xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 6c35ed68)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 
23 #define NO_CPU_IO_DEFS
24 #include "cpu.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg.h"
29 #if defined(CONFIG_USER_ONLY)
30 #include "qemu.h"
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
36 #include <sys/proc.h>
37 #include <machine/profile.h>
38 #define _KERNEL
39 #include <sys/user.h>
40 #undef _KERNEL
41 #undef sigqueue
42 #include <libutil.h>
43 #endif
44 #endif
45 #else
46 #include "exec/ram_addr.h"
47 #endif
48 
49 #include "exec/cputlb.h"
50 #include "exec/tb-hash.h"
51 #include "translate-all.h"
52 #include "qemu/bitmap.h"
53 #include "qemu/error-report.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/timer.h"
56 #include "qemu/main-loop.h"
57 #include "exec/log.h"
58 #include "sysemu/cpus.h"
59 #include "sysemu/tcg.h"
60 
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
65 
66 #ifdef DEBUG_TB_INVALIDATE
67 #define DEBUG_TB_INVALIDATE_GATE 1
68 #else
69 #define DEBUG_TB_INVALIDATE_GATE 0
70 #endif
71 
72 #ifdef DEBUG_TB_FLUSH
73 #define DEBUG_TB_FLUSH_GATE 1
74 #else
75 #define DEBUG_TB_FLUSH_GATE 0
76 #endif
77 
78 #if !defined(CONFIG_USER_ONLY)
79 /* TB consistency checks only implemented for usermode emulation.  */
80 #undef DEBUG_TB_CHECK
81 #endif
82 
83 #ifdef DEBUG_TB_CHECK
84 #define DEBUG_TB_CHECK_GATE 1
85 #else
86 #define DEBUG_TB_CHECK_GATE 0
87 #endif
88 
89 /* Access to the various translations structures need to be serialised via locks
90  * for consistency.
91  * In user-mode emulation access to the memory related structures are protected
92  * with mmap_lock.
93  * In !user-mode we use per-page locks.
94  */
95 #ifdef CONFIG_SOFTMMU
96 #define assert_memory_lock()
97 #else
98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
99 #endif
100 
101 #define SMC_BITMAP_USE_THRESHOLD 10
102 
103 typedef struct PageDesc {
104     /* list of TBs intersecting this ram page */
105     uintptr_t first_tb;
106 #ifdef CONFIG_SOFTMMU
107     /* in order to optimize self modifying code, we count the number
108        of lookups we do to a given page to use a bitmap */
109     unsigned long *code_bitmap;
110     unsigned int code_write_count;
111 #else
112     unsigned long flags;
113 #endif
114 #ifndef CONFIG_USER_ONLY
115     QemuSpin lock;
116 #endif
117 } PageDesc;
118 
119 /**
120  * struct page_entry - page descriptor entry
121  * @pd:     pointer to the &struct PageDesc of the page this entry represents
122  * @index:  page index of the page
123  * @locked: whether the page is locked
124  *
125  * This struct helps us keep track of the locked state of a page, without
126  * bloating &struct PageDesc.
127  *
128  * A page lock protects accesses to all fields of &struct PageDesc.
129  *
130  * See also: &struct page_collection.
131  */
132 struct page_entry {
133     PageDesc *pd;
134     tb_page_addr_t index;
135     bool locked;
136 };
137 
138 /**
139  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
140  * @tree:   Binary search tree (BST) of the pages, with key == page index
141  * @max:    Pointer to the page in @tree with the highest page index
142  *
143  * To avoid deadlock we lock pages in ascending order of page index.
144  * When operating on a set of pages, we need to keep track of them so that
145  * we can lock them in order and also unlock them later. For this we collect
146  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
147  * @tree implementation we use does not provide an O(1) operation to obtain the
148  * highest-ranked element, we use @max to keep track of the inserted page
149  * with the highest index. This is valuable because if a page is not in
150  * the tree and its index is higher than @max's, then we can lock it
151  * without breaking the locking order rule.
152  *
153  * Note on naming: 'struct page_set' would be shorter, but we already have a few
154  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
155  *
156  * See also: page_collection_lock().
157  */
158 struct page_collection {
159     GTree *tree;
160     struct page_entry *max;
161 };
162 
163 /* list iterators for lists of tagged pointers in TranslationBlock */
164 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
165     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
166          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
167              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
168 
169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
170     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
171 
172 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
173     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
174 
175 /* In system mode we want L1_MAP to be based on ram offsets,
176    while in user mode we want it to be based on virtual addresses.  */
177 #if !defined(CONFIG_USER_ONLY)
178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
179 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
182 #endif
183 #else
184 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
185 #endif
186 
187 /* Size of the L2 (and L3, etc) page tables.  */
188 #define V_L2_BITS 10
189 #define V_L2_SIZE (1 << V_L2_BITS)
190 
191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
193                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
194                   * BITS_PER_BYTE);
195 
196 /*
197  * L1 Mapping properties
198  */
199 static int v_l1_size;
200 static int v_l1_shift;
201 static int v_l2_levels;
202 
203 /* The bottom level has pointers to PageDesc, and is indexed by
204  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
205  */
206 #define V_L1_MIN_BITS 4
207 #define V_L1_MAX_BITS (V_L2_BITS + 3)
208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
209 
210 static void *l1_map[V_L1_MAX_SIZE];
211 
212 /* code generation context */
213 TCGContext tcg_init_ctx;
214 __thread TCGContext *tcg_ctx;
215 TBContext tb_ctx;
216 bool parallel_cpus;
217 
218 static void page_table_config_init(void)
219 {
220     uint32_t v_l1_bits;
221 
222     assert(TARGET_PAGE_BITS);
223     /* The bits remaining after N lower levels of page tables.  */
224     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
225     if (v_l1_bits < V_L1_MIN_BITS) {
226         v_l1_bits += V_L2_BITS;
227     }
228 
229     v_l1_size = 1 << v_l1_bits;
230     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
231     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
232 
233     assert(v_l1_bits <= V_L1_MAX_BITS);
234     assert(v_l1_shift % V_L2_BITS == 0);
235     assert(v_l2_levels >= 0);
236 }
237 
238 void cpu_gen_init(void)
239 {
240     tcg_context_init(&tcg_init_ctx);
241 }
242 
243 /* Encode VAL as a signed leb128 sequence at P.
244    Return P incremented past the encoded value.  */
245 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
246 {
247     int more, byte;
248 
249     do {
250         byte = val & 0x7f;
251         val >>= 7;
252         more = !((val == 0 && (byte & 0x40) == 0)
253                  || (val == -1 && (byte & 0x40) != 0));
254         if (more) {
255             byte |= 0x80;
256         }
257         *p++ = byte;
258     } while (more);
259 
260     return p;
261 }
262 
263 /* Decode a signed leb128 sequence at *PP; increment *PP past the
264    decoded value.  Return the decoded value.  */
265 static target_long decode_sleb128(uint8_t **pp)
266 {
267     uint8_t *p = *pp;
268     target_long val = 0;
269     int byte, shift = 0;
270 
271     do {
272         byte = *p++;
273         val |= (target_ulong)(byte & 0x7f) << shift;
274         shift += 7;
275     } while (byte & 0x80);
276     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
277         val |= -(target_ulong)1 << shift;
278     }
279 
280     *pp = p;
281     return val;
282 }
283 
284 /* Encode the data collected about the instructions while compiling TB.
285    Place the data at BLOCK, and return the number of bytes consumed.
286 
287    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
288    which come from the target's insn_start data, followed by a uintptr_t
289    which comes from the host pc of the end of the code implementing the insn.
290 
291    Each line of the table is encoded as sleb128 deltas from the previous
292    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
293    That is, the first column is seeded with the guest pc, the last column
294    with the host pc, and the middle columns with zeros.  */
295 
296 static int encode_search(TranslationBlock *tb, uint8_t *block)
297 {
298     uint8_t *highwater = tcg_ctx->code_gen_highwater;
299     uint8_t *p = block;
300     int i, j, n;
301 
302     for (i = 0, n = tb->icount; i < n; ++i) {
303         target_ulong prev;
304 
305         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
306             if (i == 0) {
307                 prev = (j == 0 ? tb->pc : 0);
308             } else {
309                 prev = tcg_ctx->gen_insn_data[i - 1][j];
310             }
311             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
312         }
313         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
314         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
315 
316         /* Test for (pending) buffer overflow.  The assumption is that any
317            one row beginning below the high water mark cannot overrun
318            the buffer completely.  Thus we can test for overflow after
319            encoding a row without having to check during encoding.  */
320         if (unlikely(p > highwater)) {
321             return -1;
322         }
323     }
324 
325     return p - block;
326 }
327 
328 /* The cpu state corresponding to 'searched_pc' is restored.
329  * When reset_icount is true, current TB will be interrupted and
330  * icount should be recalculated.
331  */
332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
333                                      uintptr_t searched_pc, bool reset_icount)
334 {
335     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
336     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
337     CPUArchState *env = cpu->env_ptr;
338     uint8_t *p = tb->tc.ptr + tb->tc.size;
339     int i, j, num_insns = tb->icount;
340 #ifdef CONFIG_PROFILER
341     TCGProfile *prof = &tcg_ctx->prof;
342     int64_t ti = profile_getclock();
343 #endif
344 
345     searched_pc -= GETPC_ADJ;
346 
347     if (searched_pc < host_pc) {
348         return -1;
349     }
350 
351     /* Reconstruct the stored insn data while looking for the point at
352        which the end of the insn exceeds the searched_pc.  */
353     for (i = 0; i < num_insns; ++i) {
354         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
355             data[j] += decode_sleb128(&p);
356         }
357         host_pc += decode_sleb128(&p);
358         if (host_pc > searched_pc) {
359             goto found;
360         }
361     }
362     return -1;
363 
364  found:
365     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
366         assert(use_icount);
367         /* Reset the cycle counter to the start of the block
368            and shift if to the number of actually executed instructions */
369         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
370     }
371     restore_state_to_opc(env, tb, data);
372 
373 #ifdef CONFIG_PROFILER
374     atomic_set(&prof->restore_time,
375                 prof->restore_time + profile_getclock() - ti);
376     atomic_set(&prof->restore_count, prof->restore_count + 1);
377 #endif
378     return 0;
379 }
380 
381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
382 {
383     TranslationBlock *tb;
384     bool r = false;
385     uintptr_t check_offset;
386 
387     /* The host_pc has to be in the region of current code buffer. If
388      * it is not we will not be able to resolve it here. The two cases
389      * where host_pc will not be correct are:
390      *
391      *  - fault during translation (instruction fetch)
392      *  - fault from helper (not using GETPC() macro)
393      *
394      * Either way we need return early as we can't resolve it here.
395      *
396      * We are using unsigned arithmetic so if host_pc <
397      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
398      * above the code_gen_buffer_size
399      */
400     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
401 
402     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
403         tb = tcg_tb_lookup(host_pc);
404         if (tb) {
405             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
406             if (tb_cflags(tb) & CF_NOCACHE) {
407                 /* one-shot translation, invalidate it immediately */
408                 tb_phys_invalidate(tb, -1);
409                 tcg_tb_remove(tb);
410             }
411             r = true;
412         }
413     }
414 
415     return r;
416 }
417 
418 static void page_init(void)
419 {
420     page_size_init();
421     page_table_config_init();
422 
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424     {
425 #ifdef HAVE_KINFO_GETVMMAP
426         struct kinfo_vmentry *freep;
427         int i, cnt;
428 
429         freep = kinfo_getvmmap(getpid(), &cnt);
430         if (freep) {
431             mmap_lock();
432             for (i = 0; i < cnt; i++) {
433                 unsigned long startaddr, endaddr;
434 
435                 startaddr = freep[i].kve_start;
436                 endaddr = freep[i].kve_end;
437                 if (h2g_valid(startaddr)) {
438                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439 
440                     if (h2g_valid(endaddr)) {
441                         endaddr = h2g(endaddr);
442                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443                     } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445                         endaddr = ~0ul;
446                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448                     }
449                 }
450             }
451             free(freep);
452             mmap_unlock();
453         }
454 #else
455         FILE *f;
456 
457         last_brk = (unsigned long)sbrk(0);
458 
459         f = fopen("/compat/linux/proc/self/maps", "r");
460         if (f) {
461             mmap_lock();
462 
463             do {
464                 unsigned long startaddr, endaddr;
465                 int n;
466 
467                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468 
469                 if (n == 2 && h2g_valid(startaddr)) {
470                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471 
472                     if (h2g_valid(endaddr)) {
473                         endaddr = h2g(endaddr);
474                     } else {
475                         endaddr = ~0ul;
476                     }
477                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478                 }
479             } while (!feof(f));
480 
481             fclose(f);
482             mmap_unlock();
483         }
484 #endif
485     }
486 #endif
487 }
488 
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491     PageDesc *pd;
492     void **lp;
493     int i;
494 
495     /* Level 1.  Always allocated.  */
496     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497 
498     /* Level 2..N-1.  */
499     for (i = v_l2_levels; i > 0; i--) {
500         void **p = atomic_rcu_read(lp);
501 
502         if (p == NULL) {
503             void *existing;
504 
505             if (!alloc) {
506                 return NULL;
507             }
508             p = g_new0(void *, V_L2_SIZE);
509             existing = atomic_cmpxchg(lp, NULL, p);
510             if (unlikely(existing)) {
511                 g_free(p);
512                 p = existing;
513             }
514         }
515 
516         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517     }
518 
519     pd = atomic_rcu_read(lp);
520     if (pd == NULL) {
521         void *existing;
522 
523         if (!alloc) {
524             return NULL;
525         }
526         pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528         {
529             int i;
530 
531             for (i = 0; i < V_L2_SIZE; i++) {
532                 qemu_spin_init(&pd[i].lock);
533             }
534         }
535 #endif
536         existing = atomic_cmpxchg(lp, NULL, pd);
537         if (unlikely(existing)) {
538             g_free(pd);
539             pd = existing;
540         }
541     }
542 
543     return pd + (index & (V_L2_SIZE - 1));
544 }
545 
546 static inline PageDesc *page_find(tb_page_addr_t index)
547 {
548     return page_find_alloc(index, 0);
549 }
550 
551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
552                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
553 
554 /* In user-mode page locks aren't used; mmap_lock is enough */
555 #ifdef CONFIG_USER_ONLY
556 
557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
558 
559 static inline void page_lock(PageDesc *pd)
560 { }
561 
562 static inline void page_unlock(PageDesc *pd)
563 { }
564 
565 static inline void page_lock_tb(const TranslationBlock *tb)
566 { }
567 
568 static inline void page_unlock_tb(const TranslationBlock *tb)
569 { }
570 
571 struct page_collection *
572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
573 {
574     return NULL;
575 }
576 
577 void page_collection_unlock(struct page_collection *set)
578 { }
579 #else /* !CONFIG_USER_ONLY */
580 
581 #ifdef CONFIG_DEBUG_TCG
582 
583 static __thread GHashTable *ht_pages_locked_debug;
584 
585 static void ht_pages_locked_debug_init(void)
586 {
587     if (ht_pages_locked_debug) {
588         return;
589     }
590     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
591 }
592 
593 static bool page_is_locked(const PageDesc *pd)
594 {
595     PageDesc *found;
596 
597     ht_pages_locked_debug_init();
598     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
599     return !!found;
600 }
601 
602 static void page_lock__debug(PageDesc *pd)
603 {
604     ht_pages_locked_debug_init();
605     g_assert(!page_is_locked(pd));
606     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
607 }
608 
609 static void page_unlock__debug(const PageDesc *pd)
610 {
611     bool removed;
612 
613     ht_pages_locked_debug_init();
614     g_assert(page_is_locked(pd));
615     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
616     g_assert(removed);
617 }
618 
619 static void
620 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
621 {
622     if (unlikely(!page_is_locked(pd))) {
623         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
624                      pd, file, line);
625         abort();
626     }
627 }
628 
629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
630 
631 void assert_no_pages_locked(void)
632 {
633     ht_pages_locked_debug_init();
634     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
635 }
636 
637 #else /* !CONFIG_DEBUG_TCG */
638 
639 #define assert_page_locked(pd)
640 
641 static inline void page_lock__debug(const PageDesc *pd)
642 {
643 }
644 
645 static inline void page_unlock__debug(const PageDesc *pd)
646 {
647 }
648 
649 #endif /* CONFIG_DEBUG_TCG */
650 
651 static inline void page_lock(PageDesc *pd)
652 {
653     page_lock__debug(pd);
654     qemu_spin_lock(&pd->lock);
655 }
656 
657 static inline void page_unlock(PageDesc *pd)
658 {
659     qemu_spin_unlock(&pd->lock);
660     page_unlock__debug(pd);
661 }
662 
663 /* lock the page(s) of a TB in the correct acquisition order */
664 static inline void page_lock_tb(const TranslationBlock *tb)
665 {
666     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
667 }
668 
669 static inline void page_unlock_tb(const TranslationBlock *tb)
670 {
671     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
672 
673     page_unlock(p1);
674     if (unlikely(tb->page_addr[1] != -1)) {
675         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
676 
677         if (p2 != p1) {
678             page_unlock(p2);
679         }
680     }
681 }
682 
683 static inline struct page_entry *
684 page_entry_new(PageDesc *pd, tb_page_addr_t index)
685 {
686     struct page_entry *pe = g_malloc(sizeof(*pe));
687 
688     pe->index = index;
689     pe->pd = pd;
690     pe->locked = false;
691     return pe;
692 }
693 
694 static void page_entry_destroy(gpointer p)
695 {
696     struct page_entry *pe = p;
697 
698     g_assert(pe->locked);
699     page_unlock(pe->pd);
700     g_free(pe);
701 }
702 
703 /* returns false on success */
704 static bool page_entry_trylock(struct page_entry *pe)
705 {
706     bool busy;
707 
708     busy = qemu_spin_trylock(&pe->pd->lock);
709     if (!busy) {
710         g_assert(!pe->locked);
711         pe->locked = true;
712         page_lock__debug(pe->pd);
713     }
714     return busy;
715 }
716 
717 static void do_page_entry_lock(struct page_entry *pe)
718 {
719     page_lock(pe->pd);
720     g_assert(!pe->locked);
721     pe->locked = true;
722 }
723 
724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
725 {
726     struct page_entry *pe = value;
727 
728     do_page_entry_lock(pe);
729     return FALSE;
730 }
731 
732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
733 {
734     struct page_entry *pe = value;
735 
736     if (pe->locked) {
737         pe->locked = false;
738         page_unlock(pe->pd);
739     }
740     return FALSE;
741 }
742 
743 /*
744  * Trylock a page, and if successful, add the page to a collection.
745  * Returns true ("busy") if the page could not be locked; false otherwise.
746  */
747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
748 {
749     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
750     struct page_entry *pe;
751     PageDesc *pd;
752 
753     pe = g_tree_lookup(set->tree, &index);
754     if (pe) {
755         return false;
756     }
757 
758     pd = page_find(index);
759     if (pd == NULL) {
760         return false;
761     }
762 
763     pe = page_entry_new(pd, index);
764     g_tree_insert(set->tree, &pe->index, pe);
765 
766     /*
767      * If this is either (1) the first insertion or (2) a page whose index
768      * is higher than any other so far, just lock the page and move on.
769      */
770     if (set->max == NULL || pe->index > set->max->index) {
771         set->max = pe;
772         do_page_entry_lock(pe);
773         return false;
774     }
775     /*
776      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
777      * locks in order.
778      */
779     return page_entry_trylock(pe);
780 }
781 
782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
783 {
784     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
785     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
786 
787     if (a == b) {
788         return 0;
789     } else if (a < b) {
790         return -1;
791     }
792     return 1;
793 }
794 
795 /*
796  * Lock a range of pages ([@start,@end[) as well as the pages of all
797  * intersecting TBs.
798  * Locking order: acquire locks in ascending order of page index.
799  */
800 struct page_collection *
801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
802 {
803     struct page_collection *set = g_malloc(sizeof(*set));
804     tb_page_addr_t index;
805     PageDesc *pd;
806 
807     start >>= TARGET_PAGE_BITS;
808     end   >>= TARGET_PAGE_BITS;
809     g_assert(start <= end);
810 
811     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
812                                 page_entry_destroy);
813     set->max = NULL;
814     assert_no_pages_locked();
815 
816  retry:
817     g_tree_foreach(set->tree, page_entry_lock, NULL);
818 
819     for (index = start; index <= end; index++) {
820         TranslationBlock *tb;
821         int n;
822 
823         pd = page_find(index);
824         if (pd == NULL) {
825             continue;
826         }
827         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
828             g_tree_foreach(set->tree, page_entry_unlock, NULL);
829             goto retry;
830         }
831         assert_page_locked(pd);
832         PAGE_FOR_EACH_TB(pd, tb, n) {
833             if (page_trylock_add(set, tb->page_addr[0]) ||
834                 (tb->page_addr[1] != -1 &&
835                  page_trylock_add(set, tb->page_addr[1]))) {
836                 /* drop all locks, and reacquire in order */
837                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
838                 goto retry;
839             }
840         }
841     }
842     return set;
843 }
844 
845 void page_collection_unlock(struct page_collection *set)
846 {
847     /* entries are unlocked and freed via page_entry_destroy */
848     g_tree_destroy(set->tree);
849     g_free(set);
850 }
851 
852 #endif /* !CONFIG_USER_ONLY */
853 
854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
855                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
856 {
857     PageDesc *p1, *p2;
858     tb_page_addr_t page1;
859     tb_page_addr_t page2;
860 
861     assert_memory_lock();
862     g_assert(phys1 != -1);
863 
864     page1 = phys1 >> TARGET_PAGE_BITS;
865     page2 = phys2 >> TARGET_PAGE_BITS;
866 
867     p1 = page_find_alloc(page1, alloc);
868     if (ret_p1) {
869         *ret_p1 = p1;
870     }
871     if (likely(phys2 == -1)) {
872         page_lock(p1);
873         return;
874     } else if (page1 == page2) {
875         page_lock(p1);
876         if (ret_p2) {
877             *ret_p2 = p1;
878         }
879         return;
880     }
881     p2 = page_find_alloc(page2, alloc);
882     if (ret_p2) {
883         *ret_p2 = p2;
884     }
885     if (page1 < page2) {
886         page_lock(p1);
887         page_lock(p2);
888     } else {
889         page_lock(p2);
890         page_lock(p1);
891     }
892 }
893 
894 #if defined(CONFIG_USER_ONLY)
895 /* Currently it is not recommended to allocate big chunks of data in
896    user mode. It will change when a dedicated libc will be used.  */
897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
898    region in which the guest needs to run.  Revisit this.  */
899 #define USE_STATIC_CODE_GEN_BUFFER
900 #endif
901 
902 /* Minimum size of the code gen buffer.  This number is randomly chosen,
903    but not so small that we can't have a fair number of TB's live.  */
904 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
905 
906 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
907    indicated, this is constrained by the range of direct branches on the
908    host cpu, as used by the TCG implementation of goto_tb.  */
909 #if defined(__x86_64__)
910 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
911 #elif defined(__sparc__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc64__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
915 #elif defined(__powerpc__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
917 #elif defined(__aarch64__)
918 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
919 #elif defined(__s390x__)
920   /* We have a +- 4GB range on the branches; leave some slop.  */
921 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
922 #elif defined(__mips__)
923   /* We have a 256MB branch region, but leave room to make sure the
924      main executable is also within that region.  */
925 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
926 #else
927 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
928 #endif
929 
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
931 
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
933   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
934    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
935 
936 static inline size_t size_code_gen_buffer(size_t tb_size)
937 {
938     /* Size the buffer.  */
939     if (tb_size == 0) {
940 #ifdef USE_STATIC_CODE_GEN_BUFFER
941         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
942 #else
943         /* ??? Needs adjustments.  */
944         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
945            static buffer, we could size this on RESERVED_VA, on the text
946            segment size of the executable, or continue to use the default.  */
947         tb_size = (unsigned long)(ram_size / 4);
948 #endif
949     }
950     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
951         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
952     }
953     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
954         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
955     }
956     return tb_size;
957 }
958 
959 #ifdef __mips__
960 /* In order to use J and JAL within the code_gen_buffer, we require
961    that the buffer not cross a 256MB boundary.  */
962 static inline bool cross_256mb(void *addr, size_t size)
963 {
964     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
965 }
966 
967 /* We weren't able to allocate a buffer without crossing that boundary,
968    so make do with the larger portion of the buffer that doesn't cross.
969    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
970 static inline void *split_cross_256mb(void *buf1, size_t size1)
971 {
972     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
973     size_t size2 = buf1 + size1 - buf2;
974 
975     size1 = buf2 - buf1;
976     if (size1 < size2) {
977         size1 = size2;
978         buf1 = buf2;
979     }
980 
981     tcg_ctx->code_gen_buffer_size = size1;
982     return buf1;
983 }
984 #endif
985 
986 #ifdef USE_STATIC_CODE_GEN_BUFFER
987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
988     __attribute__((aligned(CODE_GEN_ALIGN)));
989 
990 static inline void *alloc_code_gen_buffer(void)
991 {
992     void *buf = static_code_gen_buffer;
993     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
994     size_t size;
995 
996     /* page-align the beginning and end of the buffer */
997     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
998     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
999 
1000     size = end - buf;
1001 
1002     /* Honor a command-line option limiting the size of the buffer.  */
1003     if (size > tcg_ctx->code_gen_buffer_size) {
1004         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1005                                qemu_real_host_page_size);
1006     }
1007     tcg_ctx->code_gen_buffer_size = size;
1008 
1009 #ifdef __mips__
1010     if (cross_256mb(buf, size)) {
1011         buf = split_cross_256mb(buf, size);
1012         size = tcg_ctx->code_gen_buffer_size;
1013     }
1014 #endif
1015 
1016     if (qemu_mprotect_rwx(buf, size)) {
1017         abort();
1018     }
1019     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1020 
1021     return buf;
1022 }
1023 #elif defined(_WIN32)
1024 static inline void *alloc_code_gen_buffer(void)
1025 {
1026     size_t size = tcg_ctx->code_gen_buffer_size;
1027     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1028                         PAGE_EXECUTE_READWRITE);
1029 }
1030 #else
1031 static inline void *alloc_code_gen_buffer(void)
1032 {
1033     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1034     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1035     uintptr_t start = 0;
1036     size_t size = tcg_ctx->code_gen_buffer_size;
1037     void *buf;
1038 
1039     /* Constrain the position of the buffer based on the host cpu.
1040        Note that these addresses are chosen in concert with the
1041        addresses assigned in the relevant linker script file.  */
1042 # if defined(__PIE__) || defined(__PIC__)
1043     /* Don't bother setting a preferred location if we're building
1044        a position-independent executable.  We're more likely to get
1045        an address near the main executable if we let the kernel
1046        choose the address.  */
1047 # elif defined(__x86_64__) && defined(MAP_32BIT)
1048     /* Force the memory down into low memory with the executable.
1049        Leave the choice of exact location with the kernel.  */
1050     flags |= MAP_32BIT;
1051     /* Cannot expect to map more than 800MB in low memory.  */
1052     if (size > 800u * 1024 * 1024) {
1053         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1054     }
1055 # elif defined(__sparc__)
1056     start = 0x40000000ul;
1057 # elif defined(__s390x__)
1058     start = 0x90000000ul;
1059 # elif defined(__mips__)
1060 #  if _MIPS_SIM == _ABI64
1061     start = 0x128000000ul;
1062 #  else
1063     start = 0x08000000ul;
1064 #  endif
1065 # endif
1066 
1067     buf = mmap((void *)start, size, prot, flags, -1, 0);
1068     if (buf == MAP_FAILED) {
1069         return NULL;
1070     }
1071 
1072 #ifdef __mips__
1073     if (cross_256mb(buf, size)) {
1074         /* Try again, with the original still mapped, to avoid re-acquiring
1075            that 256mb crossing.  This time don't specify an address.  */
1076         size_t size2;
1077         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1078         switch ((int)(buf2 != MAP_FAILED)) {
1079         case 1:
1080             if (!cross_256mb(buf2, size)) {
1081                 /* Success!  Use the new buffer.  */
1082                 munmap(buf, size);
1083                 break;
1084             }
1085             /* Failure.  Work with what we had.  */
1086             munmap(buf2, size);
1087             /* fallthru */
1088         default:
1089             /* Split the original buffer.  Free the smaller half.  */
1090             buf2 = split_cross_256mb(buf, size);
1091             size2 = tcg_ctx->code_gen_buffer_size;
1092             if (buf == buf2) {
1093                 munmap(buf + size2, size - size2);
1094             } else {
1095                 munmap(buf, size - size2);
1096             }
1097             size = size2;
1098             break;
1099         }
1100         buf = buf2;
1101     }
1102 #endif
1103 
1104     /* Request large pages for the buffer.  */
1105     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1106 
1107     return buf;
1108 }
1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1110 
1111 static inline void code_gen_alloc(size_t tb_size)
1112 {
1113     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1114     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1115     if (tcg_ctx->code_gen_buffer == NULL) {
1116         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1117         exit(1);
1118     }
1119 }
1120 
1121 static bool tb_cmp(const void *ap, const void *bp)
1122 {
1123     const TranslationBlock *a = ap;
1124     const TranslationBlock *b = bp;
1125 
1126     return a->pc == b->pc &&
1127         a->cs_base == b->cs_base &&
1128         a->flags == b->flags &&
1129         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1130         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1131         a->page_addr[0] == b->page_addr[0] &&
1132         a->page_addr[1] == b->page_addr[1];
1133 }
1134 
1135 static void tb_htable_init(void)
1136 {
1137     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1138 
1139     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1140 }
1141 
1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1143    (in bytes) allocated to the translation buffer. Zero means default
1144    size. */
1145 void tcg_exec_init(unsigned long tb_size)
1146 {
1147     tcg_allowed = true;
1148     cpu_gen_init();
1149     page_init();
1150     tb_htable_init();
1151     code_gen_alloc(tb_size);
1152 #if defined(CONFIG_SOFTMMU)
1153     /* There's no guest base to take into account, so go ahead and
1154        initialize the prologue now.  */
1155     tcg_prologue_init(tcg_ctx);
1156 #endif
1157 }
1158 
1159 /*
1160  * Allocate a new translation block. Flush the translation buffer if
1161  * too many translation blocks or too much generated code.
1162  */
1163 static TranslationBlock *tb_alloc(target_ulong pc)
1164 {
1165     TranslationBlock *tb;
1166 
1167     assert_memory_lock();
1168 
1169     tb = tcg_tb_alloc(tcg_ctx);
1170     if (unlikely(tb == NULL)) {
1171         return NULL;
1172     }
1173     return tb;
1174 }
1175 
1176 /* call with @p->lock held */
1177 static inline void invalidate_page_bitmap(PageDesc *p)
1178 {
1179     assert_page_locked(p);
1180 #ifdef CONFIG_SOFTMMU
1181     g_free(p->code_bitmap);
1182     p->code_bitmap = NULL;
1183     p->code_write_count = 0;
1184 #endif
1185 }
1186 
1187 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1188 static void page_flush_tb_1(int level, void **lp)
1189 {
1190     int i;
1191 
1192     if (*lp == NULL) {
1193         return;
1194     }
1195     if (level == 0) {
1196         PageDesc *pd = *lp;
1197 
1198         for (i = 0; i < V_L2_SIZE; ++i) {
1199             page_lock(&pd[i]);
1200             pd[i].first_tb = (uintptr_t)NULL;
1201             invalidate_page_bitmap(pd + i);
1202             page_unlock(&pd[i]);
1203         }
1204     } else {
1205         void **pp = *lp;
1206 
1207         for (i = 0; i < V_L2_SIZE; ++i) {
1208             page_flush_tb_1(level - 1, pp + i);
1209         }
1210     }
1211 }
1212 
1213 static void page_flush_tb(void)
1214 {
1215     int i, l1_sz = v_l1_size;
1216 
1217     for (i = 0; i < l1_sz; i++) {
1218         page_flush_tb_1(v_l2_levels, l1_map + i);
1219     }
1220 }
1221 
1222 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1223 {
1224     const TranslationBlock *tb = value;
1225     size_t *size = data;
1226 
1227     *size += tb->tc.size;
1228     return false;
1229 }
1230 
1231 /* flush all the translation blocks */
1232 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1233 {
1234     mmap_lock();
1235     /* If it is already been done on request of another CPU,
1236      * just retry.
1237      */
1238     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1239         goto done;
1240     }
1241 
1242     if (DEBUG_TB_FLUSH_GATE) {
1243         size_t nb_tbs = tcg_nb_tbs();
1244         size_t host_size = 0;
1245 
1246         tcg_tb_foreach(tb_host_size_iter, &host_size);
1247         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1248                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1249     }
1250 
1251     CPU_FOREACH(cpu) {
1252         cpu_tb_jmp_cache_clear(cpu);
1253     }
1254 
1255     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1256     page_flush_tb();
1257 
1258     tcg_region_reset_all();
1259     /* XXX: flush processor icache at this point if cache flush is
1260        expensive */
1261     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1262 
1263 done:
1264     mmap_unlock();
1265 }
1266 
1267 void tb_flush(CPUState *cpu)
1268 {
1269     if (tcg_enabled()) {
1270         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1271         async_safe_run_on_cpu(cpu, do_tb_flush,
1272                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1273     }
1274 }
1275 
1276 /*
1277  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1278  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1279  * and let the optimizer get rid of them by wrapping their user-only callers
1280  * with if (DEBUG_TB_CHECK_GATE).
1281  */
1282 #ifdef CONFIG_USER_ONLY
1283 
1284 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1285 {
1286     TranslationBlock *tb = p;
1287     target_ulong addr = *(target_ulong *)userp;
1288 
1289     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1290         printf("ERROR invalidate: address=" TARGET_FMT_lx
1291                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1292     }
1293 }
1294 
1295 /* verify that all the pages have correct rights for code
1296  *
1297  * Called with mmap_lock held.
1298  */
1299 static void tb_invalidate_check(target_ulong address)
1300 {
1301     address &= TARGET_PAGE_MASK;
1302     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1303 }
1304 
1305 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1306 {
1307     TranslationBlock *tb = p;
1308     int flags1, flags2;
1309 
1310     flags1 = page_get_flags(tb->pc);
1311     flags2 = page_get_flags(tb->pc + tb->size - 1);
1312     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1313         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1314                (long)tb->pc, tb->size, flags1, flags2);
1315     }
1316 }
1317 
1318 /* verify that all the pages have correct rights for code */
1319 static void tb_page_check(void)
1320 {
1321     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1322 }
1323 
1324 #endif /* CONFIG_USER_ONLY */
1325 
1326 /*
1327  * user-mode: call with mmap_lock held
1328  * !user-mode: call with @pd->lock held
1329  */
1330 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1331 {
1332     TranslationBlock *tb1;
1333     uintptr_t *pprev;
1334     unsigned int n1;
1335 
1336     assert_page_locked(pd);
1337     pprev = &pd->first_tb;
1338     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1339         if (tb1 == tb) {
1340             *pprev = tb1->page_next[n1];
1341             return;
1342         }
1343         pprev = &tb1->page_next[n1];
1344     }
1345     g_assert_not_reached();
1346 }
1347 
1348 /* remove @orig from its @n_orig-th jump list */
1349 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1350 {
1351     uintptr_t ptr, ptr_locked;
1352     TranslationBlock *dest;
1353     TranslationBlock *tb;
1354     uintptr_t *pprev;
1355     int n;
1356 
1357     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1358     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1359     dest = (TranslationBlock *)(ptr & ~1);
1360     if (dest == NULL) {
1361         return;
1362     }
1363 
1364     qemu_spin_lock(&dest->jmp_lock);
1365     /*
1366      * While acquiring the lock, the jump might have been removed if the
1367      * destination TB was invalidated; check again.
1368      */
1369     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1370     if (ptr_locked != ptr) {
1371         qemu_spin_unlock(&dest->jmp_lock);
1372         /*
1373          * The only possibility is that the jump was unlinked via
1374          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1375          * because we set the LSB above.
1376          */
1377         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1378         return;
1379     }
1380     /*
1381      * We first acquired the lock, and since the destination pointer matches,
1382      * we know for sure that @orig is in the jmp list.
1383      */
1384     pprev = &dest->jmp_list_head;
1385     TB_FOR_EACH_JMP(dest, tb, n) {
1386         if (tb == orig && n == n_orig) {
1387             *pprev = tb->jmp_list_next[n];
1388             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1389             qemu_spin_unlock(&dest->jmp_lock);
1390             return;
1391         }
1392         pprev = &tb->jmp_list_next[n];
1393     }
1394     g_assert_not_reached();
1395 }
1396 
1397 /* reset the jump entry 'n' of a TB so that it is not chained to
1398    another TB */
1399 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1400 {
1401     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1402     tb_set_jmp_target(tb, n, addr);
1403 }
1404 
1405 /* remove any jumps to the TB */
1406 static inline void tb_jmp_unlink(TranslationBlock *dest)
1407 {
1408     TranslationBlock *tb;
1409     int n;
1410 
1411     qemu_spin_lock(&dest->jmp_lock);
1412 
1413     TB_FOR_EACH_JMP(dest, tb, n) {
1414         tb_reset_jump(tb, n);
1415         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1416         /* No need to clear the list entry; setting the dest ptr is enough */
1417     }
1418     dest->jmp_list_head = (uintptr_t)NULL;
1419 
1420     qemu_spin_unlock(&dest->jmp_lock);
1421 }
1422 
1423 /*
1424  * In user-mode, call with mmap_lock held.
1425  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1426  * locks held.
1427  */
1428 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1429 {
1430     CPUState *cpu;
1431     PageDesc *p;
1432     uint32_t h;
1433     tb_page_addr_t phys_pc;
1434 
1435     assert_memory_lock();
1436 
1437     /* make sure no further incoming jumps will be chained to this TB */
1438     qemu_spin_lock(&tb->jmp_lock);
1439     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1440     qemu_spin_unlock(&tb->jmp_lock);
1441 
1442     /* remove the TB from the hash list */
1443     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1444     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1445                      tb->trace_vcpu_dstate);
1446     if (!(tb->cflags & CF_NOCACHE) &&
1447         !qht_remove(&tb_ctx.htable, tb, h)) {
1448         return;
1449     }
1450 
1451     /* remove the TB from the page list */
1452     if (rm_from_page_list) {
1453         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1454         tb_page_remove(p, tb);
1455         invalidate_page_bitmap(p);
1456         if (tb->page_addr[1] != -1) {
1457             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1458             tb_page_remove(p, tb);
1459             invalidate_page_bitmap(p);
1460         }
1461     }
1462 
1463     /* remove the TB from the hash list */
1464     h = tb_jmp_cache_hash_func(tb->pc);
1465     CPU_FOREACH(cpu) {
1466         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1467             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1468         }
1469     }
1470 
1471     /* suppress this TB from the two jump lists */
1472     tb_remove_from_jmp_list(tb, 0);
1473     tb_remove_from_jmp_list(tb, 1);
1474 
1475     /* suppress any remaining jumps to this TB */
1476     tb_jmp_unlink(tb);
1477 
1478     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1479                tcg_ctx->tb_phys_invalidate_count + 1);
1480 }
1481 
1482 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1483 {
1484     do_tb_phys_invalidate(tb, true);
1485 }
1486 
1487 /* invalidate one TB
1488  *
1489  * Called with mmap_lock held in user-mode.
1490  */
1491 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1492 {
1493     if (page_addr == -1 && tb->page_addr[0] != -1) {
1494         page_lock_tb(tb);
1495         do_tb_phys_invalidate(tb, true);
1496         page_unlock_tb(tb);
1497     } else {
1498         do_tb_phys_invalidate(tb, false);
1499     }
1500 }
1501 
1502 #ifdef CONFIG_SOFTMMU
1503 /* call with @p->lock held */
1504 static void build_page_bitmap(PageDesc *p)
1505 {
1506     int n, tb_start, tb_end;
1507     TranslationBlock *tb;
1508 
1509     assert_page_locked(p);
1510     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1511 
1512     PAGE_FOR_EACH_TB(p, tb, n) {
1513         /* NOTE: this is subtle as a TB may span two physical pages */
1514         if (n == 0) {
1515             /* NOTE: tb_end may be after the end of the page, but
1516                it is not a problem */
1517             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1518             tb_end = tb_start + tb->size;
1519             if (tb_end > TARGET_PAGE_SIZE) {
1520                 tb_end = TARGET_PAGE_SIZE;
1521              }
1522         } else {
1523             tb_start = 0;
1524             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1525         }
1526         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1527     }
1528 }
1529 #endif
1530 
1531 /* add the tb in the target page and protect it if necessary
1532  *
1533  * Called with mmap_lock held for user-mode emulation.
1534  * Called with @p->lock held in !user-mode.
1535  */
1536 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1537                                unsigned int n, tb_page_addr_t page_addr)
1538 {
1539 #ifndef CONFIG_USER_ONLY
1540     bool page_already_protected;
1541 #endif
1542 
1543     assert_page_locked(p);
1544 
1545     tb->page_addr[n] = page_addr;
1546     tb->page_next[n] = p->first_tb;
1547 #ifndef CONFIG_USER_ONLY
1548     page_already_protected = p->first_tb != (uintptr_t)NULL;
1549 #endif
1550     p->first_tb = (uintptr_t)tb | n;
1551     invalidate_page_bitmap(p);
1552 
1553 #if defined(CONFIG_USER_ONLY)
1554     if (p->flags & PAGE_WRITE) {
1555         target_ulong addr;
1556         PageDesc *p2;
1557         int prot;
1558 
1559         /* force the host page as non writable (writes will have a
1560            page fault + mprotect overhead) */
1561         page_addr &= qemu_host_page_mask;
1562         prot = 0;
1563         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1564             addr += TARGET_PAGE_SIZE) {
1565 
1566             p2 = page_find(addr >> TARGET_PAGE_BITS);
1567             if (!p2) {
1568                 continue;
1569             }
1570             prot |= p2->flags;
1571             p2->flags &= ~PAGE_WRITE;
1572           }
1573         mprotect(g2h(page_addr), qemu_host_page_size,
1574                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1575         if (DEBUG_TB_INVALIDATE_GATE) {
1576             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1577         }
1578     }
1579 #else
1580     /* if some code is already present, then the pages are already
1581        protected. So we handle the case where only the first TB is
1582        allocated in a physical page */
1583     if (!page_already_protected) {
1584         tlb_protect_code(page_addr);
1585     }
1586 #endif
1587 }
1588 
1589 /* add a new TB and link it to the physical page tables. phys_page2 is
1590  * (-1) to indicate that only one page contains the TB.
1591  *
1592  * Called with mmap_lock held for user-mode emulation.
1593  *
1594  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1595  * Note that in !user-mode, another thread might have already added a TB
1596  * for the same block of guest code that @tb corresponds to. In that case,
1597  * the caller should discard the original @tb, and use instead the returned TB.
1598  */
1599 static TranslationBlock *
1600 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1601              tb_page_addr_t phys_page2)
1602 {
1603     PageDesc *p;
1604     PageDesc *p2 = NULL;
1605 
1606     assert_memory_lock();
1607 
1608     if (phys_pc == -1) {
1609         /*
1610          * If the TB is not associated with a physical RAM page then
1611          * it must be a temporary one-insn TB, and we have nothing to do
1612          * except fill in the page_addr[] fields.
1613          */
1614         assert(tb->cflags & CF_NOCACHE);
1615         tb->page_addr[0] = tb->page_addr[1] = -1;
1616         return tb;
1617     }
1618 
1619     /*
1620      * Add the TB to the page list, acquiring first the pages's locks.
1621      * We keep the locks held until after inserting the TB in the hash table,
1622      * so that if the insertion fails we know for sure that the TBs are still
1623      * in the page descriptors.
1624      * Note that inserting into the hash table first isn't an option, since
1625      * we can only insert TBs that are fully initialized.
1626      */
1627     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1628     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1629     if (p2) {
1630         tb_page_add(p2, tb, 1, phys_page2);
1631     } else {
1632         tb->page_addr[1] = -1;
1633     }
1634 
1635     if (!(tb->cflags & CF_NOCACHE)) {
1636         void *existing_tb = NULL;
1637         uint32_t h;
1638 
1639         /* add in the hash table */
1640         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1641                          tb->trace_vcpu_dstate);
1642         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1643 
1644         /* remove TB from the page(s) if we couldn't insert it */
1645         if (unlikely(existing_tb)) {
1646             tb_page_remove(p, tb);
1647             invalidate_page_bitmap(p);
1648             if (p2) {
1649                 tb_page_remove(p2, tb);
1650                 invalidate_page_bitmap(p2);
1651             }
1652             tb = existing_tb;
1653         }
1654     }
1655 
1656     if (p2 && p2 != p) {
1657         page_unlock(p2);
1658     }
1659     page_unlock(p);
1660 
1661 #ifdef CONFIG_USER_ONLY
1662     if (DEBUG_TB_CHECK_GATE) {
1663         tb_page_check();
1664     }
1665 #endif
1666     return tb;
1667 }
1668 
1669 /* Called with mmap_lock held for user mode emulation.  */
1670 TranslationBlock *tb_gen_code(CPUState *cpu,
1671                               target_ulong pc, target_ulong cs_base,
1672                               uint32_t flags, int cflags)
1673 {
1674     CPUArchState *env = cpu->env_ptr;
1675     TranslationBlock *tb, *existing_tb;
1676     tb_page_addr_t phys_pc, phys_page2;
1677     target_ulong virt_page2;
1678     tcg_insn_unit *gen_code_buf;
1679     int gen_code_size, search_size, max_insns;
1680 #ifdef CONFIG_PROFILER
1681     TCGProfile *prof = &tcg_ctx->prof;
1682     int64_t ti;
1683 #endif
1684     assert_memory_lock();
1685 
1686     phys_pc = get_page_addr_code(env, pc);
1687 
1688     if (phys_pc == -1) {
1689         /* Generate a temporary TB with 1 insn in it */
1690         cflags &= ~CF_COUNT_MASK;
1691         cflags |= CF_NOCACHE | 1;
1692     }
1693 
1694     cflags &= ~CF_CLUSTER_MASK;
1695     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1696 
1697     max_insns = cflags & CF_COUNT_MASK;
1698     if (max_insns == 0) {
1699         max_insns = CF_COUNT_MASK;
1700     }
1701     if (max_insns > TCG_MAX_INSNS) {
1702         max_insns = TCG_MAX_INSNS;
1703     }
1704     if (cpu->singlestep_enabled || singlestep) {
1705         max_insns = 1;
1706     }
1707 
1708  buffer_overflow:
1709     tb = tb_alloc(pc);
1710     if (unlikely(!tb)) {
1711         /* flush must be done */
1712         tb_flush(cpu);
1713         mmap_unlock();
1714         /* Make the execution loop process the flush as soon as possible.  */
1715         cpu->exception_index = EXCP_INTERRUPT;
1716         cpu_loop_exit(cpu);
1717     }
1718 
1719     gen_code_buf = tcg_ctx->code_gen_ptr;
1720     tb->tc.ptr = gen_code_buf;
1721     tb->pc = pc;
1722     tb->cs_base = cs_base;
1723     tb->flags = flags;
1724     tb->cflags = cflags;
1725     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1726     tcg_ctx->tb_cflags = cflags;
1727  tb_overflow:
1728 
1729 #ifdef CONFIG_PROFILER
1730     /* includes aborted translations because of exceptions */
1731     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1732     ti = profile_getclock();
1733 #endif
1734 
1735     tcg_func_start(tcg_ctx);
1736 
1737     tcg_ctx->cpu = env_cpu(env);
1738     gen_intermediate_code(cpu, tb, max_insns);
1739     tcg_ctx->cpu = NULL;
1740 
1741     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1742 
1743     /* generate machine code */
1744     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1745     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1746     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1747     if (TCG_TARGET_HAS_direct_jump) {
1748         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1749         tcg_ctx->tb_jmp_target_addr = NULL;
1750     } else {
1751         tcg_ctx->tb_jmp_insn_offset = NULL;
1752         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1753     }
1754 
1755 #ifdef CONFIG_PROFILER
1756     atomic_set(&prof->tb_count, prof->tb_count + 1);
1757     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1758     ti = profile_getclock();
1759 #endif
1760 
1761     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1762     if (unlikely(gen_code_size < 0)) {
1763         switch (gen_code_size) {
1764         case -1:
1765             /*
1766              * Overflow of code_gen_buffer, or the current slice of it.
1767              *
1768              * TODO: We don't need to re-do gen_intermediate_code, nor
1769              * should we re-do the tcg optimization currently hidden
1770              * inside tcg_gen_code.  All that should be required is to
1771              * flush the TBs, allocate a new TB, re-initialize it per
1772              * above, and re-do the actual code generation.
1773              */
1774             goto buffer_overflow;
1775 
1776         case -2:
1777             /*
1778              * The code generated for the TranslationBlock is too large.
1779              * The maximum size allowed by the unwind info is 64k.
1780              * There may be stricter constraints from relocations
1781              * in the tcg backend.
1782              *
1783              * Try again with half as many insns as we attempted this time.
1784              * If a single insn overflows, there's a bug somewhere...
1785              */
1786             max_insns = tb->icount;
1787             assert(max_insns > 1);
1788             max_insns /= 2;
1789             goto tb_overflow;
1790 
1791         default:
1792             g_assert_not_reached();
1793         }
1794     }
1795     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1796     if (unlikely(search_size < 0)) {
1797         goto buffer_overflow;
1798     }
1799     tb->tc.size = gen_code_size;
1800 
1801 #ifdef CONFIG_PROFILER
1802     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1803     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1804     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1805     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1806 #endif
1807 
1808 #ifdef DEBUG_DISAS
1809     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1810         qemu_log_in_addr_range(tb->pc)) {
1811         qemu_log_lock();
1812         qemu_log("OUT: [size=%d]\n", gen_code_size);
1813         if (tcg_ctx->data_gen_ptr) {
1814             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1815             size_t data_size = gen_code_size - code_size;
1816             size_t i;
1817 
1818             log_disas(tb->tc.ptr, code_size);
1819 
1820             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1821                 if (sizeof(tcg_target_ulong) == 8) {
1822                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1823                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1824                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1825                 } else {
1826                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1827                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1828                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1829                 }
1830             }
1831         } else {
1832             log_disas(tb->tc.ptr, gen_code_size);
1833         }
1834         qemu_log("\n");
1835         qemu_log_flush();
1836         qemu_log_unlock();
1837     }
1838 #endif
1839 
1840     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1841         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1842                  CODE_GEN_ALIGN));
1843 
1844     /* init jump list */
1845     qemu_spin_init(&tb->jmp_lock);
1846     tb->jmp_list_head = (uintptr_t)NULL;
1847     tb->jmp_list_next[0] = (uintptr_t)NULL;
1848     tb->jmp_list_next[1] = (uintptr_t)NULL;
1849     tb->jmp_dest[0] = (uintptr_t)NULL;
1850     tb->jmp_dest[1] = (uintptr_t)NULL;
1851 
1852     /* init original jump addresses which have been set during tcg_gen_code() */
1853     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1854         tb_reset_jump(tb, 0);
1855     }
1856     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1857         tb_reset_jump(tb, 1);
1858     }
1859 
1860     /* check next page if needed */
1861     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1862     phys_page2 = -1;
1863     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1864         phys_page2 = get_page_addr_code(env, virt_page2);
1865     }
1866     /*
1867      * No explicit memory barrier is required -- tb_link_page() makes the
1868      * TB visible in a consistent state.
1869      */
1870     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1871     /* if the TB already exists, discard what we just translated */
1872     if (unlikely(existing_tb != tb)) {
1873         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1874 
1875         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1876         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1877         return existing_tb;
1878     }
1879     tcg_tb_insert(tb);
1880     return tb;
1881 }
1882 
1883 /*
1884  * @p must be non-NULL.
1885  * user-mode: call with mmap_lock held.
1886  * !user-mode: call with all @pages locked.
1887  */
1888 static void
1889 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1890                                       PageDesc *p, tb_page_addr_t start,
1891                                       tb_page_addr_t end,
1892                                       uintptr_t retaddr)
1893 {
1894     TranslationBlock *tb;
1895     tb_page_addr_t tb_start, tb_end;
1896     int n;
1897 #ifdef TARGET_HAS_PRECISE_SMC
1898     CPUState *cpu = current_cpu;
1899     CPUArchState *env = NULL;
1900     bool current_tb_not_found = retaddr != 0;
1901     bool current_tb_modified = false;
1902     TranslationBlock *current_tb = NULL;
1903     target_ulong current_pc = 0;
1904     target_ulong current_cs_base = 0;
1905     uint32_t current_flags = 0;
1906 #endif /* TARGET_HAS_PRECISE_SMC */
1907 
1908     assert_page_locked(p);
1909 
1910 #if defined(TARGET_HAS_PRECISE_SMC)
1911     if (cpu != NULL) {
1912         env = cpu->env_ptr;
1913     }
1914 #endif
1915 
1916     /* we remove all the TBs in the range [start, end[ */
1917     /* XXX: see if in some cases it could be faster to invalidate all
1918        the code */
1919     PAGE_FOR_EACH_TB(p, tb, n) {
1920         assert_page_locked(p);
1921         /* NOTE: this is subtle as a TB may span two physical pages */
1922         if (n == 0) {
1923             /* NOTE: tb_end may be after the end of the page, but
1924                it is not a problem */
1925             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1926             tb_end = tb_start + tb->size;
1927         } else {
1928             tb_start = tb->page_addr[1];
1929             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1930         }
1931         if (!(tb_end <= start || tb_start >= end)) {
1932 #ifdef TARGET_HAS_PRECISE_SMC
1933             if (current_tb_not_found) {
1934                 current_tb_not_found = false;
1935                 /* now we have a real cpu fault */
1936                 current_tb = tcg_tb_lookup(retaddr);
1937             }
1938             if (current_tb == tb &&
1939                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1940                 /*
1941                  * If we are modifying the current TB, we must stop
1942                  * its execution. We could be more precise by checking
1943                  * that the modification is after the current PC, but it
1944                  * would require a specialized function to partially
1945                  * restore the CPU state.
1946                  */
1947                 current_tb_modified = true;
1948                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1949                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1950                                      &current_flags);
1951             }
1952 #endif /* TARGET_HAS_PRECISE_SMC */
1953             tb_phys_invalidate__locked(tb);
1954         }
1955     }
1956 #if !defined(CONFIG_USER_ONLY)
1957     /* if no code remaining, no need to continue to use slow writes */
1958     if (!p->first_tb) {
1959         invalidate_page_bitmap(p);
1960         tlb_unprotect_code(start);
1961     }
1962 #endif
1963 #ifdef TARGET_HAS_PRECISE_SMC
1964     if (current_tb_modified) {
1965         page_collection_unlock(pages);
1966         /* Force execution of one insn next time.  */
1967         cpu->cflags_next_tb = 1 | curr_cflags();
1968         mmap_unlock();
1969         cpu_loop_exit_noexc(cpu);
1970     }
1971 #endif
1972 }
1973 
1974 /*
1975  * Invalidate all TBs which intersect with the target physical address range
1976  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1977  * 'is_cpu_write_access' should be true if called from a real cpu write
1978  * access: the virtual CPU will exit the current TB if code is modified inside
1979  * this TB.
1980  *
1981  * Called with mmap_lock held for user-mode emulation
1982  */
1983 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1984 {
1985     struct page_collection *pages;
1986     PageDesc *p;
1987 
1988     assert_memory_lock();
1989 
1990     p = page_find(start >> TARGET_PAGE_BITS);
1991     if (p == NULL) {
1992         return;
1993     }
1994     pages = page_collection_lock(start, end);
1995     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1996     page_collection_unlock(pages);
1997 }
1998 
1999 /*
2000  * Invalidate all TBs which intersect with the target physical address range
2001  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2002  * 'is_cpu_write_access' should be true if called from a real cpu write
2003  * access: the virtual CPU will exit the current TB if code is modified inside
2004  * this TB.
2005  *
2006  * Called with mmap_lock held for user-mode emulation.
2007  */
2008 #ifdef CONFIG_SOFTMMU
2009 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2010 #else
2011 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2012 #endif
2013 {
2014     struct page_collection *pages;
2015     tb_page_addr_t next;
2016 
2017     assert_memory_lock();
2018 
2019     pages = page_collection_lock(start, end);
2020     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2021          start < end;
2022          start = next, next += TARGET_PAGE_SIZE) {
2023         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2024         tb_page_addr_t bound = MIN(next, end);
2025 
2026         if (pd == NULL) {
2027             continue;
2028         }
2029         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2030     }
2031     page_collection_unlock(pages);
2032 }
2033 
2034 #ifdef CONFIG_SOFTMMU
2035 /* len must be <= 8 and start must be a multiple of len.
2036  * Called via softmmu_template.h when code areas are written to with
2037  * iothread mutex not held.
2038  *
2039  * Call with all @pages in the range [@start, @start + len[ locked.
2040  */
2041 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2042                                   tb_page_addr_t start, int len,
2043                                   uintptr_t retaddr)
2044 {
2045     PageDesc *p;
2046 
2047     assert_memory_lock();
2048 
2049     p = page_find(start >> TARGET_PAGE_BITS);
2050     if (!p) {
2051         return;
2052     }
2053 
2054     assert_page_locked(p);
2055     if (!p->code_bitmap &&
2056         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2057         build_page_bitmap(p);
2058     }
2059     if (p->code_bitmap) {
2060         unsigned int nr;
2061         unsigned long b;
2062 
2063         nr = start & ~TARGET_PAGE_MASK;
2064         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2065         if (b & ((1 << len) - 1)) {
2066             goto do_invalidate;
2067         }
2068     } else {
2069     do_invalidate:
2070         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2071                                               retaddr);
2072     }
2073 }
2074 #else
2075 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2076  * host PC of the faulting store instruction that caused this invalidate.
2077  * Returns true if the caller needs to abort execution of the current
2078  * TB (because it was modified by this store and the guest CPU has
2079  * precise-SMC semantics).
2080  */
2081 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2082 {
2083     TranslationBlock *tb;
2084     PageDesc *p;
2085     int n;
2086 #ifdef TARGET_HAS_PRECISE_SMC
2087     TranslationBlock *current_tb = NULL;
2088     CPUState *cpu = current_cpu;
2089     CPUArchState *env = NULL;
2090     int current_tb_modified = 0;
2091     target_ulong current_pc = 0;
2092     target_ulong current_cs_base = 0;
2093     uint32_t current_flags = 0;
2094 #endif
2095 
2096     assert_memory_lock();
2097 
2098     addr &= TARGET_PAGE_MASK;
2099     p = page_find(addr >> TARGET_PAGE_BITS);
2100     if (!p) {
2101         return false;
2102     }
2103 
2104 #ifdef TARGET_HAS_PRECISE_SMC
2105     if (p->first_tb && pc != 0) {
2106         current_tb = tcg_tb_lookup(pc);
2107     }
2108     if (cpu != NULL) {
2109         env = cpu->env_ptr;
2110     }
2111 #endif
2112     assert_page_locked(p);
2113     PAGE_FOR_EACH_TB(p, tb, n) {
2114 #ifdef TARGET_HAS_PRECISE_SMC
2115         if (current_tb == tb &&
2116             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2117                 /* If we are modifying the current TB, we must stop
2118                    its execution. We could be more precise by checking
2119                    that the modification is after the current PC, but it
2120                    would require a specialized function to partially
2121                    restore the CPU state */
2122 
2123             current_tb_modified = 1;
2124             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2125             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2126                                  &current_flags);
2127         }
2128 #endif /* TARGET_HAS_PRECISE_SMC */
2129         tb_phys_invalidate(tb, addr);
2130     }
2131     p->first_tb = (uintptr_t)NULL;
2132 #ifdef TARGET_HAS_PRECISE_SMC
2133     if (current_tb_modified) {
2134         /* Force execution of one insn next time.  */
2135         cpu->cflags_next_tb = 1 | curr_cflags();
2136         return true;
2137     }
2138 #endif
2139 
2140     return false;
2141 }
2142 #endif
2143 
2144 /* user-mode: call with mmap_lock held */
2145 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2146 {
2147     TranslationBlock *tb;
2148 
2149     assert_memory_lock();
2150 
2151     tb = tcg_tb_lookup(retaddr);
2152     if (tb) {
2153         /* We can use retranslation to find the PC.  */
2154         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2155         tb_phys_invalidate(tb, -1);
2156     } else {
2157         /* The exception probably happened in a helper.  The CPU state should
2158            have been saved before calling it. Fetch the PC from there.  */
2159         CPUArchState *env = cpu->env_ptr;
2160         target_ulong pc, cs_base;
2161         tb_page_addr_t addr;
2162         uint32_t flags;
2163 
2164         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2165         addr = get_page_addr_code(env, pc);
2166         if (addr != -1) {
2167             tb_invalidate_phys_range(addr, addr + 1);
2168         }
2169     }
2170 }
2171 
2172 #ifndef CONFIG_USER_ONLY
2173 /* in deterministic execution mode, instructions doing device I/Os
2174  * must be at the end of the TB.
2175  *
2176  * Called by softmmu_template.h, with iothread mutex not held.
2177  */
2178 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2179 {
2180 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2181     CPUArchState *env = cpu->env_ptr;
2182 #endif
2183     TranslationBlock *tb;
2184     uint32_t n;
2185 
2186     tb = tcg_tb_lookup(retaddr);
2187     if (!tb) {
2188         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2189                   (void *)retaddr);
2190     }
2191     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2192 
2193     /* On MIPS and SH, delay slot instructions can only be restarted if
2194        they were already the first instruction in the TB.  If this is not
2195        the first instruction in a TB then re-execute the preceding
2196        branch.  */
2197     n = 1;
2198 #if defined(TARGET_MIPS)
2199     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2200         && env->active_tc.PC != tb->pc) {
2201         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2202         cpu_neg(cpu)->icount_decr.u16.low++;
2203         env->hflags &= ~MIPS_HFLAG_BMASK;
2204         n = 2;
2205     }
2206 #elif defined(TARGET_SH4)
2207     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2208         && env->pc != tb->pc) {
2209         env->pc -= 2;
2210         cpu_neg(cpu)->icount_decr.u16.low++;
2211         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2212         n = 2;
2213     }
2214 #endif
2215 
2216     /* Generate a new TB executing the I/O insn.  */
2217     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2218 
2219     if (tb_cflags(tb) & CF_NOCACHE) {
2220         if (tb->orig_tb) {
2221             /* Invalidate original TB if this TB was generated in
2222              * cpu_exec_nocache() */
2223             tb_phys_invalidate(tb->orig_tb, -1);
2224         }
2225         tcg_tb_remove(tb);
2226     }
2227 
2228     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2229      * the first in the TB) then we end up generating a whole new TB and
2230      *  repeating the fault, which is horribly inefficient.
2231      *  Better would be to execute just this insn uncached, or generate a
2232      *  second new TB.
2233      */
2234     cpu_loop_exit_noexc(cpu);
2235 }
2236 
2237 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2238 {
2239     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2240 
2241     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2242         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2243     }
2244 }
2245 
2246 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2247 {
2248     /* Discard jump cache entries for any tb which might potentially
2249        overlap the flushed page.  */
2250     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2251     tb_jmp_cache_clear_page(cpu, addr);
2252 }
2253 
2254 static void print_qht_statistics(struct qht_stats hst)
2255 {
2256     uint32_t hgram_opts;
2257     size_t hgram_bins;
2258     char *hgram;
2259 
2260     if (!hst.head_buckets) {
2261         return;
2262     }
2263     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2264                 hst.used_head_buckets, hst.head_buckets,
2265                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2266 
2267     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2268     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2269     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2270         hgram_opts |= QDIST_PR_NODECIMAL;
2271     }
2272     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2273     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2274                 qdist_avg(&hst.occupancy) * 100, hgram);
2275     g_free(hgram);
2276 
2277     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2278     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2279     if (hgram_bins > 10) {
2280         hgram_bins = 10;
2281     } else {
2282         hgram_bins = 0;
2283         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2284     }
2285     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2286     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2287                 qdist_avg(&hst.chain), hgram);
2288     g_free(hgram);
2289 }
2290 
2291 struct tb_tree_stats {
2292     size_t nb_tbs;
2293     size_t host_size;
2294     size_t target_size;
2295     size_t max_target_size;
2296     size_t direct_jmp_count;
2297     size_t direct_jmp2_count;
2298     size_t cross_page;
2299 };
2300 
2301 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2302 {
2303     const TranslationBlock *tb = value;
2304     struct tb_tree_stats *tst = data;
2305 
2306     tst->nb_tbs++;
2307     tst->host_size += tb->tc.size;
2308     tst->target_size += tb->size;
2309     if (tb->size > tst->max_target_size) {
2310         tst->max_target_size = tb->size;
2311     }
2312     if (tb->page_addr[1] != -1) {
2313         tst->cross_page++;
2314     }
2315     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2316         tst->direct_jmp_count++;
2317         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2318             tst->direct_jmp2_count++;
2319         }
2320     }
2321     return false;
2322 }
2323 
2324 void dump_exec_info(void)
2325 {
2326     struct tb_tree_stats tst = {};
2327     struct qht_stats hst;
2328     size_t nb_tbs, flush_full, flush_part, flush_elide;
2329 
2330     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2331     nb_tbs = tst.nb_tbs;
2332     /* XXX: avoid using doubles ? */
2333     qemu_printf("Translation buffer state:\n");
2334     /*
2335      * Report total code size including the padding and TB structs;
2336      * otherwise users might think "-tb-size" is not honoured.
2337      * For avg host size we use the precise numbers from tb_tree_stats though.
2338      */
2339     qemu_printf("gen code size       %zu/%zu\n",
2340                 tcg_code_size(), tcg_code_capacity());
2341     qemu_printf("TB count            %zu\n", nb_tbs);
2342     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2343                 nb_tbs ? tst.target_size / nb_tbs : 0,
2344                 tst.max_target_size);
2345     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2346                 nb_tbs ? tst.host_size / nb_tbs : 0,
2347                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2348     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2349                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2350     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2351                 tst.direct_jmp_count,
2352                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2353                 tst.direct_jmp2_count,
2354                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2355 
2356     qht_statistics_init(&tb_ctx.htable, &hst);
2357     print_qht_statistics(hst);
2358     qht_statistics_destroy(&hst);
2359 
2360     qemu_printf("\nStatistics:\n");
2361     qemu_printf("TB flush count      %u\n",
2362                 atomic_read(&tb_ctx.tb_flush_count));
2363     qemu_printf("TB invalidate count %zu\n",
2364                 tcg_tb_phys_invalidate_count());
2365 
2366     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2367     qemu_printf("TLB full flushes    %zu\n", flush_full);
2368     qemu_printf("TLB partial flushes %zu\n", flush_part);
2369     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2370     tcg_dump_info();
2371 }
2372 
2373 void dump_opcount_info(void)
2374 {
2375     tcg_dump_op_count();
2376 }
2377 
2378 #else /* CONFIG_USER_ONLY */
2379 
2380 void cpu_interrupt(CPUState *cpu, int mask)
2381 {
2382     g_assert(qemu_mutex_iothread_locked());
2383     cpu->interrupt_request |= mask;
2384     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2385 }
2386 
2387 /*
2388  * Walks guest process memory "regions" one by one
2389  * and calls callback function 'fn' for each region.
2390  */
2391 struct walk_memory_regions_data {
2392     walk_memory_regions_fn fn;
2393     void *priv;
2394     target_ulong start;
2395     int prot;
2396 };
2397 
2398 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2399                                    target_ulong end, int new_prot)
2400 {
2401     if (data->start != -1u) {
2402         int rc = data->fn(data->priv, data->start, end, data->prot);
2403         if (rc != 0) {
2404             return rc;
2405         }
2406     }
2407 
2408     data->start = (new_prot ? end : -1u);
2409     data->prot = new_prot;
2410 
2411     return 0;
2412 }
2413 
2414 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2415                                  target_ulong base, int level, void **lp)
2416 {
2417     target_ulong pa;
2418     int i, rc;
2419 
2420     if (*lp == NULL) {
2421         return walk_memory_regions_end(data, base, 0);
2422     }
2423 
2424     if (level == 0) {
2425         PageDesc *pd = *lp;
2426 
2427         for (i = 0; i < V_L2_SIZE; ++i) {
2428             int prot = pd[i].flags;
2429 
2430             pa = base | (i << TARGET_PAGE_BITS);
2431             if (prot != data->prot) {
2432                 rc = walk_memory_regions_end(data, pa, prot);
2433                 if (rc != 0) {
2434                     return rc;
2435                 }
2436             }
2437         }
2438     } else {
2439         void **pp = *lp;
2440 
2441         for (i = 0; i < V_L2_SIZE; ++i) {
2442             pa = base | ((target_ulong)i <<
2443                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2444             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2445             if (rc != 0) {
2446                 return rc;
2447             }
2448         }
2449     }
2450 
2451     return 0;
2452 }
2453 
2454 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2455 {
2456     struct walk_memory_regions_data data;
2457     uintptr_t i, l1_sz = v_l1_size;
2458 
2459     data.fn = fn;
2460     data.priv = priv;
2461     data.start = -1u;
2462     data.prot = 0;
2463 
2464     for (i = 0; i < l1_sz; i++) {
2465         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2466         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2467         if (rc != 0) {
2468             return rc;
2469         }
2470     }
2471 
2472     return walk_memory_regions_end(&data, 0, 0);
2473 }
2474 
2475 static int dump_region(void *priv, target_ulong start,
2476     target_ulong end, unsigned long prot)
2477 {
2478     FILE *f = (FILE *)priv;
2479 
2480     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2481         " "TARGET_FMT_lx" %c%c%c\n",
2482         start, end, end - start,
2483         ((prot & PAGE_READ) ? 'r' : '-'),
2484         ((prot & PAGE_WRITE) ? 'w' : '-'),
2485         ((prot & PAGE_EXEC) ? 'x' : '-'));
2486 
2487     return 0;
2488 }
2489 
2490 /* dump memory mappings */
2491 void page_dump(FILE *f)
2492 {
2493     const int length = sizeof(target_ulong) * 2;
2494     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2495             length, "start", length, "end", length, "size", "prot");
2496     walk_memory_regions(f, dump_region);
2497 }
2498 
2499 int page_get_flags(target_ulong address)
2500 {
2501     PageDesc *p;
2502 
2503     p = page_find(address >> TARGET_PAGE_BITS);
2504     if (!p) {
2505         return 0;
2506     }
2507     return p->flags;
2508 }
2509 
2510 /* Modify the flags of a page and invalidate the code if necessary.
2511    The flag PAGE_WRITE_ORG is positioned automatically depending
2512    on PAGE_WRITE.  The mmap_lock should already be held.  */
2513 void page_set_flags(target_ulong start, target_ulong end, int flags)
2514 {
2515     target_ulong addr, len;
2516 
2517     /* This function should never be called with addresses outside the
2518        guest address space.  If this assert fires, it probably indicates
2519        a missing call to h2g_valid.  */
2520 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2521     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2522 #endif
2523     assert(start < end);
2524     assert_memory_lock();
2525 
2526     start = start & TARGET_PAGE_MASK;
2527     end = TARGET_PAGE_ALIGN(end);
2528 
2529     if (flags & PAGE_WRITE) {
2530         flags |= PAGE_WRITE_ORG;
2531     }
2532 
2533     for (addr = start, len = end - start;
2534          len != 0;
2535          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2536         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2537 
2538         /* If the write protection bit is set, then we invalidate
2539            the code inside.  */
2540         if (!(p->flags & PAGE_WRITE) &&
2541             (flags & PAGE_WRITE) &&
2542             p->first_tb) {
2543             tb_invalidate_phys_page(addr, 0);
2544         }
2545         p->flags = flags;
2546     }
2547 }
2548 
2549 int page_check_range(target_ulong start, target_ulong len, int flags)
2550 {
2551     PageDesc *p;
2552     target_ulong end;
2553     target_ulong addr;
2554 
2555     /* This function should never be called with addresses outside the
2556        guest address space.  If this assert fires, it probably indicates
2557        a missing call to h2g_valid.  */
2558 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2559     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2560 #endif
2561 
2562     if (len == 0) {
2563         return 0;
2564     }
2565     if (start + len - 1 < start) {
2566         /* We've wrapped around.  */
2567         return -1;
2568     }
2569 
2570     /* must do before we loose bits in the next step */
2571     end = TARGET_PAGE_ALIGN(start + len);
2572     start = start & TARGET_PAGE_MASK;
2573 
2574     for (addr = start, len = end - start;
2575          len != 0;
2576          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2577         p = page_find(addr >> TARGET_PAGE_BITS);
2578         if (!p) {
2579             return -1;
2580         }
2581         if (!(p->flags & PAGE_VALID)) {
2582             return -1;
2583         }
2584 
2585         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2586             return -1;
2587         }
2588         if (flags & PAGE_WRITE) {
2589             if (!(p->flags & PAGE_WRITE_ORG)) {
2590                 return -1;
2591             }
2592             /* unprotect the page if it was put read-only because it
2593                contains translated code */
2594             if (!(p->flags & PAGE_WRITE)) {
2595                 if (!page_unprotect(addr, 0)) {
2596                     return -1;
2597                 }
2598             }
2599         }
2600     }
2601     return 0;
2602 }
2603 
2604 /* called from signal handler: invalidate the code and unprotect the
2605  * page. Return 0 if the fault was not handled, 1 if it was handled,
2606  * and 2 if it was handled but the caller must cause the TB to be
2607  * immediately exited. (We can only return 2 if the 'pc' argument is
2608  * non-zero.)
2609  */
2610 int page_unprotect(target_ulong address, uintptr_t pc)
2611 {
2612     unsigned int prot;
2613     bool current_tb_invalidated;
2614     PageDesc *p;
2615     target_ulong host_start, host_end, addr;
2616 
2617     /* Technically this isn't safe inside a signal handler.  However we
2618        know this only ever happens in a synchronous SEGV handler, so in
2619        practice it seems to be ok.  */
2620     mmap_lock();
2621 
2622     p = page_find(address >> TARGET_PAGE_BITS);
2623     if (!p) {
2624         mmap_unlock();
2625         return 0;
2626     }
2627 
2628     /* if the page was really writable, then we change its
2629        protection back to writable */
2630     if (p->flags & PAGE_WRITE_ORG) {
2631         current_tb_invalidated = false;
2632         if (p->flags & PAGE_WRITE) {
2633             /* If the page is actually marked WRITE then assume this is because
2634              * this thread raced with another one which got here first and
2635              * set the page to PAGE_WRITE and did the TB invalidate for us.
2636              */
2637 #ifdef TARGET_HAS_PRECISE_SMC
2638             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2639             if (current_tb) {
2640                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2641             }
2642 #endif
2643         } else {
2644             host_start = address & qemu_host_page_mask;
2645             host_end = host_start + qemu_host_page_size;
2646 
2647             prot = 0;
2648             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2649                 p = page_find(addr >> TARGET_PAGE_BITS);
2650                 p->flags |= PAGE_WRITE;
2651                 prot |= p->flags;
2652 
2653                 /* and since the content will be modified, we must invalidate
2654                    the corresponding translated code. */
2655                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2656 #ifdef CONFIG_USER_ONLY
2657                 if (DEBUG_TB_CHECK_GATE) {
2658                     tb_invalidate_check(addr);
2659                 }
2660 #endif
2661             }
2662             mprotect((void *)g2h(host_start), qemu_host_page_size,
2663                      prot & PAGE_BITS);
2664         }
2665         mmap_unlock();
2666         /* If current TB was invalidated return to main loop */
2667         return current_tb_invalidated ? 2 : 1;
2668     }
2669     mmap_unlock();
2670     return 0;
2671 }
2672 #endif /* CONFIG_USER_ONLY */
2673 
2674 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2675 void tcg_flush_softmmu_tlb(CPUState *cs)
2676 {
2677 #ifdef CONFIG_SOFTMMU
2678     tlb_flush(cs);
2679 #endif
2680 }
2681