1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 22 #include "trace.h" 23 #include "disas/disas.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg.h" 26 #if defined(CONFIG_USER_ONLY) 27 #include "qemu.h" 28 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 29 #include <sys/param.h> 30 #if __FreeBSD_version >= 700104 31 #define HAVE_KINFO_GETVMMAP 32 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 33 #include <sys/proc.h> 34 #include <machine/profile.h> 35 #define _KERNEL 36 #include <sys/user.h> 37 #undef _KERNEL 38 #undef sigqueue 39 #include <libutil.h> 40 #endif 41 #endif 42 #else 43 #include "exec/ram_addr.h" 44 #endif 45 46 #include "exec/cputlb.h" 47 #include "exec/translate-all.h" 48 #include "exec/translator.h" 49 #include "exec/tb-flush.h" 50 #include "qemu/bitmap.h" 51 #include "qemu/qemu-print.h" 52 #include "qemu/main-loop.h" 53 #include "qemu/cacheinfo.h" 54 #include "qemu/timer.h" 55 #include "exec/log.h" 56 #include "sysemu/cpus.h" 57 #include "sysemu/cpu-timers.h" 58 #include "sysemu/tcg.h" 59 #include "qapi/error.h" 60 #include "hw/core/tcg-cpu-ops.h" 61 #include "tb-jmp-cache.h" 62 #include "tb-hash.h" 63 #include "tb-context.h" 64 #include "internal-common.h" 65 #include "internal-target.h" 66 #include "perf.h" 67 #include "tcg/insn-start-words.h" 68 69 TBContext tb_ctx; 70 71 /* 72 * Encode VAL as a signed leb128 sequence at P. 73 * Return P incremented past the encoded value. 74 */ 75 static uint8_t *encode_sleb128(uint8_t *p, int64_t val) 76 { 77 int more, byte; 78 79 do { 80 byte = val & 0x7f; 81 val >>= 7; 82 more = !((val == 0 && (byte & 0x40) == 0) 83 || (val == -1 && (byte & 0x40) != 0)); 84 if (more) { 85 byte |= 0x80; 86 } 87 *p++ = byte; 88 } while (more); 89 90 return p; 91 } 92 93 /* 94 * Decode a signed leb128 sequence at *PP; increment *PP past the 95 * decoded value. Return the decoded value. 96 */ 97 static int64_t decode_sleb128(const uint8_t **pp) 98 { 99 const uint8_t *p = *pp; 100 int64_t val = 0; 101 int byte, shift = 0; 102 103 do { 104 byte = *p++; 105 val |= (int64_t)(byte & 0x7f) << shift; 106 shift += 7; 107 } while (byte & 0x80); 108 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 109 val |= -(int64_t)1 << shift; 110 } 111 112 *pp = p; 113 return val; 114 } 115 116 /* Encode the data collected about the instructions while compiling TB. 117 Place the data at BLOCK, and return the number of bytes consumed. 118 119 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 120 which come from the target's insn_start data, followed by a uintptr_t 121 which comes from the host pc of the end of the code implementing the insn. 122 123 Each line of the table is encoded as sleb128 deltas from the previous 124 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 125 That is, the first column is seeded with the guest pc, the last column 126 with the host pc, and the middle columns with zeros. */ 127 128 static int encode_search(TranslationBlock *tb, uint8_t *block) 129 { 130 uint8_t *highwater = tcg_ctx->code_gen_highwater; 131 uint64_t *insn_data = tcg_ctx->gen_insn_data; 132 uint16_t *insn_end_off = tcg_ctx->gen_insn_end_off; 133 uint8_t *p = block; 134 int i, j, n; 135 136 for (i = 0, n = tb->icount; i < n; ++i) { 137 uint64_t prev, curr; 138 139 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 140 if (i == 0) { 141 prev = (!(tb_cflags(tb) & CF_PCREL) && j == 0 ? tb->pc : 0); 142 } else { 143 prev = insn_data[(i - 1) * TARGET_INSN_START_WORDS + j]; 144 } 145 curr = insn_data[i * TARGET_INSN_START_WORDS + j]; 146 p = encode_sleb128(p, curr - prev); 147 } 148 prev = (i == 0 ? 0 : insn_end_off[i - 1]); 149 curr = insn_end_off[i]; 150 p = encode_sleb128(p, curr - prev); 151 152 /* Test for (pending) buffer overflow. The assumption is that any 153 one row beginning below the high water mark cannot overrun 154 the buffer completely. Thus we can test for overflow after 155 encoding a row without having to check during encoding. */ 156 if (unlikely(p > highwater)) { 157 return -1; 158 } 159 } 160 161 return p - block; 162 } 163 164 static int cpu_unwind_data_from_tb(TranslationBlock *tb, uintptr_t host_pc, 165 uint64_t *data) 166 { 167 uintptr_t iter_pc = (uintptr_t)tb->tc.ptr; 168 const uint8_t *p = tb->tc.ptr + tb->tc.size; 169 int i, j, num_insns = tb->icount; 170 171 host_pc -= GETPC_ADJ; 172 173 if (host_pc < iter_pc) { 174 return -1; 175 } 176 177 memset(data, 0, sizeof(uint64_t) * TARGET_INSN_START_WORDS); 178 if (!(tb_cflags(tb) & CF_PCREL)) { 179 data[0] = tb->pc; 180 } 181 182 /* 183 * Reconstruct the stored insn data while looking for the point 184 * at which the end of the insn exceeds host_pc. 185 */ 186 for (i = 0; i < num_insns; ++i) { 187 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 188 data[j] += decode_sleb128(&p); 189 } 190 iter_pc += decode_sleb128(&p); 191 if (iter_pc > host_pc) { 192 return num_insns - i; 193 } 194 } 195 return -1; 196 } 197 198 /* 199 * The cpu state corresponding to 'host_pc' is restored in 200 * preparation for exiting the TB. 201 */ 202 void cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 203 uintptr_t host_pc) 204 { 205 uint64_t data[TARGET_INSN_START_WORDS]; 206 int insns_left = cpu_unwind_data_from_tb(tb, host_pc, data); 207 208 if (insns_left < 0) { 209 return; 210 } 211 212 if (tb_cflags(tb) & CF_USE_ICOUNT) { 213 assert(icount_enabled()); 214 /* 215 * Reset the cycle counter to the start of the block and 216 * shift if to the number of actually executed instructions. 217 */ 218 cpu->neg.icount_decr.u16.low += insns_left; 219 } 220 221 cpu->cc->tcg_ops->restore_state_to_opc(cpu, tb, data); 222 } 223 224 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc) 225 { 226 /* 227 * The host_pc has to be in the rx region of the code buffer. 228 * If it is not we will not be able to resolve it here. 229 * The two cases where host_pc will not be correct are: 230 * 231 * - fault during translation (instruction fetch) 232 * - fault from helper (not using GETPC() macro) 233 * 234 * Either way we need return early as we can't resolve it here. 235 */ 236 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) { 237 TranslationBlock *tb = tcg_tb_lookup(host_pc); 238 if (tb) { 239 cpu_restore_state_from_tb(cpu, tb, host_pc); 240 return true; 241 } 242 } 243 return false; 244 } 245 246 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data) 247 { 248 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) { 249 TranslationBlock *tb = tcg_tb_lookup(host_pc); 250 if (tb) { 251 return cpu_unwind_data_from_tb(tb, host_pc, data) >= 0; 252 } 253 } 254 return false; 255 } 256 257 void page_init(void) 258 { 259 page_size_init(); 260 page_table_config_init(); 261 } 262 263 /* 264 * Isolate the portion of code gen which can setjmp/longjmp. 265 * Return the size of the generated code, or negative on error. 266 */ 267 static int setjmp_gen_code(CPUArchState *env, TranslationBlock *tb, 268 vaddr pc, void *host_pc, 269 int *max_insns, int64_t *ti) 270 { 271 int ret = sigsetjmp(tcg_ctx->jmp_trans, 0); 272 if (unlikely(ret != 0)) { 273 return ret; 274 } 275 276 tcg_func_start(tcg_ctx); 277 278 tcg_ctx->cpu = env_cpu(env); 279 gen_intermediate_code(env_cpu(env), tb, max_insns, pc, host_pc); 280 assert(tb->size != 0); 281 tcg_ctx->cpu = NULL; 282 *max_insns = tb->icount; 283 284 return tcg_gen_code(tcg_ctx, tb, pc); 285 } 286 287 /* Called with mmap_lock held for user mode emulation. */ 288 TranslationBlock *tb_gen_code(CPUState *cpu, 289 vaddr pc, uint64_t cs_base, 290 uint32_t flags, int cflags) 291 { 292 CPUArchState *env = cpu_env(cpu); 293 TranslationBlock *tb, *existing_tb; 294 tb_page_addr_t phys_pc, phys_p2; 295 tcg_insn_unit *gen_code_buf; 296 int gen_code_size, search_size, max_insns; 297 int64_t ti; 298 void *host_pc; 299 300 assert_memory_lock(); 301 qemu_thread_jit_write(); 302 303 phys_pc = get_page_addr_code_hostp(env, pc, &host_pc); 304 305 if (phys_pc == -1) { 306 /* Generate a one-shot TB with 1 insn in it */ 307 cflags = (cflags & ~CF_COUNT_MASK) | 1; 308 } 309 310 max_insns = cflags & CF_COUNT_MASK; 311 if (max_insns == 0) { 312 max_insns = TCG_MAX_INSNS; 313 } 314 QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS); 315 316 buffer_overflow: 317 assert_no_pages_locked(); 318 tb = tcg_tb_alloc(tcg_ctx); 319 if (unlikely(!tb)) { 320 /* flush must be done */ 321 tb_flush(cpu); 322 mmap_unlock(); 323 /* Make the execution loop process the flush as soon as possible. */ 324 cpu->exception_index = EXCP_INTERRUPT; 325 cpu_loop_exit(cpu); 326 } 327 328 gen_code_buf = tcg_ctx->code_gen_ptr; 329 tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf); 330 if (!(cflags & CF_PCREL)) { 331 tb->pc = pc; 332 } 333 tb->cs_base = cs_base; 334 tb->flags = flags; 335 tb->cflags = cflags; 336 tb_set_page_addr0(tb, phys_pc); 337 tb_set_page_addr1(tb, -1); 338 if (phys_pc != -1) { 339 tb_lock_page0(phys_pc); 340 } 341 342 tcg_ctx->gen_tb = tb; 343 tcg_ctx->addr_type = TARGET_LONG_BITS == 32 ? TCG_TYPE_I32 : TCG_TYPE_I64; 344 #ifdef CONFIG_SOFTMMU 345 tcg_ctx->page_bits = TARGET_PAGE_BITS; 346 tcg_ctx->page_mask = TARGET_PAGE_MASK; 347 tcg_ctx->tlb_dyn_max_bits = CPU_TLB_DYN_MAX_BITS; 348 #endif 349 tcg_ctx->insn_start_words = TARGET_INSN_START_WORDS; 350 #ifdef TCG_GUEST_DEFAULT_MO 351 tcg_ctx->guest_mo = TCG_GUEST_DEFAULT_MO; 352 #else 353 tcg_ctx->guest_mo = TCG_MO_ALL; 354 #endif 355 356 restart_translate: 357 trace_translate_block(tb, pc, tb->tc.ptr); 358 359 gen_code_size = setjmp_gen_code(env, tb, pc, host_pc, &max_insns, &ti); 360 if (unlikely(gen_code_size < 0)) { 361 switch (gen_code_size) { 362 case -1: 363 /* 364 * Overflow of code_gen_buffer, or the current slice of it. 365 * 366 * TODO: We don't need to re-do gen_intermediate_code, nor 367 * should we re-do the tcg optimization currently hidden 368 * inside tcg_gen_code. All that should be required is to 369 * flush the TBs, allocate a new TB, re-initialize it per 370 * above, and re-do the actual code generation. 371 */ 372 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 373 "Restarting code generation for " 374 "code_gen_buffer overflow\n"); 375 tb_unlock_pages(tb); 376 tcg_ctx->gen_tb = NULL; 377 goto buffer_overflow; 378 379 case -2: 380 /* 381 * The code generated for the TranslationBlock is too large. 382 * The maximum size allowed by the unwind info is 64k. 383 * There may be stricter constraints from relocations 384 * in the tcg backend. 385 * 386 * Try again with half as many insns as we attempted this time. 387 * If a single insn overflows, there's a bug somewhere... 388 */ 389 assert(max_insns > 1); 390 max_insns /= 2; 391 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 392 "Restarting code generation with " 393 "smaller translation block (max %d insns)\n", 394 max_insns); 395 396 /* 397 * The half-sized TB may not cross pages. 398 * TODO: Fix all targets that cross pages except with 399 * the first insn, at which point this can't be reached. 400 */ 401 phys_p2 = tb_page_addr1(tb); 402 if (unlikely(phys_p2 != -1)) { 403 tb_unlock_page1(phys_pc, phys_p2); 404 tb_set_page_addr1(tb, -1); 405 } 406 goto restart_translate; 407 408 case -3: 409 /* 410 * We had a page lock ordering problem. In order to avoid 411 * deadlock we had to drop the lock on page0, which means 412 * that everything we translated so far is compromised. 413 * Restart with locks held on both pages. 414 */ 415 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT, 416 "Restarting code generation with re-locked pages"); 417 goto restart_translate; 418 419 default: 420 g_assert_not_reached(); 421 } 422 } 423 tcg_ctx->gen_tb = NULL; 424 425 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 426 if (unlikely(search_size < 0)) { 427 tb_unlock_pages(tb); 428 goto buffer_overflow; 429 } 430 tb->tc.size = gen_code_size; 431 432 /* 433 * For CF_PCREL, attribute all executions of the generated code 434 * to its first mapping. 435 */ 436 perf_report_code(pc, tb, tcg_splitwx_to_rx(gen_code_buf)); 437 438 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 439 qemu_log_in_addr_range(pc)) { 440 FILE *logfile = qemu_log_trylock(); 441 if (logfile) { 442 int code_size, data_size; 443 const tcg_target_ulong *rx_data_gen_ptr; 444 size_t chunk_start; 445 int insn = 0; 446 447 if (tcg_ctx->data_gen_ptr) { 448 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr); 449 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr; 450 data_size = gen_code_size - code_size; 451 } else { 452 rx_data_gen_ptr = 0; 453 code_size = gen_code_size; 454 data_size = 0; 455 } 456 457 /* Dump header and the first instruction */ 458 fprintf(logfile, "OUT: [size=%d]\n", gen_code_size); 459 fprintf(logfile, 460 " -- guest addr 0x%016" PRIx64 " + tb prologue\n", 461 tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]); 462 chunk_start = tcg_ctx->gen_insn_end_off[insn]; 463 disas(logfile, tb->tc.ptr, chunk_start); 464 465 /* 466 * Dump each instruction chunk, wrapping up empty chunks into 467 * the next instruction. The whole array is offset so the 468 * first entry is the beginning of the 2nd instruction. 469 */ 470 while (insn < tb->icount) { 471 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn]; 472 if (chunk_end > chunk_start) { 473 fprintf(logfile, " -- guest addr 0x%016" PRIx64 "\n", 474 tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]); 475 disas(logfile, tb->tc.ptr + chunk_start, 476 chunk_end - chunk_start); 477 chunk_start = chunk_end; 478 } 479 insn++; 480 } 481 482 if (chunk_start < code_size) { 483 fprintf(logfile, " -- tb slow paths + alignment\n"); 484 disas(logfile, tb->tc.ptr + chunk_start, 485 code_size - chunk_start); 486 } 487 488 /* Finally dump any data we may have after the block */ 489 if (data_size) { 490 int i; 491 fprintf(logfile, " data: [size=%d]\n", data_size); 492 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) { 493 if (sizeof(tcg_target_ulong) == 8) { 494 fprintf(logfile, 495 "0x%08" PRIxPTR ": .quad 0x%016" TCG_PRIlx "\n", 496 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]); 497 } else if (sizeof(tcg_target_ulong) == 4) { 498 fprintf(logfile, 499 "0x%08" PRIxPTR ": .long 0x%08" TCG_PRIlx "\n", 500 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]); 501 } else { 502 qemu_build_not_reached(); 503 } 504 } 505 } 506 fprintf(logfile, "\n"); 507 qemu_log_unlock(logfile); 508 } 509 } 510 511 qatomic_set(&tcg_ctx->code_gen_ptr, (void *) 512 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 513 CODE_GEN_ALIGN)); 514 515 /* init jump list */ 516 qemu_spin_init(&tb->jmp_lock); 517 tb->jmp_list_head = (uintptr_t)NULL; 518 tb->jmp_list_next[0] = (uintptr_t)NULL; 519 tb->jmp_list_next[1] = (uintptr_t)NULL; 520 tb->jmp_dest[0] = (uintptr_t)NULL; 521 tb->jmp_dest[1] = (uintptr_t)NULL; 522 523 /* init original jump addresses which have been set during tcg_gen_code() */ 524 if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) { 525 tb_reset_jump(tb, 0); 526 } 527 if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) { 528 tb_reset_jump(tb, 1); 529 } 530 531 /* 532 * If the TB is not associated with a physical RAM page then it must be 533 * a temporary one-insn TB, and we have nothing left to do. Return early 534 * before attempting to link to other TBs or add to the lookup table. 535 */ 536 if (tb_page_addr0(tb) == -1) { 537 assert_no_pages_locked(); 538 return tb; 539 } 540 541 /* 542 * Insert TB into the corresponding region tree before publishing it 543 * through QHT. Otherwise rewinding happened in the TB might fail to 544 * lookup itself using host PC. 545 */ 546 tcg_tb_insert(tb); 547 548 /* 549 * No explicit memory barrier is required -- tb_link_page() makes the 550 * TB visible in a consistent state. 551 */ 552 existing_tb = tb_link_page(tb); 553 assert_no_pages_locked(); 554 555 /* if the TB already exists, discard what we just translated */ 556 if (unlikely(existing_tb != tb)) { 557 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 558 559 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 560 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 561 tcg_tb_remove(tb); 562 return existing_tb; 563 } 564 return tb; 565 } 566 567 /* user-mode: call with mmap_lock held */ 568 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 569 { 570 TranslationBlock *tb; 571 572 assert_memory_lock(); 573 574 tb = tcg_tb_lookup(retaddr); 575 if (tb) { 576 /* We can use retranslation to find the PC. */ 577 cpu_restore_state_from_tb(cpu, tb, retaddr); 578 tb_phys_invalidate(tb, -1); 579 } else { 580 /* The exception probably happened in a helper. The CPU state should 581 have been saved before calling it. Fetch the PC from there. */ 582 CPUArchState *env = cpu_env(cpu); 583 vaddr pc; 584 uint64_t cs_base; 585 tb_page_addr_t addr; 586 uint32_t flags; 587 588 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 589 addr = get_page_addr_code(env, pc); 590 if (addr != -1) { 591 tb_invalidate_phys_range(addr, addr); 592 } 593 } 594 } 595 596 #ifndef CONFIG_USER_ONLY 597 /* 598 * In deterministic execution mode, instructions doing device I/Os 599 * must be at the end of the TB. 600 * 601 * Called by softmmu_template.h, with iothread mutex not held. 602 */ 603 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 604 { 605 TranslationBlock *tb; 606 CPUClass *cc; 607 uint32_t n; 608 609 tb = tcg_tb_lookup(retaddr); 610 if (!tb) { 611 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 612 (void *)retaddr); 613 } 614 cpu_restore_state_from_tb(cpu, tb, retaddr); 615 616 /* 617 * Some guests must re-execute the branch when re-executing a delay 618 * slot instruction. When this is the case, adjust icount and N 619 * to account for the re-execution of the branch. 620 */ 621 n = 1; 622 cc = CPU_GET_CLASS(cpu); 623 if (cc->tcg_ops->io_recompile_replay_branch && 624 cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) { 625 cpu->neg.icount_decr.u16.low++; 626 n = 2; 627 } 628 629 /* 630 * Exit the loop and potentially generate a new TB executing the 631 * just the I/O insns. We also limit instrumentation to memory 632 * operations only (which execute after completion) so we don't 633 * double instrument the instruction. 634 */ 635 cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | n; 636 637 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 638 vaddr pc = log_pc(cpu, tb); 639 if (qemu_log_in_addr_range(pc)) { 640 qemu_log("cpu_io_recompile: rewound execution of TB to %016" 641 VADDR_PRIx "\n", pc); 642 } 643 } 644 645 cpu_loop_exit_noexc(cpu); 646 } 647 648 #else /* CONFIG_USER_ONLY */ 649 650 void cpu_interrupt(CPUState *cpu, int mask) 651 { 652 g_assert(qemu_mutex_iothread_locked()); 653 cpu->interrupt_request |= mask; 654 qatomic_set(&cpu->neg.icount_decr.u16.high, -1); 655 } 656 657 #endif /* CONFIG_USER_ONLY */ 658 659 /* 660 * Called by generic code at e.g. cpu reset after cpu creation, 661 * therefore we must be prepared to allocate the jump cache. 662 */ 663 void tcg_flush_jmp_cache(CPUState *cpu) 664 { 665 CPUJumpCache *jc = cpu->tb_jmp_cache; 666 667 /* During early initialization, the cache may not yet be allocated. */ 668 if (unlikely(jc == NULL)) { 669 return; 670 } 671 672 for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) { 673 qatomic_set(&jc->array[i].tb, NULL); 674 } 675 } 676