1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 #include "qemu-common.h" 23 24 #define NO_CPU_IO_DEFS 25 #include "cpu.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #if defined(CONFIG_USER_ONLY) 31 #include "qemu.h" 32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 33 #include <sys/param.h> 34 #if __FreeBSD_version >= 700104 35 #define HAVE_KINFO_GETVMMAP 36 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 37 #include <sys/proc.h> 38 #include <machine/profile.h> 39 #define _KERNEL 40 #include <sys/user.h> 41 #undef _KERNEL 42 #undef sigqueue 43 #include <libutil.h> 44 #endif 45 #endif 46 #else 47 #include "exec/ram_addr.h" 48 #endif 49 50 #include "exec/cputlb.h" 51 #include "exec/tb-hash.h" 52 #include "translate-all.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/error-report.h" 55 #include "qemu/qemu-print.h" 56 #include "qemu/timer.h" 57 #include "qemu/main-loop.h" 58 #include "exec/log.h" 59 #include "sysemu/cpus.h" 60 #include "sysemu/tcg.h" 61 62 /* #define DEBUG_TB_INVALIDATE */ 63 /* #define DEBUG_TB_FLUSH */ 64 /* make various TB consistency checks */ 65 /* #define DEBUG_TB_CHECK */ 66 67 #ifdef DEBUG_TB_INVALIDATE 68 #define DEBUG_TB_INVALIDATE_GATE 1 69 #else 70 #define DEBUG_TB_INVALIDATE_GATE 0 71 #endif 72 73 #ifdef DEBUG_TB_FLUSH 74 #define DEBUG_TB_FLUSH_GATE 1 75 #else 76 #define DEBUG_TB_FLUSH_GATE 0 77 #endif 78 79 #if !defined(CONFIG_USER_ONLY) 80 /* TB consistency checks only implemented for usermode emulation. */ 81 #undef DEBUG_TB_CHECK 82 #endif 83 84 #ifdef DEBUG_TB_CHECK 85 #define DEBUG_TB_CHECK_GATE 1 86 #else 87 #define DEBUG_TB_CHECK_GATE 0 88 #endif 89 90 /* Access to the various translations structures need to be serialised via locks 91 * for consistency. 92 * In user-mode emulation access to the memory related structures are protected 93 * with mmap_lock. 94 * In !user-mode we use per-page locks. 95 */ 96 #ifdef CONFIG_SOFTMMU 97 #define assert_memory_lock() 98 #else 99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 100 #endif 101 102 #define SMC_BITMAP_USE_THRESHOLD 10 103 104 typedef struct PageDesc { 105 /* list of TBs intersecting this ram page */ 106 uintptr_t first_tb; 107 #ifdef CONFIG_SOFTMMU 108 /* in order to optimize self modifying code, we count the number 109 of lookups we do to a given page to use a bitmap */ 110 unsigned long *code_bitmap; 111 unsigned int code_write_count; 112 #else 113 unsigned long flags; 114 #endif 115 #ifndef CONFIG_USER_ONLY 116 QemuSpin lock; 117 #endif 118 } PageDesc; 119 120 /** 121 * struct page_entry - page descriptor entry 122 * @pd: pointer to the &struct PageDesc of the page this entry represents 123 * @index: page index of the page 124 * @locked: whether the page is locked 125 * 126 * This struct helps us keep track of the locked state of a page, without 127 * bloating &struct PageDesc. 128 * 129 * A page lock protects accesses to all fields of &struct PageDesc. 130 * 131 * See also: &struct page_collection. 132 */ 133 struct page_entry { 134 PageDesc *pd; 135 tb_page_addr_t index; 136 bool locked; 137 }; 138 139 /** 140 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 141 * @tree: Binary search tree (BST) of the pages, with key == page index 142 * @max: Pointer to the page in @tree with the highest page index 143 * 144 * To avoid deadlock we lock pages in ascending order of page index. 145 * When operating on a set of pages, we need to keep track of them so that 146 * we can lock them in order and also unlock them later. For this we collect 147 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 148 * @tree implementation we use does not provide an O(1) operation to obtain the 149 * highest-ranked element, we use @max to keep track of the inserted page 150 * with the highest index. This is valuable because if a page is not in 151 * the tree and its index is higher than @max's, then we can lock it 152 * without breaking the locking order rule. 153 * 154 * Note on naming: 'struct page_set' would be shorter, but we already have a few 155 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 156 * 157 * See also: page_collection_lock(). 158 */ 159 struct page_collection { 160 GTree *tree; 161 struct page_entry *max; 162 }; 163 164 /* list iterators for lists of tagged pointers in TranslationBlock */ 165 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 166 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 167 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 168 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 169 170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 171 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 172 173 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 174 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 175 176 /* 177 * In system mode we want L1_MAP to be based on ram offsets, 178 * while in user mode we want it to be based on virtual addresses. 179 * 180 * TODO: For user mode, see the caveat re host vs guest virtual 181 * address spaces near GUEST_ADDR_MAX. 182 */ 183 #if !defined(CONFIG_USER_ONLY) 184 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 185 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 186 #else 187 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 188 #endif 189 #else 190 # define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS) 191 #endif 192 193 /* Size of the L2 (and L3, etc) page tables. */ 194 #define V_L2_BITS 10 195 #define V_L2_SIZE (1 << V_L2_BITS) 196 197 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 198 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 199 sizeof_field(TranslationBlock, trace_vcpu_dstate) 200 * BITS_PER_BYTE); 201 202 /* 203 * L1 Mapping properties 204 */ 205 static int v_l1_size; 206 static int v_l1_shift; 207 static int v_l2_levels; 208 209 /* The bottom level has pointers to PageDesc, and is indexed by 210 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 211 */ 212 #define V_L1_MIN_BITS 4 213 #define V_L1_MAX_BITS (V_L2_BITS + 3) 214 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 215 216 static void *l1_map[V_L1_MAX_SIZE]; 217 218 /* code generation context */ 219 TCGContext tcg_init_ctx; 220 __thread TCGContext *tcg_ctx; 221 TBContext tb_ctx; 222 bool parallel_cpus; 223 224 static void page_table_config_init(void) 225 { 226 uint32_t v_l1_bits; 227 228 assert(TARGET_PAGE_BITS); 229 /* The bits remaining after N lower levels of page tables. */ 230 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 231 if (v_l1_bits < V_L1_MIN_BITS) { 232 v_l1_bits += V_L2_BITS; 233 } 234 235 v_l1_size = 1 << v_l1_bits; 236 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 237 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 238 239 assert(v_l1_bits <= V_L1_MAX_BITS); 240 assert(v_l1_shift % V_L2_BITS == 0); 241 assert(v_l2_levels >= 0); 242 } 243 244 void cpu_gen_init(void) 245 { 246 tcg_context_init(&tcg_init_ctx); 247 } 248 249 /* Encode VAL as a signed leb128 sequence at P. 250 Return P incremented past the encoded value. */ 251 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 252 { 253 int more, byte; 254 255 do { 256 byte = val & 0x7f; 257 val >>= 7; 258 more = !((val == 0 && (byte & 0x40) == 0) 259 || (val == -1 && (byte & 0x40) != 0)); 260 if (more) { 261 byte |= 0x80; 262 } 263 *p++ = byte; 264 } while (more); 265 266 return p; 267 } 268 269 /* Decode a signed leb128 sequence at *PP; increment *PP past the 270 decoded value. Return the decoded value. */ 271 static target_long decode_sleb128(uint8_t **pp) 272 { 273 uint8_t *p = *pp; 274 target_long val = 0; 275 int byte, shift = 0; 276 277 do { 278 byte = *p++; 279 val |= (target_ulong)(byte & 0x7f) << shift; 280 shift += 7; 281 } while (byte & 0x80); 282 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 283 val |= -(target_ulong)1 << shift; 284 } 285 286 *pp = p; 287 return val; 288 } 289 290 /* Encode the data collected about the instructions while compiling TB. 291 Place the data at BLOCK, and return the number of bytes consumed. 292 293 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 294 which come from the target's insn_start data, followed by a uintptr_t 295 which comes from the host pc of the end of the code implementing the insn. 296 297 Each line of the table is encoded as sleb128 deltas from the previous 298 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 299 That is, the first column is seeded with the guest pc, the last column 300 with the host pc, and the middle columns with zeros. */ 301 302 static int encode_search(TranslationBlock *tb, uint8_t *block) 303 { 304 uint8_t *highwater = tcg_ctx->code_gen_highwater; 305 uint8_t *p = block; 306 int i, j, n; 307 308 for (i = 0, n = tb->icount; i < n; ++i) { 309 target_ulong prev; 310 311 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 312 if (i == 0) { 313 prev = (j == 0 ? tb->pc : 0); 314 } else { 315 prev = tcg_ctx->gen_insn_data[i - 1][j]; 316 } 317 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 318 } 319 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 320 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 321 322 /* Test for (pending) buffer overflow. The assumption is that any 323 one row beginning below the high water mark cannot overrun 324 the buffer completely. Thus we can test for overflow after 325 encoding a row without having to check during encoding. */ 326 if (unlikely(p > highwater)) { 327 return -1; 328 } 329 } 330 331 return p - block; 332 } 333 334 /* The cpu state corresponding to 'searched_pc' is restored. 335 * When reset_icount is true, current TB will be interrupted and 336 * icount should be recalculated. 337 */ 338 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 339 uintptr_t searched_pc, bool reset_icount) 340 { 341 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 342 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 343 CPUArchState *env = cpu->env_ptr; 344 uint8_t *p = tb->tc.ptr + tb->tc.size; 345 int i, j, num_insns = tb->icount; 346 #ifdef CONFIG_PROFILER 347 TCGProfile *prof = &tcg_ctx->prof; 348 int64_t ti = profile_getclock(); 349 #endif 350 351 searched_pc -= GETPC_ADJ; 352 353 if (searched_pc < host_pc) { 354 return -1; 355 } 356 357 /* Reconstruct the stored insn data while looking for the point at 358 which the end of the insn exceeds the searched_pc. */ 359 for (i = 0; i < num_insns; ++i) { 360 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 361 data[j] += decode_sleb128(&p); 362 } 363 host_pc += decode_sleb128(&p); 364 if (host_pc > searched_pc) { 365 goto found; 366 } 367 } 368 return -1; 369 370 found: 371 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 372 assert(use_icount); 373 /* Reset the cycle counter to the start of the block 374 and shift if to the number of actually executed instructions */ 375 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 376 } 377 restore_state_to_opc(env, tb, data); 378 379 #ifdef CONFIG_PROFILER 380 atomic_set(&prof->restore_time, 381 prof->restore_time + profile_getclock() - ti); 382 atomic_set(&prof->restore_count, prof->restore_count + 1); 383 #endif 384 return 0; 385 } 386 387 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 388 { 389 TranslationBlock *tb; 390 bool r = false; 391 uintptr_t check_offset; 392 393 /* The host_pc has to be in the region of current code buffer. If 394 * it is not we will not be able to resolve it here. The two cases 395 * where host_pc will not be correct are: 396 * 397 * - fault during translation (instruction fetch) 398 * - fault from helper (not using GETPC() macro) 399 * 400 * Either way we need return early as we can't resolve it here. 401 * 402 * We are using unsigned arithmetic so if host_pc < 403 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 404 * above the code_gen_buffer_size 405 */ 406 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 407 408 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 409 tb = tcg_tb_lookup(host_pc); 410 if (tb) { 411 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 412 if (tb_cflags(tb) & CF_NOCACHE) { 413 /* one-shot translation, invalidate it immediately */ 414 tb_phys_invalidate(tb, -1); 415 tcg_tb_remove(tb); 416 } 417 r = true; 418 } 419 } 420 421 return r; 422 } 423 424 static void page_init(void) 425 { 426 page_size_init(); 427 page_table_config_init(); 428 429 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 430 { 431 #ifdef HAVE_KINFO_GETVMMAP 432 struct kinfo_vmentry *freep; 433 int i, cnt; 434 435 freep = kinfo_getvmmap(getpid(), &cnt); 436 if (freep) { 437 mmap_lock(); 438 for (i = 0; i < cnt; i++) { 439 unsigned long startaddr, endaddr; 440 441 startaddr = freep[i].kve_start; 442 endaddr = freep[i].kve_end; 443 if (h2g_valid(startaddr)) { 444 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 445 446 if (h2g_valid(endaddr)) { 447 endaddr = h2g(endaddr); 448 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 449 } else { 450 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 451 endaddr = ~0ul; 452 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 453 #endif 454 } 455 } 456 } 457 free(freep); 458 mmap_unlock(); 459 } 460 #else 461 FILE *f; 462 463 last_brk = (unsigned long)sbrk(0); 464 465 f = fopen("/compat/linux/proc/self/maps", "r"); 466 if (f) { 467 mmap_lock(); 468 469 do { 470 unsigned long startaddr, endaddr; 471 int n; 472 473 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 474 475 if (n == 2 && h2g_valid(startaddr)) { 476 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 477 478 if (h2g_valid(endaddr)) { 479 endaddr = h2g(endaddr); 480 } else { 481 endaddr = ~0ul; 482 } 483 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 484 } 485 } while (!feof(f)); 486 487 fclose(f); 488 mmap_unlock(); 489 } 490 #endif 491 } 492 #endif 493 } 494 495 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 496 { 497 PageDesc *pd; 498 void **lp; 499 int i; 500 501 /* Level 1. Always allocated. */ 502 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 503 504 /* Level 2..N-1. */ 505 for (i = v_l2_levels; i > 0; i--) { 506 void **p = atomic_rcu_read(lp); 507 508 if (p == NULL) { 509 void *existing; 510 511 if (!alloc) { 512 return NULL; 513 } 514 p = g_new0(void *, V_L2_SIZE); 515 existing = atomic_cmpxchg(lp, NULL, p); 516 if (unlikely(existing)) { 517 g_free(p); 518 p = existing; 519 } 520 } 521 522 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 523 } 524 525 pd = atomic_rcu_read(lp); 526 if (pd == NULL) { 527 void *existing; 528 529 if (!alloc) { 530 return NULL; 531 } 532 pd = g_new0(PageDesc, V_L2_SIZE); 533 #ifndef CONFIG_USER_ONLY 534 { 535 int i; 536 537 for (i = 0; i < V_L2_SIZE; i++) { 538 qemu_spin_init(&pd[i].lock); 539 } 540 } 541 #endif 542 existing = atomic_cmpxchg(lp, NULL, pd); 543 if (unlikely(existing)) { 544 g_free(pd); 545 pd = existing; 546 } 547 } 548 549 return pd + (index & (V_L2_SIZE - 1)); 550 } 551 552 static inline PageDesc *page_find(tb_page_addr_t index) 553 { 554 return page_find_alloc(index, 0); 555 } 556 557 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 558 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 559 560 /* In user-mode page locks aren't used; mmap_lock is enough */ 561 #ifdef CONFIG_USER_ONLY 562 563 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 564 565 static inline void page_lock(PageDesc *pd) 566 { } 567 568 static inline void page_unlock(PageDesc *pd) 569 { } 570 571 static inline void page_lock_tb(const TranslationBlock *tb) 572 { } 573 574 static inline void page_unlock_tb(const TranslationBlock *tb) 575 { } 576 577 struct page_collection * 578 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 579 { 580 return NULL; 581 } 582 583 void page_collection_unlock(struct page_collection *set) 584 { } 585 #else /* !CONFIG_USER_ONLY */ 586 587 #ifdef CONFIG_DEBUG_TCG 588 589 static __thread GHashTable *ht_pages_locked_debug; 590 591 static void ht_pages_locked_debug_init(void) 592 { 593 if (ht_pages_locked_debug) { 594 return; 595 } 596 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 597 } 598 599 static bool page_is_locked(const PageDesc *pd) 600 { 601 PageDesc *found; 602 603 ht_pages_locked_debug_init(); 604 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 605 return !!found; 606 } 607 608 static void page_lock__debug(PageDesc *pd) 609 { 610 ht_pages_locked_debug_init(); 611 g_assert(!page_is_locked(pd)); 612 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 613 } 614 615 static void page_unlock__debug(const PageDesc *pd) 616 { 617 bool removed; 618 619 ht_pages_locked_debug_init(); 620 g_assert(page_is_locked(pd)); 621 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 622 g_assert(removed); 623 } 624 625 static void 626 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 627 { 628 if (unlikely(!page_is_locked(pd))) { 629 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 630 pd, file, line); 631 abort(); 632 } 633 } 634 635 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 636 637 void assert_no_pages_locked(void) 638 { 639 ht_pages_locked_debug_init(); 640 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 641 } 642 643 #else /* !CONFIG_DEBUG_TCG */ 644 645 #define assert_page_locked(pd) 646 647 static inline void page_lock__debug(const PageDesc *pd) 648 { 649 } 650 651 static inline void page_unlock__debug(const PageDesc *pd) 652 { 653 } 654 655 #endif /* CONFIG_DEBUG_TCG */ 656 657 static inline void page_lock(PageDesc *pd) 658 { 659 page_lock__debug(pd); 660 qemu_spin_lock(&pd->lock); 661 } 662 663 static inline void page_unlock(PageDesc *pd) 664 { 665 qemu_spin_unlock(&pd->lock); 666 page_unlock__debug(pd); 667 } 668 669 /* lock the page(s) of a TB in the correct acquisition order */ 670 static inline void page_lock_tb(const TranslationBlock *tb) 671 { 672 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 673 } 674 675 static inline void page_unlock_tb(const TranslationBlock *tb) 676 { 677 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 678 679 page_unlock(p1); 680 if (unlikely(tb->page_addr[1] != -1)) { 681 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 682 683 if (p2 != p1) { 684 page_unlock(p2); 685 } 686 } 687 } 688 689 static inline struct page_entry * 690 page_entry_new(PageDesc *pd, tb_page_addr_t index) 691 { 692 struct page_entry *pe = g_malloc(sizeof(*pe)); 693 694 pe->index = index; 695 pe->pd = pd; 696 pe->locked = false; 697 return pe; 698 } 699 700 static void page_entry_destroy(gpointer p) 701 { 702 struct page_entry *pe = p; 703 704 g_assert(pe->locked); 705 page_unlock(pe->pd); 706 g_free(pe); 707 } 708 709 /* returns false on success */ 710 static bool page_entry_trylock(struct page_entry *pe) 711 { 712 bool busy; 713 714 busy = qemu_spin_trylock(&pe->pd->lock); 715 if (!busy) { 716 g_assert(!pe->locked); 717 pe->locked = true; 718 page_lock__debug(pe->pd); 719 } 720 return busy; 721 } 722 723 static void do_page_entry_lock(struct page_entry *pe) 724 { 725 page_lock(pe->pd); 726 g_assert(!pe->locked); 727 pe->locked = true; 728 } 729 730 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 731 { 732 struct page_entry *pe = value; 733 734 do_page_entry_lock(pe); 735 return FALSE; 736 } 737 738 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 739 { 740 struct page_entry *pe = value; 741 742 if (pe->locked) { 743 pe->locked = false; 744 page_unlock(pe->pd); 745 } 746 return FALSE; 747 } 748 749 /* 750 * Trylock a page, and if successful, add the page to a collection. 751 * Returns true ("busy") if the page could not be locked; false otherwise. 752 */ 753 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 754 { 755 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 756 struct page_entry *pe; 757 PageDesc *pd; 758 759 pe = g_tree_lookup(set->tree, &index); 760 if (pe) { 761 return false; 762 } 763 764 pd = page_find(index); 765 if (pd == NULL) { 766 return false; 767 } 768 769 pe = page_entry_new(pd, index); 770 g_tree_insert(set->tree, &pe->index, pe); 771 772 /* 773 * If this is either (1) the first insertion or (2) a page whose index 774 * is higher than any other so far, just lock the page and move on. 775 */ 776 if (set->max == NULL || pe->index > set->max->index) { 777 set->max = pe; 778 do_page_entry_lock(pe); 779 return false; 780 } 781 /* 782 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 783 * locks in order. 784 */ 785 return page_entry_trylock(pe); 786 } 787 788 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 789 { 790 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 791 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 792 793 if (a == b) { 794 return 0; 795 } else if (a < b) { 796 return -1; 797 } 798 return 1; 799 } 800 801 /* 802 * Lock a range of pages ([@start,@end[) as well as the pages of all 803 * intersecting TBs. 804 * Locking order: acquire locks in ascending order of page index. 805 */ 806 struct page_collection * 807 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 808 { 809 struct page_collection *set = g_malloc(sizeof(*set)); 810 tb_page_addr_t index; 811 PageDesc *pd; 812 813 start >>= TARGET_PAGE_BITS; 814 end >>= TARGET_PAGE_BITS; 815 g_assert(start <= end); 816 817 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 818 page_entry_destroy); 819 set->max = NULL; 820 assert_no_pages_locked(); 821 822 retry: 823 g_tree_foreach(set->tree, page_entry_lock, NULL); 824 825 for (index = start; index <= end; index++) { 826 TranslationBlock *tb; 827 int n; 828 829 pd = page_find(index); 830 if (pd == NULL) { 831 continue; 832 } 833 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 834 g_tree_foreach(set->tree, page_entry_unlock, NULL); 835 goto retry; 836 } 837 assert_page_locked(pd); 838 PAGE_FOR_EACH_TB(pd, tb, n) { 839 if (page_trylock_add(set, tb->page_addr[0]) || 840 (tb->page_addr[1] != -1 && 841 page_trylock_add(set, tb->page_addr[1]))) { 842 /* drop all locks, and reacquire in order */ 843 g_tree_foreach(set->tree, page_entry_unlock, NULL); 844 goto retry; 845 } 846 } 847 } 848 return set; 849 } 850 851 void page_collection_unlock(struct page_collection *set) 852 { 853 /* entries are unlocked and freed via page_entry_destroy */ 854 g_tree_destroy(set->tree); 855 g_free(set); 856 } 857 858 #endif /* !CONFIG_USER_ONLY */ 859 860 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 861 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 862 { 863 PageDesc *p1, *p2; 864 tb_page_addr_t page1; 865 tb_page_addr_t page2; 866 867 assert_memory_lock(); 868 g_assert(phys1 != -1); 869 870 page1 = phys1 >> TARGET_PAGE_BITS; 871 page2 = phys2 >> TARGET_PAGE_BITS; 872 873 p1 = page_find_alloc(page1, alloc); 874 if (ret_p1) { 875 *ret_p1 = p1; 876 } 877 if (likely(phys2 == -1)) { 878 page_lock(p1); 879 return; 880 } else if (page1 == page2) { 881 page_lock(p1); 882 if (ret_p2) { 883 *ret_p2 = p1; 884 } 885 return; 886 } 887 p2 = page_find_alloc(page2, alloc); 888 if (ret_p2) { 889 *ret_p2 = p2; 890 } 891 if (page1 < page2) { 892 page_lock(p1); 893 page_lock(p2); 894 } else { 895 page_lock(p2); 896 page_lock(p1); 897 } 898 } 899 900 /* Minimum size of the code gen buffer. This number is randomly chosen, 901 but not so small that we can't have a fair number of TB's live. */ 902 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) 903 904 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 905 indicated, this is constrained by the range of direct branches on the 906 host cpu, as used by the TCG implementation of goto_tb. */ 907 #if defined(__x86_64__) 908 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 909 #elif defined(__sparc__) 910 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 911 #elif defined(__powerpc64__) 912 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 913 #elif defined(__powerpc__) 914 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB) 915 #elif defined(__aarch64__) 916 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 917 #elif defined(__s390x__) 918 /* We have a +- 4GB range on the branches; leave some slop. */ 919 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB) 920 #elif defined(__mips__) 921 /* We have a 256MB branch region, but leave room to make sure the 922 main executable is also within that region. */ 923 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB) 924 #else 925 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 926 #endif 927 928 #if TCG_TARGET_REG_BITS == 32 929 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) 930 #ifdef CONFIG_USER_ONLY 931 /* 932 * For user mode on smaller 32 bit systems we may run into trouble 933 * allocating big chunks of data in the right place. On these systems 934 * we utilise a static code generation buffer directly in the binary. 935 */ 936 #define USE_STATIC_CODE_GEN_BUFFER 937 #endif 938 #else /* TCG_TARGET_REG_BITS == 64 */ 939 #ifdef CONFIG_USER_ONLY 940 /* 941 * As user-mode emulation typically means running multiple instances 942 * of the translator don't go too nuts with our default code gen 943 * buffer lest we make things too hard for the OS. 944 */ 945 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) 946 #else 947 /* 948 * We expect most system emulation to run one or two guests per host. 949 * Users running large scale system emulation may want to tweak their 950 * runtime setup via the tb-size control on the command line. 951 */ 952 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) 953 #endif 954 #endif 955 956 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 957 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 958 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 959 960 static inline size_t size_code_gen_buffer(size_t tb_size) 961 { 962 /* Size the buffer. */ 963 if (tb_size == 0) { 964 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 965 } 966 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 967 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 968 } 969 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 970 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 971 } 972 return tb_size; 973 } 974 975 #ifdef __mips__ 976 /* In order to use J and JAL within the code_gen_buffer, we require 977 that the buffer not cross a 256MB boundary. */ 978 static inline bool cross_256mb(void *addr, size_t size) 979 { 980 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 981 } 982 983 /* We weren't able to allocate a buffer without crossing that boundary, 984 so make do with the larger portion of the buffer that doesn't cross. 985 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 986 static inline void *split_cross_256mb(void *buf1, size_t size1) 987 { 988 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 989 size_t size2 = buf1 + size1 - buf2; 990 991 size1 = buf2 - buf1; 992 if (size1 < size2) { 993 size1 = size2; 994 buf1 = buf2; 995 } 996 997 tcg_ctx->code_gen_buffer_size = size1; 998 return buf1; 999 } 1000 #endif 1001 1002 #ifdef USE_STATIC_CODE_GEN_BUFFER 1003 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 1004 __attribute__((aligned(CODE_GEN_ALIGN))); 1005 1006 static inline void *alloc_code_gen_buffer(void) 1007 { 1008 void *buf = static_code_gen_buffer; 1009 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 1010 size_t size; 1011 1012 /* page-align the beginning and end of the buffer */ 1013 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 1014 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 1015 1016 size = end - buf; 1017 1018 /* Honor a command-line option limiting the size of the buffer. */ 1019 if (size > tcg_ctx->code_gen_buffer_size) { 1020 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1021 qemu_real_host_page_size); 1022 } 1023 tcg_ctx->code_gen_buffer_size = size; 1024 1025 #ifdef __mips__ 1026 if (cross_256mb(buf, size)) { 1027 buf = split_cross_256mb(buf, size); 1028 size = tcg_ctx->code_gen_buffer_size; 1029 } 1030 #endif 1031 1032 if (qemu_mprotect_rwx(buf, size)) { 1033 abort(); 1034 } 1035 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1036 1037 return buf; 1038 } 1039 #elif defined(_WIN32) 1040 static inline void *alloc_code_gen_buffer(void) 1041 { 1042 size_t size = tcg_ctx->code_gen_buffer_size; 1043 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1044 PAGE_EXECUTE_READWRITE); 1045 } 1046 #else 1047 static inline void *alloc_code_gen_buffer(void) 1048 { 1049 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1050 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1051 size_t size = tcg_ctx->code_gen_buffer_size; 1052 void *buf; 1053 1054 buf = mmap(NULL, size, prot, flags, -1, 0); 1055 if (buf == MAP_FAILED) { 1056 return NULL; 1057 } 1058 1059 #ifdef __mips__ 1060 if (cross_256mb(buf, size)) { 1061 /* 1062 * Try again, with the original still mapped, to avoid re-acquiring 1063 * the same 256mb crossing. 1064 */ 1065 size_t size2; 1066 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1067 switch ((int)(buf2 != MAP_FAILED)) { 1068 case 1: 1069 if (!cross_256mb(buf2, size)) { 1070 /* Success! Use the new buffer. */ 1071 munmap(buf, size); 1072 break; 1073 } 1074 /* Failure. Work with what we had. */ 1075 munmap(buf2, size); 1076 /* fallthru */ 1077 default: 1078 /* Split the original buffer. Free the smaller half. */ 1079 buf2 = split_cross_256mb(buf, size); 1080 size2 = tcg_ctx->code_gen_buffer_size; 1081 if (buf == buf2) { 1082 munmap(buf + size2, size - size2); 1083 } else { 1084 munmap(buf, size - size2); 1085 } 1086 size = size2; 1087 break; 1088 } 1089 buf = buf2; 1090 } 1091 #endif 1092 1093 /* Request large pages for the buffer. */ 1094 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1095 1096 return buf; 1097 } 1098 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1099 1100 static inline void code_gen_alloc(size_t tb_size) 1101 { 1102 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1103 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1104 if (tcg_ctx->code_gen_buffer == NULL) { 1105 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1106 exit(1); 1107 } 1108 } 1109 1110 static bool tb_cmp(const void *ap, const void *bp) 1111 { 1112 const TranslationBlock *a = ap; 1113 const TranslationBlock *b = bp; 1114 1115 return a->pc == b->pc && 1116 a->cs_base == b->cs_base && 1117 a->flags == b->flags && 1118 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1119 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1120 a->page_addr[0] == b->page_addr[0] && 1121 a->page_addr[1] == b->page_addr[1]; 1122 } 1123 1124 static void tb_htable_init(void) 1125 { 1126 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1127 1128 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1129 } 1130 1131 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1132 (in bytes) allocated to the translation buffer. Zero means default 1133 size. */ 1134 void tcg_exec_init(unsigned long tb_size) 1135 { 1136 tcg_allowed = true; 1137 cpu_gen_init(); 1138 page_init(); 1139 tb_htable_init(); 1140 code_gen_alloc(tb_size); 1141 #if defined(CONFIG_SOFTMMU) 1142 /* There's no guest base to take into account, so go ahead and 1143 initialize the prologue now. */ 1144 tcg_prologue_init(tcg_ctx); 1145 #endif 1146 } 1147 1148 /* call with @p->lock held */ 1149 static inline void invalidate_page_bitmap(PageDesc *p) 1150 { 1151 assert_page_locked(p); 1152 #ifdef CONFIG_SOFTMMU 1153 g_free(p->code_bitmap); 1154 p->code_bitmap = NULL; 1155 p->code_write_count = 0; 1156 #endif 1157 } 1158 1159 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1160 static void page_flush_tb_1(int level, void **lp) 1161 { 1162 int i; 1163 1164 if (*lp == NULL) { 1165 return; 1166 } 1167 if (level == 0) { 1168 PageDesc *pd = *lp; 1169 1170 for (i = 0; i < V_L2_SIZE; ++i) { 1171 page_lock(&pd[i]); 1172 pd[i].first_tb = (uintptr_t)NULL; 1173 invalidate_page_bitmap(pd + i); 1174 page_unlock(&pd[i]); 1175 } 1176 } else { 1177 void **pp = *lp; 1178 1179 for (i = 0; i < V_L2_SIZE; ++i) { 1180 page_flush_tb_1(level - 1, pp + i); 1181 } 1182 } 1183 } 1184 1185 static void page_flush_tb(void) 1186 { 1187 int i, l1_sz = v_l1_size; 1188 1189 for (i = 0; i < l1_sz; i++) { 1190 page_flush_tb_1(v_l2_levels, l1_map + i); 1191 } 1192 } 1193 1194 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1195 { 1196 const TranslationBlock *tb = value; 1197 size_t *size = data; 1198 1199 *size += tb->tc.size; 1200 return false; 1201 } 1202 1203 /* flush all the translation blocks */ 1204 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1205 { 1206 bool did_flush = false; 1207 1208 mmap_lock(); 1209 /* If it is already been done on request of another CPU, 1210 * just retry. 1211 */ 1212 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1213 goto done; 1214 } 1215 did_flush = true; 1216 1217 if (DEBUG_TB_FLUSH_GATE) { 1218 size_t nb_tbs = tcg_nb_tbs(); 1219 size_t host_size = 0; 1220 1221 tcg_tb_foreach(tb_host_size_iter, &host_size); 1222 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1223 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1224 } 1225 1226 CPU_FOREACH(cpu) { 1227 cpu_tb_jmp_cache_clear(cpu); 1228 } 1229 1230 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1231 page_flush_tb(); 1232 1233 tcg_region_reset_all(); 1234 /* XXX: flush processor icache at this point if cache flush is 1235 expensive */ 1236 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1237 1238 done: 1239 mmap_unlock(); 1240 if (did_flush) { 1241 qemu_plugin_flush_cb(); 1242 } 1243 } 1244 1245 void tb_flush(CPUState *cpu) 1246 { 1247 if (tcg_enabled()) { 1248 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1249 1250 if (cpu_in_exclusive_context(cpu)) { 1251 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1252 } else { 1253 async_safe_run_on_cpu(cpu, do_tb_flush, 1254 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1255 } 1256 } 1257 } 1258 1259 /* 1260 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1261 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1262 * and let the optimizer get rid of them by wrapping their user-only callers 1263 * with if (DEBUG_TB_CHECK_GATE). 1264 */ 1265 #ifdef CONFIG_USER_ONLY 1266 1267 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1268 { 1269 TranslationBlock *tb = p; 1270 target_ulong addr = *(target_ulong *)userp; 1271 1272 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1273 printf("ERROR invalidate: address=" TARGET_FMT_lx 1274 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1275 } 1276 } 1277 1278 /* verify that all the pages have correct rights for code 1279 * 1280 * Called with mmap_lock held. 1281 */ 1282 static void tb_invalidate_check(target_ulong address) 1283 { 1284 address &= TARGET_PAGE_MASK; 1285 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1286 } 1287 1288 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1289 { 1290 TranslationBlock *tb = p; 1291 int flags1, flags2; 1292 1293 flags1 = page_get_flags(tb->pc); 1294 flags2 = page_get_flags(tb->pc + tb->size - 1); 1295 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1296 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1297 (long)tb->pc, tb->size, flags1, flags2); 1298 } 1299 } 1300 1301 /* verify that all the pages have correct rights for code */ 1302 static void tb_page_check(void) 1303 { 1304 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1305 } 1306 1307 #endif /* CONFIG_USER_ONLY */ 1308 1309 /* 1310 * user-mode: call with mmap_lock held 1311 * !user-mode: call with @pd->lock held 1312 */ 1313 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1314 { 1315 TranslationBlock *tb1; 1316 uintptr_t *pprev; 1317 unsigned int n1; 1318 1319 assert_page_locked(pd); 1320 pprev = &pd->first_tb; 1321 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1322 if (tb1 == tb) { 1323 *pprev = tb1->page_next[n1]; 1324 return; 1325 } 1326 pprev = &tb1->page_next[n1]; 1327 } 1328 g_assert_not_reached(); 1329 } 1330 1331 /* remove @orig from its @n_orig-th jump list */ 1332 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1333 { 1334 uintptr_t ptr, ptr_locked; 1335 TranslationBlock *dest; 1336 TranslationBlock *tb; 1337 uintptr_t *pprev; 1338 int n; 1339 1340 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1341 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1342 dest = (TranslationBlock *)(ptr & ~1); 1343 if (dest == NULL) { 1344 return; 1345 } 1346 1347 qemu_spin_lock(&dest->jmp_lock); 1348 /* 1349 * While acquiring the lock, the jump might have been removed if the 1350 * destination TB was invalidated; check again. 1351 */ 1352 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1353 if (ptr_locked != ptr) { 1354 qemu_spin_unlock(&dest->jmp_lock); 1355 /* 1356 * The only possibility is that the jump was unlinked via 1357 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1358 * because we set the LSB above. 1359 */ 1360 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1361 return; 1362 } 1363 /* 1364 * We first acquired the lock, and since the destination pointer matches, 1365 * we know for sure that @orig is in the jmp list. 1366 */ 1367 pprev = &dest->jmp_list_head; 1368 TB_FOR_EACH_JMP(dest, tb, n) { 1369 if (tb == orig && n == n_orig) { 1370 *pprev = tb->jmp_list_next[n]; 1371 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1372 qemu_spin_unlock(&dest->jmp_lock); 1373 return; 1374 } 1375 pprev = &tb->jmp_list_next[n]; 1376 } 1377 g_assert_not_reached(); 1378 } 1379 1380 /* reset the jump entry 'n' of a TB so that it is not chained to 1381 another TB */ 1382 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1383 { 1384 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1385 tb_set_jmp_target(tb, n, addr); 1386 } 1387 1388 /* remove any jumps to the TB */ 1389 static inline void tb_jmp_unlink(TranslationBlock *dest) 1390 { 1391 TranslationBlock *tb; 1392 int n; 1393 1394 qemu_spin_lock(&dest->jmp_lock); 1395 1396 TB_FOR_EACH_JMP(dest, tb, n) { 1397 tb_reset_jump(tb, n); 1398 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1399 /* No need to clear the list entry; setting the dest ptr is enough */ 1400 } 1401 dest->jmp_list_head = (uintptr_t)NULL; 1402 1403 qemu_spin_unlock(&dest->jmp_lock); 1404 } 1405 1406 /* 1407 * In user-mode, call with mmap_lock held. 1408 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1409 * locks held. 1410 */ 1411 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1412 { 1413 CPUState *cpu; 1414 PageDesc *p; 1415 uint32_t h; 1416 tb_page_addr_t phys_pc; 1417 1418 assert_memory_lock(); 1419 1420 /* make sure no further incoming jumps will be chained to this TB */ 1421 qemu_spin_lock(&tb->jmp_lock); 1422 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1423 qemu_spin_unlock(&tb->jmp_lock); 1424 1425 /* remove the TB from the hash list */ 1426 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1427 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1428 tb->trace_vcpu_dstate); 1429 if (!(tb->cflags & CF_NOCACHE) && 1430 !qht_remove(&tb_ctx.htable, tb, h)) { 1431 return; 1432 } 1433 1434 /* remove the TB from the page list */ 1435 if (rm_from_page_list) { 1436 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1437 tb_page_remove(p, tb); 1438 invalidate_page_bitmap(p); 1439 if (tb->page_addr[1] != -1) { 1440 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1441 tb_page_remove(p, tb); 1442 invalidate_page_bitmap(p); 1443 } 1444 } 1445 1446 /* remove the TB from the hash list */ 1447 h = tb_jmp_cache_hash_func(tb->pc); 1448 CPU_FOREACH(cpu) { 1449 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1450 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1451 } 1452 } 1453 1454 /* suppress this TB from the two jump lists */ 1455 tb_remove_from_jmp_list(tb, 0); 1456 tb_remove_from_jmp_list(tb, 1); 1457 1458 /* suppress any remaining jumps to this TB */ 1459 tb_jmp_unlink(tb); 1460 1461 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1462 tcg_ctx->tb_phys_invalidate_count + 1); 1463 } 1464 1465 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1466 { 1467 do_tb_phys_invalidate(tb, true); 1468 } 1469 1470 /* invalidate one TB 1471 * 1472 * Called with mmap_lock held in user-mode. 1473 */ 1474 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1475 { 1476 if (page_addr == -1 && tb->page_addr[0] != -1) { 1477 page_lock_tb(tb); 1478 do_tb_phys_invalidate(tb, true); 1479 page_unlock_tb(tb); 1480 } else { 1481 do_tb_phys_invalidate(tb, false); 1482 } 1483 } 1484 1485 #ifdef CONFIG_SOFTMMU 1486 /* call with @p->lock held */ 1487 static void build_page_bitmap(PageDesc *p) 1488 { 1489 int n, tb_start, tb_end; 1490 TranslationBlock *tb; 1491 1492 assert_page_locked(p); 1493 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1494 1495 PAGE_FOR_EACH_TB(p, tb, n) { 1496 /* NOTE: this is subtle as a TB may span two physical pages */ 1497 if (n == 0) { 1498 /* NOTE: tb_end may be after the end of the page, but 1499 it is not a problem */ 1500 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1501 tb_end = tb_start + tb->size; 1502 if (tb_end > TARGET_PAGE_SIZE) { 1503 tb_end = TARGET_PAGE_SIZE; 1504 } 1505 } else { 1506 tb_start = 0; 1507 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1508 } 1509 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1510 } 1511 } 1512 #endif 1513 1514 /* add the tb in the target page and protect it if necessary 1515 * 1516 * Called with mmap_lock held for user-mode emulation. 1517 * Called with @p->lock held in !user-mode. 1518 */ 1519 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1520 unsigned int n, tb_page_addr_t page_addr) 1521 { 1522 #ifndef CONFIG_USER_ONLY 1523 bool page_already_protected; 1524 #endif 1525 1526 assert_page_locked(p); 1527 1528 tb->page_addr[n] = page_addr; 1529 tb->page_next[n] = p->first_tb; 1530 #ifndef CONFIG_USER_ONLY 1531 page_already_protected = p->first_tb != (uintptr_t)NULL; 1532 #endif 1533 p->first_tb = (uintptr_t)tb | n; 1534 invalidate_page_bitmap(p); 1535 1536 #if defined(CONFIG_USER_ONLY) 1537 if (p->flags & PAGE_WRITE) { 1538 target_ulong addr; 1539 PageDesc *p2; 1540 int prot; 1541 1542 /* force the host page as non writable (writes will have a 1543 page fault + mprotect overhead) */ 1544 page_addr &= qemu_host_page_mask; 1545 prot = 0; 1546 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1547 addr += TARGET_PAGE_SIZE) { 1548 1549 p2 = page_find(addr >> TARGET_PAGE_BITS); 1550 if (!p2) { 1551 continue; 1552 } 1553 prot |= p2->flags; 1554 p2->flags &= ~PAGE_WRITE; 1555 } 1556 mprotect(g2h(page_addr), qemu_host_page_size, 1557 (prot & PAGE_BITS) & ~PAGE_WRITE); 1558 if (DEBUG_TB_INVALIDATE_GATE) { 1559 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1560 } 1561 } 1562 #else 1563 /* if some code is already present, then the pages are already 1564 protected. So we handle the case where only the first TB is 1565 allocated in a physical page */ 1566 if (!page_already_protected) { 1567 tlb_protect_code(page_addr); 1568 } 1569 #endif 1570 } 1571 1572 /* add a new TB and link it to the physical page tables. phys_page2 is 1573 * (-1) to indicate that only one page contains the TB. 1574 * 1575 * Called with mmap_lock held for user-mode emulation. 1576 * 1577 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1578 * Note that in !user-mode, another thread might have already added a TB 1579 * for the same block of guest code that @tb corresponds to. In that case, 1580 * the caller should discard the original @tb, and use instead the returned TB. 1581 */ 1582 static TranslationBlock * 1583 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1584 tb_page_addr_t phys_page2) 1585 { 1586 PageDesc *p; 1587 PageDesc *p2 = NULL; 1588 1589 assert_memory_lock(); 1590 1591 if (phys_pc == -1) { 1592 /* 1593 * If the TB is not associated with a physical RAM page then 1594 * it must be a temporary one-insn TB, and we have nothing to do 1595 * except fill in the page_addr[] fields. 1596 */ 1597 assert(tb->cflags & CF_NOCACHE); 1598 tb->page_addr[0] = tb->page_addr[1] = -1; 1599 return tb; 1600 } 1601 1602 /* 1603 * Add the TB to the page list, acquiring first the pages's locks. 1604 * We keep the locks held until after inserting the TB in the hash table, 1605 * so that if the insertion fails we know for sure that the TBs are still 1606 * in the page descriptors. 1607 * Note that inserting into the hash table first isn't an option, since 1608 * we can only insert TBs that are fully initialized. 1609 */ 1610 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1611 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1612 if (p2) { 1613 tb_page_add(p2, tb, 1, phys_page2); 1614 } else { 1615 tb->page_addr[1] = -1; 1616 } 1617 1618 if (!(tb->cflags & CF_NOCACHE)) { 1619 void *existing_tb = NULL; 1620 uint32_t h; 1621 1622 /* add in the hash table */ 1623 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1624 tb->trace_vcpu_dstate); 1625 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1626 1627 /* remove TB from the page(s) if we couldn't insert it */ 1628 if (unlikely(existing_tb)) { 1629 tb_page_remove(p, tb); 1630 invalidate_page_bitmap(p); 1631 if (p2) { 1632 tb_page_remove(p2, tb); 1633 invalidate_page_bitmap(p2); 1634 } 1635 tb = existing_tb; 1636 } 1637 } 1638 1639 if (p2 && p2 != p) { 1640 page_unlock(p2); 1641 } 1642 page_unlock(p); 1643 1644 #ifdef CONFIG_USER_ONLY 1645 if (DEBUG_TB_CHECK_GATE) { 1646 tb_page_check(); 1647 } 1648 #endif 1649 return tb; 1650 } 1651 1652 /* Called with mmap_lock held for user mode emulation. */ 1653 TranslationBlock *tb_gen_code(CPUState *cpu, 1654 target_ulong pc, target_ulong cs_base, 1655 uint32_t flags, int cflags) 1656 { 1657 CPUArchState *env = cpu->env_ptr; 1658 TranslationBlock *tb, *existing_tb; 1659 tb_page_addr_t phys_pc, phys_page2; 1660 target_ulong virt_page2; 1661 tcg_insn_unit *gen_code_buf; 1662 int gen_code_size, search_size, max_insns; 1663 #ifdef CONFIG_PROFILER 1664 TCGProfile *prof = &tcg_ctx->prof; 1665 int64_t ti; 1666 #endif 1667 1668 assert_memory_lock(); 1669 1670 phys_pc = get_page_addr_code(env, pc); 1671 1672 if (phys_pc == -1) { 1673 /* Generate a temporary TB with 1 insn in it */ 1674 cflags &= ~CF_COUNT_MASK; 1675 cflags |= CF_NOCACHE | 1; 1676 } 1677 1678 cflags &= ~CF_CLUSTER_MASK; 1679 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1680 1681 max_insns = cflags & CF_COUNT_MASK; 1682 if (max_insns == 0) { 1683 max_insns = CF_COUNT_MASK; 1684 } 1685 if (max_insns > TCG_MAX_INSNS) { 1686 max_insns = TCG_MAX_INSNS; 1687 } 1688 if (cpu->singlestep_enabled || singlestep) { 1689 max_insns = 1; 1690 } 1691 1692 buffer_overflow: 1693 tb = tcg_tb_alloc(tcg_ctx); 1694 if (unlikely(!tb)) { 1695 /* flush must be done */ 1696 tb_flush(cpu); 1697 mmap_unlock(); 1698 /* Make the execution loop process the flush as soon as possible. */ 1699 cpu->exception_index = EXCP_INTERRUPT; 1700 cpu_loop_exit(cpu); 1701 } 1702 1703 gen_code_buf = tcg_ctx->code_gen_ptr; 1704 tb->tc.ptr = gen_code_buf; 1705 tb->pc = pc; 1706 tb->cs_base = cs_base; 1707 tb->flags = flags; 1708 tb->cflags = cflags; 1709 tb->orig_tb = NULL; 1710 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1711 tcg_ctx->tb_cflags = cflags; 1712 tb_overflow: 1713 1714 #ifdef CONFIG_PROFILER 1715 /* includes aborted translations because of exceptions */ 1716 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1717 ti = profile_getclock(); 1718 #endif 1719 1720 tcg_func_start(tcg_ctx); 1721 1722 tcg_ctx->cpu = env_cpu(env); 1723 gen_intermediate_code(cpu, tb, max_insns); 1724 tcg_ctx->cpu = NULL; 1725 1726 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1727 1728 /* generate machine code */ 1729 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1730 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1731 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1732 if (TCG_TARGET_HAS_direct_jump) { 1733 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1734 tcg_ctx->tb_jmp_target_addr = NULL; 1735 } else { 1736 tcg_ctx->tb_jmp_insn_offset = NULL; 1737 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1738 } 1739 1740 #ifdef CONFIG_PROFILER 1741 atomic_set(&prof->tb_count, prof->tb_count + 1); 1742 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1743 ti = profile_getclock(); 1744 #endif 1745 1746 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1747 if (unlikely(gen_code_size < 0)) { 1748 switch (gen_code_size) { 1749 case -1: 1750 /* 1751 * Overflow of code_gen_buffer, or the current slice of it. 1752 * 1753 * TODO: We don't need to re-do gen_intermediate_code, nor 1754 * should we re-do the tcg optimization currently hidden 1755 * inside tcg_gen_code. All that should be required is to 1756 * flush the TBs, allocate a new TB, re-initialize it per 1757 * above, and re-do the actual code generation. 1758 */ 1759 goto buffer_overflow; 1760 1761 case -2: 1762 /* 1763 * The code generated for the TranslationBlock is too large. 1764 * The maximum size allowed by the unwind info is 64k. 1765 * There may be stricter constraints from relocations 1766 * in the tcg backend. 1767 * 1768 * Try again with half as many insns as we attempted this time. 1769 * If a single insn overflows, there's a bug somewhere... 1770 */ 1771 max_insns = tb->icount; 1772 assert(max_insns > 1); 1773 max_insns /= 2; 1774 goto tb_overflow; 1775 1776 default: 1777 g_assert_not_reached(); 1778 } 1779 } 1780 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1781 if (unlikely(search_size < 0)) { 1782 goto buffer_overflow; 1783 } 1784 tb->tc.size = gen_code_size; 1785 1786 #ifdef CONFIG_PROFILER 1787 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1788 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1789 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1790 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1791 #endif 1792 1793 #ifdef DEBUG_DISAS 1794 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1795 qemu_log_in_addr_range(tb->pc)) { 1796 FILE *logfile = qemu_log_lock(); 1797 int code_size, data_size = 0; 1798 g_autoptr(GString) note = g_string_new("[tb header & initial instruction]"); 1799 size_t chunk_start = 0; 1800 int insn = 0; 1801 qemu_log("OUT: [size=%d]\n", gen_code_size); 1802 if (tcg_ctx->data_gen_ptr) { 1803 code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1804 data_size = gen_code_size - code_size; 1805 } else { 1806 code_size = gen_code_size; 1807 } 1808 1809 /* Dump header and the first instruction */ 1810 chunk_start = tcg_ctx->gen_insn_end_off[insn]; 1811 log_disas(tb->tc.ptr, chunk_start, note->str); 1812 1813 /* 1814 * Dump each instruction chunk, wrapping up empty chunks into 1815 * the next instruction. The whole array is offset so the 1816 * first entry is the beginning of the 2nd instruction. 1817 */ 1818 while (insn <= tb->icount && chunk_start < code_size) { 1819 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn]; 1820 if (chunk_end > chunk_start) { 1821 g_string_printf(note, "[guest addr: " TARGET_FMT_lx "]", 1822 tcg_ctx->gen_insn_data[insn][0]); 1823 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start, 1824 note->str); 1825 chunk_start = chunk_end; 1826 } 1827 insn++; 1828 } 1829 1830 /* Finally dump any data we may have after the block */ 1831 if (data_size) { 1832 int i; 1833 qemu_log(" data: [size=%d]\n", data_size); 1834 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1835 if (sizeof(tcg_target_ulong) == 8) { 1836 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1837 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1838 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1839 } else { 1840 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1841 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1842 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1843 } 1844 } 1845 } 1846 qemu_log("\n"); 1847 qemu_log_flush(); 1848 qemu_log_unlock(logfile); 1849 } 1850 #endif 1851 1852 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1853 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1854 CODE_GEN_ALIGN)); 1855 1856 /* init jump list */ 1857 qemu_spin_init(&tb->jmp_lock); 1858 tb->jmp_list_head = (uintptr_t)NULL; 1859 tb->jmp_list_next[0] = (uintptr_t)NULL; 1860 tb->jmp_list_next[1] = (uintptr_t)NULL; 1861 tb->jmp_dest[0] = (uintptr_t)NULL; 1862 tb->jmp_dest[1] = (uintptr_t)NULL; 1863 1864 /* init original jump addresses which have been set during tcg_gen_code() */ 1865 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1866 tb_reset_jump(tb, 0); 1867 } 1868 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1869 tb_reset_jump(tb, 1); 1870 } 1871 1872 /* check next page if needed */ 1873 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1874 phys_page2 = -1; 1875 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1876 phys_page2 = get_page_addr_code(env, virt_page2); 1877 } 1878 /* 1879 * No explicit memory barrier is required -- tb_link_page() makes the 1880 * TB visible in a consistent state. 1881 */ 1882 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1883 /* if the TB already exists, discard what we just translated */ 1884 if (unlikely(existing_tb != tb)) { 1885 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1886 1887 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1888 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1889 return existing_tb; 1890 } 1891 tcg_tb_insert(tb); 1892 return tb; 1893 } 1894 1895 /* 1896 * @p must be non-NULL. 1897 * user-mode: call with mmap_lock held. 1898 * !user-mode: call with all @pages locked. 1899 */ 1900 static void 1901 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1902 PageDesc *p, tb_page_addr_t start, 1903 tb_page_addr_t end, 1904 uintptr_t retaddr) 1905 { 1906 TranslationBlock *tb; 1907 tb_page_addr_t tb_start, tb_end; 1908 int n; 1909 #ifdef TARGET_HAS_PRECISE_SMC 1910 CPUState *cpu = current_cpu; 1911 CPUArchState *env = NULL; 1912 bool current_tb_not_found = retaddr != 0; 1913 bool current_tb_modified = false; 1914 TranslationBlock *current_tb = NULL; 1915 target_ulong current_pc = 0; 1916 target_ulong current_cs_base = 0; 1917 uint32_t current_flags = 0; 1918 #endif /* TARGET_HAS_PRECISE_SMC */ 1919 1920 assert_page_locked(p); 1921 1922 #if defined(TARGET_HAS_PRECISE_SMC) 1923 if (cpu != NULL) { 1924 env = cpu->env_ptr; 1925 } 1926 #endif 1927 1928 /* we remove all the TBs in the range [start, end[ */ 1929 /* XXX: see if in some cases it could be faster to invalidate all 1930 the code */ 1931 PAGE_FOR_EACH_TB(p, tb, n) { 1932 assert_page_locked(p); 1933 /* NOTE: this is subtle as a TB may span two physical pages */ 1934 if (n == 0) { 1935 /* NOTE: tb_end may be after the end of the page, but 1936 it is not a problem */ 1937 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1938 tb_end = tb_start + tb->size; 1939 } else { 1940 tb_start = tb->page_addr[1]; 1941 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1942 } 1943 if (!(tb_end <= start || tb_start >= end)) { 1944 #ifdef TARGET_HAS_PRECISE_SMC 1945 if (current_tb_not_found) { 1946 current_tb_not_found = false; 1947 /* now we have a real cpu fault */ 1948 current_tb = tcg_tb_lookup(retaddr); 1949 } 1950 if (current_tb == tb && 1951 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1952 /* 1953 * If we are modifying the current TB, we must stop 1954 * its execution. We could be more precise by checking 1955 * that the modification is after the current PC, but it 1956 * would require a specialized function to partially 1957 * restore the CPU state. 1958 */ 1959 current_tb_modified = true; 1960 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1961 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1962 ¤t_flags); 1963 } 1964 #endif /* TARGET_HAS_PRECISE_SMC */ 1965 tb_phys_invalidate__locked(tb); 1966 } 1967 } 1968 #if !defined(CONFIG_USER_ONLY) 1969 /* if no code remaining, no need to continue to use slow writes */ 1970 if (!p->first_tb) { 1971 invalidate_page_bitmap(p); 1972 tlb_unprotect_code(start); 1973 } 1974 #endif 1975 #ifdef TARGET_HAS_PRECISE_SMC 1976 if (current_tb_modified) { 1977 page_collection_unlock(pages); 1978 /* Force execution of one insn next time. */ 1979 cpu->cflags_next_tb = 1 | curr_cflags(); 1980 mmap_unlock(); 1981 cpu_loop_exit_noexc(cpu); 1982 } 1983 #endif 1984 } 1985 1986 /* 1987 * Invalidate all TBs which intersect with the target physical address range 1988 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1989 * 'is_cpu_write_access' should be true if called from a real cpu write 1990 * access: the virtual CPU will exit the current TB if code is modified inside 1991 * this TB. 1992 * 1993 * Called with mmap_lock held for user-mode emulation 1994 */ 1995 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 1996 { 1997 struct page_collection *pages; 1998 PageDesc *p; 1999 2000 assert_memory_lock(); 2001 2002 p = page_find(start >> TARGET_PAGE_BITS); 2003 if (p == NULL) { 2004 return; 2005 } 2006 pages = page_collection_lock(start, end); 2007 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 2008 page_collection_unlock(pages); 2009 } 2010 2011 /* 2012 * Invalidate all TBs which intersect with the target physical address range 2013 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2014 * 'is_cpu_write_access' should be true if called from a real cpu write 2015 * access: the virtual CPU will exit the current TB if code is modified inside 2016 * this TB. 2017 * 2018 * Called with mmap_lock held for user-mode emulation. 2019 */ 2020 #ifdef CONFIG_SOFTMMU 2021 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2022 #else 2023 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2024 #endif 2025 { 2026 struct page_collection *pages; 2027 tb_page_addr_t next; 2028 2029 assert_memory_lock(); 2030 2031 pages = page_collection_lock(start, end); 2032 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2033 start < end; 2034 start = next, next += TARGET_PAGE_SIZE) { 2035 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2036 tb_page_addr_t bound = MIN(next, end); 2037 2038 if (pd == NULL) { 2039 continue; 2040 } 2041 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2042 } 2043 page_collection_unlock(pages); 2044 } 2045 2046 #ifdef CONFIG_SOFTMMU 2047 /* len must be <= 8 and start must be a multiple of len. 2048 * Called via softmmu_template.h when code areas are written to with 2049 * iothread mutex not held. 2050 * 2051 * Call with all @pages in the range [@start, @start + len[ locked. 2052 */ 2053 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2054 tb_page_addr_t start, int len, 2055 uintptr_t retaddr) 2056 { 2057 PageDesc *p; 2058 2059 assert_memory_lock(); 2060 2061 p = page_find(start >> TARGET_PAGE_BITS); 2062 if (!p) { 2063 return; 2064 } 2065 2066 assert_page_locked(p); 2067 if (!p->code_bitmap && 2068 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2069 build_page_bitmap(p); 2070 } 2071 if (p->code_bitmap) { 2072 unsigned int nr; 2073 unsigned long b; 2074 2075 nr = start & ~TARGET_PAGE_MASK; 2076 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2077 if (b & ((1 << len) - 1)) { 2078 goto do_invalidate; 2079 } 2080 } else { 2081 do_invalidate: 2082 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2083 retaddr); 2084 } 2085 } 2086 #else 2087 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2088 * host PC of the faulting store instruction that caused this invalidate. 2089 * Returns true if the caller needs to abort execution of the current 2090 * TB (because it was modified by this store and the guest CPU has 2091 * precise-SMC semantics). 2092 */ 2093 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2094 { 2095 TranslationBlock *tb; 2096 PageDesc *p; 2097 int n; 2098 #ifdef TARGET_HAS_PRECISE_SMC 2099 TranslationBlock *current_tb = NULL; 2100 CPUState *cpu = current_cpu; 2101 CPUArchState *env = NULL; 2102 int current_tb_modified = 0; 2103 target_ulong current_pc = 0; 2104 target_ulong current_cs_base = 0; 2105 uint32_t current_flags = 0; 2106 #endif 2107 2108 assert_memory_lock(); 2109 2110 addr &= TARGET_PAGE_MASK; 2111 p = page_find(addr >> TARGET_PAGE_BITS); 2112 if (!p) { 2113 return false; 2114 } 2115 2116 #ifdef TARGET_HAS_PRECISE_SMC 2117 if (p->first_tb && pc != 0) { 2118 current_tb = tcg_tb_lookup(pc); 2119 } 2120 if (cpu != NULL) { 2121 env = cpu->env_ptr; 2122 } 2123 #endif 2124 assert_page_locked(p); 2125 PAGE_FOR_EACH_TB(p, tb, n) { 2126 #ifdef TARGET_HAS_PRECISE_SMC 2127 if (current_tb == tb && 2128 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2129 /* If we are modifying the current TB, we must stop 2130 its execution. We could be more precise by checking 2131 that the modification is after the current PC, but it 2132 would require a specialized function to partially 2133 restore the CPU state */ 2134 2135 current_tb_modified = 1; 2136 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2137 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2138 ¤t_flags); 2139 } 2140 #endif /* TARGET_HAS_PRECISE_SMC */ 2141 tb_phys_invalidate(tb, addr); 2142 } 2143 p->first_tb = (uintptr_t)NULL; 2144 #ifdef TARGET_HAS_PRECISE_SMC 2145 if (current_tb_modified) { 2146 /* Force execution of one insn next time. */ 2147 cpu->cflags_next_tb = 1 | curr_cflags(); 2148 return true; 2149 } 2150 #endif 2151 2152 return false; 2153 } 2154 #endif 2155 2156 /* user-mode: call with mmap_lock held */ 2157 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2158 { 2159 TranslationBlock *tb; 2160 2161 assert_memory_lock(); 2162 2163 tb = tcg_tb_lookup(retaddr); 2164 if (tb) { 2165 /* We can use retranslation to find the PC. */ 2166 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2167 tb_phys_invalidate(tb, -1); 2168 } else { 2169 /* The exception probably happened in a helper. The CPU state should 2170 have been saved before calling it. Fetch the PC from there. */ 2171 CPUArchState *env = cpu->env_ptr; 2172 target_ulong pc, cs_base; 2173 tb_page_addr_t addr; 2174 uint32_t flags; 2175 2176 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2177 addr = get_page_addr_code(env, pc); 2178 if (addr != -1) { 2179 tb_invalidate_phys_range(addr, addr + 1); 2180 } 2181 } 2182 } 2183 2184 #ifndef CONFIG_USER_ONLY 2185 /* in deterministic execution mode, instructions doing device I/Os 2186 * must be at the end of the TB. 2187 * 2188 * Called by softmmu_template.h, with iothread mutex not held. 2189 */ 2190 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2191 { 2192 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2193 CPUArchState *env = cpu->env_ptr; 2194 #endif 2195 TranslationBlock *tb; 2196 uint32_t n; 2197 2198 tb = tcg_tb_lookup(retaddr); 2199 if (!tb) { 2200 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2201 (void *)retaddr); 2202 } 2203 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2204 2205 /* On MIPS and SH, delay slot instructions can only be restarted if 2206 they were already the first instruction in the TB. If this is not 2207 the first instruction in a TB then re-execute the preceding 2208 branch. */ 2209 n = 1; 2210 #if defined(TARGET_MIPS) 2211 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2212 && env->active_tc.PC != tb->pc) { 2213 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2214 cpu_neg(cpu)->icount_decr.u16.low++; 2215 env->hflags &= ~MIPS_HFLAG_BMASK; 2216 n = 2; 2217 } 2218 #elif defined(TARGET_SH4) 2219 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2220 && env->pc != tb->pc) { 2221 env->pc -= 2; 2222 cpu_neg(cpu)->icount_decr.u16.low++; 2223 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2224 n = 2; 2225 } 2226 #endif 2227 2228 /* Generate a new TB executing the I/O insn. */ 2229 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2230 2231 if (tb_cflags(tb) & CF_NOCACHE) { 2232 if (tb->orig_tb) { 2233 /* Invalidate original TB if this TB was generated in 2234 * cpu_exec_nocache() */ 2235 tb_phys_invalidate(tb->orig_tb, -1); 2236 } 2237 tcg_tb_remove(tb); 2238 } 2239 2240 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2241 * the first in the TB) then we end up generating a whole new TB and 2242 * repeating the fault, which is horribly inefficient. 2243 * Better would be to execute just this insn uncached, or generate a 2244 * second new TB. 2245 */ 2246 cpu_loop_exit_noexc(cpu); 2247 } 2248 2249 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2250 { 2251 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2252 2253 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2254 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2255 } 2256 } 2257 2258 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2259 { 2260 /* Discard jump cache entries for any tb which might potentially 2261 overlap the flushed page. */ 2262 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2263 tb_jmp_cache_clear_page(cpu, addr); 2264 } 2265 2266 static void print_qht_statistics(struct qht_stats hst) 2267 { 2268 uint32_t hgram_opts; 2269 size_t hgram_bins; 2270 char *hgram; 2271 2272 if (!hst.head_buckets) { 2273 return; 2274 } 2275 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2276 hst.used_head_buckets, hst.head_buckets, 2277 (double)hst.used_head_buckets / hst.head_buckets * 100); 2278 2279 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2280 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2281 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2282 hgram_opts |= QDIST_PR_NODECIMAL; 2283 } 2284 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2285 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2286 qdist_avg(&hst.occupancy) * 100, hgram); 2287 g_free(hgram); 2288 2289 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2290 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2291 if (hgram_bins > 10) { 2292 hgram_bins = 10; 2293 } else { 2294 hgram_bins = 0; 2295 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2296 } 2297 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2298 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2299 qdist_avg(&hst.chain), hgram); 2300 g_free(hgram); 2301 } 2302 2303 struct tb_tree_stats { 2304 size_t nb_tbs; 2305 size_t host_size; 2306 size_t target_size; 2307 size_t max_target_size; 2308 size_t direct_jmp_count; 2309 size_t direct_jmp2_count; 2310 size_t cross_page; 2311 }; 2312 2313 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2314 { 2315 const TranslationBlock *tb = value; 2316 struct tb_tree_stats *tst = data; 2317 2318 tst->nb_tbs++; 2319 tst->host_size += tb->tc.size; 2320 tst->target_size += tb->size; 2321 if (tb->size > tst->max_target_size) { 2322 tst->max_target_size = tb->size; 2323 } 2324 if (tb->page_addr[1] != -1) { 2325 tst->cross_page++; 2326 } 2327 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2328 tst->direct_jmp_count++; 2329 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2330 tst->direct_jmp2_count++; 2331 } 2332 } 2333 return false; 2334 } 2335 2336 void dump_exec_info(void) 2337 { 2338 struct tb_tree_stats tst = {}; 2339 struct qht_stats hst; 2340 size_t nb_tbs, flush_full, flush_part, flush_elide; 2341 2342 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2343 nb_tbs = tst.nb_tbs; 2344 /* XXX: avoid using doubles ? */ 2345 qemu_printf("Translation buffer state:\n"); 2346 /* 2347 * Report total code size including the padding and TB structs; 2348 * otherwise users might think "-tb-size" is not honoured. 2349 * For avg host size we use the precise numbers from tb_tree_stats though. 2350 */ 2351 qemu_printf("gen code size %zu/%zu\n", 2352 tcg_code_size(), tcg_code_capacity()); 2353 qemu_printf("TB count %zu\n", nb_tbs); 2354 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2355 nb_tbs ? tst.target_size / nb_tbs : 0, 2356 tst.max_target_size); 2357 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2358 nb_tbs ? tst.host_size / nb_tbs : 0, 2359 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2360 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2361 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2362 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2363 tst.direct_jmp_count, 2364 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2365 tst.direct_jmp2_count, 2366 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2367 2368 qht_statistics_init(&tb_ctx.htable, &hst); 2369 print_qht_statistics(hst); 2370 qht_statistics_destroy(&hst); 2371 2372 qemu_printf("\nStatistics:\n"); 2373 qemu_printf("TB flush count %u\n", 2374 atomic_read(&tb_ctx.tb_flush_count)); 2375 qemu_printf("TB invalidate count %zu\n", 2376 tcg_tb_phys_invalidate_count()); 2377 2378 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2379 qemu_printf("TLB full flushes %zu\n", flush_full); 2380 qemu_printf("TLB partial flushes %zu\n", flush_part); 2381 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2382 tcg_dump_info(); 2383 } 2384 2385 void dump_opcount_info(void) 2386 { 2387 tcg_dump_op_count(); 2388 } 2389 2390 #else /* CONFIG_USER_ONLY */ 2391 2392 void cpu_interrupt(CPUState *cpu, int mask) 2393 { 2394 g_assert(qemu_mutex_iothread_locked()); 2395 cpu->interrupt_request |= mask; 2396 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2397 } 2398 2399 /* 2400 * Walks guest process memory "regions" one by one 2401 * and calls callback function 'fn' for each region. 2402 */ 2403 struct walk_memory_regions_data { 2404 walk_memory_regions_fn fn; 2405 void *priv; 2406 target_ulong start; 2407 int prot; 2408 }; 2409 2410 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2411 target_ulong end, int new_prot) 2412 { 2413 if (data->start != -1u) { 2414 int rc = data->fn(data->priv, data->start, end, data->prot); 2415 if (rc != 0) { 2416 return rc; 2417 } 2418 } 2419 2420 data->start = (new_prot ? end : -1u); 2421 data->prot = new_prot; 2422 2423 return 0; 2424 } 2425 2426 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2427 target_ulong base, int level, void **lp) 2428 { 2429 target_ulong pa; 2430 int i, rc; 2431 2432 if (*lp == NULL) { 2433 return walk_memory_regions_end(data, base, 0); 2434 } 2435 2436 if (level == 0) { 2437 PageDesc *pd = *lp; 2438 2439 for (i = 0; i < V_L2_SIZE; ++i) { 2440 int prot = pd[i].flags; 2441 2442 pa = base | (i << TARGET_PAGE_BITS); 2443 if (prot != data->prot) { 2444 rc = walk_memory_regions_end(data, pa, prot); 2445 if (rc != 0) { 2446 return rc; 2447 } 2448 } 2449 } 2450 } else { 2451 void **pp = *lp; 2452 2453 for (i = 0; i < V_L2_SIZE; ++i) { 2454 pa = base | ((target_ulong)i << 2455 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2456 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2457 if (rc != 0) { 2458 return rc; 2459 } 2460 } 2461 } 2462 2463 return 0; 2464 } 2465 2466 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2467 { 2468 struct walk_memory_regions_data data; 2469 uintptr_t i, l1_sz = v_l1_size; 2470 2471 data.fn = fn; 2472 data.priv = priv; 2473 data.start = -1u; 2474 data.prot = 0; 2475 2476 for (i = 0; i < l1_sz; i++) { 2477 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2478 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2479 if (rc != 0) { 2480 return rc; 2481 } 2482 } 2483 2484 return walk_memory_regions_end(&data, 0, 0); 2485 } 2486 2487 static int dump_region(void *priv, target_ulong start, 2488 target_ulong end, unsigned long prot) 2489 { 2490 FILE *f = (FILE *)priv; 2491 2492 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2493 " "TARGET_FMT_lx" %c%c%c\n", 2494 start, end, end - start, 2495 ((prot & PAGE_READ) ? 'r' : '-'), 2496 ((prot & PAGE_WRITE) ? 'w' : '-'), 2497 ((prot & PAGE_EXEC) ? 'x' : '-')); 2498 2499 return 0; 2500 } 2501 2502 /* dump memory mappings */ 2503 void page_dump(FILE *f) 2504 { 2505 const int length = sizeof(target_ulong) * 2; 2506 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2507 length, "start", length, "end", length, "size", "prot"); 2508 walk_memory_regions(f, dump_region); 2509 } 2510 2511 int page_get_flags(target_ulong address) 2512 { 2513 PageDesc *p; 2514 2515 p = page_find(address >> TARGET_PAGE_BITS); 2516 if (!p) { 2517 return 0; 2518 } 2519 return p->flags; 2520 } 2521 2522 /* Modify the flags of a page and invalidate the code if necessary. 2523 The flag PAGE_WRITE_ORG is positioned automatically depending 2524 on PAGE_WRITE. The mmap_lock should already be held. */ 2525 void page_set_flags(target_ulong start, target_ulong end, int flags) 2526 { 2527 target_ulong addr, len; 2528 2529 /* This function should never be called with addresses outside the 2530 guest address space. If this assert fires, it probably indicates 2531 a missing call to h2g_valid. */ 2532 assert(end - 1 <= GUEST_ADDR_MAX); 2533 assert(start < end); 2534 assert_memory_lock(); 2535 2536 start = start & TARGET_PAGE_MASK; 2537 end = TARGET_PAGE_ALIGN(end); 2538 2539 if (flags & PAGE_WRITE) { 2540 flags |= PAGE_WRITE_ORG; 2541 } 2542 2543 for (addr = start, len = end - start; 2544 len != 0; 2545 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2546 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2547 2548 /* If the write protection bit is set, then we invalidate 2549 the code inside. */ 2550 if (!(p->flags & PAGE_WRITE) && 2551 (flags & PAGE_WRITE) && 2552 p->first_tb) { 2553 tb_invalidate_phys_page(addr, 0); 2554 } 2555 p->flags = flags; 2556 } 2557 } 2558 2559 int page_check_range(target_ulong start, target_ulong len, int flags) 2560 { 2561 PageDesc *p; 2562 target_ulong end; 2563 target_ulong addr; 2564 2565 /* This function should never be called with addresses outside the 2566 guest address space. If this assert fires, it probably indicates 2567 a missing call to h2g_valid. */ 2568 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2569 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2570 #endif 2571 2572 if (len == 0) { 2573 return 0; 2574 } 2575 if (start + len - 1 < start) { 2576 /* We've wrapped around. */ 2577 return -1; 2578 } 2579 2580 /* must do before we loose bits in the next step */ 2581 end = TARGET_PAGE_ALIGN(start + len); 2582 start = start & TARGET_PAGE_MASK; 2583 2584 for (addr = start, len = end - start; 2585 len != 0; 2586 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2587 p = page_find(addr >> TARGET_PAGE_BITS); 2588 if (!p) { 2589 return -1; 2590 } 2591 if (!(p->flags & PAGE_VALID)) { 2592 return -1; 2593 } 2594 2595 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2596 return -1; 2597 } 2598 if (flags & PAGE_WRITE) { 2599 if (!(p->flags & PAGE_WRITE_ORG)) { 2600 return -1; 2601 } 2602 /* unprotect the page if it was put read-only because it 2603 contains translated code */ 2604 if (!(p->flags & PAGE_WRITE)) { 2605 if (!page_unprotect(addr, 0)) { 2606 return -1; 2607 } 2608 } 2609 } 2610 } 2611 return 0; 2612 } 2613 2614 /* called from signal handler: invalidate the code and unprotect the 2615 * page. Return 0 if the fault was not handled, 1 if it was handled, 2616 * and 2 if it was handled but the caller must cause the TB to be 2617 * immediately exited. (We can only return 2 if the 'pc' argument is 2618 * non-zero.) 2619 */ 2620 int page_unprotect(target_ulong address, uintptr_t pc) 2621 { 2622 unsigned int prot; 2623 bool current_tb_invalidated; 2624 PageDesc *p; 2625 target_ulong host_start, host_end, addr; 2626 2627 /* Technically this isn't safe inside a signal handler. However we 2628 know this only ever happens in a synchronous SEGV handler, so in 2629 practice it seems to be ok. */ 2630 mmap_lock(); 2631 2632 p = page_find(address >> TARGET_PAGE_BITS); 2633 if (!p) { 2634 mmap_unlock(); 2635 return 0; 2636 } 2637 2638 /* if the page was really writable, then we change its 2639 protection back to writable */ 2640 if (p->flags & PAGE_WRITE_ORG) { 2641 current_tb_invalidated = false; 2642 if (p->flags & PAGE_WRITE) { 2643 /* If the page is actually marked WRITE then assume this is because 2644 * this thread raced with another one which got here first and 2645 * set the page to PAGE_WRITE and did the TB invalidate for us. 2646 */ 2647 #ifdef TARGET_HAS_PRECISE_SMC 2648 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2649 if (current_tb) { 2650 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2651 } 2652 #endif 2653 } else { 2654 host_start = address & qemu_host_page_mask; 2655 host_end = host_start + qemu_host_page_size; 2656 2657 prot = 0; 2658 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2659 p = page_find(addr >> TARGET_PAGE_BITS); 2660 p->flags |= PAGE_WRITE; 2661 prot |= p->flags; 2662 2663 /* and since the content will be modified, we must invalidate 2664 the corresponding translated code. */ 2665 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2666 #ifdef CONFIG_USER_ONLY 2667 if (DEBUG_TB_CHECK_GATE) { 2668 tb_invalidate_check(addr); 2669 } 2670 #endif 2671 } 2672 mprotect((void *)g2h(host_start), qemu_host_page_size, 2673 prot & PAGE_BITS); 2674 } 2675 mmap_unlock(); 2676 /* If current TB was invalidated return to main loop */ 2677 return current_tb_invalidated ? 2 : 1; 2678 } 2679 mmap_unlock(); 2680 return 0; 2681 } 2682 #endif /* CONFIG_USER_ONLY */ 2683 2684 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2685 void tcg_flush_softmmu_tlb(CPUState *cs) 2686 { 2687 #ifdef CONFIG_SOFTMMU 2688 tlb_flush(cs); 2689 #endif 2690 } 2691