 1338 pprev = &tb1->page_next[n1]; 1339 } 1340 g_assert_not_reached(); 1341 } 1342 1343 /* remove @orig from its @n_orig-th jump list */ 1344 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1345 { 1346 uintptr_t ptr, ptr_locked; 1347 TranslationBlock *dest; 1348 TranslationBlock *tb; 1349 uintptr_t *pprev; 1350 int n; 1351 1352 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1353 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1354 dest = (TranslationBlock *)(ptr & ~1); 1355 if (dest == NULL) { 1356 return; 1357 } 1358 1359 qemu_spin_lock(&dest->jmp_lock); 1360 /* 1361 * While acquiring the lock, the jump might have been removed if the 1362 * destination TB was invalidated; check again. 1363 */ 1364 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1365 if (ptr_locked != ptr) { 1366 qemu_spin_unlock(&dest->jmp_lock); 1367 /* 1368 * The only possibility is that the jump was unlinked via 1369 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1370 * because we set the LSB above. 1371 */ 1372 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1373 return; 1374 } 1375 /* 1376 * We first acquired the lock, and since the destination pointer matches, 1377 * we know for sure that @orig is in the jmp list. 1378 */ 1379 pprev = &dest->jmp_list_head; 1380 TB_FOR_EACH_JMP(dest, tb, n) { 1381 if (tb == orig && n == n_orig) { 1382 *pprev = tb->jmp_list_next[n]; 1383 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1384 qemu_spin_unlock(&dest->jmp_lock); 1385 return; 1386 } 1387 pprev = &tb->jmp_list_next[n]; 1388 } 1389 g_assert_not_reached(); 1390 } 1391 1392 /* reset the jump entry 'n' of a TB so that it is not chained to 1393 another TB */ 1394 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1395 { 1396 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1397 tb_set_jmp_target(tb, n, addr); 1398 } 1399 1400 /* remove any jumps to the TB */ 1401 static inline void tb_jmp_unlink(TranslationBlock *dest) 1402 { 1403 TranslationBlock *tb; 1404 int n; 1405 1406 qemu_spin_lock(&dest->jmp_lock); 1407 1408 TB_FOR_EACH_JMP(dest, tb, n) { 1409 tb_reset_jump(tb, n); 1410 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1411 /* No need to clear the list entry; setting the dest ptr is enough */ 1412 } 1413 dest->jmp_list_head = (uintptr_t)NULL; 1414 1415 qemu_spin_unlock(&dest->jmp_lock); 1416 } 1417 1418 /* 1419 * In user-mode, call with mmap_lock held. 1420 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1421 * locks held. 1422 */ 1423 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1424 { 1425 CPUState *cpu; 1426 PageDesc *p; 1427 uint32_t h; 1428 tb_page_addr_t phys_pc; 1429 1430 assert_memory_lock(); 1431 1432 /* make sure no further incoming jumps will be chained to this TB */ 1433 qemu_spin_lock(&tb->jmp_lock); 1434 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1435 qemu_spin_unlock(&tb->jmp_lock); 1436 1437 /* remove the TB from the hash list */ 1438 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1439 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1440 tb->trace_vcpu_dstate); 1441 if (!(tb->cflags & CF_NOCACHE) && 1442 !qht_remove(&tb_ctx.htable, tb, h)) { 1443 return; 1444 } 1445 1446 /* remove the TB from the page list */ 1447 if (rm_from_page_list) { 1448 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1449 tb_page_remove(p, tb); 1450 invalidate_page_bitmap(p); 1451 if (tb->page_addr[1] != -1) { 1452 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1453 tb_page_remove(p, tb); 1454 invalidate_page_bitmap(p); 1455 } 1456 } 1457 1458 /* remove the TB from the hash list */ 1459 h = tb_jmp_cache_hash_func(tb->pc); 1460 CPU_FOREACH(cpu) { 1461 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1462 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1463 } 1464 } 1465 1466 /* suppress this TB from the two jump lists */ 1467 tb_remove_from_jmp_list(tb, 0); 1468 tb_remove_from_jmp_list(tb, 1); 1469 1470 /* suppress any remaining jumps to this TB */ 1471 tb_jmp_unlink(tb); 1472 1473 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1474 tcg_ctx->tb_phys_invalidate_count + 1); 1475 } 1476 1477 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1478 { 1479 do_tb_phys_invalidate(tb, true); 1480 } 1481 1482 /* invalidate one TB 1483 * 1484 * Called with mmap_lock held in user-mode. 1485 */ 1486 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1487 { 1488 if (page_addr == -1 && tb->page_addr[0] != -1) { 1489 page_lock_tb(tb); 1490 do_tb_phys_invalidate(tb, true); 1491 page_unlock_tb(tb); 1492 } else { 1493 do_tb_phys_invalidate(tb, false); 1494 } 1495 } 1496 1497 #ifdef CONFIG_SOFTMMU 1498 /* call with @p->lock held */ 1499 static void build_page_bitmap(PageDesc *p) 1500 { 1501 int n, tb_start, tb_end; 1502 TranslationBlock *tb; 1503 1504 assert_page_locked(p); 1505 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1506 1507 PAGE_FOR_EACH_TB(p, tb, n) { 1508 /* NOTE: this is subtle as a TB may span two physical pages */ 1509 if (n == 0) { 1510 /* NOTE: tb_end may be after the end of the page, but 1511 it is not a problem */ 1512 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1513 tb_end = tb_start + tb->size; 1514 if (tb_end > TARGET_PAGE_SIZE) { 1515 tb_end = TARGET_PAGE_SIZE; 1516 } 1517 } else { 1518 tb_start = 0; 1519 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1520 } 1521 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1522 } 1523 } 1524 #endif 1525 1526 /* add the tb in the target page and protect it if necessary 1527 * 1528 * Called with mmap_lock held for user-mode emulation. 1529 * Called with @p->lock held in !user-mode. 1530 */ 1531 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1532 unsigned int n, tb_page_addr_t page_addr) 1533 { 1534 #ifndef CONFIG_USER_ONLY 1535 bool page_already_protected; 1536 #endif 1537 1538 assert_page_locked(p); 1539 1540 tb->page_addr[n] = page_addr; 1541 tb->page_next[n] = p->first_tb; 1542 #ifndef CONFIG_USER_ONLY 1543 page_already_protected = p->first_tb != (uintptr_t)NULL; 1544 #endif 1545 p->first_tb = (uintptr_t)tb | n; 1546 invalidate_page_bitmap(p); 1547 1548 #if defined(CONFIG_USER_ONLY) 1549 if (p->flags & PAGE_WRITE) { 1550 target_ulong addr; 1551 PageDesc *p2; 1552 int prot; 1553 1554 /* force the host page as non writable (writes will have a 1555 page fault + mprotect overhead) */ 1556 page_addr &= qemu_host_page_mask; 1557 prot = 0; 1558 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1559 addr += TARGET_PAGE_SIZE) { 1560 1561 p2 = page_find(addr >> TARGET_PAGE_BITS); 1562 if (!p2) { 1563 continue; 1564 } 1565 prot |= p2->flags; 1566 p2->flags &= ~PAGE_WRITE; 1567 } 1568 mprotect(g2h(page_addr), qemu_host_page_size, 1569 (prot & PAGE_BITS) & ~PAGE_WRITE); 1570 if (DEBUG_TB_INVALIDATE_GATE) { 1571 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1572 } 1573 } 1574 #else 1575 /* if some code is already present, then the pages are already 1576 protected. So we handle the case where only the first TB is 1577 allocated in a physical page */ 1578 if (!page_already_protected) { 1579 tlb_protect_code(page_addr); 1580 } 1581 #endif 1582 } 1583 1584 /* add a new TB and link it to the physical page tables. phys_page2 is 1585 * (-1) to indicate that only one page contains the TB. 1586 * 1587 * Called with mmap_lock held for user-mode emulation. 1588 * 1589 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1590 * Note that in !user-mode, another thread might have already added a TB 1591 * for the same block of guest code that @tb corresponds to. In that case, 1592 * the caller should discard the original @tb, and use instead the returned TB. 1593 */ 1594 static TranslationBlock * 1595 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1596 tb_page_addr_t phys_page2) 1597 { 1598 PageDesc *p; 1599 PageDesc *p2 = NULL; 1600 1601 assert_memory_lock(); 1602 1603 if (phys_pc == -1) { 1604 /* 1605 * If the TB is not associated with a physical RAM page then 1606 * it must be a temporary one-insn TB, and we have nothing to do 1607 * except fill in the page_addr[] fields. 1608 */ 1609 assert(tb->cflags & CF_NOCACHE); 1610 tb->page_addr[0] = tb->page_addr[1] = -1; 1611 return tb; 1612 } 1613 1614 /* 1615 * Add the TB to the page list, acquiring first the pages's locks. 1616 * We keep the locks held until after inserting the TB in the hash table, 1617 * so that if the insertion fails we know for sure that the TBs are still 1618 * in the page descriptors. 1619 * Note that inserting into the hash table first isn't an option, since 1620 * we can only insert TBs that are fully initialized. 1621 */ 1622 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1623 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1624 if (p2) { 1625 tb_page_add(p2, tb, 1, phys_page2); 1626 } else { 1627 tb->page_addr[1] = -1; 1628 } 1629 1630 if (!(tb->cflags & CF_NOCACHE)) { 1631 void *existing_tb = NULL; 1632 uint32_t h; 1633 1634 /* add in the hash table */ 1635 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1636 tb->trace_vcpu_dstate); 1637 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1638 1639 /* remove TB from the page(s) if we couldn't insert it */ 1640 if (unlikely(existing_tb)) { 1641 tb_page_remove(p, tb); 1642 invalidate_page_bitmap(p); 1643 if (p2) { 1644 tb_page_remove(p2, tb); 1645 invalidate_page_bitmap(p2); 1646 } 1647 tb = existing_tb; 1648 } 1649 } 1650 1651 if (p2 && p2 != p) { 1652 page_unlock(p2); 1653 } 1654 page_unlock(p); 1655 1656 #ifdef CONFIG_USER_ONLY 1657 if (DEBUG_TB_CHECK_GATE) { 1658 tb_page_check(); 1659 } 1660 #endif 1661 return tb; 1662 } 1663 1664 /* Called with mmap_lock held for user mode emulation. */ 1665 TranslationBlock *tb_gen_code(CPUState *cpu, 1666 target_ulong pc, target_ulong cs_base, 1667 uint32_t flags, int cflags) 1668 { 1669 CPUArchState *env = cpu->env_ptr; 1670 TranslationBlock *tb, *existing_tb; 1671 tb_page_addr_t phys_pc, phys_page2; 1672 target_ulong virt_page2; 1673 tcg_insn_unit *gen_code_buf; 1674 int gen_code_size, search_size, max_insns; 1675 #ifdef CONFIG_PROFILER 1676 TCGProfile *prof = &tcg_ctx->prof; 1677 int64_t ti; 1678 #endif 1679 1680 assert_memory_lock(); 1681 1682 phys_pc = get_page_addr_code(env, pc); 1683 1684 if (phys_pc == -1) { 1685 /* Generate a temporary TB with 1 insn in it */ 1686 cflags &= ~CF_COUNT_MASK; 1687 cflags |= CF_NOCACHE | 1; 1688 } 1689 1690 cflags &= ~CF_CLUSTER_MASK; 1691 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1692 1693 max_insns = cflags & CF_COUNT_MASK; 1694 if (max_insns == 0) { 1695 max_insns = CF_COUNT_MASK; 1696 } 1697 if (max_insns > TCG_MAX_INSNS) { 1698 max_insns = TCG_MAX_INSNS; 1699 } 1700 if (cpu->singlestep_enabled || singlestep) { 1701 max_insns = 1; 1702 } 1703 1704 buffer_overflow: 1705 tb = tcg_tb_alloc(tcg_ctx); 1706 if (unlikely(!tb)) { 1707 /* flush must be done */ 1708 tb_flush(cpu); 1709 mmap_unlock(); 1710 /* Make the execution loop process the flush as soon as possible. */ 1711 cpu->exception_index = EXCP_INTERRUPT; 1712 cpu_loop_exit(cpu); 1713 } 1714 1715 gen_code_buf = tcg_ctx->code_gen_ptr; 1716 tb->tc.ptr = gen_code_buf; 1717 tb->pc = pc; 1718 tb->cs_base = cs_base; 1719 tb->flags = flags; 1720 tb->cflags = cflags; 1721 tb->orig_tb = NULL; 1722 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1723 tcg_ctx->tb_cflags = cflags; 1724 tb_overflow: 1725 1726 #ifdef CONFIG_PROFILER 1727 /* includes aborted translations because of exceptions */ 1728 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1729 ti = profile_getclock(); 1730 #endif 1731 1732 tcg_func_start(tcg_ctx); 1733 1734 tcg_ctx->cpu = env_cpu(env); 1735 gen_intermediate_code(cpu, tb, max_insns); 1736 tcg_ctx->cpu = NULL; 1737 1738 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1739 1740 /* generate machine code */ 1741 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1742 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1743 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1744 if (TCG_TARGET_HAS_direct_jump) { 1745 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1746 tcg_ctx->tb_jmp_target_addr = NULL; 1747 } else { 1748 tcg_ctx->tb_jmp_insn_offset = NULL; 1749 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1750 } 1751 1752 #ifdef CONFIG_PROFILER 1753 atomic_set(&prof->tb_count, prof->tb_count + 1); 1754 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1755 ti = profile_getclock(); 1756 #endif 1757 1758 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1759 if (unlikely(gen_code_size < 0)) { 1760 switch (gen_code_size) { 1761 case -1: 1762 /* 1763 * Overflow of code_gen_buffer, or the current slice of it. 1764 * 1765 * TODO: We don't need to re-do gen_intermediate_code, nor 1766 * should we re-do the tcg optimization currently hidden 1767 * inside tcg_gen_code. All that should be required is to 1768 * flush the TBs, allocate a new TB, re-initialize it per 1769 * above, and re-do the actual code generation. 1770 */ 1771 goto buffer_overflow; 1772 1773 case -2: 1774 /* 1775 * The code generated for the TranslationBlock is too large. 1776 * The maximum size allowed by the unwind info is 64k. 1777 * There may be stricter constraints from relocations 1778 * in the tcg backend. 1779 * 1780 * Try again with half as many insns as we attempted this time. 1781 * If a single insn overflows, there's a bug somewhere... 1782 */ 1783 max_insns = tb->icount; 1784 assert(max_insns > 1); 1785 max_insns /= 2; 1786 goto tb_overflow; 1787 1788 default: 1789 g_assert_not_reached(); 1790 } 1791 } 1792 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1793 if (unlikely(search_size < 0)) { 1794 goto buffer_overflow; 1795 } 1796 tb->tc.size = gen_code_size; 1797 1798 #ifdef CONFIG_PROFILER 1799 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1800 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1801 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1802 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1803 #endif 1804 1805 #ifdef DEBUG_DISAS 1806 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1807 qemu_log_in_addr_range(tb->pc)) { 1808 FILE *logfile = qemu_log_lock(); 1809 qemu_log("OUT: [size=%d]\n", gen_code_size); 1810 if (tcg_ctx->data_gen_ptr) { 1811 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1812 size_t data_size = gen_code_size - code_size; 1813 size_t i; 1814 1815 log_disas(tb->tc.ptr, code_size); 1816 1817 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1818 if (sizeof(tcg_target_ulong) == 8) { 1819 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1820 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1821 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1822 } else { 1823 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1824 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1825 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1826 } 1827 } 1828 } else { 1829 log_disas(tb->tc.ptr, gen_code_size); 1830 } 1831 qemu_log("\n"); 1832 qemu_log_flush(); 1833 qemu_log_unlock(logfile); 1834 } 1835 #endif 1836 1837 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1838 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1839 CODE_GEN_ALIGN)); 1840 1841 /* init jump list */ 1842 qemu_spin_init(&tb->jmp_lock); 1843 tb->jmp_list_head = (uintptr_t)NULL; 1844 tb->jmp_list_next[0] = (uintptr_t)NULL; 1845 tb->jmp_list_next[1] = (uintptr_t)NULL; 1846 tb->jmp_dest[0] = (uintptr_t)NULL; 1847 tb->jmp_dest[1] = (uintptr_t)NULL; 1848 1849 /* init original jump addresses which have been set during tcg_gen_code() */ 1850 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1851 tb_reset_jump(tb, 0); 1852 } 1853 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1854 tb_reset_jump(tb, 1); 1855 } 1856 1857 /* check next page if needed */ 1858 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1859 phys_page2 = -1; 1860 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1861 phys_page2 = get_page_addr_code(env, virt_page2); 1862 } 1863 /* 1864 * No explicit memory barrier is required -- tb_link_page() makes the 1865 * TB visible in a consistent state. 1866 */ 1867 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1868 /* if the TB already exists, discard what we just translated */ 1869 if (unlikely(existing_tb != tb)) { 1870 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1871 1872 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1873 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1874 return existing_tb; 1875 } 1876 tcg_tb_insert(tb); 1877 return tb; 1878 } 1879 1880 /* 1881 * @p must be non-NULL. 1882 * user-mode: call with mmap_lock held. 1883 * !user-mode: call with all @pages locked. 1884 */ 1885 static void 1886 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1887 PageDesc *p, tb_page_addr_t start, 1888 tb_page_addr_t end, 1889 uintptr_t retaddr) 1890 { 1891 TranslationBlock *tb; 1892 tb_page_addr_t tb_start, tb_end; 1893 int n; 1894 #ifdef TARGET_HAS_PRECISE_SMC 1895 CPUState *cpu = current_cpu; 1896 CPUArchState *env = NULL; 1897 bool current_tb_not_found = retaddr != 0; 1898 bool current_tb_modified = false; 1899 TranslationBlock *current_tb = NULL; 1900 target_ulong current_pc = 0; 1901 target_ulong current_cs_base = 0; 1902 uint32_t current_flags = 0; 1903 #endif /* TARGET_HAS_PRECISE_SMC */ 1904 1905 assert_page_locked(p); 1906 1907 #if defined(TARGET_HAS_PRECISE_SMC) 1908 if (cpu != NULL) { 1909 env = cpu->env_ptr; 1910 } 1911 #endif 1912 1913 /* we remove all the TBs in the range [start, end[ */ 1914 /* XXX: see if in some cases it could be faster to invalidate all 1915 the code */ 1916 PAGE_FOR_EACH_TB(p, tb, n) { 1917 assert_page_locked(p); 1918 /* NOTE: this is subtle as a TB may span two physical pages */ 1919 if (n == 0) { 1920 /* NOTE: tb_end may be after the end of the page, but 1921 it is not a problem */ 1922 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1923 tb_end = tb_start + tb->size; 1924 } else { 1925 tb_start = tb->page_addr[1]; 1926 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1927 } 1928 if (!(tb_end <= start || tb_start >= end)) { 1929 #ifdef TARGET_HAS_PRECISE_SMC 1930 if (current_tb_not_found) { 1931 current_tb_not_found = false; 1932 /* now we have a real cpu fault */ 1933 current_tb = tcg_tb_lookup(retaddr); 1934 } 1935 if (current_tb == tb && 1936 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1937 /* 1938 * If we are modifying the current TB, we must stop 1939 * its execution. We could be more precise by checking 1940 * that the modification is after the current PC, but it 1941 * would require a specialized function to partially 1942 * restore the CPU state. 1943 */ 1944 current_tb_modified = true; 1945 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1946 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1947 ¤t_flags); 1948 } 1949 #endif /* TARGET_HAS_PRECISE_SMC */ 1950 tb_phys_invalidate__locked(tb); 1951 } 1952 } 1953 #if !defined(CONFIG_USER_ONLY) 1954 /* if no code remaining, no need to continue to use slow writes */ 1955 if (!p->first_tb) { 1956 invalidate_page_bitmap(p); 1957 tlb_unprotect_code(start); 1958 } 1959 #endif 1960 #ifdef TARGET_HAS_PRECISE_SMC 1961 if (current_tb_modified) { 1962 page_collection_unlock(pages); 1963 /* Force execution of one insn next time. */ 1964 cpu->cflags_next_tb = 1 | curr_cflags(); 1965 mmap_unlock(); 1966 cpu_loop_exit_noexc(cpu); 1967 } 1968 #endif 1969 } 1970 1971 /* 1972 * Invalidate all TBs which intersect with the target physical address range 1973 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1974 * 'is_cpu_write_access' should be true if called from a real cpu write 1975 * access: the virtual CPU will exit the current TB if code is modified inside 1976 * this TB. 1977 * 1978 * Called with mmap_lock held for user-mode emulation 1979 */ 1980 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 1981 { 1982 struct page_collection *pages; 1983 PageDesc *p; 1984 1985 assert_memory_lock(); 1986 1987 p = page_find(start >> TARGET_PAGE_BITS); 1988 if (p == NULL) { 1989 return; 1990 } 1991 pages = page_collection_lock(start, end); 1992 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 1993 page_collection_unlock(pages); 1994 } 1995 1996 /* 1997 * Invalidate all TBs which intersect with the target physical address range 1998 * [start;end[. NOTE: start and end may refer to *different* physical pages. 1999 * 'is_cpu_write_access' should be true if called from a real cpu write 2000 * access: the virtual CPU will exit the current TB if code is modified inside 2001 * this TB. 2002 * 2003 * Called with mmap_lock held for user-mode emulation. 2004 */ 2005 #ifdef CONFIG_SOFTMMU 2006 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2007 #else 2008 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2009 #endif 2010 { 2011 struct page_collection *pages; 2012 tb_page_addr_t next; 2013 2014 assert_memory_lock(); 2015 2016 pages = page_collection_lock(start, end); 2017 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2018 start < end; 2019 start = next, next += TARGET_PAGE_SIZE) { 2020 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2021 tb_page_addr_t bound = MIN(next, end); 2022 2023 if (pd == NULL) { 2024 continue; 2025 } 2026 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2027 } 2028 page_collection_unlock(pages); 2029 } 2030 2031 #ifdef CONFIG_SOFTMMU 2032 /* len must be <= 8 and start must be a multiple of len. 2033 * Called via softmmu_template.h when code areas are written to with 2034 * iothread mutex not held. 2035 * 2036 * Call with all @pages in the range [@start, @start + len[ locked. 2037 */ 2038 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2039 tb_page_addr_t start, int len, 2040 uintptr_t retaddr) 2041 { 2042 PageDesc *p; 2043 2044 assert_memory_lock(); 2045 2046 p = page_find(start >> TARGET_PAGE_BITS); 2047 if (!p) { 2048 return; 2049 } 2050 2051 assert_page_locked(p); 2052 if (!p->code_bitmap && 2053 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2054 build_page_bitmap(p); 2055 } 2056 if (p->code_bitmap) { 2057 unsigned int nr; 2058 unsigned long b; 2059 2060 nr = start & ~TARGET_PAGE_MASK; 2061 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2062 if (b & ((1 << len) - 1)) { 2063 goto do_invalidate; 2064 } 2065 } else { 2066 do_invalidate: 2067 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2068 retaddr); 2069 } 2070 } 2071 #else 2072 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2073 * host PC of the faulting store instruction that caused this invalidate. 2074 * Returns true if the caller needs to abort execution of the current 2075 * TB (because it was modified by this store and the guest CPU has 2076 * precise-SMC semantics). 2077 */ 2078 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2079 { 2080 TranslationBlock *tb; 2081 PageDesc *p; 2082 int n; 2083 #ifdef TARGET_HAS_PRECISE_SMC 2084 TranslationBlock *current_tb = NULL; 2085 CPUState *cpu = current_cpu; 2086 CPUArchState *env = NULL; 2087 int current_tb_modified = 0; 2088 target_ulong current_pc = 0; 2089 target_ulong current_cs_base = 0; 2090 uint32_t current_flags = 0; 2091 #endif 2092 2093 assert_memory_lock(); 2094 2095 addr &= TARGET_PAGE_MASK; 2096 p = page_find(addr >> TARGET_PAGE_BITS); 2097 if (!p) { 2098 return false; 2099 } 2100 2101 #ifdef TARGET_HAS_PRECISE_SMC 2102 if (p->first_tb && pc != 0) { 2103 current_tb = tcg_tb_lookup(pc); 2104 } 2105 if (cpu != NULL) { 2106 env = cpu->env_ptr; 2107 } 2108 #endif 2109 assert_page_locked(p); 2110 PAGE_FOR_EACH_TB(p, tb, n) { 2111 #ifdef TARGET_HAS_PRECISE_SMC 2112 if (current_tb == tb && 2113 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2114 /* If we are modifying the current TB, we must stop 2115 its execution. We could be more precise by checking 2116 that the modification is after the current PC, but it 2117 would require a specialized function to partially 2118 restore the CPU state */ 2119 2120 current_tb_modified = 1; 2121 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2122 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2123 ¤t_flags); 2124 } 2125 #endif /* TARGET_HAS_PRECISE_SMC */ 2126 tb_phys_invalidate(tb, addr); 2127 } 2128 p->first_tb = (uintptr_t)NULL; 2129 #ifdef TARGET_HAS_PRECISE_SMC 2130 if (current_tb_modified) { 2131 /* Force execution of one insn next time. */ 2132 cpu->cflags_next_tb = 1 | curr_cflags(); 2133 return true; 2134 } 2135 #endif 2136 2137 return false; 2138 } 2139 #endif 2140 2141 /* user-mode: call with mmap_lock held */ 2142 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2143 { 2144 TranslationBlock *tb; 2145 2146 assert_memory_lock(); 2147 2148 tb = tcg_tb_lookup(retaddr); 2149 if (tb) { 2150 /* We can use retranslation to find the PC. */ 2151 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2152 tb_phys_invalidate(tb, -1); 2153 } else { 2154 /* The exception probably happened in a helper. The CPU state should 2155 have been saved before calling it. Fetch the PC from there. */ 2156 CPUArchState *env = cpu->env_ptr; 2157 target_ulong pc, cs_base; 2158 tb_page_addr_t addr; 2159 uint32_t flags; 2160 2161 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2162 addr = get_page_addr_code(env, pc); 2163 if (addr != -1) { 2164 tb_invalidate_phys_range(addr, addr + 1); 2165 } 2166 } 2167 } 2168 2169 #ifndef CONFIG_USER_ONLY 2170 /* in deterministic execution mode, instructions doing device I/Os 2171 * must be at the end of the TB. 2172 * 2173 * Called by softmmu_template.h, with iothread mutex not held. 2174 */ 2175 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2176 { 2177 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2178 CPUArchState *env = cpu->env_ptr; 2179 #endif 2180 TranslationBlock *tb; 2181 uint32_t n; 2182 2183 tb = tcg_tb_lookup(retaddr); 2184 if (!tb) { 2185 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2186 (void *)retaddr); 2187 } 2188 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2189 2190 /* On MIPS and SH, delay slot instructions can only be restarted if 2191 they were already the first instruction in the TB. If this is not 2192 the first instruction in a TB then re-execute the preceding 2193 branch. */ 2194 n = 1; 2195 #if defined(TARGET_MIPS) 2196 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2197 && env->active_tc.PC != tb->pc) { 2198 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2199 cpu_neg(cpu)->icount_decr.u16.low++; 2200 env->hflags &= ~MIPS_HFLAG_BMASK; 2201 n = 2; 2202 } 2203 #elif defined(TARGET_SH4) 2204 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2205 && env->pc != tb->pc) { 2206 env->pc -= 2; 2207 cpu_neg(cpu)->icount_decr.u16.low++; 2208 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2209 n = 2; 2210 } 2211 #endif 2212 2213 /* Generate a new TB executing the I/O insn. */ 2214 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2215 2216 if (tb_cflags(tb) & CF_NOCACHE) { 2217 if (tb->orig_tb) { 2218 /* Invalidate original TB if this TB was generated in 2219 * cpu_exec_nocache() */ 2220 tb_phys_invalidate(tb->orig_tb, -1); 2221 } 2222 tcg_tb_remove(tb); 2223 } 2224 2225 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2226 * the first in the TB) then we end up generating a whole new TB and 2227 * repeating the fault, which is horribly inefficient. 2228 * Better would be to execute just this insn uncached, or generate a 2229 * second new TB. 2230 */ 2231 cpu_loop_exit_noexc(cpu); 2232 } 2233 2234 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2235 { 2236 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2237 2238 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2239 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2240 } 2241 } 2242 2243 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2244 { 2245 /* Discard jump cache entries for any tb which might potentially 2246 overlap the flushed page. */ 2247 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2248 tb_jmp_cache_clear_page(cpu, addr); 2249 } 2250 2251 static void print_qht_statistics(struct qht_stats hst) 2252 { 2253 uint32_t hgram_opts; 2254 size_t hgram_bins; 2255 char *hgram; 2256 2257 if (!hst.head_buckets) { 2258 return; 2259 } 2260 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2261 hst.used_head_buckets, hst.head_buckets, 2262 (double)hst.used_head_buckets / hst.head_buckets * 100); 2263 2264 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2265 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2266 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2267 hgram_opts |= QDIST_PR_NODECIMAL; 2268 } 2269 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2270 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2271 qdist_avg(&hst.occupancy) * 100, hgram); 2272 g_free(hgram); 2273 2274 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2275 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2276 if (hgram_bins > 10) { 2277 hgram_bins = 10; 2278 } else { 2279 hgram_bins = 0; 2280 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2281 } 2282 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2283 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2284 qdist_avg(&hst.chain), hgram); 2285 g_free(hgram); 2286 } 2287 2288 struct tb_tree_stats { 2289 size_t nb_tbs; 2290 size_t host_size; 2291 size_t target_size; 2292 size_t max_target_size; 2293 size_t direct_jmp_count; 2294 size_t direct_jmp2_count; 2295 size_t cross_page; 2296 }; 2297 2298 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2299 { 2300 const TranslationBlock *tb = value; 2301 struct tb_tree_stats *tst = data; 2302 2303 tst->nb_tbs++; 2304 tst->host_size += tb->tc.size; 2305 tst->target_size += tb->size; 2306 if (tb->size > tst->max_target_size) { 2307 tst->max_target_size = tb->size; 2308 } 2309 if (tb->page_addr[1] != -1) { 2310 tst->cross_page++; 2311 } 2312 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2313 tst->direct_jmp_count++; 2314 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2315 tst->direct_jmp2_count++; 2316 } 2317 } 2318 return false; 2319 } 2320 2321 void dump_exec_info(void) 2322 { 2323 struct tb_tree_stats tst = {}; 2324 struct qht_stats hst; 2325 size_t nb_tbs, flush_full, flush_part, flush_elide; 2326 2327 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2328 nb_tbs = tst.nb_tbs; 2329 /* XXX: avoid using doubles ? */ 2330 qemu_printf("Translation buffer state:\n"); 2331 /* 2332 * Report total code size including the padding and TB structs; 2333 * otherwise users might think "-tb-size" is not honoured. 2334 * For avg host size we use the precise numbers from tb_tree_stats though. 2335 */ 2336 qemu_printf("gen code size %zu/%zu\n", 2337 tcg_code_size(), tcg_code_capacity()); 2338 qemu_printf("TB count %zu\n", nb_tbs); 2339 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2340 nb_tbs ? tst.target_size / nb_tbs : 0, 2341 tst.max_target_size); 2342 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2343 nb_tbs ? tst.host_size / nb_tbs : 0, 2344 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2345 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2346 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2347 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2348 tst.direct_jmp_count, 2349 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2350 tst.direct_jmp2_count, 2351 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2352 2353 qht_statistics_init(&tb_ctx.htable, &hst); 2354 print_qht_statistics(hst); 2355 qht_statistics_destroy(&hst); 2356 2357 qemu_printf("\nStatistics:\n"); 2358 qemu_printf("TB flush count %u\n", 2359 atomic_read(&tb_ctx.tb_flush_count)); 2360 qemu_printf("TB invalidate count %zu\n", 2361 tcg_tb_phys_invalidate_count()); 2362 2363 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2364 qemu_printf("TLB full flushes %zu\n", flush_full); 2365 qemu_printf("TLB partial flushes %zu\n", flush_part); 2366 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2367 tcg_dump_info(); 2368 } 2369 2370 void dump_opcount_info(void) 2371 { 2372 tcg_dump_op_count(); 2373 } 2374 2375 #else /* CONFIG_USER_ONLY */ 2376 2377 void cpu_interrupt(CPUState *cpu, int mask) 2378 { 2379 g_assert(qemu_mutex_iothread_locked()); 2380 cpu->interrupt_request |= mask; 2381 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2382 } 2383 2384 /* 2385 * Walks guest process memory "regions" one by one 2386 * and calls callback function 'fn' for each region. 2387 */ 2388 struct walk_memory_regions_data { 2389 walk_memory_regions_fn fn; 2390 void *priv; 2391 target_ulong start; 2392 int prot; 2393 }; 2394 2395 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2396 target_ulong end, int new_prot) 2397 { 2398 if (data->start != -1u) { 2399 int rc = data->fn(data->priv, data->start, end, data->prot); 2400 if (rc != 0) { 2401 return rc; 2402 } 2403 } 2404 2405 data->start = (new_prot ? end : -1u); 2406 data->prot = new_prot; 2407 2408 return 0; 2409 } 2410 2411 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2412 target_ulong base, int level, void **lp) 2413 { 2414 target_ulong pa; 2415 int i, rc; 2416 2417 if (*lp == NULL) { 2418 return walk_memory_regions_end(data, base, 0); 2419 } 2420 2421 if (level == 0) { 2422 PageDesc *pd = *lp; 2423 2424 for (i = 0; i < V_L2_SIZE; ++i) { 2425 int prot = pd[i].flags; 2426 2427 pa = base | (i << TARGET_PAGE_BITS); 2428 if (prot != data->prot) { 2429 rc = walk_memory_regions_end(data, pa, prot); 2430 if (rc != 0) { 2431 return rc; 2432 } 2433 } 2434 } 2435 } else { 2436 void **pp = *lp; 2437 2438 for (i = 0; i < V_L2_SIZE; ++i) { 2439 pa = base | ((target_ulong)i << 2440 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2441 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2442 if (rc != 0) { 2443 return rc; 2444 } 2445 } 2446 } 2447 2448 return 0; 2449 } 2450 2451 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2452 { 2453 struct walk_memory_regions_data data; 2454 uintptr_t i, l1_sz = v_l1_size; 2455 2456 data.fn = fn; 2457 data.priv = priv; 2458 data.start = -1u; 2459 data.prot = 0; 2460 2461 for (i = 0; i < l1_sz; i++) { 2462 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2463 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2464 if (rc != 0) { 2465 return rc; 2466 } 2467 } 2468 2469 return walk_memory_regions_end(&data, 0, 0); 2470 } 2471 2472 static int dump_region(void *priv, target_ulong start, 2473 target_ulong end, unsigned long prot) 2474 { 2475 FILE *f = (FILE *)priv; 2476 2477 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2478 " "TARGET_FMT_lx" %c%c%c\n", 2479 start, end, end - start, 2480 ((prot & PAGE_READ) ? 'r' : '-'), 2481 ((prot & PAGE_WRITE) ? 'w' : '-'), 2482 ((prot & PAGE_EXEC) ? 'x' : '-')); 2483 2484 return 0; 2485 } 2486 2487 /* dump memory mappings */ 2488 void page_dump(FILE *f) 2489 { 2490 const int length = sizeof(target_ulong) * 2; 2491 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2492 length, "start", length, "end", length, "size", "prot"); 2493 walk_memory_regions(f, dump_region); 2494 } 2495 2496 int page_get_flags(target_ulong address) 2497 { 2498 PageDesc *p; 2499 2500 p = page_find(address >> TARGET_PAGE_BITS); 2501 if (!p) { 2502 return 0; 2503 } 2504 return p->flags; 2505 } 2506 2507 /* Modify the flags of a page and invalidate the code if necessary. 2508 The flag PAGE_WRITE_ORG is positioned automatically depending 2509 on PAGE_WRITE. The mmap_lock should already be held. */ 2510 void page_set_flags(target_ulong start, target_ulong end, int flags) 2511 { 2512 target_ulong addr, len; 2513 2514 /* This function should never be called with addresses outside the 2515 guest address space. If this assert fires, it probably indicates 2516 a missing call to h2g_valid. */ 2517 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2518 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2519 #endif 2520 assert(start < end); 2521 assert_memory_lock(); 2522 2523 start = start & TARGET_PAGE_MASK; 2524 end = TARGET_PAGE_ALIGN(end); 2525 2526 if (flags & PAGE_WRITE) { 2527 flags |= PAGE_WRITE_ORG; 2528 } 2529 2530 for (addr = start, len = end - start; 2531 len != 0; 2532 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2533 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2534 2535 /* If the write protection bit is set, then we invalidate 2536 the code inside. */ 2537 if (!(p->flags & PAGE_WRITE) && 2538 (flags & PAGE_WRITE) && 2539 p->first_tb) { 2540 tb_invalidate_phys_page(addr, 0); 2541 } 2542 p->flags = flags; 2543 } 2544 } 2545 2546 int page_check_range(target_ulong start, target_ulong len, int flags) 2547 { 2548 PageDesc *p; 2549 target_ulong end; 2550 target_ulong addr; 2551 2552 /* This function should never be called with addresses outside the 2553 guest address space. If this assert fires, it probably indicates 2554 a missing call to h2g_valid. */ 2555 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2556 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2557 #endif 2558 2559 if (len == 0) { 2560 return 0; 2561 } 2562 if (start + len - 1 < start) { 2563 /* We've wrapped around. */ 2564 return -1; 2565 } 2566 2567 /* must do before we loose bits in the next step */ 2568 end = TARGET_PAGE_ALIGN(start + len); 2569 start = start & TARGET_PAGE_MASK; 2570 2571 for (addr = start, len = end - start; 2572 len != 0; 2573 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2574 p = page_find(addr >> TARGET_PAGE_BITS); 2575 if (!p) { 2576 return -1; 2577 } 2578 if (!(p->flags & PAGE_VALID)) { 2579 return -1; 2580 } 2581 2582 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2583 return -1; 2584 } 2585 if (flags & PAGE_WRITE) { 2586 if (!(p->flags & PAGE_WRITE_ORG)) { 2587 return -1; 2588 } 2589 /* unprotect the page if it was put read-only because it 2590 contains translated code */ 2591 if (!(p->flags & PAGE_WRITE)) { 2592 if (!page_unprotect(addr, 0)) { 2593 return -1; 2594 } 2595 } 2596 } 2597 } 2598 return 0; 2599 } 2600 2601 /* called from signal handler: invalidate the code and unprotect the 2602 * page. Return 0 if the fault was not handled, 1 if it was handled, 2603 * and 2 if it was handled but the caller must cause the TB to be 2604 * immediately exited. (We can only return 2 if the 'pc' argument is 2605 * non-zero.) 2606 */ 2607 int page_unprotect(target_ulong address, uintptr_t pc) 2608 { 2609 unsigned int prot; 2610 bool current_tb_invalidated; 2611 PageDesc *p; 2612 target_ulong host_start, host_end, addr; 2613 2614 /* Technically this isn't safe inside a signal handler. However we 2615 know this only ever happens in a synchronous SEGV handler, so in 2616 practice it seems to be ok. */ 2617 mmap_lock(); 2618 2619 p = page_find(address >> TARGET_PAGE_BITS); 2620 if (!p) { 2621 mmap_unlock(); 2622 return 0; 2623 } 2624 2625 /* if the page was really writable, then we change its 2626 protection back to writable */ 2627 if (p->flags & PAGE_WRITE_ORG) { 2628 current_tb_invalidated = false; 2629 if (p->flags & PAGE_WRITE) { 2630 /* If the page is actually marked WRITE then assume this is because 2631 * this thread raced with another one which got here first and 2632 * set the page to PAGE_WRITE and did the TB invalidate for us. 2633 */ 2634 #ifdef TARGET_HAS_PRECISE_SMC 2635 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2636 if (current_tb) { 2637 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2638 } 2639 #endif 2640 } else { 2641 host_start = address & qemu_host_page_mask; 2642 host_end = host_start + qemu_host_page_size; 2643 2644 prot = 0; 2645 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2646 p = page_find(addr >> TARGET_PAGE_BITS); 2647 p->flags |= PAGE_WRITE; 2648 prot |= p->flags; 2649 2650 /* and since the content will be modified, we must invalidate 2651 the corresponding translated code. */ 2652 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2653 #ifdef CONFIG_USER_ONLY 2654 if (DEBUG_TB_CHECK_GATE) { 2655 tb_invalidate_check(addr); 2656 } 2657 #endif 2658 } 2659 mprotect((void *)g2h(host_start), qemu_host_page_size, 2660 prot & PAGE_BITS); 2661 } 2662 mmap_unlock(); 2663 /* If current TB was invalidated return to main loop */ 2664 return current_tb_invalidated ? 2 : 1; 2665 } 2666 mmap_unlock(); 2667 return 0; 2668 } 2669 #endif /* CONFIG_USER_ONLY */ 2670 2671 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2672 void tcg_flush_softmmu_tlb(CPUState *cs) 2673 { 2674 #ifdef CONFIG_SOFTMMU 2675 tlb_flush(cs); 2676 #endif 2677 } 2678