1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 #include "qemu-common.h" 23 24 #define NO_CPU_IO_DEFS 25 #include "cpu.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #if defined(CONFIG_USER_ONLY) 31 #include "qemu.h" 32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 33 #include <sys/param.h> 34 #if __FreeBSD_version >= 700104 35 #define HAVE_KINFO_GETVMMAP 36 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 37 #include <sys/proc.h> 38 #include <machine/profile.h> 39 #define _KERNEL 40 #include <sys/user.h> 41 #undef _KERNEL 42 #undef sigqueue 43 #include <libutil.h> 44 #endif 45 #endif 46 #else 47 #include "exec/ram_addr.h" 48 #endif 49 50 #include "exec/cputlb.h" 51 #include "exec/tb-hash.h" 52 #include "exec/translate-all.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/error-report.h" 55 #include "qemu/qemu-print.h" 56 #include "qemu/timer.h" 57 #include "qemu/main-loop.h" 58 #include "exec/log.h" 59 #include "sysemu/cpus.h" 60 #include "sysemu/cpu-timers.h" 61 #include "sysemu/tcg.h" 62 #include "qapi/error.h" 63 64 /* #define DEBUG_TB_INVALIDATE */ 65 /* #define DEBUG_TB_FLUSH */ 66 /* make various TB consistency checks */ 67 /* #define DEBUG_TB_CHECK */ 68 69 #ifdef DEBUG_TB_INVALIDATE 70 #define DEBUG_TB_INVALIDATE_GATE 1 71 #else 72 #define DEBUG_TB_INVALIDATE_GATE 0 73 #endif 74 75 #ifdef DEBUG_TB_FLUSH 76 #define DEBUG_TB_FLUSH_GATE 1 77 #else 78 #define DEBUG_TB_FLUSH_GATE 0 79 #endif 80 81 #if !defined(CONFIG_USER_ONLY) 82 /* TB consistency checks only implemented for usermode emulation. */ 83 #undef DEBUG_TB_CHECK 84 #endif 85 86 #ifdef DEBUG_TB_CHECK 87 #define DEBUG_TB_CHECK_GATE 1 88 #else 89 #define DEBUG_TB_CHECK_GATE 0 90 #endif 91 92 /* Access to the various translations structures need to be serialised via locks 93 * for consistency. 94 * In user-mode emulation access to the memory related structures are protected 95 * with mmap_lock. 96 * In !user-mode we use per-page locks. 97 */ 98 #ifdef CONFIG_SOFTMMU 99 #define assert_memory_lock() 100 #else 101 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 102 #endif 103 104 #define SMC_BITMAP_USE_THRESHOLD 10 105 106 typedef struct PageDesc { 107 /* list of TBs intersecting this ram page */ 108 uintptr_t first_tb; 109 #ifdef CONFIG_SOFTMMU 110 /* in order to optimize self modifying code, we count the number 111 of lookups we do to a given page to use a bitmap */ 112 unsigned long *code_bitmap; 113 unsigned int code_write_count; 114 #else 115 unsigned long flags; 116 #endif 117 #ifndef CONFIG_USER_ONLY 118 QemuSpin lock; 119 #endif 120 } PageDesc; 121 122 /** 123 * struct page_entry - page descriptor entry 124 * @pd: pointer to the &struct PageDesc of the page this entry represents 125 * @index: page index of the page 126 * @locked: whether the page is locked 127 * 128 * This struct helps us keep track of the locked state of a page, without 129 * bloating &struct PageDesc. 130 * 131 * A page lock protects accesses to all fields of &struct PageDesc. 132 * 133 * See also: &struct page_collection. 134 */ 135 struct page_entry { 136 PageDesc *pd; 137 tb_page_addr_t index; 138 bool locked; 139 }; 140 141 /** 142 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 143 * @tree: Binary search tree (BST) of the pages, with key == page index 144 * @max: Pointer to the page in @tree with the highest page index 145 * 146 * To avoid deadlock we lock pages in ascending order of page index. 147 * When operating on a set of pages, we need to keep track of them so that 148 * we can lock them in order and also unlock them later. For this we collect 149 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 150 * @tree implementation we use does not provide an O(1) operation to obtain the 151 * highest-ranked element, we use @max to keep track of the inserted page 152 * with the highest index. This is valuable because if a page is not in 153 * the tree and its index is higher than @max's, then we can lock it 154 * without breaking the locking order rule. 155 * 156 * Note on naming: 'struct page_set' would be shorter, but we already have a few 157 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 158 * 159 * See also: page_collection_lock(). 160 */ 161 struct page_collection { 162 GTree *tree; 163 struct page_entry *max; 164 }; 165 166 /* list iterators for lists of tagged pointers in TranslationBlock */ 167 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 168 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 169 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 170 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 171 172 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 173 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 174 175 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 176 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 177 178 /* 179 * In system mode we want L1_MAP to be based on ram offsets, 180 * while in user mode we want it to be based on virtual addresses. 181 * 182 * TODO: For user mode, see the caveat re host vs guest virtual 183 * address spaces near GUEST_ADDR_MAX. 184 */ 185 #if !defined(CONFIG_USER_ONLY) 186 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 187 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 188 #else 189 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 190 #endif 191 #else 192 # define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS) 193 #endif 194 195 /* Size of the L2 (and L3, etc) page tables. */ 196 #define V_L2_BITS 10 197 #define V_L2_SIZE (1 << V_L2_BITS) 198 199 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 200 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 201 sizeof_field(TranslationBlock, trace_vcpu_dstate) 202 * BITS_PER_BYTE); 203 204 /* 205 * L1 Mapping properties 206 */ 207 static int v_l1_size; 208 static int v_l1_shift; 209 static int v_l2_levels; 210 211 /* The bottom level has pointers to PageDesc, and is indexed by 212 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 213 */ 214 #define V_L1_MIN_BITS 4 215 #define V_L1_MAX_BITS (V_L2_BITS + 3) 216 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 217 218 static void *l1_map[V_L1_MAX_SIZE]; 219 220 /* code generation context */ 221 TCGContext tcg_init_ctx; 222 __thread TCGContext *tcg_ctx; 223 TBContext tb_ctx; 224 bool parallel_cpus; 225 226 static void page_table_config_init(void) 227 { 228 uint32_t v_l1_bits; 229 230 assert(TARGET_PAGE_BITS); 231 /* The bits remaining after N lower levels of page tables. */ 232 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 233 if (v_l1_bits < V_L1_MIN_BITS) { 234 v_l1_bits += V_L2_BITS; 235 } 236 237 v_l1_size = 1 << v_l1_bits; 238 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 239 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 240 241 assert(v_l1_bits <= V_L1_MAX_BITS); 242 assert(v_l1_shift % V_L2_BITS == 0); 243 assert(v_l2_levels >= 0); 244 } 245 246 void cpu_gen_init(void) 247 { 248 tcg_context_init(&tcg_init_ctx); 249 } 250 251 /* Encode VAL as a signed leb128 sequence at P. 252 Return P incremented past the encoded value. */ 253 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 254 { 255 int more, byte; 256 257 do { 258 byte = val & 0x7f; 259 val >>= 7; 260 more = !((val == 0 && (byte & 0x40) == 0) 261 || (val == -1 && (byte & 0x40) != 0)); 262 if (more) { 263 byte |= 0x80; 264 } 265 *p++ = byte; 266 } while (more); 267 268 return p; 269 } 270 271 /* Decode a signed leb128 sequence at *PP; increment *PP past the 272 decoded value. Return the decoded value. */ 273 static target_long decode_sleb128(const uint8_t **pp) 274 { 275 const uint8_t *p = *pp; 276 target_long val = 0; 277 int byte, shift = 0; 278 279 do { 280 byte = *p++; 281 val |= (target_ulong)(byte & 0x7f) << shift; 282 shift += 7; 283 } while (byte & 0x80); 284 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 285 val |= -(target_ulong)1 << shift; 286 } 287 288 *pp = p; 289 return val; 290 } 291 292 /* Encode the data collected about the instructions while compiling TB. 293 Place the data at BLOCK, and return the number of bytes consumed. 294 295 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 296 which come from the target's insn_start data, followed by a uintptr_t 297 which comes from the host pc of the end of the code implementing the insn. 298 299 Each line of the table is encoded as sleb128 deltas from the previous 300 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 301 That is, the first column is seeded with the guest pc, the last column 302 with the host pc, and the middle columns with zeros. */ 303 304 static int encode_search(TranslationBlock *tb, uint8_t *block) 305 { 306 uint8_t *highwater = tcg_ctx->code_gen_highwater; 307 uint8_t *p = block; 308 int i, j, n; 309 310 for (i = 0, n = tb->icount; i < n; ++i) { 311 target_ulong prev; 312 313 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 314 if (i == 0) { 315 prev = (j == 0 ? tb->pc : 0); 316 } else { 317 prev = tcg_ctx->gen_insn_data[i - 1][j]; 318 } 319 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 320 } 321 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 322 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 323 324 /* Test for (pending) buffer overflow. The assumption is that any 325 one row beginning below the high water mark cannot overrun 326 the buffer completely. Thus we can test for overflow after 327 encoding a row without having to check during encoding. */ 328 if (unlikely(p > highwater)) { 329 return -1; 330 } 331 } 332 333 return p - block; 334 } 335 336 /* The cpu state corresponding to 'searched_pc' is restored. 337 * When reset_icount is true, current TB will be interrupted and 338 * icount should be recalculated. 339 */ 340 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 341 uintptr_t searched_pc, bool reset_icount) 342 { 343 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 344 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 345 CPUArchState *env = cpu->env_ptr; 346 const uint8_t *p = tb->tc.ptr + tb->tc.size; 347 int i, j, num_insns = tb->icount; 348 #ifdef CONFIG_PROFILER 349 TCGProfile *prof = &tcg_ctx->prof; 350 int64_t ti = profile_getclock(); 351 #endif 352 353 searched_pc -= GETPC_ADJ; 354 355 if (searched_pc < host_pc) { 356 return -1; 357 } 358 359 /* Reconstruct the stored insn data while looking for the point at 360 which the end of the insn exceeds the searched_pc. */ 361 for (i = 0; i < num_insns; ++i) { 362 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 363 data[j] += decode_sleb128(&p); 364 } 365 host_pc += decode_sleb128(&p); 366 if (host_pc > searched_pc) { 367 goto found; 368 } 369 } 370 return -1; 371 372 found: 373 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 374 assert(icount_enabled()); 375 /* Reset the cycle counter to the start of the block 376 and shift if to the number of actually executed instructions */ 377 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 378 } 379 restore_state_to_opc(env, tb, data); 380 381 #ifdef CONFIG_PROFILER 382 qatomic_set(&prof->restore_time, 383 prof->restore_time + profile_getclock() - ti); 384 qatomic_set(&prof->restore_count, prof->restore_count + 1); 385 #endif 386 return 0; 387 } 388 389 void tb_destroy(TranslationBlock *tb) 390 { 391 qemu_spin_destroy(&tb->jmp_lock); 392 } 393 394 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 395 { 396 /* 397 * The host_pc has to be in the rx region of the code buffer. 398 * If it is not we will not be able to resolve it here. 399 * The two cases where host_pc will not be correct are: 400 * 401 * - fault during translation (instruction fetch) 402 * - fault from helper (not using GETPC() macro) 403 * 404 * Either way we need return early as we can't resolve it here. 405 */ 406 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) { 407 TranslationBlock *tb = tcg_tb_lookup(host_pc); 408 if (tb) { 409 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 410 if (tb_cflags(tb) & CF_NOCACHE) { 411 /* one-shot translation, invalidate it immediately */ 412 tb_phys_invalidate(tb, -1); 413 tcg_tb_remove(tb); 414 tb_destroy(tb); 415 } 416 return true; 417 } 418 } 419 return false; 420 } 421 422 static void page_init(void) 423 { 424 page_size_init(); 425 page_table_config_init(); 426 427 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 428 { 429 #ifdef HAVE_KINFO_GETVMMAP 430 struct kinfo_vmentry *freep; 431 int i, cnt; 432 433 freep = kinfo_getvmmap(getpid(), &cnt); 434 if (freep) { 435 mmap_lock(); 436 for (i = 0; i < cnt; i++) { 437 unsigned long startaddr, endaddr; 438 439 startaddr = freep[i].kve_start; 440 endaddr = freep[i].kve_end; 441 if (h2g_valid(startaddr)) { 442 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 443 444 if (h2g_valid(endaddr)) { 445 endaddr = h2g(endaddr); 446 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 447 } else { 448 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 449 endaddr = ~0ul; 450 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 451 #endif 452 } 453 } 454 } 455 free(freep); 456 mmap_unlock(); 457 } 458 #else 459 FILE *f; 460 461 last_brk = (unsigned long)sbrk(0); 462 463 f = fopen("/compat/linux/proc/self/maps", "r"); 464 if (f) { 465 mmap_lock(); 466 467 do { 468 unsigned long startaddr, endaddr; 469 int n; 470 471 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 472 473 if (n == 2 && h2g_valid(startaddr)) { 474 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 475 476 if (h2g_valid(endaddr)) { 477 endaddr = h2g(endaddr); 478 } else { 479 endaddr = ~0ul; 480 } 481 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 482 } 483 } while (!feof(f)); 484 485 fclose(f); 486 mmap_unlock(); 487 } 488 #endif 489 } 490 #endif 491 } 492 493 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 494 { 495 PageDesc *pd; 496 void **lp; 497 int i; 498 499 /* Level 1. Always allocated. */ 500 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 501 502 /* Level 2..N-1. */ 503 for (i = v_l2_levels; i > 0; i--) { 504 void **p = qatomic_rcu_read(lp); 505 506 if (p == NULL) { 507 void *existing; 508 509 if (!alloc) { 510 return NULL; 511 } 512 p = g_new0(void *, V_L2_SIZE); 513 existing = qatomic_cmpxchg(lp, NULL, p); 514 if (unlikely(existing)) { 515 g_free(p); 516 p = existing; 517 } 518 } 519 520 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 521 } 522 523 pd = qatomic_rcu_read(lp); 524 if (pd == NULL) { 525 void *existing; 526 527 if (!alloc) { 528 return NULL; 529 } 530 pd = g_new0(PageDesc, V_L2_SIZE); 531 #ifndef CONFIG_USER_ONLY 532 { 533 int i; 534 535 for (i = 0; i < V_L2_SIZE; i++) { 536 qemu_spin_init(&pd[i].lock); 537 } 538 } 539 #endif 540 existing = qatomic_cmpxchg(lp, NULL, pd); 541 if (unlikely(existing)) { 542 #ifndef CONFIG_USER_ONLY 543 { 544 int i; 545 546 for (i = 0; i < V_L2_SIZE; i++) { 547 qemu_spin_destroy(&pd[i].lock); 548 } 549 } 550 #endif 551 g_free(pd); 552 pd = existing; 553 } 554 } 555 556 return pd + (index & (V_L2_SIZE - 1)); 557 } 558 559 static inline PageDesc *page_find(tb_page_addr_t index) 560 { 561 return page_find_alloc(index, 0); 562 } 563 564 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 565 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 566 567 /* In user-mode page locks aren't used; mmap_lock is enough */ 568 #ifdef CONFIG_USER_ONLY 569 570 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 571 572 static inline void page_lock(PageDesc *pd) 573 { } 574 575 static inline void page_unlock(PageDesc *pd) 576 { } 577 578 static inline void page_lock_tb(const TranslationBlock *tb) 579 { } 580 581 static inline void page_unlock_tb(const TranslationBlock *tb) 582 { } 583 584 struct page_collection * 585 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 586 { 587 return NULL; 588 } 589 590 void page_collection_unlock(struct page_collection *set) 591 { } 592 #else /* !CONFIG_USER_ONLY */ 593 594 #ifdef CONFIG_DEBUG_TCG 595 596 static __thread GHashTable *ht_pages_locked_debug; 597 598 static void ht_pages_locked_debug_init(void) 599 { 600 if (ht_pages_locked_debug) { 601 return; 602 } 603 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 604 } 605 606 static bool page_is_locked(const PageDesc *pd) 607 { 608 PageDesc *found; 609 610 ht_pages_locked_debug_init(); 611 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 612 return !!found; 613 } 614 615 static void page_lock__debug(PageDesc *pd) 616 { 617 ht_pages_locked_debug_init(); 618 g_assert(!page_is_locked(pd)); 619 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 620 } 621 622 static void page_unlock__debug(const PageDesc *pd) 623 { 624 bool removed; 625 626 ht_pages_locked_debug_init(); 627 g_assert(page_is_locked(pd)); 628 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 629 g_assert(removed); 630 } 631 632 static void 633 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 634 { 635 if (unlikely(!page_is_locked(pd))) { 636 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 637 pd, file, line); 638 abort(); 639 } 640 } 641 642 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 643 644 void assert_no_pages_locked(void) 645 { 646 ht_pages_locked_debug_init(); 647 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 648 } 649 650 #else /* !CONFIG_DEBUG_TCG */ 651 652 #define assert_page_locked(pd) 653 654 static inline void page_lock__debug(const PageDesc *pd) 655 { 656 } 657 658 static inline void page_unlock__debug(const PageDesc *pd) 659 { 660 } 661 662 #endif /* CONFIG_DEBUG_TCG */ 663 664 static inline void page_lock(PageDesc *pd) 665 { 666 page_lock__debug(pd); 667 qemu_spin_lock(&pd->lock); 668 } 669 670 static inline void page_unlock(PageDesc *pd) 671 { 672 qemu_spin_unlock(&pd->lock); 673 page_unlock__debug(pd); 674 } 675 676 /* lock the page(s) of a TB in the correct acquisition order */ 677 static inline void page_lock_tb(const TranslationBlock *tb) 678 { 679 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 680 } 681 682 static inline void page_unlock_tb(const TranslationBlock *tb) 683 { 684 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 685 686 page_unlock(p1); 687 if (unlikely(tb->page_addr[1] != -1)) { 688 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 689 690 if (p2 != p1) { 691 page_unlock(p2); 692 } 693 } 694 } 695 696 static inline struct page_entry * 697 page_entry_new(PageDesc *pd, tb_page_addr_t index) 698 { 699 struct page_entry *pe = g_malloc(sizeof(*pe)); 700 701 pe->index = index; 702 pe->pd = pd; 703 pe->locked = false; 704 return pe; 705 } 706 707 static void page_entry_destroy(gpointer p) 708 { 709 struct page_entry *pe = p; 710 711 g_assert(pe->locked); 712 page_unlock(pe->pd); 713 g_free(pe); 714 } 715 716 /* returns false on success */ 717 static bool page_entry_trylock(struct page_entry *pe) 718 { 719 bool busy; 720 721 busy = qemu_spin_trylock(&pe->pd->lock); 722 if (!busy) { 723 g_assert(!pe->locked); 724 pe->locked = true; 725 page_lock__debug(pe->pd); 726 } 727 return busy; 728 } 729 730 static void do_page_entry_lock(struct page_entry *pe) 731 { 732 page_lock(pe->pd); 733 g_assert(!pe->locked); 734 pe->locked = true; 735 } 736 737 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 738 { 739 struct page_entry *pe = value; 740 741 do_page_entry_lock(pe); 742 return FALSE; 743 } 744 745 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 746 { 747 struct page_entry *pe = value; 748 749 if (pe->locked) { 750 pe->locked = false; 751 page_unlock(pe->pd); 752 } 753 return FALSE; 754 } 755 756 /* 757 * Trylock a page, and if successful, add the page to a collection. 758 * Returns true ("busy") if the page could not be locked; false otherwise. 759 */ 760 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 761 { 762 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 763 struct page_entry *pe; 764 PageDesc *pd; 765 766 pe = g_tree_lookup(set->tree, &index); 767 if (pe) { 768 return false; 769 } 770 771 pd = page_find(index); 772 if (pd == NULL) { 773 return false; 774 } 775 776 pe = page_entry_new(pd, index); 777 g_tree_insert(set->tree, &pe->index, pe); 778 779 /* 780 * If this is either (1) the first insertion or (2) a page whose index 781 * is higher than any other so far, just lock the page and move on. 782 */ 783 if (set->max == NULL || pe->index > set->max->index) { 784 set->max = pe; 785 do_page_entry_lock(pe); 786 return false; 787 } 788 /* 789 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 790 * locks in order. 791 */ 792 return page_entry_trylock(pe); 793 } 794 795 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 796 { 797 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 798 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 799 800 if (a == b) { 801 return 0; 802 } else if (a < b) { 803 return -1; 804 } 805 return 1; 806 } 807 808 /* 809 * Lock a range of pages ([@start,@end[) as well as the pages of all 810 * intersecting TBs. 811 * Locking order: acquire locks in ascending order of page index. 812 */ 813 struct page_collection * 814 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 815 { 816 struct page_collection *set = g_malloc(sizeof(*set)); 817 tb_page_addr_t index; 818 PageDesc *pd; 819 820 start >>= TARGET_PAGE_BITS; 821 end >>= TARGET_PAGE_BITS; 822 g_assert(start <= end); 823 824 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 825 page_entry_destroy); 826 set->max = NULL; 827 assert_no_pages_locked(); 828 829 retry: 830 g_tree_foreach(set->tree, page_entry_lock, NULL); 831 832 for (index = start; index <= end; index++) { 833 TranslationBlock *tb; 834 int n; 835 836 pd = page_find(index); 837 if (pd == NULL) { 838 continue; 839 } 840 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 841 g_tree_foreach(set->tree, page_entry_unlock, NULL); 842 goto retry; 843 } 844 assert_page_locked(pd); 845 PAGE_FOR_EACH_TB(pd, tb, n) { 846 if (page_trylock_add(set, tb->page_addr[0]) || 847 (tb->page_addr[1] != -1 && 848 page_trylock_add(set, tb->page_addr[1]))) { 849 /* drop all locks, and reacquire in order */ 850 g_tree_foreach(set->tree, page_entry_unlock, NULL); 851 goto retry; 852 } 853 } 854 } 855 return set; 856 } 857 858 void page_collection_unlock(struct page_collection *set) 859 { 860 /* entries are unlocked and freed via page_entry_destroy */ 861 g_tree_destroy(set->tree); 862 g_free(set); 863 } 864 865 #endif /* !CONFIG_USER_ONLY */ 866 867 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 868 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 869 { 870 PageDesc *p1, *p2; 871 tb_page_addr_t page1; 872 tb_page_addr_t page2; 873 874 assert_memory_lock(); 875 g_assert(phys1 != -1); 876 877 page1 = phys1 >> TARGET_PAGE_BITS; 878 page2 = phys2 >> TARGET_PAGE_BITS; 879 880 p1 = page_find_alloc(page1, alloc); 881 if (ret_p1) { 882 *ret_p1 = p1; 883 } 884 if (likely(phys2 == -1)) { 885 page_lock(p1); 886 return; 887 } else if (page1 == page2) { 888 page_lock(p1); 889 if (ret_p2) { 890 *ret_p2 = p1; 891 } 892 return; 893 } 894 p2 = page_find_alloc(page2, alloc); 895 if (ret_p2) { 896 *ret_p2 = p2; 897 } 898 if (page1 < page2) { 899 page_lock(p1); 900 page_lock(p2); 901 } else { 902 page_lock(p2); 903 page_lock(p1); 904 } 905 } 906 907 /* Minimum size of the code gen buffer. This number is randomly chosen, 908 but not so small that we can't have a fair number of TB's live. */ 909 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) 910 911 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 912 indicated, this is constrained by the range of direct branches on the 913 host cpu, as used by the TCG implementation of goto_tb. */ 914 #if defined(__x86_64__) 915 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 916 #elif defined(__sparc__) 917 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 918 #elif defined(__powerpc64__) 919 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 920 #elif defined(__powerpc__) 921 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB) 922 #elif defined(__aarch64__) 923 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 924 #elif defined(__s390x__) 925 /* We have a +- 4GB range on the branches; leave some slop. */ 926 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB) 927 #elif defined(__mips__) 928 /* We have a 256MB branch region, but leave room to make sure the 929 main executable is also within that region. */ 930 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB) 931 #else 932 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 933 #endif 934 935 #if TCG_TARGET_REG_BITS == 32 936 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) 937 #ifdef CONFIG_USER_ONLY 938 /* 939 * For user mode on smaller 32 bit systems we may run into trouble 940 * allocating big chunks of data in the right place. On these systems 941 * we utilise a static code generation buffer directly in the binary. 942 */ 943 #define USE_STATIC_CODE_GEN_BUFFER 944 #endif 945 #else /* TCG_TARGET_REG_BITS == 64 */ 946 #ifdef CONFIG_USER_ONLY 947 /* 948 * As user-mode emulation typically means running multiple instances 949 * of the translator don't go too nuts with our default code gen 950 * buffer lest we make things too hard for the OS. 951 */ 952 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) 953 #else 954 /* 955 * We expect most system emulation to run one or two guests per host. 956 * Users running large scale system emulation may want to tweak their 957 * runtime setup via the tb-size control on the command line. 958 */ 959 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) 960 #endif 961 #endif 962 963 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 964 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 965 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 966 967 static size_t size_code_gen_buffer(size_t tb_size) 968 { 969 /* Size the buffer. */ 970 if (tb_size == 0) { 971 size_t phys_mem = qemu_get_host_physmem(); 972 if (phys_mem == 0) { 973 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 974 } else { 975 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8); 976 } 977 } 978 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 979 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 980 } 981 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 982 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 983 } 984 return tb_size; 985 } 986 987 #ifdef __mips__ 988 /* In order to use J and JAL within the code_gen_buffer, we require 989 that the buffer not cross a 256MB boundary. */ 990 static inline bool cross_256mb(void *addr, size_t size) 991 { 992 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 993 } 994 995 /* We weren't able to allocate a buffer without crossing that boundary, 996 so make do with the larger portion of the buffer that doesn't cross. 997 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 998 static inline void *split_cross_256mb(void *buf1, size_t size1) 999 { 1000 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 1001 size_t size2 = buf1 + size1 - buf2; 1002 1003 size1 = buf2 - buf1; 1004 if (size1 < size2) { 1005 size1 = size2; 1006 buf1 = buf2; 1007 } 1008 1009 tcg_ctx->code_gen_buffer_size = size1; 1010 return buf1; 1011 } 1012 #endif 1013 1014 #ifdef USE_STATIC_CODE_GEN_BUFFER 1015 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 1016 __attribute__((aligned(CODE_GEN_ALIGN))); 1017 1018 static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp) 1019 { 1020 void *buf, *end; 1021 size_t size; 1022 1023 if (splitwx > 0) { 1024 error_setg(errp, "jit split-wx not supported"); 1025 return false; 1026 } 1027 1028 /* page-align the beginning and end of the buffer */ 1029 buf = static_code_gen_buffer; 1030 end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 1031 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 1032 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 1033 1034 size = end - buf; 1035 1036 /* Honor a command-line option limiting the size of the buffer. */ 1037 if (size > tb_size) { 1038 size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size); 1039 } 1040 tcg_ctx->code_gen_buffer_size = size; 1041 1042 #ifdef __mips__ 1043 if (cross_256mb(buf, size)) { 1044 buf = split_cross_256mb(buf, size); 1045 size = tcg_ctx->code_gen_buffer_size; 1046 } 1047 #endif 1048 1049 if (qemu_mprotect_rwx(buf, size)) { 1050 error_setg_errno(errp, errno, "mprotect of jit buffer"); 1051 return false; 1052 } 1053 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1054 1055 tcg_ctx->code_gen_buffer = buf; 1056 return true; 1057 } 1058 #elif defined(_WIN32) 1059 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) 1060 { 1061 void *buf; 1062 1063 if (splitwx > 0) { 1064 error_setg(errp, "jit split-wx not supported"); 1065 return false; 1066 } 1067 1068 buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1069 PAGE_EXECUTE_READWRITE); 1070 if (buf == NULL) { 1071 error_setg_win32(errp, GetLastError(), 1072 "allocate %zu bytes for jit buffer", size); 1073 return false; 1074 } 1075 1076 tcg_ctx->code_gen_buffer = buf; 1077 tcg_ctx->code_gen_buffer_size = size; 1078 return true; 1079 } 1080 #else 1081 static bool alloc_code_gen_buffer_anon(size_t size, int prot, 1082 int flags, Error **errp) 1083 { 1084 void *buf; 1085 1086 buf = mmap(NULL, size, prot, flags, -1, 0); 1087 if (buf == MAP_FAILED) { 1088 error_setg_errno(errp, errno, 1089 "allocate %zu bytes for jit buffer", size); 1090 return false; 1091 } 1092 tcg_ctx->code_gen_buffer_size = size; 1093 1094 #ifdef __mips__ 1095 if (cross_256mb(buf, size)) { 1096 /* 1097 * Try again, with the original still mapped, to avoid re-acquiring 1098 * the same 256mb crossing. 1099 */ 1100 size_t size2; 1101 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1102 switch ((int)(buf2 != MAP_FAILED)) { 1103 case 1: 1104 if (!cross_256mb(buf2, size)) { 1105 /* Success! Use the new buffer. */ 1106 munmap(buf, size); 1107 break; 1108 } 1109 /* Failure. Work with what we had. */ 1110 munmap(buf2, size); 1111 /* fallthru */ 1112 default: 1113 /* Split the original buffer. Free the smaller half. */ 1114 buf2 = split_cross_256mb(buf, size); 1115 size2 = tcg_ctx->code_gen_buffer_size; 1116 if (buf == buf2) { 1117 munmap(buf + size2, size - size2); 1118 } else { 1119 munmap(buf, size - size2); 1120 } 1121 size = size2; 1122 break; 1123 } 1124 buf = buf2; 1125 } 1126 #endif 1127 1128 /* Request large pages for the buffer. */ 1129 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1130 1131 tcg_ctx->code_gen_buffer = buf; 1132 return true; 1133 } 1134 1135 #ifndef CONFIG_TCG_INTERPRETER 1136 #ifdef CONFIG_POSIX 1137 #include "qemu/memfd.h" 1138 1139 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp) 1140 { 1141 void *buf_rw = NULL, *buf_rx = MAP_FAILED; 1142 int fd = -1; 1143 1144 #ifdef __mips__ 1145 /* Find space for the RX mapping, vs the 256MiB regions. */ 1146 if (!alloc_code_gen_buffer_anon(size, PROT_NONE, 1147 MAP_PRIVATE | MAP_ANONYMOUS | 1148 MAP_NORESERVE, errp)) { 1149 return false; 1150 } 1151 /* The size of the mapping may have been adjusted. */ 1152 size = tcg_ctx->code_gen_buffer_size; 1153 buf_rx = tcg_ctx->code_gen_buffer; 1154 #endif 1155 1156 buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp); 1157 if (buf_rw == NULL) { 1158 goto fail; 1159 } 1160 1161 #ifdef __mips__ 1162 void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC, 1163 MAP_SHARED | MAP_FIXED, fd, 0); 1164 if (tmp != buf_rx) { 1165 goto fail_rx; 1166 } 1167 #else 1168 buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); 1169 if (buf_rx == MAP_FAILED) { 1170 goto fail_rx; 1171 } 1172 #endif 1173 1174 close(fd); 1175 tcg_ctx->code_gen_buffer = buf_rw; 1176 tcg_ctx->code_gen_buffer_size = size; 1177 tcg_splitwx_diff = buf_rx - buf_rw; 1178 1179 /* Request large pages for the buffer and the splitwx. */ 1180 qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE); 1181 qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE); 1182 return true; 1183 1184 fail_rx: 1185 error_setg_errno(errp, errno, "failed to map shared memory for execute"); 1186 fail: 1187 if (buf_rx != MAP_FAILED) { 1188 munmap(buf_rx, size); 1189 } 1190 if (buf_rw) { 1191 munmap(buf_rw, size); 1192 } 1193 if (fd >= 0) { 1194 close(fd); 1195 } 1196 return false; 1197 } 1198 #endif /* CONFIG_POSIX */ 1199 1200 #ifdef CONFIG_DARWIN 1201 #include <mach/mach.h> 1202 1203 extern kern_return_t mach_vm_remap(vm_map_t target_task, 1204 mach_vm_address_t *target_address, 1205 mach_vm_size_t size, 1206 mach_vm_offset_t mask, 1207 int flags, 1208 vm_map_t src_task, 1209 mach_vm_address_t src_address, 1210 boolean_t copy, 1211 vm_prot_t *cur_protection, 1212 vm_prot_t *max_protection, 1213 vm_inherit_t inheritance); 1214 1215 static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp) 1216 { 1217 kern_return_t ret; 1218 mach_vm_address_t buf_rw, buf_rx; 1219 vm_prot_t cur_prot, max_prot; 1220 1221 /* Map the read-write portion via normal anon memory. */ 1222 if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE, 1223 MAP_PRIVATE | MAP_ANONYMOUS, errp)) { 1224 return false; 1225 } 1226 1227 buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer; 1228 buf_rx = 0; 1229 ret = mach_vm_remap(mach_task_self(), 1230 &buf_rx, 1231 size, 1232 0, 1233 VM_FLAGS_ANYWHERE, 1234 mach_task_self(), 1235 buf_rw, 1236 false, 1237 &cur_prot, 1238 &max_prot, 1239 VM_INHERIT_NONE); 1240 if (ret != KERN_SUCCESS) { 1241 /* TODO: Convert "ret" to a human readable error message. */ 1242 error_setg(errp, "vm_remap for jit splitwx failed"); 1243 munmap((void *)buf_rw, size); 1244 return false; 1245 } 1246 1247 if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) { 1248 error_setg_errno(errp, errno, "mprotect for jit splitwx"); 1249 munmap((void *)buf_rx, size); 1250 munmap((void *)buf_rw, size); 1251 return false; 1252 } 1253 1254 tcg_splitwx_diff = buf_rx - buf_rw; 1255 return true; 1256 } 1257 #endif /* CONFIG_DARWIN */ 1258 #endif /* CONFIG_TCG_INTERPRETER */ 1259 1260 static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp) 1261 { 1262 #ifndef CONFIG_TCG_INTERPRETER 1263 # ifdef CONFIG_DARWIN 1264 return alloc_code_gen_buffer_splitwx_vmremap(size, errp); 1265 # endif 1266 # ifdef CONFIG_POSIX 1267 return alloc_code_gen_buffer_splitwx_memfd(size, errp); 1268 # endif 1269 #endif 1270 error_setg(errp, "jit split-wx not supported"); 1271 return false; 1272 } 1273 1274 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) 1275 { 1276 ERRP_GUARD(); 1277 int prot, flags; 1278 1279 if (splitwx) { 1280 if (alloc_code_gen_buffer_splitwx(size, errp)) { 1281 return true; 1282 } 1283 /* 1284 * If splitwx force-on (1), fail; 1285 * if splitwx default-on (-1), fall through to splitwx off. 1286 */ 1287 if (splitwx > 0) { 1288 return false; 1289 } 1290 error_free_or_abort(errp); 1291 } 1292 1293 prot = PROT_READ | PROT_WRITE | PROT_EXEC; 1294 flags = MAP_PRIVATE | MAP_ANONYMOUS; 1295 #ifdef CONFIG_TCG_INTERPRETER 1296 /* The tcg interpreter does not need execute permission. */ 1297 prot = PROT_READ | PROT_WRITE; 1298 #elif defined(CONFIG_DARWIN) 1299 /* Applicable to both iOS and macOS (Apple Silicon). */ 1300 if (!splitwx) { 1301 flags |= MAP_JIT; 1302 } 1303 #endif 1304 1305 return alloc_code_gen_buffer_anon(size, prot, flags, errp); 1306 } 1307 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1308 1309 static bool tb_cmp(const void *ap, const void *bp) 1310 { 1311 const TranslationBlock *a = ap; 1312 const TranslationBlock *b = bp; 1313 1314 return a->pc == b->pc && 1315 a->cs_base == b->cs_base && 1316 a->flags == b->flags && 1317 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1318 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1319 a->page_addr[0] == b->page_addr[0] && 1320 a->page_addr[1] == b->page_addr[1]; 1321 } 1322 1323 static void tb_htable_init(void) 1324 { 1325 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1326 1327 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1328 } 1329 1330 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1331 (in bytes) allocated to the translation buffer. Zero means default 1332 size. */ 1333 void tcg_exec_init(unsigned long tb_size, int splitwx) 1334 { 1335 bool ok; 1336 1337 tcg_allowed = true; 1338 cpu_gen_init(); 1339 page_init(); 1340 tb_htable_init(); 1341 1342 ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size), 1343 splitwx, &error_fatal); 1344 assert(ok); 1345 1346 #if defined(CONFIG_SOFTMMU) 1347 /* There's no guest base to take into account, so go ahead and 1348 initialize the prologue now. */ 1349 tcg_prologue_init(tcg_ctx); 1350 #endif 1351 } 1352 1353 /* call with @p->lock held */ 1354 static inline void invalidate_page_bitmap(PageDesc *p) 1355 { 1356 assert_page_locked(p); 1357 #ifdef CONFIG_SOFTMMU 1358 g_free(p->code_bitmap); 1359 p->code_bitmap = NULL; 1360 p->code_write_count = 0; 1361 #endif 1362 } 1363 1364 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1365 static void page_flush_tb_1(int level, void **lp) 1366 { 1367 int i; 1368 1369 if (*lp == NULL) { 1370 return; 1371 } 1372 if (level == 0) { 1373 PageDesc *pd = *lp; 1374 1375 for (i = 0; i < V_L2_SIZE; ++i) { 1376 page_lock(&pd[i]); 1377 pd[i].first_tb = (uintptr_t)NULL; 1378 invalidate_page_bitmap(pd + i); 1379 page_unlock(&pd[i]); 1380 } 1381 } else { 1382 void **pp = *lp; 1383 1384 for (i = 0; i < V_L2_SIZE; ++i) { 1385 page_flush_tb_1(level - 1, pp + i); 1386 } 1387 } 1388 } 1389 1390 static void page_flush_tb(void) 1391 { 1392 int i, l1_sz = v_l1_size; 1393 1394 for (i = 0; i < l1_sz; i++) { 1395 page_flush_tb_1(v_l2_levels, l1_map + i); 1396 } 1397 } 1398 1399 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1400 { 1401 const TranslationBlock *tb = value; 1402 size_t *size = data; 1403 1404 *size += tb->tc.size; 1405 return false; 1406 } 1407 1408 /* flush all the translation blocks */ 1409 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1410 { 1411 bool did_flush = false; 1412 1413 mmap_lock(); 1414 /* If it is already been done on request of another CPU, 1415 * just retry. 1416 */ 1417 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1418 goto done; 1419 } 1420 did_flush = true; 1421 1422 if (DEBUG_TB_FLUSH_GATE) { 1423 size_t nb_tbs = tcg_nb_tbs(); 1424 size_t host_size = 0; 1425 1426 tcg_tb_foreach(tb_host_size_iter, &host_size); 1427 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1428 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1429 } 1430 1431 CPU_FOREACH(cpu) { 1432 cpu_tb_jmp_cache_clear(cpu); 1433 } 1434 1435 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1436 page_flush_tb(); 1437 1438 tcg_region_reset_all(); 1439 /* XXX: flush processor icache at this point if cache flush is 1440 expensive */ 1441 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1442 1443 done: 1444 mmap_unlock(); 1445 if (did_flush) { 1446 qemu_plugin_flush_cb(); 1447 } 1448 } 1449 1450 void tb_flush(CPUState *cpu) 1451 { 1452 if (tcg_enabled()) { 1453 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count); 1454 1455 if (cpu_in_exclusive_context(cpu)) { 1456 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1457 } else { 1458 async_safe_run_on_cpu(cpu, do_tb_flush, 1459 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1460 } 1461 } 1462 } 1463 1464 /* 1465 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1466 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1467 * and let the optimizer get rid of them by wrapping their user-only callers 1468 * with if (DEBUG_TB_CHECK_GATE). 1469 */ 1470 #ifdef CONFIG_USER_ONLY 1471 1472 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1473 { 1474 TranslationBlock *tb = p; 1475 target_ulong addr = *(target_ulong *)userp; 1476 1477 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1478 printf("ERROR invalidate: address=" TARGET_FMT_lx 1479 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1480 } 1481 } 1482 1483 /* verify that all the pages have correct rights for code 1484 * 1485 * Called with mmap_lock held. 1486 */ 1487 static void tb_invalidate_check(target_ulong address) 1488 { 1489 address &= TARGET_PAGE_MASK; 1490 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1491 } 1492 1493 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1494 { 1495 TranslationBlock *tb = p; 1496 int flags1, flags2; 1497 1498 flags1 = page_get_flags(tb->pc); 1499 flags2 = page_get_flags(tb->pc + tb->size - 1); 1500 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1501 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1502 (long)tb->pc, tb->size, flags1, flags2); 1503 } 1504 } 1505 1506 /* verify that all the pages have correct rights for code */ 1507 static void tb_page_check(void) 1508 { 1509 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1510 } 1511 1512 #endif /* CONFIG_USER_ONLY */ 1513 1514 /* 1515 * user-mode: call with mmap_lock held 1516 * !user-mode: call with @pd->lock held 1517 */ 1518 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1519 { 1520 TranslationBlock *tb1; 1521 uintptr_t *pprev; 1522 unsigned int n1; 1523 1524 assert_page_locked(pd); 1525 pprev = &pd->first_tb; 1526 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1527 if (tb1 == tb) { 1528 *pprev = tb1->page_next[n1]; 1529 return; 1530 } 1531 pprev = &tb1->page_next[n1]; 1532 } 1533 g_assert_not_reached(); 1534 } 1535 1536 /* remove @orig from its @n_orig-th jump list */ 1537 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1538 { 1539 uintptr_t ptr, ptr_locked; 1540 TranslationBlock *dest; 1541 TranslationBlock *tb; 1542 uintptr_t *pprev; 1543 int n; 1544 1545 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1546 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1547 dest = (TranslationBlock *)(ptr & ~1); 1548 if (dest == NULL) { 1549 return; 1550 } 1551 1552 qemu_spin_lock(&dest->jmp_lock); 1553 /* 1554 * While acquiring the lock, the jump might have been removed if the 1555 * destination TB was invalidated; check again. 1556 */ 1557 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 1558 if (ptr_locked != ptr) { 1559 qemu_spin_unlock(&dest->jmp_lock); 1560 /* 1561 * The only possibility is that the jump was unlinked via 1562 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1563 * because we set the LSB above. 1564 */ 1565 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1566 return; 1567 } 1568 /* 1569 * We first acquired the lock, and since the destination pointer matches, 1570 * we know for sure that @orig is in the jmp list. 1571 */ 1572 pprev = &dest->jmp_list_head; 1573 TB_FOR_EACH_JMP(dest, tb, n) { 1574 if (tb == orig && n == n_orig) { 1575 *pprev = tb->jmp_list_next[n]; 1576 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1577 qemu_spin_unlock(&dest->jmp_lock); 1578 return; 1579 } 1580 pprev = &tb->jmp_list_next[n]; 1581 } 1582 g_assert_not_reached(); 1583 } 1584 1585 /* reset the jump entry 'n' of a TB so that it is not chained to 1586 another TB */ 1587 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1588 { 1589 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1590 tb_set_jmp_target(tb, n, addr); 1591 } 1592 1593 /* remove any jumps to the TB */ 1594 static inline void tb_jmp_unlink(TranslationBlock *dest) 1595 { 1596 TranslationBlock *tb; 1597 int n; 1598 1599 qemu_spin_lock(&dest->jmp_lock); 1600 1601 TB_FOR_EACH_JMP(dest, tb, n) { 1602 tb_reset_jump(tb, n); 1603 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1604 /* No need to clear the list entry; setting the dest ptr is enough */ 1605 } 1606 dest->jmp_list_head = (uintptr_t)NULL; 1607 1608 qemu_spin_unlock(&dest->jmp_lock); 1609 } 1610 1611 /* 1612 * In user-mode, call with mmap_lock held. 1613 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1614 * locks held. 1615 */ 1616 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1617 { 1618 CPUState *cpu; 1619 PageDesc *p; 1620 uint32_t h; 1621 tb_page_addr_t phys_pc; 1622 1623 assert_memory_lock(); 1624 1625 /* make sure no further incoming jumps will be chained to this TB */ 1626 qemu_spin_lock(&tb->jmp_lock); 1627 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1628 qemu_spin_unlock(&tb->jmp_lock); 1629 1630 /* remove the TB from the hash list */ 1631 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1632 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1633 tb->trace_vcpu_dstate); 1634 if (!(tb->cflags & CF_NOCACHE) && 1635 !qht_remove(&tb_ctx.htable, tb, h)) { 1636 return; 1637 } 1638 1639 /* remove the TB from the page list */ 1640 if (rm_from_page_list) { 1641 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1642 tb_page_remove(p, tb); 1643 invalidate_page_bitmap(p); 1644 if (tb->page_addr[1] != -1) { 1645 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1646 tb_page_remove(p, tb); 1647 invalidate_page_bitmap(p); 1648 } 1649 } 1650 1651 /* remove the TB from the hash list */ 1652 h = tb_jmp_cache_hash_func(tb->pc); 1653 CPU_FOREACH(cpu) { 1654 if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1655 qatomic_set(&cpu->tb_jmp_cache[h], NULL); 1656 } 1657 } 1658 1659 /* suppress this TB from the two jump lists */ 1660 tb_remove_from_jmp_list(tb, 0); 1661 tb_remove_from_jmp_list(tb, 1); 1662 1663 /* suppress any remaining jumps to this TB */ 1664 tb_jmp_unlink(tb); 1665 1666 qatomic_set(&tcg_ctx->tb_phys_invalidate_count, 1667 tcg_ctx->tb_phys_invalidate_count + 1); 1668 } 1669 1670 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1671 { 1672 do_tb_phys_invalidate(tb, true); 1673 } 1674 1675 /* invalidate one TB 1676 * 1677 * Called with mmap_lock held in user-mode. 1678 */ 1679 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1680 { 1681 if (page_addr == -1 && tb->page_addr[0] != -1) { 1682 page_lock_tb(tb); 1683 do_tb_phys_invalidate(tb, true); 1684 page_unlock_tb(tb); 1685 } else { 1686 do_tb_phys_invalidate(tb, false); 1687 } 1688 } 1689 1690 #ifdef CONFIG_SOFTMMU 1691 /* call with @p->lock held */ 1692 static void build_page_bitmap(PageDesc *p) 1693 { 1694 int n, tb_start, tb_end; 1695 TranslationBlock *tb; 1696 1697 assert_page_locked(p); 1698 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1699 1700 PAGE_FOR_EACH_TB(p, tb, n) { 1701 /* NOTE: this is subtle as a TB may span two physical pages */ 1702 if (n == 0) { 1703 /* NOTE: tb_end may be after the end of the page, but 1704 it is not a problem */ 1705 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1706 tb_end = tb_start + tb->size; 1707 if (tb_end > TARGET_PAGE_SIZE) { 1708 tb_end = TARGET_PAGE_SIZE; 1709 } 1710 } else { 1711 tb_start = 0; 1712 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1713 } 1714 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1715 } 1716 } 1717 #endif 1718 1719 /* add the tb in the target page and protect it if necessary 1720 * 1721 * Called with mmap_lock held for user-mode emulation. 1722 * Called with @p->lock held in !user-mode. 1723 */ 1724 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1725 unsigned int n, tb_page_addr_t page_addr) 1726 { 1727 #ifndef CONFIG_USER_ONLY 1728 bool page_already_protected; 1729 #endif 1730 1731 assert_page_locked(p); 1732 1733 tb->page_addr[n] = page_addr; 1734 tb->page_next[n] = p->first_tb; 1735 #ifndef CONFIG_USER_ONLY 1736 page_already_protected = p->first_tb != (uintptr_t)NULL; 1737 #endif 1738 p->first_tb = (uintptr_t)tb | n; 1739 invalidate_page_bitmap(p); 1740 1741 #if defined(CONFIG_USER_ONLY) 1742 if (p->flags & PAGE_WRITE) { 1743 target_ulong addr; 1744 PageDesc *p2; 1745 int prot; 1746 1747 /* force the host page as non writable (writes will have a 1748 page fault + mprotect overhead) */ 1749 page_addr &= qemu_host_page_mask; 1750 prot = 0; 1751 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1752 addr += TARGET_PAGE_SIZE) { 1753 1754 p2 = page_find(addr >> TARGET_PAGE_BITS); 1755 if (!p2) { 1756 continue; 1757 } 1758 prot |= p2->flags; 1759 p2->flags &= ~PAGE_WRITE; 1760 } 1761 mprotect(g2h(page_addr), qemu_host_page_size, 1762 (prot & PAGE_BITS) & ~PAGE_WRITE); 1763 if (DEBUG_TB_INVALIDATE_GATE) { 1764 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1765 } 1766 } 1767 #else 1768 /* if some code is already present, then the pages are already 1769 protected. So we handle the case where only the first TB is 1770 allocated in a physical page */ 1771 if (!page_already_protected) { 1772 tlb_protect_code(page_addr); 1773 } 1774 #endif 1775 } 1776 1777 /* add a new TB and link it to the physical page tables. phys_page2 is 1778 * (-1) to indicate that only one page contains the TB. 1779 * 1780 * Called with mmap_lock held for user-mode emulation. 1781 * 1782 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1783 * Note that in !user-mode, another thread might have already added a TB 1784 * for the same block of guest code that @tb corresponds to. In that case, 1785 * the caller should discard the original @tb, and use instead the returned TB. 1786 */ 1787 static TranslationBlock * 1788 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1789 tb_page_addr_t phys_page2) 1790 { 1791 PageDesc *p; 1792 PageDesc *p2 = NULL; 1793 1794 assert_memory_lock(); 1795 1796 if (phys_pc == -1) { 1797 /* 1798 * If the TB is not associated with a physical RAM page then 1799 * it must be a temporary one-insn TB, and we have nothing to do 1800 * except fill in the page_addr[] fields. 1801 */ 1802 assert(tb->cflags & CF_NOCACHE); 1803 tb->page_addr[0] = tb->page_addr[1] = -1; 1804 return tb; 1805 } 1806 1807 /* 1808 * Add the TB to the page list, acquiring first the pages's locks. 1809 * We keep the locks held until after inserting the TB in the hash table, 1810 * so that if the insertion fails we know for sure that the TBs are still 1811 * in the page descriptors. 1812 * Note that inserting into the hash table first isn't an option, since 1813 * we can only insert TBs that are fully initialized. 1814 */ 1815 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1816 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1817 if (p2) { 1818 tb_page_add(p2, tb, 1, phys_page2); 1819 } else { 1820 tb->page_addr[1] = -1; 1821 } 1822 1823 if (!(tb->cflags & CF_NOCACHE)) { 1824 void *existing_tb = NULL; 1825 uint32_t h; 1826 1827 /* add in the hash table */ 1828 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1829 tb->trace_vcpu_dstate); 1830 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1831 1832 /* remove TB from the page(s) if we couldn't insert it */ 1833 if (unlikely(existing_tb)) { 1834 tb_page_remove(p, tb); 1835 invalidate_page_bitmap(p); 1836 if (p2) { 1837 tb_page_remove(p2, tb); 1838 invalidate_page_bitmap(p2); 1839 } 1840 tb = existing_tb; 1841 } 1842 } 1843 1844 if (p2 && p2 != p) { 1845 page_unlock(p2); 1846 } 1847 page_unlock(p); 1848 1849 #ifdef CONFIG_USER_ONLY 1850 if (DEBUG_TB_CHECK_GATE) { 1851 tb_page_check(); 1852 } 1853 #endif 1854 return tb; 1855 } 1856 1857 /* Called with mmap_lock held for user mode emulation. */ 1858 TranslationBlock *tb_gen_code(CPUState *cpu, 1859 target_ulong pc, target_ulong cs_base, 1860 uint32_t flags, int cflags) 1861 { 1862 CPUArchState *env = cpu->env_ptr; 1863 TranslationBlock *tb, *existing_tb; 1864 tb_page_addr_t phys_pc, phys_page2; 1865 target_ulong virt_page2; 1866 tcg_insn_unit *gen_code_buf; 1867 int gen_code_size, search_size, max_insns; 1868 #ifdef CONFIG_PROFILER 1869 TCGProfile *prof = &tcg_ctx->prof; 1870 int64_t ti; 1871 #endif 1872 1873 assert_memory_lock(); 1874 1875 phys_pc = get_page_addr_code(env, pc); 1876 1877 if (phys_pc == -1) { 1878 /* Generate a temporary TB with 1 insn in it */ 1879 cflags &= ~CF_COUNT_MASK; 1880 cflags |= CF_NOCACHE | 1; 1881 } 1882 1883 cflags &= ~CF_CLUSTER_MASK; 1884 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1885 1886 max_insns = cflags & CF_COUNT_MASK; 1887 if (max_insns == 0) { 1888 max_insns = CF_COUNT_MASK; 1889 } 1890 if (max_insns > TCG_MAX_INSNS) { 1891 max_insns = TCG_MAX_INSNS; 1892 } 1893 if (cpu->singlestep_enabled || singlestep) { 1894 max_insns = 1; 1895 } 1896 1897 buffer_overflow: 1898 tb = tcg_tb_alloc(tcg_ctx); 1899 if (unlikely(!tb)) { 1900 /* flush must be done */ 1901 tb_flush(cpu); 1902 mmap_unlock(); 1903 /* Make the execution loop process the flush as soon as possible. */ 1904 cpu->exception_index = EXCP_INTERRUPT; 1905 cpu_loop_exit(cpu); 1906 } 1907 1908 gen_code_buf = tcg_ctx->code_gen_ptr; 1909 tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf); 1910 tb->pc = pc; 1911 tb->cs_base = cs_base; 1912 tb->flags = flags; 1913 tb->cflags = cflags; 1914 tb->orig_tb = NULL; 1915 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1916 tcg_ctx->tb_cflags = cflags; 1917 tb_overflow: 1918 1919 #ifdef CONFIG_PROFILER 1920 /* includes aborted translations because of exceptions */ 1921 qatomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1922 ti = profile_getclock(); 1923 #endif 1924 1925 tcg_func_start(tcg_ctx); 1926 1927 tcg_ctx->cpu = env_cpu(env); 1928 gen_intermediate_code(cpu, tb, max_insns); 1929 tcg_ctx->cpu = NULL; 1930 1931 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1932 1933 /* generate machine code */ 1934 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1935 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1936 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1937 if (TCG_TARGET_HAS_direct_jump) { 1938 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1939 tcg_ctx->tb_jmp_target_addr = NULL; 1940 } else { 1941 tcg_ctx->tb_jmp_insn_offset = NULL; 1942 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1943 } 1944 1945 #ifdef CONFIG_PROFILER 1946 qatomic_set(&prof->tb_count, prof->tb_count + 1); 1947 qatomic_set(&prof->interm_time, 1948 prof->interm_time + profile_getclock() - ti); 1949 ti = profile_getclock(); 1950 #endif 1951 1952 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1953 if (unlikely(gen_code_size < 0)) { 1954 switch (gen_code_size) { 1955 case -1: 1956 /* 1957 * Overflow of code_gen_buffer, or the current slice of it. 1958 * 1959 * TODO: We don't need to re-do gen_intermediate_code, nor 1960 * should we re-do the tcg optimization currently hidden 1961 * inside tcg_gen_code. All that should be required is to 1962 * flush the TBs, allocate a new TB, re-initialize it per 1963 * above, and re-do the actual code generation. 1964 */ 1965 goto buffer_overflow; 1966 1967 case -2: 1968 /* 1969 * The code generated for the TranslationBlock is too large. 1970 * The maximum size allowed by the unwind info is 64k. 1971 * There may be stricter constraints from relocations 1972 * in the tcg backend. 1973 * 1974 * Try again with half as many insns as we attempted this time. 1975 * If a single insn overflows, there's a bug somewhere... 1976 */ 1977 max_insns = tb->icount; 1978 assert(max_insns > 1); 1979 max_insns /= 2; 1980 goto tb_overflow; 1981 1982 default: 1983 g_assert_not_reached(); 1984 } 1985 } 1986 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1987 if (unlikely(search_size < 0)) { 1988 goto buffer_overflow; 1989 } 1990 tb->tc.size = gen_code_size; 1991 1992 #ifdef CONFIG_PROFILER 1993 qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1994 qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1995 qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1996 qatomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1997 #endif 1998 1999 #ifdef DEBUG_DISAS 2000 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 2001 qemu_log_in_addr_range(tb->pc)) { 2002 FILE *logfile = qemu_log_lock(); 2003 int code_size, data_size; 2004 const tcg_target_ulong *rx_data_gen_ptr; 2005 size_t chunk_start; 2006 int insn = 0; 2007 2008 if (tcg_ctx->data_gen_ptr) { 2009 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr); 2010 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr; 2011 data_size = gen_code_size - code_size; 2012 } else { 2013 rx_data_gen_ptr = 0; 2014 code_size = gen_code_size; 2015 data_size = 0; 2016 } 2017 2018 /* Dump header and the first instruction */ 2019 qemu_log("OUT: [size=%d]\n", gen_code_size); 2020 qemu_log(" -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n", 2021 tcg_ctx->gen_insn_data[insn][0]); 2022 chunk_start = tcg_ctx->gen_insn_end_off[insn]; 2023 log_disas(tb->tc.ptr, chunk_start); 2024 2025 /* 2026 * Dump each instruction chunk, wrapping up empty chunks into 2027 * the next instruction. The whole array is offset so the 2028 * first entry is the beginning of the 2nd instruction. 2029 */ 2030 while (insn < tb->icount) { 2031 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn]; 2032 if (chunk_end > chunk_start) { 2033 qemu_log(" -- guest addr 0x" TARGET_FMT_lx "\n", 2034 tcg_ctx->gen_insn_data[insn][0]); 2035 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start); 2036 chunk_start = chunk_end; 2037 } 2038 insn++; 2039 } 2040 2041 if (chunk_start < code_size) { 2042 qemu_log(" -- tb slow paths + alignment\n"); 2043 log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start); 2044 } 2045 2046 /* Finally dump any data we may have after the block */ 2047 if (data_size) { 2048 int i; 2049 qemu_log(" data: [size=%d]\n", data_size); 2050 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) { 2051 qemu_log("0x%08" PRIxPTR ": .quad 0x%" TCG_PRIlx "\n", 2052 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]); 2053 } 2054 } 2055 qemu_log("\n"); 2056 qemu_log_flush(); 2057 qemu_log_unlock(logfile); 2058 } 2059 #endif 2060 2061 qatomic_set(&tcg_ctx->code_gen_ptr, (void *) 2062 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 2063 CODE_GEN_ALIGN)); 2064 2065 /* init jump list */ 2066 qemu_spin_init(&tb->jmp_lock); 2067 tb->jmp_list_head = (uintptr_t)NULL; 2068 tb->jmp_list_next[0] = (uintptr_t)NULL; 2069 tb->jmp_list_next[1] = (uintptr_t)NULL; 2070 tb->jmp_dest[0] = (uintptr_t)NULL; 2071 tb->jmp_dest[1] = (uintptr_t)NULL; 2072 2073 /* init original jump addresses which have been set during tcg_gen_code() */ 2074 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2075 tb_reset_jump(tb, 0); 2076 } 2077 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2078 tb_reset_jump(tb, 1); 2079 } 2080 2081 /* check next page if needed */ 2082 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 2083 phys_page2 = -1; 2084 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 2085 phys_page2 = get_page_addr_code(env, virt_page2); 2086 } 2087 /* 2088 * No explicit memory barrier is required -- tb_link_page() makes the 2089 * TB visible in a consistent state. 2090 */ 2091 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 2092 /* if the TB already exists, discard what we just translated */ 2093 if (unlikely(existing_tb != tb)) { 2094 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 2095 2096 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 2097 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 2098 tb_destroy(tb); 2099 return existing_tb; 2100 } 2101 tcg_tb_insert(tb); 2102 return tb; 2103 } 2104 2105 /* 2106 * @p must be non-NULL. 2107 * user-mode: call with mmap_lock held. 2108 * !user-mode: call with all @pages locked. 2109 */ 2110 static void 2111 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 2112 PageDesc *p, tb_page_addr_t start, 2113 tb_page_addr_t end, 2114 uintptr_t retaddr) 2115 { 2116 TranslationBlock *tb; 2117 tb_page_addr_t tb_start, tb_end; 2118 int n; 2119 #ifdef TARGET_HAS_PRECISE_SMC 2120 CPUState *cpu = current_cpu; 2121 CPUArchState *env = NULL; 2122 bool current_tb_not_found = retaddr != 0; 2123 bool current_tb_modified = false; 2124 TranslationBlock *current_tb = NULL; 2125 target_ulong current_pc = 0; 2126 target_ulong current_cs_base = 0; 2127 uint32_t current_flags = 0; 2128 #endif /* TARGET_HAS_PRECISE_SMC */ 2129 2130 assert_page_locked(p); 2131 2132 #if defined(TARGET_HAS_PRECISE_SMC) 2133 if (cpu != NULL) { 2134 env = cpu->env_ptr; 2135 } 2136 #endif 2137 2138 /* we remove all the TBs in the range [start, end[ */ 2139 /* XXX: see if in some cases it could be faster to invalidate all 2140 the code */ 2141 PAGE_FOR_EACH_TB(p, tb, n) { 2142 assert_page_locked(p); 2143 /* NOTE: this is subtle as a TB may span two physical pages */ 2144 if (n == 0) { 2145 /* NOTE: tb_end may be after the end of the page, but 2146 it is not a problem */ 2147 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 2148 tb_end = tb_start + tb->size; 2149 } else { 2150 tb_start = tb->page_addr[1]; 2151 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 2152 } 2153 if (!(tb_end <= start || tb_start >= end)) { 2154 #ifdef TARGET_HAS_PRECISE_SMC 2155 if (current_tb_not_found) { 2156 current_tb_not_found = false; 2157 /* now we have a real cpu fault */ 2158 current_tb = tcg_tb_lookup(retaddr); 2159 } 2160 if (current_tb == tb && 2161 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2162 /* 2163 * If we are modifying the current TB, we must stop 2164 * its execution. We could be more precise by checking 2165 * that the modification is after the current PC, but it 2166 * would require a specialized function to partially 2167 * restore the CPU state. 2168 */ 2169 current_tb_modified = true; 2170 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 2171 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2172 ¤t_flags); 2173 } 2174 #endif /* TARGET_HAS_PRECISE_SMC */ 2175 tb_phys_invalidate__locked(tb); 2176 } 2177 } 2178 #if !defined(CONFIG_USER_ONLY) 2179 /* if no code remaining, no need to continue to use slow writes */ 2180 if (!p->first_tb) { 2181 invalidate_page_bitmap(p); 2182 tlb_unprotect_code(start); 2183 } 2184 #endif 2185 #ifdef TARGET_HAS_PRECISE_SMC 2186 if (current_tb_modified) { 2187 page_collection_unlock(pages); 2188 /* Force execution of one insn next time. */ 2189 cpu->cflags_next_tb = 1 | curr_cflags(); 2190 mmap_unlock(); 2191 cpu_loop_exit_noexc(cpu); 2192 } 2193 #endif 2194 } 2195 2196 /* 2197 * Invalidate all TBs which intersect with the target physical address range 2198 * [start;end[. NOTE: start and end must refer to the *same* physical page. 2199 * 'is_cpu_write_access' should be true if called from a real cpu write 2200 * access: the virtual CPU will exit the current TB if code is modified inside 2201 * this TB. 2202 * 2203 * Called with mmap_lock held for user-mode emulation 2204 */ 2205 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 2206 { 2207 struct page_collection *pages; 2208 PageDesc *p; 2209 2210 assert_memory_lock(); 2211 2212 p = page_find(start >> TARGET_PAGE_BITS); 2213 if (p == NULL) { 2214 return; 2215 } 2216 pages = page_collection_lock(start, end); 2217 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 2218 page_collection_unlock(pages); 2219 } 2220 2221 /* 2222 * Invalidate all TBs which intersect with the target physical address range 2223 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2224 * 'is_cpu_write_access' should be true if called from a real cpu write 2225 * access: the virtual CPU will exit the current TB if code is modified inside 2226 * this TB. 2227 * 2228 * Called with mmap_lock held for user-mode emulation. 2229 */ 2230 #ifdef CONFIG_SOFTMMU 2231 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2232 #else 2233 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2234 #endif 2235 { 2236 struct page_collection *pages; 2237 tb_page_addr_t next; 2238 2239 assert_memory_lock(); 2240 2241 pages = page_collection_lock(start, end); 2242 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2243 start < end; 2244 start = next, next += TARGET_PAGE_SIZE) { 2245 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2246 tb_page_addr_t bound = MIN(next, end); 2247 2248 if (pd == NULL) { 2249 continue; 2250 } 2251 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2252 } 2253 page_collection_unlock(pages); 2254 } 2255 2256 #ifdef CONFIG_SOFTMMU 2257 /* len must be <= 8 and start must be a multiple of len. 2258 * Called via softmmu_template.h when code areas are written to with 2259 * iothread mutex not held. 2260 * 2261 * Call with all @pages in the range [@start, @start + len[ locked. 2262 */ 2263 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2264 tb_page_addr_t start, int len, 2265 uintptr_t retaddr) 2266 { 2267 PageDesc *p; 2268 2269 assert_memory_lock(); 2270 2271 p = page_find(start >> TARGET_PAGE_BITS); 2272 if (!p) { 2273 return; 2274 } 2275 2276 assert_page_locked(p); 2277 if (!p->code_bitmap && 2278 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2279 build_page_bitmap(p); 2280 } 2281 if (p->code_bitmap) { 2282 unsigned int nr; 2283 unsigned long b; 2284 2285 nr = start & ~TARGET_PAGE_MASK; 2286 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2287 if (b & ((1 << len) - 1)) { 2288 goto do_invalidate; 2289 } 2290 } else { 2291 do_invalidate: 2292 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2293 retaddr); 2294 } 2295 } 2296 #else 2297 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2298 * host PC of the faulting store instruction that caused this invalidate. 2299 * Returns true if the caller needs to abort execution of the current 2300 * TB (because it was modified by this store and the guest CPU has 2301 * precise-SMC semantics). 2302 */ 2303 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2304 { 2305 TranslationBlock *tb; 2306 PageDesc *p; 2307 int n; 2308 #ifdef TARGET_HAS_PRECISE_SMC 2309 TranslationBlock *current_tb = NULL; 2310 CPUState *cpu = current_cpu; 2311 CPUArchState *env = NULL; 2312 int current_tb_modified = 0; 2313 target_ulong current_pc = 0; 2314 target_ulong current_cs_base = 0; 2315 uint32_t current_flags = 0; 2316 #endif 2317 2318 assert_memory_lock(); 2319 2320 addr &= TARGET_PAGE_MASK; 2321 p = page_find(addr >> TARGET_PAGE_BITS); 2322 if (!p) { 2323 return false; 2324 } 2325 2326 #ifdef TARGET_HAS_PRECISE_SMC 2327 if (p->first_tb && pc != 0) { 2328 current_tb = tcg_tb_lookup(pc); 2329 } 2330 if (cpu != NULL) { 2331 env = cpu->env_ptr; 2332 } 2333 #endif 2334 assert_page_locked(p); 2335 PAGE_FOR_EACH_TB(p, tb, n) { 2336 #ifdef TARGET_HAS_PRECISE_SMC 2337 if (current_tb == tb && 2338 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2339 /* If we are modifying the current TB, we must stop 2340 its execution. We could be more precise by checking 2341 that the modification is after the current PC, but it 2342 would require a specialized function to partially 2343 restore the CPU state */ 2344 2345 current_tb_modified = 1; 2346 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2347 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2348 ¤t_flags); 2349 } 2350 #endif /* TARGET_HAS_PRECISE_SMC */ 2351 tb_phys_invalidate(tb, addr); 2352 } 2353 p->first_tb = (uintptr_t)NULL; 2354 #ifdef TARGET_HAS_PRECISE_SMC 2355 if (current_tb_modified) { 2356 /* Force execution of one insn next time. */ 2357 cpu->cflags_next_tb = 1 | curr_cflags(); 2358 return true; 2359 } 2360 #endif 2361 2362 return false; 2363 } 2364 #endif 2365 2366 /* user-mode: call with mmap_lock held */ 2367 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2368 { 2369 TranslationBlock *tb; 2370 2371 assert_memory_lock(); 2372 2373 tb = tcg_tb_lookup(retaddr); 2374 if (tb) { 2375 /* We can use retranslation to find the PC. */ 2376 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2377 tb_phys_invalidate(tb, -1); 2378 } else { 2379 /* The exception probably happened in a helper. The CPU state should 2380 have been saved before calling it. Fetch the PC from there. */ 2381 CPUArchState *env = cpu->env_ptr; 2382 target_ulong pc, cs_base; 2383 tb_page_addr_t addr; 2384 uint32_t flags; 2385 2386 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2387 addr = get_page_addr_code(env, pc); 2388 if (addr != -1) { 2389 tb_invalidate_phys_range(addr, addr + 1); 2390 } 2391 } 2392 } 2393 2394 #ifndef CONFIG_USER_ONLY 2395 /* in deterministic execution mode, instructions doing device I/Os 2396 * must be at the end of the TB. 2397 * 2398 * Called by softmmu_template.h, with iothread mutex not held. 2399 */ 2400 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2401 { 2402 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2403 CPUArchState *env = cpu->env_ptr; 2404 #endif 2405 TranslationBlock *tb; 2406 uint32_t n; 2407 2408 tb = tcg_tb_lookup(retaddr); 2409 if (!tb) { 2410 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2411 (void *)retaddr); 2412 } 2413 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2414 2415 /* On MIPS and SH, delay slot instructions can only be restarted if 2416 they were already the first instruction in the TB. If this is not 2417 the first instruction in a TB then re-execute the preceding 2418 branch. */ 2419 n = 1; 2420 #if defined(TARGET_MIPS) 2421 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2422 && env->active_tc.PC != tb->pc) { 2423 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2424 cpu_neg(cpu)->icount_decr.u16.low++; 2425 env->hflags &= ~MIPS_HFLAG_BMASK; 2426 n = 2; 2427 } 2428 #elif defined(TARGET_SH4) 2429 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2430 && env->pc != tb->pc) { 2431 env->pc -= 2; 2432 cpu_neg(cpu)->icount_decr.u16.low++; 2433 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2434 n = 2; 2435 } 2436 #endif 2437 2438 /* Generate a new TB executing the I/O insn. */ 2439 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2440 2441 if (tb_cflags(tb) & CF_NOCACHE) { 2442 if (tb->orig_tb) { 2443 /* Invalidate original TB if this TB was generated in 2444 * cpu_exec_nocache() */ 2445 tb_phys_invalidate(tb->orig_tb, -1); 2446 } 2447 tcg_tb_remove(tb); 2448 tb_destroy(tb); 2449 } 2450 2451 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 2452 "cpu_io_recompile: rewound execution of TB to " 2453 TARGET_FMT_lx "\n", tb->pc); 2454 2455 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2456 * the first in the TB) then we end up generating a whole new TB and 2457 * repeating the fault, which is horribly inefficient. 2458 * Better would be to execute just this insn uncached, or generate a 2459 * second new TB. 2460 */ 2461 cpu_loop_exit_noexc(cpu); 2462 } 2463 2464 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2465 { 2466 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2467 2468 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2469 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2470 } 2471 } 2472 2473 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2474 { 2475 /* Discard jump cache entries for any tb which might potentially 2476 overlap the flushed page. */ 2477 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2478 tb_jmp_cache_clear_page(cpu, addr); 2479 } 2480 2481 static void print_qht_statistics(struct qht_stats hst) 2482 { 2483 uint32_t hgram_opts; 2484 size_t hgram_bins; 2485 char *hgram; 2486 2487 if (!hst.head_buckets) { 2488 return; 2489 } 2490 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2491 hst.used_head_buckets, hst.head_buckets, 2492 (double)hst.used_head_buckets / hst.head_buckets * 100); 2493 2494 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2495 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2496 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2497 hgram_opts |= QDIST_PR_NODECIMAL; 2498 } 2499 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2500 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2501 qdist_avg(&hst.occupancy) * 100, hgram); 2502 g_free(hgram); 2503 2504 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2505 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2506 if (hgram_bins > 10) { 2507 hgram_bins = 10; 2508 } else { 2509 hgram_bins = 0; 2510 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2511 } 2512 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2513 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2514 qdist_avg(&hst.chain), hgram); 2515 g_free(hgram); 2516 } 2517 2518 struct tb_tree_stats { 2519 size_t nb_tbs; 2520 size_t host_size; 2521 size_t target_size; 2522 size_t max_target_size; 2523 size_t direct_jmp_count; 2524 size_t direct_jmp2_count; 2525 size_t cross_page; 2526 }; 2527 2528 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2529 { 2530 const TranslationBlock *tb = value; 2531 struct tb_tree_stats *tst = data; 2532 2533 tst->nb_tbs++; 2534 tst->host_size += tb->tc.size; 2535 tst->target_size += tb->size; 2536 if (tb->size > tst->max_target_size) { 2537 tst->max_target_size = tb->size; 2538 } 2539 if (tb->page_addr[1] != -1) { 2540 tst->cross_page++; 2541 } 2542 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2543 tst->direct_jmp_count++; 2544 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2545 tst->direct_jmp2_count++; 2546 } 2547 } 2548 return false; 2549 } 2550 2551 void dump_exec_info(void) 2552 { 2553 struct tb_tree_stats tst = {}; 2554 struct qht_stats hst; 2555 size_t nb_tbs, flush_full, flush_part, flush_elide; 2556 2557 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2558 nb_tbs = tst.nb_tbs; 2559 /* XXX: avoid using doubles ? */ 2560 qemu_printf("Translation buffer state:\n"); 2561 /* 2562 * Report total code size including the padding and TB structs; 2563 * otherwise users might think "-accel tcg,tb-size" is not honoured. 2564 * For avg host size we use the precise numbers from tb_tree_stats though. 2565 */ 2566 qemu_printf("gen code size %zu/%zu\n", 2567 tcg_code_size(), tcg_code_capacity()); 2568 qemu_printf("TB count %zu\n", nb_tbs); 2569 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2570 nb_tbs ? tst.target_size / nb_tbs : 0, 2571 tst.max_target_size); 2572 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2573 nb_tbs ? tst.host_size / nb_tbs : 0, 2574 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2575 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2576 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2577 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2578 tst.direct_jmp_count, 2579 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2580 tst.direct_jmp2_count, 2581 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2582 2583 qht_statistics_init(&tb_ctx.htable, &hst); 2584 print_qht_statistics(hst); 2585 qht_statistics_destroy(&hst); 2586 2587 qemu_printf("\nStatistics:\n"); 2588 qemu_printf("TB flush count %u\n", 2589 qatomic_read(&tb_ctx.tb_flush_count)); 2590 qemu_printf("TB invalidate count %zu\n", 2591 tcg_tb_phys_invalidate_count()); 2592 2593 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2594 qemu_printf("TLB full flushes %zu\n", flush_full); 2595 qemu_printf("TLB partial flushes %zu\n", flush_part); 2596 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2597 tcg_dump_info(); 2598 } 2599 2600 void dump_opcount_info(void) 2601 { 2602 tcg_dump_op_count(); 2603 } 2604 2605 #else /* CONFIG_USER_ONLY */ 2606 2607 void cpu_interrupt(CPUState *cpu, int mask) 2608 { 2609 g_assert(qemu_mutex_iothread_locked()); 2610 cpu->interrupt_request |= mask; 2611 qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2612 } 2613 2614 /* 2615 * Walks guest process memory "regions" one by one 2616 * and calls callback function 'fn' for each region. 2617 */ 2618 struct walk_memory_regions_data { 2619 walk_memory_regions_fn fn; 2620 void *priv; 2621 target_ulong start; 2622 int prot; 2623 }; 2624 2625 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2626 target_ulong end, int new_prot) 2627 { 2628 if (data->start != -1u) { 2629 int rc = data->fn(data->priv, data->start, end, data->prot); 2630 if (rc != 0) { 2631 return rc; 2632 } 2633 } 2634 2635 data->start = (new_prot ? end : -1u); 2636 data->prot = new_prot; 2637 2638 return 0; 2639 } 2640 2641 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2642 target_ulong base, int level, void **lp) 2643 { 2644 target_ulong pa; 2645 int i, rc; 2646 2647 if (*lp == NULL) { 2648 return walk_memory_regions_end(data, base, 0); 2649 } 2650 2651 if (level == 0) { 2652 PageDesc *pd = *lp; 2653 2654 for (i = 0; i < V_L2_SIZE; ++i) { 2655 int prot = pd[i].flags; 2656 2657 pa = base | (i << TARGET_PAGE_BITS); 2658 if (prot != data->prot) { 2659 rc = walk_memory_regions_end(data, pa, prot); 2660 if (rc != 0) { 2661 return rc; 2662 } 2663 } 2664 } 2665 } else { 2666 void **pp = *lp; 2667 2668 for (i = 0; i < V_L2_SIZE; ++i) { 2669 pa = base | ((target_ulong)i << 2670 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2671 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2672 if (rc != 0) { 2673 return rc; 2674 } 2675 } 2676 } 2677 2678 return 0; 2679 } 2680 2681 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2682 { 2683 struct walk_memory_regions_data data; 2684 uintptr_t i, l1_sz = v_l1_size; 2685 2686 data.fn = fn; 2687 data.priv = priv; 2688 data.start = -1u; 2689 data.prot = 0; 2690 2691 for (i = 0; i < l1_sz; i++) { 2692 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2693 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2694 if (rc != 0) { 2695 return rc; 2696 } 2697 } 2698 2699 return walk_memory_regions_end(&data, 0, 0); 2700 } 2701 2702 static int dump_region(void *priv, target_ulong start, 2703 target_ulong end, unsigned long prot) 2704 { 2705 FILE *f = (FILE *)priv; 2706 2707 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2708 " "TARGET_FMT_lx" %c%c%c\n", 2709 start, end, end - start, 2710 ((prot & PAGE_READ) ? 'r' : '-'), 2711 ((prot & PAGE_WRITE) ? 'w' : '-'), 2712 ((prot & PAGE_EXEC) ? 'x' : '-')); 2713 2714 return 0; 2715 } 2716 2717 /* dump memory mappings */ 2718 void page_dump(FILE *f) 2719 { 2720 const int length = sizeof(target_ulong) * 2; 2721 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2722 length, "start", length, "end", length, "size", "prot"); 2723 walk_memory_regions(f, dump_region); 2724 } 2725 2726 int page_get_flags(target_ulong address) 2727 { 2728 PageDesc *p; 2729 2730 p = page_find(address >> TARGET_PAGE_BITS); 2731 if (!p) { 2732 return 0; 2733 } 2734 return p->flags; 2735 } 2736 2737 /* Modify the flags of a page and invalidate the code if necessary. 2738 The flag PAGE_WRITE_ORG is positioned automatically depending 2739 on PAGE_WRITE. The mmap_lock should already be held. */ 2740 void page_set_flags(target_ulong start, target_ulong end, int flags) 2741 { 2742 target_ulong addr, len; 2743 2744 /* This function should never be called with addresses outside the 2745 guest address space. If this assert fires, it probably indicates 2746 a missing call to h2g_valid. */ 2747 assert(end - 1 <= GUEST_ADDR_MAX); 2748 assert(start < end); 2749 assert_memory_lock(); 2750 2751 start = start & TARGET_PAGE_MASK; 2752 end = TARGET_PAGE_ALIGN(end); 2753 2754 if (flags & PAGE_WRITE) { 2755 flags |= PAGE_WRITE_ORG; 2756 } 2757 2758 for (addr = start, len = end - start; 2759 len != 0; 2760 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2761 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2762 2763 /* If the write protection bit is set, then we invalidate 2764 the code inside. */ 2765 if (!(p->flags & PAGE_WRITE) && 2766 (flags & PAGE_WRITE) && 2767 p->first_tb) { 2768 tb_invalidate_phys_page(addr, 0); 2769 } 2770 p->flags = flags; 2771 } 2772 } 2773 2774 int page_check_range(target_ulong start, target_ulong len, int flags) 2775 { 2776 PageDesc *p; 2777 target_ulong end; 2778 target_ulong addr; 2779 2780 /* This function should never be called with addresses outside the 2781 guest address space. If this assert fires, it probably indicates 2782 a missing call to h2g_valid. */ 2783 if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) { 2784 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2785 } 2786 2787 if (len == 0) { 2788 return 0; 2789 } 2790 if (start + len - 1 < start) { 2791 /* We've wrapped around. */ 2792 return -1; 2793 } 2794 2795 /* must do before we loose bits in the next step */ 2796 end = TARGET_PAGE_ALIGN(start + len); 2797 start = start & TARGET_PAGE_MASK; 2798 2799 for (addr = start, len = end - start; 2800 len != 0; 2801 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2802 p = page_find(addr >> TARGET_PAGE_BITS); 2803 if (!p) { 2804 return -1; 2805 } 2806 if (!(p->flags & PAGE_VALID)) { 2807 return -1; 2808 } 2809 2810 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2811 return -1; 2812 } 2813 if (flags & PAGE_WRITE) { 2814 if (!(p->flags & PAGE_WRITE_ORG)) { 2815 return -1; 2816 } 2817 /* unprotect the page if it was put read-only because it 2818 contains translated code */ 2819 if (!(p->flags & PAGE_WRITE)) { 2820 if (!page_unprotect(addr, 0)) { 2821 return -1; 2822 } 2823 } 2824 } 2825 } 2826 return 0; 2827 } 2828 2829 /* called from signal handler: invalidate the code and unprotect the 2830 * page. Return 0 if the fault was not handled, 1 if it was handled, 2831 * and 2 if it was handled but the caller must cause the TB to be 2832 * immediately exited. (We can only return 2 if the 'pc' argument is 2833 * non-zero.) 2834 */ 2835 int page_unprotect(target_ulong address, uintptr_t pc) 2836 { 2837 unsigned int prot; 2838 bool current_tb_invalidated; 2839 PageDesc *p; 2840 target_ulong host_start, host_end, addr; 2841 2842 /* Technically this isn't safe inside a signal handler. However we 2843 know this only ever happens in a synchronous SEGV handler, so in 2844 practice it seems to be ok. */ 2845 mmap_lock(); 2846 2847 p = page_find(address >> TARGET_PAGE_BITS); 2848 if (!p) { 2849 mmap_unlock(); 2850 return 0; 2851 } 2852 2853 /* if the page was really writable, then we change its 2854 protection back to writable */ 2855 if (p->flags & PAGE_WRITE_ORG) { 2856 current_tb_invalidated = false; 2857 if (p->flags & PAGE_WRITE) { 2858 /* If the page is actually marked WRITE then assume this is because 2859 * this thread raced with another one which got here first and 2860 * set the page to PAGE_WRITE and did the TB invalidate for us. 2861 */ 2862 #ifdef TARGET_HAS_PRECISE_SMC 2863 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2864 if (current_tb) { 2865 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2866 } 2867 #endif 2868 } else { 2869 host_start = address & qemu_host_page_mask; 2870 host_end = host_start + qemu_host_page_size; 2871 2872 prot = 0; 2873 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2874 p = page_find(addr >> TARGET_PAGE_BITS); 2875 p->flags |= PAGE_WRITE; 2876 prot |= p->flags; 2877 2878 /* and since the content will be modified, we must invalidate 2879 the corresponding translated code. */ 2880 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2881 #ifdef CONFIG_USER_ONLY 2882 if (DEBUG_TB_CHECK_GATE) { 2883 tb_invalidate_check(addr); 2884 } 2885 #endif 2886 } 2887 mprotect((void *)g2h(host_start), qemu_host_page_size, 2888 prot & PAGE_BITS); 2889 } 2890 mmap_unlock(); 2891 /* If current TB was invalidated return to main loop */ 2892 return current_tb_invalidated ? 2 : 1; 2893 } 2894 mmap_unlock(); 2895 return 0; 2896 } 2897 #endif /* CONFIG_USER_ONLY */ 2898 2899 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2900 void tcg_flush_softmmu_tlb(CPUState *cs) 2901 { 2902 #ifdef CONFIG_SOFTMMU 2903 tlb_flush(cs); 2904 #endif 2905 } 2906