1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 22 #include "trace.h" 23 #include "disas/disas.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg.h" 26 #if defined(CONFIG_USER_ONLY) 27 #include "qemu.h" 28 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 29 #include <sys/param.h> 30 #if __FreeBSD_version >= 700104 31 #define HAVE_KINFO_GETVMMAP 32 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 33 #include <sys/proc.h> 34 #include <machine/profile.h> 35 #define _KERNEL 36 #include <sys/user.h> 37 #undef _KERNEL 38 #undef sigqueue 39 #include <libutil.h> 40 #endif 41 #endif 42 #else 43 #include "exec/ram_addr.h" 44 #endif 45 46 #include "exec/cputlb.h" 47 #include "exec/translate-all.h" 48 #include "exec/translator.h" 49 #include "exec/tb-flush.h" 50 #include "qemu/bitmap.h" 51 #include "qemu/qemu-print.h" 52 #include "qemu/main-loop.h" 53 #include "qemu/cacheinfo.h" 54 #include "qemu/timer.h" 55 #include "exec/log.h" 56 #include "sysemu/cpus.h" 57 #include "sysemu/cpu-timers.h" 58 #include "sysemu/tcg.h" 59 #include "qapi/error.h" 60 #include "hw/core/tcg-cpu-ops.h" 61 #include "tb-jmp-cache.h" 62 #include "tb-hash.h" 63 #include "tb-context.h" 64 #include "internal.h" 65 #include "perf.h" 66 #include "tcg/insn-start-words.h" 67 68 TBContext tb_ctx; 69 70 /* 71 * Encode VAL as a signed leb128 sequence at P. 72 * Return P incremented past the encoded value. 73 */ 74 static uint8_t *encode_sleb128(uint8_t *p, int64_t val) 75 { 76 int more, byte; 77 78 do { 79 byte = val & 0x7f; 80 val >>= 7; 81 more = !((val == 0 && (byte & 0x40) == 0) 82 || (val == -1 && (byte & 0x40) != 0)); 83 if (more) { 84 byte |= 0x80; 85 } 86 *p++ = byte; 87 } while (more); 88 89 return p; 90 } 91 92 /* 93 * Decode a signed leb128 sequence at *PP; increment *PP past the 94 * decoded value. Return the decoded value. 95 */ 96 static int64_t decode_sleb128(const uint8_t **pp) 97 { 98 const uint8_t *p = *pp; 99 int64_t val = 0; 100 int byte, shift = 0; 101 102 do { 103 byte = *p++; 104 val |= (int64_t)(byte & 0x7f) << shift; 105 shift += 7; 106 } while (byte & 0x80); 107 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 108 val |= -(int64_t)1 << shift; 109 } 110 111 *pp = p; 112 return val; 113 } 114 115 /* Encode the data collected about the instructions while compiling TB. 116 Place the data at BLOCK, and return the number of bytes consumed. 117 118 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 119 which come from the target's insn_start data, followed by a uintptr_t 120 which comes from the host pc of the end of the code implementing the insn. 121 122 Each line of the table is encoded as sleb128 deltas from the previous 123 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 124 That is, the first column is seeded with the guest pc, the last column 125 with the host pc, and the middle columns with zeros. */ 126 127 static int encode_search(TranslationBlock *tb, uint8_t *block) 128 { 129 uint8_t *highwater = tcg_ctx->code_gen_highwater; 130 uint64_t *insn_data = tcg_ctx->gen_insn_data; 131 uint16_t *insn_end_off = tcg_ctx->gen_insn_end_off; 132 uint8_t *p = block; 133 int i, j, n; 134 135 for (i = 0, n = tb->icount; i < n; ++i) { 136 uint64_t prev, curr; 137 138 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 139 if (i == 0) { 140 prev = (!(tb_cflags(tb) & CF_PCREL) && j == 0 ? tb->pc : 0); 141 } else { 142 prev = insn_data[(i - 1) * TARGET_INSN_START_WORDS + j]; 143 } 144 curr = insn_data[i * TARGET_INSN_START_WORDS + j]; 145 p = encode_sleb128(p, curr - prev); 146 } 147 prev = (i == 0 ? 0 : insn_end_off[i - 1]); 148 curr = insn_end_off[i]; 149 p = encode_sleb128(p, curr - prev); 150 151 /* Test for (pending) buffer overflow. The assumption is that any 152 one row beginning below the high water mark cannot overrun 153 the buffer completely. Thus we can test for overflow after 154 encoding a row without having to check during encoding. */ 155 if (unlikely(p > highwater)) { 156 return -1; 157 } 158 } 159 160 return p - block; 161 } 162 163 static int cpu_unwind_data_from_tb(TranslationBlock *tb, uintptr_t host_pc, 164 uint64_t *data) 165 { 166 uintptr_t iter_pc = (uintptr_t)tb->tc.ptr; 167 const uint8_t *p = tb->tc.ptr + tb->tc.size; 168 int i, j, num_insns = tb->icount; 169 170 host_pc -= GETPC_ADJ; 171 172 if (host_pc < iter_pc) { 173 return -1; 174 } 175 176 memset(data, 0, sizeof(uint64_t) * TARGET_INSN_START_WORDS); 177 if (!(tb_cflags(tb) & CF_PCREL)) { 178 data[0] = tb->pc; 179 } 180 181 /* 182 * Reconstruct the stored insn data while looking for the point 183 * at which the end of the insn exceeds host_pc. 184 */ 185 for (i = 0; i < num_insns; ++i) { 186 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 187 data[j] += decode_sleb128(&p); 188 } 189 iter_pc += decode_sleb128(&p); 190 if (iter_pc > host_pc) { 191 return num_insns - i; 192 } 193 } 194 return -1; 195 } 196 197 /* 198 * The cpu state corresponding to 'host_pc' is restored in 199 * preparation for exiting the TB. 200 */ 201 void cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 202 uintptr_t host_pc) 203 { 204 uint64_t data[TARGET_INSN_START_WORDS]; 205 int insns_left = cpu_unwind_data_from_tb(tb, host_pc, data); 206 207 if (insns_left < 0) { 208 return; 209 } 210 211 if (tb_cflags(tb) & CF_USE_ICOUNT) { 212 assert(icount_enabled()); 213 /* 214 * Reset the cycle counter to the start of the block and 215 * shift if to the number of actually executed instructions. 216 */ 217 cpu_neg(cpu)->icount_decr.u16.low += insns_left; 218 } 219 220 cpu->cc->tcg_ops->restore_state_to_opc(cpu, tb, data); 221 } 222 223 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc) 224 { 225 /* 226 * The host_pc has to be in the rx region of the code buffer. 227 * If it is not we will not be able to resolve it here. 228 * The two cases where host_pc will not be correct are: 229 * 230 * - fault during translation (instruction fetch) 231 * - fault from helper (not using GETPC() macro) 232 * 233 * Either way we need return early as we can't resolve it here. 234 */ 235 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) { 236 TranslationBlock *tb = tcg_tb_lookup(host_pc); 237 if (tb) { 238 cpu_restore_state_from_tb(cpu, tb, host_pc); 239 return true; 240 } 241 } 242 return false; 243 } 244 245 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data) 246 { 247 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) { 248 TranslationBlock *tb = tcg_tb_lookup(host_pc); 249 if (tb) { 250 return cpu_unwind_data_from_tb(tb, host_pc, data) >= 0; 251 } 252 } 253 return false; 254 } 255 256 void page_init(void) 257 { 258 page_size_init(); 259 page_table_config_init(); 260 } 261 262 /* 263 * Isolate the portion of code gen which can setjmp/longjmp. 264 * Return the size of the generated code, or negative on error. 265 */ 266 static int setjmp_gen_code(CPUArchState *env, TranslationBlock *tb, 267 vaddr pc, void *host_pc, 268 int *max_insns, int64_t *ti) 269 { 270 int ret = sigsetjmp(tcg_ctx->jmp_trans, 0); 271 if (unlikely(ret != 0)) { 272 return ret; 273 } 274 275 tcg_func_start(tcg_ctx); 276 277 tcg_ctx->cpu = env_cpu(env); 278 gen_intermediate_code(env_cpu(env), tb, max_insns, pc, host_pc); 279 assert(tb->size != 0); 280 tcg_ctx->cpu = NULL; 281 *max_insns = tb->icount; 282 283 return tcg_gen_code(tcg_ctx, tb, pc); 284 } 285 286 /* Called with mmap_lock held for user mode emulation. */ 287 TranslationBlock *tb_gen_code(CPUState *cpu, 288 vaddr pc, uint64_t cs_base, 289 uint32_t flags, int cflags) 290 { 291 CPUArchState *env = cpu->env_ptr; 292 TranslationBlock *tb, *existing_tb; 293 tb_page_addr_t phys_pc, phys_p2; 294 tcg_insn_unit *gen_code_buf; 295 int gen_code_size, search_size, max_insns; 296 int64_t ti; 297 void *host_pc; 298 299 assert_memory_lock(); 300 qemu_thread_jit_write(); 301 302 phys_pc = get_page_addr_code_hostp(env, pc, &host_pc); 303 304 if (phys_pc == -1) { 305 /* Generate a one-shot TB with 1 insn in it */ 306 cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1; 307 } 308 309 max_insns = cflags & CF_COUNT_MASK; 310 if (max_insns == 0) { 311 max_insns = TCG_MAX_INSNS; 312 } 313 QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS); 314 315 buffer_overflow: 316 assert_no_pages_locked(); 317 tb = tcg_tb_alloc(tcg_ctx); 318 if (unlikely(!tb)) { 319 /* flush must be done */ 320 tb_flush(cpu); 321 mmap_unlock(); 322 /* Make the execution loop process the flush as soon as possible. */ 323 cpu->exception_index = EXCP_INTERRUPT; 324 cpu_loop_exit(cpu); 325 } 326 327 gen_code_buf = tcg_ctx->code_gen_ptr; 328 tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf); 329 if (!(cflags & CF_PCREL)) { 330 tb->pc = pc; 331 } 332 tb->cs_base = cs_base; 333 tb->flags = flags; 334 tb->cflags = cflags; 335 tb_set_page_addr0(tb, phys_pc); 336 tb_set_page_addr1(tb, -1); 337 if (phys_pc != -1) { 338 tb_lock_page0(phys_pc); 339 } 340 341 tcg_ctx->gen_tb = tb; 342 tcg_ctx->addr_type = TARGET_LONG_BITS == 32 ? TCG_TYPE_I32 : TCG_TYPE_I64; 343 #ifdef CONFIG_SOFTMMU 344 tcg_ctx->page_bits = TARGET_PAGE_BITS; 345 tcg_ctx->page_mask = TARGET_PAGE_MASK; 346 tcg_ctx->tlb_dyn_max_bits = CPU_TLB_DYN_MAX_BITS; 347 tcg_ctx->tlb_fast_offset = 348 (int)offsetof(ArchCPU, neg.tlb.f) - (int)offsetof(ArchCPU, env); 349 #endif 350 tcg_ctx->insn_start_words = TARGET_INSN_START_WORDS; 351 #ifdef TCG_GUEST_DEFAULT_MO 352 tcg_ctx->guest_mo = TCG_GUEST_DEFAULT_MO; 353 #else 354 tcg_ctx->guest_mo = TCG_MO_ALL; 355 #endif 356 357 restart_translate: 358 trace_translate_block(tb, pc, tb->tc.ptr); 359 360 gen_code_size = setjmp_gen_code(env, tb, pc, host_pc, &max_insns, &ti); 361 if (unlikely(gen_code_size < 0)) { 362 switch (gen_code_size) { 363 case -1: 364 /* 365 * Overflow of code_gen_buffer, or the current slice of it. 366 * 367 * TODO: We don't need to re-do gen_intermediate_code, nor 368 * should we re-do the tcg optimization currently hidden 369 * inside tcg_gen_code. All that should be required is to 370 * flush the TBs, allocate a new TB, re-initialize it per 371 * above, and re-do the actual code generation. 372 */ 373 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 374 "Restarting code generation for " 375 "code_gen_buffer overflow\n"); 376 tb_unlock_pages(tb); 377 goto buffer_overflow; 378 379 case -2: 380 /* 381 * The code generated for the TranslationBlock is too large. 382 * The maximum size allowed by the unwind info is 64k. 383 * There may be stricter constraints from relocations 384 * in the tcg backend. 385 * 386 * Try again with half as many insns as we attempted this time. 387 * If a single insn overflows, there's a bug somewhere... 388 */ 389 assert(max_insns > 1); 390 max_insns /= 2; 391 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 392 "Restarting code generation with " 393 "smaller translation block (max %d insns)\n", 394 max_insns); 395 396 /* 397 * The half-sized TB may not cross pages. 398 * TODO: Fix all targets that cross pages except with 399 * the first insn, at which point this can't be reached. 400 */ 401 phys_p2 = tb_page_addr1(tb); 402 if (unlikely(phys_p2 != -1)) { 403 tb_unlock_page1(phys_pc, phys_p2); 404 tb_set_page_addr1(tb, -1); 405 } 406 goto restart_translate; 407 408 case -3: 409 /* 410 * We had a page lock ordering problem. In order to avoid 411 * deadlock we had to drop the lock on page0, which means 412 * that everything we translated so far is compromised. 413 * Restart with locks held on both pages. 414 */ 415 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 416 "Restarting code generation with re-locked pages"); 417 goto restart_translate; 418 419 default: 420 g_assert_not_reached(); 421 } 422 } 423 tcg_ctx->gen_tb = NULL; 424 425 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 426 if (unlikely(search_size < 0)) { 427 tb_unlock_pages(tb); 428 goto buffer_overflow; 429 } 430 tb->tc.size = gen_code_size; 431 432 /* 433 * For CF_PCREL, attribute all executions of the generated code 434 * to its first mapping. 435 */ 436 perf_report_code(pc, tb, tcg_splitwx_to_rx(gen_code_buf)); 437 438 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 439 qemu_log_in_addr_range(pc)) { 440 FILE *logfile = qemu_log_trylock(); 441 if (logfile) { 442 int code_size, data_size; 443 const tcg_target_ulong *rx_data_gen_ptr; 444 size_t chunk_start; 445 int insn = 0; 446 447 if (tcg_ctx->data_gen_ptr) { 448 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr); 449 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr; 450 data_size = gen_code_size - code_size; 451 } else { 452 rx_data_gen_ptr = 0; 453 code_size = gen_code_size; 454 data_size = 0; 455 } 456 457 /* Dump header and the first instruction */ 458 fprintf(logfile, "OUT: [size=%d]\n", gen_code_size); 459 fprintf(logfile, 460 " -- guest addr 0x%016" PRIx64 " + tb prologue\n", 461 tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]); 462 chunk_start = tcg_ctx->gen_insn_end_off[insn]; 463 disas(logfile, tb->tc.ptr, chunk_start); 464 465 /* 466 * Dump each instruction chunk, wrapping up empty chunks into 467 * the next instruction. The whole array is offset so the 468 * first entry is the beginning of the 2nd instruction. 469 */ 470 while (insn < tb->icount) { 471 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn]; 472 if (chunk_end > chunk_start) { 473 fprintf(logfile, " -- guest addr 0x%016" PRIx64 "\n", 474 tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]); 475 disas(logfile, tb->tc.ptr + chunk_start, 476 chunk_end - chunk_start); 477 chunk_start = chunk_end; 478 } 479 insn++; 480 } 481 482 if (chunk_start < code_size) { 483 fprintf(logfile, " -- tb slow paths + alignment\n"); 484 disas(logfile, tb->tc.ptr + chunk_start, 485 code_size - chunk_start); 486 } 487 488 /* Finally dump any data we may have after the block */ 489 if (data_size) { 490 int i; 491 fprintf(logfile, " data: [size=%d]\n", data_size); 492 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) { 493 if (sizeof(tcg_target_ulong) == 8) { 494 fprintf(logfile, 495 "0x%08" PRIxPTR ": .quad 0x%016" TCG_PRIlx "\n", 496 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]); 497 } else if (sizeof(tcg_target_ulong) == 4) { 498 fprintf(logfile, 499 "0x%08" PRIxPTR ": .long 0x%08" TCG_PRIlx "\n", 500 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]); 501 } else { 502 qemu_build_not_reached(); 503 } 504 } 505 } 506 fprintf(logfile, "\n"); 507 qemu_log_unlock(logfile); 508 } 509 } 510 511 qatomic_set(&tcg_ctx->code_gen_ptr, (void *) 512 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 513 CODE_GEN_ALIGN)); 514 515 /* init jump list */ 516 qemu_spin_init(&tb->jmp_lock); 517 tb->jmp_list_head = (uintptr_t)NULL; 518 tb->jmp_list_next[0] = (uintptr_t)NULL; 519 tb->jmp_list_next[1] = (uintptr_t)NULL; 520 tb->jmp_dest[0] = (uintptr_t)NULL; 521 tb->jmp_dest[1] = (uintptr_t)NULL; 522 523 /* init original jump addresses which have been set during tcg_gen_code() */ 524 if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) { 525 tb_reset_jump(tb, 0); 526 } 527 if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) { 528 tb_reset_jump(tb, 1); 529 } 530 531 /* 532 * If the TB is not associated with a physical RAM page then it must be 533 * a temporary one-insn TB, and we have nothing left to do. Return early 534 * before attempting to link to other TBs or add to the lookup table. 535 */ 536 if (tb_page_addr0(tb) == -1) { 537 assert_no_pages_locked(); 538 return tb; 539 } 540 541 /* 542 * Insert TB into the corresponding region tree before publishing it 543 * through QHT. Otherwise rewinding happened in the TB might fail to 544 * lookup itself using host PC. 545 */ 546 tcg_tb_insert(tb); 547 548 /* 549 * No explicit memory barrier is required -- tb_link_page() makes the 550 * TB visible in a consistent state. 551 */ 552 existing_tb = tb_link_page(tb); 553 assert_no_pages_locked(); 554 555 /* if the TB already exists, discard what we just translated */ 556 if (unlikely(existing_tb != tb)) { 557 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 558 559 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 560 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 561 tcg_tb_remove(tb); 562 return existing_tb; 563 } 564 return tb; 565 } 566 567 /* user-mode: call with mmap_lock held */ 568 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 569 { 570 TranslationBlock *tb; 571 572 assert_memory_lock(); 573 574 tb = tcg_tb_lookup(retaddr); 575 if (tb) { 576 /* We can use retranslation to find the PC. */ 577 cpu_restore_state_from_tb(cpu, tb, retaddr); 578 tb_phys_invalidate(tb, -1); 579 } else { 580 /* The exception probably happened in a helper. The CPU state should 581 have been saved before calling it. Fetch the PC from there. */ 582 CPUArchState *env = cpu->env_ptr; 583 vaddr pc; 584 uint64_t cs_base; 585 tb_page_addr_t addr; 586 uint32_t flags; 587 588 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 589 addr = get_page_addr_code(env, pc); 590 if (addr != -1) { 591 tb_invalidate_phys_range(addr, addr); 592 } 593 } 594 } 595 596 #ifndef CONFIG_USER_ONLY 597 /* 598 * In deterministic execution mode, instructions doing device I/Os 599 * must be at the end of the TB. 600 * 601 * Called by softmmu_template.h, with iothread mutex not held. 602 */ 603 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 604 { 605 TranslationBlock *tb; 606 CPUClass *cc; 607 uint32_t n; 608 609 tb = tcg_tb_lookup(retaddr); 610 if (!tb) { 611 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 612 (void *)retaddr); 613 } 614 cpu_restore_state_from_tb(cpu, tb, retaddr); 615 616 /* 617 * Some guests must re-execute the branch when re-executing a delay 618 * slot instruction. When this is the case, adjust icount and N 619 * to account for the re-execution of the branch. 620 */ 621 n = 1; 622 cc = CPU_GET_CLASS(cpu); 623 if (cc->tcg_ops->io_recompile_replay_branch && 624 cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) { 625 cpu_neg(cpu)->icount_decr.u16.low++; 626 n = 2; 627 } 628 629 /* 630 * Exit the loop and potentially generate a new TB executing the 631 * just the I/O insns. We also limit instrumentation to memory 632 * operations only (which execute after completion) so we don't 633 * double instrument the instruction. 634 */ 635 cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n; 636 637 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 638 vaddr pc = log_pc(cpu, tb); 639 if (qemu_log_in_addr_range(pc)) { 640 qemu_log("cpu_io_recompile: rewound execution of TB to %016" 641 VADDR_PRIx "\n", pc); 642 } 643 } 644 645 cpu_loop_exit_noexc(cpu); 646 } 647 648 static void print_qht_statistics(struct qht_stats hst, GString *buf) 649 { 650 uint32_t hgram_opts; 651 size_t hgram_bins; 652 char *hgram; 653 654 if (!hst.head_buckets) { 655 return; 656 } 657 g_string_append_printf(buf, "TB hash buckets %zu/%zu " 658 "(%0.2f%% head buckets used)\n", 659 hst.used_head_buckets, hst.head_buckets, 660 (double)hst.used_head_buckets / 661 hst.head_buckets * 100); 662 663 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 664 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 665 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 666 hgram_opts |= QDIST_PR_NODECIMAL; 667 } 668 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 669 g_string_append_printf(buf, "TB hash occupancy %0.2f%% avg chain occ. " 670 "Histogram: %s\n", 671 qdist_avg(&hst.occupancy) * 100, hgram); 672 g_free(hgram); 673 674 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 675 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 676 if (hgram_bins > 10) { 677 hgram_bins = 10; 678 } else { 679 hgram_bins = 0; 680 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 681 } 682 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 683 g_string_append_printf(buf, "TB hash avg chain %0.3f buckets. " 684 "Histogram: %s\n", 685 qdist_avg(&hst.chain), hgram); 686 g_free(hgram); 687 } 688 689 struct tb_tree_stats { 690 size_t nb_tbs; 691 size_t host_size; 692 size_t target_size; 693 size_t max_target_size; 694 size_t direct_jmp_count; 695 size_t direct_jmp2_count; 696 size_t cross_page; 697 }; 698 699 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 700 { 701 const TranslationBlock *tb = value; 702 struct tb_tree_stats *tst = data; 703 704 tst->nb_tbs++; 705 tst->host_size += tb->tc.size; 706 tst->target_size += tb->size; 707 if (tb->size > tst->max_target_size) { 708 tst->max_target_size = tb->size; 709 } 710 if (tb_page_addr1(tb) != -1) { 711 tst->cross_page++; 712 } 713 if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) { 714 tst->direct_jmp_count++; 715 if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) { 716 tst->direct_jmp2_count++; 717 } 718 } 719 return false; 720 } 721 722 void dump_exec_info(GString *buf) 723 { 724 struct tb_tree_stats tst = {}; 725 struct qht_stats hst; 726 size_t nb_tbs, flush_full, flush_part, flush_elide; 727 728 tcg_tb_foreach(tb_tree_stats_iter, &tst); 729 nb_tbs = tst.nb_tbs; 730 /* XXX: avoid using doubles ? */ 731 g_string_append_printf(buf, "Translation buffer state:\n"); 732 /* 733 * Report total code size including the padding and TB structs; 734 * otherwise users might think "-accel tcg,tb-size" is not honoured. 735 * For avg host size we use the precise numbers from tb_tree_stats though. 736 */ 737 g_string_append_printf(buf, "gen code size %zu/%zu\n", 738 tcg_code_size(), tcg_code_capacity()); 739 g_string_append_printf(buf, "TB count %zu\n", nb_tbs); 740 g_string_append_printf(buf, "TB avg target size %zu max=%zu bytes\n", 741 nb_tbs ? tst.target_size / nb_tbs : 0, 742 tst.max_target_size); 743 g_string_append_printf(buf, "TB avg host size %zu bytes " 744 "(expansion ratio: %0.1f)\n", 745 nb_tbs ? tst.host_size / nb_tbs : 0, 746 tst.target_size ? 747 (double)tst.host_size / tst.target_size : 0); 748 g_string_append_printf(buf, "cross page TB count %zu (%zu%%)\n", 749 tst.cross_page, 750 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 751 g_string_append_printf(buf, "direct jump count %zu (%zu%%) " 752 "(2 jumps=%zu %zu%%)\n", 753 tst.direct_jmp_count, 754 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 755 tst.direct_jmp2_count, 756 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 757 758 qht_statistics_init(&tb_ctx.htable, &hst); 759 print_qht_statistics(hst, buf); 760 qht_statistics_destroy(&hst); 761 762 g_string_append_printf(buf, "\nStatistics:\n"); 763 g_string_append_printf(buf, "TB flush count %u\n", 764 qatomic_read(&tb_ctx.tb_flush_count)); 765 g_string_append_printf(buf, "TB invalidate count %u\n", 766 qatomic_read(&tb_ctx.tb_phys_invalidate_count)); 767 768 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 769 g_string_append_printf(buf, "TLB full flushes %zu\n", flush_full); 770 g_string_append_printf(buf, "TLB partial flushes %zu\n", flush_part); 771 g_string_append_printf(buf, "TLB elided flushes %zu\n", flush_elide); 772 tcg_dump_info(buf); 773 } 774 775 #else /* CONFIG_USER_ONLY */ 776 777 void cpu_interrupt(CPUState *cpu, int mask) 778 { 779 g_assert(qemu_mutex_iothread_locked()); 780 cpu->interrupt_request |= mask; 781 qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 782 } 783 784 #endif /* CONFIG_USER_ONLY */ 785 786 /* 787 * Called by generic code at e.g. cpu reset after cpu creation, 788 * therefore we must be prepared to allocate the jump cache. 789 */ 790 void tcg_flush_jmp_cache(CPUState *cpu) 791 { 792 CPUJumpCache *jc = cpu->tb_jmp_cache; 793 794 /* During early initialization, the cache may not yet be allocated. */ 795 if (unlikely(jc == NULL)) { 796 return; 797 } 798 799 for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) { 800 qatomic_set(&jc->array[i].tb, NULL); 801 } 802 } 803 804 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 805 void tcg_flush_softmmu_tlb(CPUState *cs) 806 { 807 #ifdef CONFIG_SOFTMMU 808 tlb_flush(cs); 809 #endif 810 } 811