xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 64547a3b)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49 
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/tcg.h"
61 
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66 
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72 
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78 
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation.  */
81 #undef DEBUG_TB_CHECK
82 #endif
83 
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89 
90 /* Access to the various translations structures need to be serialised via locks
91  * for consistency.
92  * In user-mode emulation access to the memory related structures are protected
93  * with mmap_lock.
94  * In !user-mode we use per-page locks.
95  */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101 
102 #define SMC_BITMAP_USE_THRESHOLD 10
103 
104 typedef struct PageDesc {
105     /* list of TBs intersecting this ram page */
106     uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108     /* in order to optimize self modifying code, we count the number
109        of lookups we do to a given page to use a bitmap */
110     unsigned long *code_bitmap;
111     unsigned int code_write_count;
112 #else
113     unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116     QemuSpin lock;
117 #endif
118 } PageDesc;
119 
120 /**
121  * struct page_entry - page descriptor entry
122  * @pd:     pointer to the &struct PageDesc of the page this entry represents
123  * @index:  page index of the page
124  * @locked: whether the page is locked
125  *
126  * This struct helps us keep track of the locked state of a page, without
127  * bloating &struct PageDesc.
128  *
129  * A page lock protects accesses to all fields of &struct PageDesc.
130  *
131  * See also: &struct page_collection.
132  */
133 struct page_entry {
134     PageDesc *pd;
135     tb_page_addr_t index;
136     bool locked;
137 };
138 
139 /**
140  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141  * @tree:   Binary search tree (BST) of the pages, with key == page index
142  * @max:    Pointer to the page in @tree with the highest page index
143  *
144  * To avoid deadlock we lock pages in ascending order of page index.
145  * When operating on a set of pages, we need to keep track of them so that
146  * we can lock them in order and also unlock them later. For this we collect
147  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148  * @tree implementation we use does not provide an O(1) operation to obtain the
149  * highest-ranked element, we use @max to keep track of the inserted page
150  * with the highest index. This is valuable because if a page is not in
151  * the tree and its index is higher than @max's, then we can lock it
152  * without breaking the locking order rule.
153  *
154  * Note on naming: 'struct page_set' would be shorter, but we already have a few
155  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156  *
157  * See also: page_collection_lock().
158  */
159 struct page_collection {
160     GTree *tree;
161     struct page_entry *max;
162 };
163 
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
166     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
167          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
171     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 
173 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
174     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 
176 /* In system mode we want L1_MAP to be based on ram offsets,
177    while in user mode we want it to be based on virtual addresses.  */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
187 
188 /* Size of the L2 (and L3, etc) page tables.  */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
191 
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
195                   * BITS_PER_BYTE);
196 
197 /*
198  * L1 Mapping properties
199  */
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
203 
204 /* The bottom level has pointers to PageDesc, and is indexed by
205  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206  */
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210 
211 static void *l1_map[V_L1_MAX_SIZE];
212 
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
218 
219 static void page_table_config_init(void)
220 {
221     uint32_t v_l1_bits;
222 
223     assert(TARGET_PAGE_BITS);
224     /* The bits remaining after N lower levels of page tables.  */
225     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226     if (v_l1_bits < V_L1_MIN_BITS) {
227         v_l1_bits += V_L2_BITS;
228     }
229 
230     v_l1_size = 1 << v_l1_bits;
231     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233 
234     assert(v_l1_bits <= V_L1_MAX_BITS);
235     assert(v_l1_shift % V_L2_BITS == 0);
236     assert(v_l2_levels >= 0);
237 }
238 
239 void cpu_gen_init(void)
240 {
241     tcg_context_init(&tcg_init_ctx);
242 }
243 
244 /* Encode VAL as a signed leb128 sequence at P.
245    Return P incremented past the encoded value.  */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
247 {
248     int more, byte;
249 
250     do {
251         byte = val & 0x7f;
252         val >>= 7;
253         more = !((val == 0 && (byte & 0x40) == 0)
254                  || (val == -1 && (byte & 0x40) != 0));
255         if (more) {
256             byte |= 0x80;
257         }
258         *p++ = byte;
259     } while (more);
260 
261     return p;
262 }
263 
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265    decoded value.  Return the decoded value.  */
266 static target_long decode_sleb128(uint8_t **pp)
267 {
268     uint8_t *p = *pp;
269     target_long val = 0;
270     int byte, shift = 0;
271 
272     do {
273         byte = *p++;
274         val |= (target_ulong)(byte & 0x7f) << shift;
275         shift += 7;
276     } while (byte & 0x80);
277     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278         val |= -(target_ulong)1 << shift;
279     }
280 
281     *pp = p;
282     return val;
283 }
284 
285 /* Encode the data collected about the instructions while compiling TB.
286    Place the data at BLOCK, and return the number of bytes consumed.
287 
288    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289    which come from the target's insn_start data, followed by a uintptr_t
290    which comes from the host pc of the end of the code implementing the insn.
291 
292    Each line of the table is encoded as sleb128 deltas from the previous
293    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294    That is, the first column is seeded with the guest pc, the last column
295    with the host pc, and the middle columns with zeros.  */
296 
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 {
299     uint8_t *highwater = tcg_ctx->code_gen_highwater;
300     uint8_t *p = block;
301     int i, j, n;
302 
303     for (i = 0, n = tb->icount; i < n; ++i) {
304         target_ulong prev;
305 
306         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307             if (i == 0) {
308                 prev = (j == 0 ? tb->pc : 0);
309             } else {
310                 prev = tcg_ctx->gen_insn_data[i - 1][j];
311             }
312             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313         }
314         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316 
317         /* Test for (pending) buffer overflow.  The assumption is that any
318            one row beginning below the high water mark cannot overrun
319            the buffer completely.  Thus we can test for overflow after
320            encoding a row without having to check during encoding.  */
321         if (unlikely(p > highwater)) {
322             return -1;
323         }
324     }
325 
326     return p - block;
327 }
328 
329 /* The cpu state corresponding to 'searched_pc' is restored.
330  * When reset_icount is true, current TB will be interrupted and
331  * icount should be recalculated.
332  */
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334                                      uintptr_t searched_pc, bool reset_icount)
335 {
336     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338     CPUArchState *env = cpu->env_ptr;
339     uint8_t *p = tb->tc.ptr + tb->tc.size;
340     int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342     TCGProfile *prof = &tcg_ctx->prof;
343     int64_t ti = profile_getclock();
344 #endif
345 
346     searched_pc -= GETPC_ADJ;
347 
348     if (searched_pc < host_pc) {
349         return -1;
350     }
351 
352     /* Reconstruct the stored insn data while looking for the point at
353        which the end of the insn exceeds the searched_pc.  */
354     for (i = 0; i < num_insns; ++i) {
355         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356             data[j] += decode_sleb128(&p);
357         }
358         host_pc += decode_sleb128(&p);
359         if (host_pc > searched_pc) {
360             goto found;
361         }
362     }
363     return -1;
364 
365  found:
366     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367         assert(use_icount);
368         /* Reset the cycle counter to the start of the block
369            and shift if to the number of actually executed instructions */
370         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
371     }
372     restore_state_to_opc(env, tb, data);
373 
374 #ifdef CONFIG_PROFILER
375     atomic_set(&prof->restore_time,
376                 prof->restore_time + profile_getclock() - ti);
377     atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379     return 0;
380 }
381 
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 {
384     TranslationBlock *tb;
385     bool r = false;
386     uintptr_t check_offset;
387 
388     /* The host_pc has to be in the region of current code buffer. If
389      * it is not we will not be able to resolve it here. The two cases
390      * where host_pc will not be correct are:
391      *
392      *  - fault during translation (instruction fetch)
393      *  - fault from helper (not using GETPC() macro)
394      *
395      * Either way we need return early as we can't resolve it here.
396      *
397      * We are using unsigned arithmetic so if host_pc <
398      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399      * above the code_gen_buffer_size
400      */
401     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402 
403     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404         tb = tcg_tb_lookup(host_pc);
405         if (tb) {
406             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407             if (tb_cflags(tb) & CF_NOCACHE) {
408                 /* one-shot translation, invalidate it immediately */
409                 tb_phys_invalidate(tb, -1);
410                 tcg_tb_remove(tb);
411             }
412             r = true;
413         }
414     }
415 
416     return r;
417 }
418 
419 static void page_init(void)
420 {
421     page_size_init();
422     page_table_config_init();
423 
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425     {
426 #ifdef HAVE_KINFO_GETVMMAP
427         struct kinfo_vmentry *freep;
428         int i, cnt;
429 
430         freep = kinfo_getvmmap(getpid(), &cnt);
431         if (freep) {
432             mmap_lock();
433             for (i = 0; i < cnt; i++) {
434                 unsigned long startaddr, endaddr;
435 
436                 startaddr = freep[i].kve_start;
437                 endaddr = freep[i].kve_end;
438                 if (h2g_valid(startaddr)) {
439                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 
441                     if (h2g_valid(endaddr)) {
442                         endaddr = h2g(endaddr);
443                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444                     } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446                         endaddr = ~0ul;
447                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449                     }
450                 }
451             }
452             free(freep);
453             mmap_unlock();
454         }
455 #else
456         FILE *f;
457 
458         last_brk = (unsigned long)sbrk(0);
459 
460         f = fopen("/compat/linux/proc/self/maps", "r");
461         if (f) {
462             mmap_lock();
463 
464             do {
465                 unsigned long startaddr, endaddr;
466                 int n;
467 
468                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 
470                 if (n == 2 && h2g_valid(startaddr)) {
471                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 
473                     if (h2g_valid(endaddr)) {
474                         endaddr = h2g(endaddr);
475                     } else {
476                         endaddr = ~0ul;
477                     }
478                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479                 }
480             } while (!feof(f));
481 
482             fclose(f);
483             mmap_unlock();
484         }
485 #endif
486     }
487 #endif
488 }
489 
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492     PageDesc *pd;
493     void **lp;
494     int i;
495 
496     /* Level 1.  Always allocated.  */
497     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498 
499     /* Level 2..N-1.  */
500     for (i = v_l2_levels; i > 0; i--) {
501         void **p = atomic_rcu_read(lp);
502 
503         if (p == NULL) {
504             void *existing;
505 
506             if (!alloc) {
507                 return NULL;
508             }
509             p = g_new0(void *, V_L2_SIZE);
510             existing = atomic_cmpxchg(lp, NULL, p);
511             if (unlikely(existing)) {
512                 g_free(p);
513                 p = existing;
514             }
515         }
516 
517         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518     }
519 
520     pd = atomic_rcu_read(lp);
521     if (pd == NULL) {
522         void *existing;
523 
524         if (!alloc) {
525             return NULL;
526         }
527         pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529         {
530             int i;
531 
532             for (i = 0; i < V_L2_SIZE; i++) {
533                 qemu_spin_init(&pd[i].lock);
534             }
535         }
536 #endif
537         existing = atomic_cmpxchg(lp, NULL, pd);
538         if (unlikely(existing)) {
539             g_free(pd);
540             pd = existing;
541         }
542     }
543 
544     return pd + (index & (V_L2_SIZE - 1));
545 }
546 
547 static inline PageDesc *page_find(tb_page_addr_t index)
548 {
549     return page_find_alloc(index, 0);
550 }
551 
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554 
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
557 
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559 
560 static inline void page_lock(PageDesc *pd)
561 { }
562 
563 static inline void page_unlock(PageDesc *pd)
564 { }
565 
566 static inline void page_lock_tb(const TranslationBlock *tb)
567 { }
568 
569 static inline void page_unlock_tb(const TranslationBlock *tb)
570 { }
571 
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
574 {
575     return NULL;
576 }
577 
578 void page_collection_unlock(struct page_collection *set)
579 { }
580 #else /* !CONFIG_USER_ONLY */
581 
582 #ifdef CONFIG_DEBUG_TCG
583 
584 static __thread GHashTable *ht_pages_locked_debug;
585 
586 static void ht_pages_locked_debug_init(void)
587 {
588     if (ht_pages_locked_debug) {
589         return;
590     }
591     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
592 }
593 
594 static bool page_is_locked(const PageDesc *pd)
595 {
596     PageDesc *found;
597 
598     ht_pages_locked_debug_init();
599     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600     return !!found;
601 }
602 
603 static void page_lock__debug(PageDesc *pd)
604 {
605     ht_pages_locked_debug_init();
606     g_assert(!page_is_locked(pd));
607     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
608 }
609 
610 static void page_unlock__debug(const PageDesc *pd)
611 {
612     bool removed;
613 
614     ht_pages_locked_debug_init();
615     g_assert(page_is_locked(pd));
616     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617     g_assert(removed);
618 }
619 
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 {
623     if (unlikely(!page_is_locked(pd))) {
624         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625                      pd, file, line);
626         abort();
627     }
628 }
629 
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631 
632 void assert_no_pages_locked(void)
633 {
634     ht_pages_locked_debug_init();
635     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
636 }
637 
638 #else /* !CONFIG_DEBUG_TCG */
639 
640 #define assert_page_locked(pd)
641 
642 static inline void page_lock__debug(const PageDesc *pd)
643 {
644 }
645 
646 static inline void page_unlock__debug(const PageDesc *pd)
647 {
648 }
649 
650 #endif /* CONFIG_DEBUG_TCG */
651 
652 static inline void page_lock(PageDesc *pd)
653 {
654     page_lock__debug(pd);
655     qemu_spin_lock(&pd->lock);
656 }
657 
658 static inline void page_unlock(PageDesc *pd)
659 {
660     qemu_spin_unlock(&pd->lock);
661     page_unlock__debug(pd);
662 }
663 
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
666 {
667     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
668 }
669 
670 static inline void page_unlock_tb(const TranslationBlock *tb)
671 {
672     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
673 
674     page_unlock(p1);
675     if (unlikely(tb->page_addr[1] != -1)) {
676         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
677 
678         if (p2 != p1) {
679             page_unlock(p2);
680         }
681     }
682 }
683 
684 static inline struct page_entry *
685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
686 {
687     struct page_entry *pe = g_malloc(sizeof(*pe));
688 
689     pe->index = index;
690     pe->pd = pd;
691     pe->locked = false;
692     return pe;
693 }
694 
695 static void page_entry_destroy(gpointer p)
696 {
697     struct page_entry *pe = p;
698 
699     g_assert(pe->locked);
700     page_unlock(pe->pd);
701     g_free(pe);
702 }
703 
704 /* returns false on success */
705 static bool page_entry_trylock(struct page_entry *pe)
706 {
707     bool busy;
708 
709     busy = qemu_spin_trylock(&pe->pd->lock);
710     if (!busy) {
711         g_assert(!pe->locked);
712         pe->locked = true;
713         page_lock__debug(pe->pd);
714     }
715     return busy;
716 }
717 
718 static void do_page_entry_lock(struct page_entry *pe)
719 {
720     page_lock(pe->pd);
721     g_assert(!pe->locked);
722     pe->locked = true;
723 }
724 
725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
726 {
727     struct page_entry *pe = value;
728 
729     do_page_entry_lock(pe);
730     return FALSE;
731 }
732 
733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
734 {
735     struct page_entry *pe = value;
736 
737     if (pe->locked) {
738         pe->locked = false;
739         page_unlock(pe->pd);
740     }
741     return FALSE;
742 }
743 
744 /*
745  * Trylock a page, and if successful, add the page to a collection.
746  * Returns true ("busy") if the page could not be locked; false otherwise.
747  */
748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
749 {
750     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751     struct page_entry *pe;
752     PageDesc *pd;
753 
754     pe = g_tree_lookup(set->tree, &index);
755     if (pe) {
756         return false;
757     }
758 
759     pd = page_find(index);
760     if (pd == NULL) {
761         return false;
762     }
763 
764     pe = page_entry_new(pd, index);
765     g_tree_insert(set->tree, &pe->index, pe);
766 
767     /*
768      * If this is either (1) the first insertion or (2) a page whose index
769      * is higher than any other so far, just lock the page and move on.
770      */
771     if (set->max == NULL || pe->index > set->max->index) {
772         set->max = pe;
773         do_page_entry_lock(pe);
774         return false;
775     }
776     /*
777      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778      * locks in order.
779      */
780     return page_entry_trylock(pe);
781 }
782 
783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
784 {
785     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
787 
788     if (a == b) {
789         return 0;
790     } else if (a < b) {
791         return -1;
792     }
793     return 1;
794 }
795 
796 /*
797  * Lock a range of pages ([@start,@end[) as well as the pages of all
798  * intersecting TBs.
799  * Locking order: acquire locks in ascending order of page index.
800  */
801 struct page_collection *
802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
803 {
804     struct page_collection *set = g_malloc(sizeof(*set));
805     tb_page_addr_t index;
806     PageDesc *pd;
807 
808     start >>= TARGET_PAGE_BITS;
809     end   >>= TARGET_PAGE_BITS;
810     g_assert(start <= end);
811 
812     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813                                 page_entry_destroy);
814     set->max = NULL;
815     assert_no_pages_locked();
816 
817  retry:
818     g_tree_foreach(set->tree, page_entry_lock, NULL);
819 
820     for (index = start; index <= end; index++) {
821         TranslationBlock *tb;
822         int n;
823 
824         pd = page_find(index);
825         if (pd == NULL) {
826             continue;
827         }
828         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829             g_tree_foreach(set->tree, page_entry_unlock, NULL);
830             goto retry;
831         }
832         assert_page_locked(pd);
833         PAGE_FOR_EACH_TB(pd, tb, n) {
834             if (page_trylock_add(set, tb->page_addr[0]) ||
835                 (tb->page_addr[1] != -1 &&
836                  page_trylock_add(set, tb->page_addr[1]))) {
837                 /* drop all locks, and reacquire in order */
838                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839                 goto retry;
840             }
841         }
842     }
843     return set;
844 }
845 
846 void page_collection_unlock(struct page_collection *set)
847 {
848     /* entries are unlocked and freed via page_entry_destroy */
849     g_tree_destroy(set->tree);
850     g_free(set);
851 }
852 
853 #endif /* !CONFIG_USER_ONLY */
854 
855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
857 {
858     PageDesc *p1, *p2;
859     tb_page_addr_t page1;
860     tb_page_addr_t page2;
861 
862     assert_memory_lock();
863     g_assert(phys1 != -1);
864 
865     page1 = phys1 >> TARGET_PAGE_BITS;
866     page2 = phys2 >> TARGET_PAGE_BITS;
867 
868     p1 = page_find_alloc(page1, alloc);
869     if (ret_p1) {
870         *ret_p1 = p1;
871     }
872     if (likely(phys2 == -1)) {
873         page_lock(p1);
874         return;
875     } else if (page1 == page2) {
876         page_lock(p1);
877         if (ret_p2) {
878             *ret_p2 = p1;
879         }
880         return;
881     }
882     p2 = page_find_alloc(page2, alloc);
883     if (ret_p2) {
884         *ret_p2 = p2;
885     }
886     if (page1 < page2) {
887         page_lock(p1);
888         page_lock(p2);
889     } else {
890         page_lock(p2);
891         page_lock(p1);
892     }
893 }
894 
895 /* Minimum size of the code gen buffer.  This number is randomly chosen,
896    but not so small that we can't have a fair number of TB's live.  */
897 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
898 
899 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
900    indicated, this is constrained by the range of direct branches on the
901    host cpu, as used by the TCG implementation of goto_tb.  */
902 #if defined(__x86_64__)
903 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
904 #elif defined(__sparc__)
905 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
906 #elif defined(__powerpc64__)
907 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
908 #elif defined(__powerpc__)
909 # define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
910 #elif defined(__aarch64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
912 #elif defined(__s390x__)
913   /* We have a +- 4GB range on the branches; leave some slop.  */
914 # define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
915 #elif defined(__mips__)
916   /* We have a 256MB branch region, but leave room to make sure the
917      main executable is also within that region.  */
918 # define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
919 #else
920 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
921 #endif
922 
923 #if TCG_TARGET_REG_BITS == 32
924 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
925 #ifdef CONFIG_USER_ONLY
926 /*
927  * For user mode on smaller 32 bit systems we may run into trouble
928  * allocating big chunks of data in the right place. On these systems
929  * we utilise a static code generation buffer directly in the binary.
930  */
931 #define USE_STATIC_CODE_GEN_BUFFER
932 #endif
933 #else /* TCG_TARGET_REG_BITS == 64 */
934 #ifdef CONFIG_USER_ONLY
935 /*
936  * As user-mode emulation typically means running multiple instances
937  * of the translator don't go too nuts with our default code gen
938  * buffer lest we make things too hard for the OS.
939  */
940 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
941 #else
942 /*
943  * We expect most system emulation to run one or two guests per host.
944  * Users running large scale system emulation may want to tweak their
945  * runtime setup via the tb-size control on the command line.
946  */
947 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
948 #endif
949 #endif
950 
951 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
952   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
953    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
954 
955 static inline size_t size_code_gen_buffer(size_t tb_size)
956 {
957     /* Size the buffer.  */
958     if (tb_size == 0) {
959         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
960     }
961     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
962         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
963     }
964     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
965         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
966     }
967     return tb_size;
968 }
969 
970 #ifdef __mips__
971 /* In order to use J and JAL within the code_gen_buffer, we require
972    that the buffer not cross a 256MB boundary.  */
973 static inline bool cross_256mb(void *addr, size_t size)
974 {
975     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
976 }
977 
978 /* We weren't able to allocate a buffer without crossing that boundary,
979    so make do with the larger portion of the buffer that doesn't cross.
980    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
981 static inline void *split_cross_256mb(void *buf1, size_t size1)
982 {
983     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
984     size_t size2 = buf1 + size1 - buf2;
985 
986     size1 = buf2 - buf1;
987     if (size1 < size2) {
988         size1 = size2;
989         buf1 = buf2;
990     }
991 
992     tcg_ctx->code_gen_buffer_size = size1;
993     return buf1;
994 }
995 #endif
996 
997 #ifdef USE_STATIC_CODE_GEN_BUFFER
998 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
999     __attribute__((aligned(CODE_GEN_ALIGN)));
1000 
1001 static inline void *alloc_code_gen_buffer(void)
1002 {
1003     void *buf = static_code_gen_buffer;
1004     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1005     size_t size;
1006 
1007     /* page-align the beginning and end of the buffer */
1008     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1009     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1010 
1011     size = end - buf;
1012 
1013     /* Honor a command-line option limiting the size of the buffer.  */
1014     if (size > tcg_ctx->code_gen_buffer_size) {
1015         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1016                                qemu_real_host_page_size);
1017     }
1018     tcg_ctx->code_gen_buffer_size = size;
1019 
1020 #ifdef __mips__
1021     if (cross_256mb(buf, size)) {
1022         buf = split_cross_256mb(buf, size);
1023         size = tcg_ctx->code_gen_buffer_size;
1024     }
1025 #endif
1026 
1027     if (qemu_mprotect_rwx(buf, size)) {
1028         abort();
1029     }
1030     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1031 
1032     return buf;
1033 }
1034 #elif defined(_WIN32)
1035 static inline void *alloc_code_gen_buffer(void)
1036 {
1037     size_t size = tcg_ctx->code_gen_buffer_size;
1038     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1039                         PAGE_EXECUTE_READWRITE);
1040 }
1041 #else
1042 static inline void *alloc_code_gen_buffer(void)
1043 {
1044     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1045     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1046     size_t size = tcg_ctx->code_gen_buffer_size;
1047     void *buf;
1048 
1049     buf = mmap(NULL, size, prot, flags, -1, 0);
1050     if (buf == MAP_FAILED) {
1051         return NULL;
1052     }
1053 
1054 #ifdef __mips__
1055     if (cross_256mb(buf, size)) {
1056         /*
1057          * Try again, with the original still mapped, to avoid re-acquiring
1058          * the same 256mb crossing.
1059          */
1060         size_t size2;
1061         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1062         switch ((int)(buf2 != MAP_FAILED)) {
1063         case 1:
1064             if (!cross_256mb(buf2, size)) {
1065                 /* Success!  Use the new buffer.  */
1066                 munmap(buf, size);
1067                 break;
1068             }
1069             /* Failure.  Work with what we had.  */
1070             munmap(buf2, size);
1071             /* fallthru */
1072         default:
1073             /* Split the original buffer.  Free the smaller half.  */
1074             buf2 = split_cross_256mb(buf, size);
1075             size2 = tcg_ctx->code_gen_buffer_size;
1076             if (buf == buf2) {
1077                 munmap(buf + size2, size - size2);
1078             } else {
1079                 munmap(buf, size - size2);
1080             }
1081             size = size2;
1082             break;
1083         }
1084         buf = buf2;
1085     }
1086 #endif
1087 
1088     /* Request large pages for the buffer.  */
1089     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1090 
1091     return buf;
1092 }
1093 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1094 
1095 static inline void code_gen_alloc(size_t tb_size)
1096 {
1097     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1098     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1099     if (tcg_ctx->code_gen_buffer == NULL) {
1100         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1101         exit(1);
1102     }
1103 }
1104 
1105 static bool tb_cmp(const void *ap, const void *bp)
1106 {
1107     const TranslationBlock *a = ap;
1108     const TranslationBlock *b = bp;
1109 
1110     return a->pc == b->pc &&
1111         a->cs_base == b->cs_base &&
1112         a->flags == b->flags &&
1113         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1114         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1115         a->page_addr[0] == b->page_addr[0] &&
1116         a->page_addr[1] == b->page_addr[1];
1117 }
1118 
1119 static void tb_htable_init(void)
1120 {
1121     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1122 
1123     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1124 }
1125 
1126 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1127    (in bytes) allocated to the translation buffer. Zero means default
1128    size. */
1129 void tcg_exec_init(unsigned long tb_size)
1130 {
1131     tcg_allowed = true;
1132     cpu_gen_init();
1133     page_init();
1134     tb_htable_init();
1135     code_gen_alloc(tb_size);
1136 #if defined(CONFIG_SOFTMMU)
1137     /* There's no guest base to take into account, so go ahead and
1138        initialize the prologue now.  */
1139     tcg_prologue_init(tcg_ctx);
1140 #endif
1141 }
1142 
1143 /* call with @p->lock held */
1144 static inline void invalidate_page_bitmap(PageDesc *p)
1145 {
1146     assert_page_locked(p);
1147 #ifdef CONFIG_SOFTMMU
1148     g_free(p->code_bitmap);
1149     p->code_bitmap = NULL;
1150     p->code_write_count = 0;
1151 #endif
1152 }
1153 
1154 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1155 static void page_flush_tb_1(int level, void **lp)
1156 {
1157     int i;
1158 
1159     if (*lp == NULL) {
1160         return;
1161     }
1162     if (level == 0) {
1163         PageDesc *pd = *lp;
1164 
1165         for (i = 0; i < V_L2_SIZE; ++i) {
1166             page_lock(&pd[i]);
1167             pd[i].first_tb = (uintptr_t)NULL;
1168             invalidate_page_bitmap(pd + i);
1169             page_unlock(&pd[i]);
1170         }
1171     } else {
1172         void **pp = *lp;
1173 
1174         for (i = 0; i < V_L2_SIZE; ++i) {
1175             page_flush_tb_1(level - 1, pp + i);
1176         }
1177     }
1178 }
1179 
1180 static void page_flush_tb(void)
1181 {
1182     int i, l1_sz = v_l1_size;
1183 
1184     for (i = 0; i < l1_sz; i++) {
1185         page_flush_tb_1(v_l2_levels, l1_map + i);
1186     }
1187 }
1188 
1189 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1190 {
1191     const TranslationBlock *tb = value;
1192     size_t *size = data;
1193 
1194     *size += tb->tc.size;
1195     return false;
1196 }
1197 
1198 /* flush all the translation blocks */
1199 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1200 {
1201     bool did_flush = false;
1202 
1203     mmap_lock();
1204     /* If it is already been done on request of another CPU,
1205      * just retry.
1206      */
1207     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1208         goto done;
1209     }
1210     did_flush = true;
1211 
1212     if (DEBUG_TB_FLUSH_GATE) {
1213         size_t nb_tbs = tcg_nb_tbs();
1214         size_t host_size = 0;
1215 
1216         tcg_tb_foreach(tb_host_size_iter, &host_size);
1217         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1218                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1219     }
1220 
1221     CPU_FOREACH(cpu) {
1222         cpu_tb_jmp_cache_clear(cpu);
1223     }
1224 
1225     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1226     page_flush_tb();
1227 
1228     tcg_region_reset_all();
1229     /* XXX: flush processor icache at this point if cache flush is
1230        expensive */
1231     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1232 
1233 done:
1234     mmap_unlock();
1235     if (did_flush) {
1236         qemu_plugin_flush_cb();
1237     }
1238 }
1239 
1240 void tb_flush(CPUState *cpu)
1241 {
1242     if (tcg_enabled()) {
1243         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1244 
1245         if (cpu_in_exclusive_context(cpu)) {
1246             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1247         } else {
1248             async_safe_run_on_cpu(cpu, do_tb_flush,
1249                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1250         }
1251     }
1252 }
1253 
1254 /*
1255  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1256  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1257  * and let the optimizer get rid of them by wrapping their user-only callers
1258  * with if (DEBUG_TB_CHECK_GATE).
1259  */
1260 #ifdef CONFIG_USER_ONLY
1261 
1262 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1263 {
1264     TranslationBlock *tb = p;
1265     target_ulong addr = *(target_ulong *)userp;
1266 
1267     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1268         printf("ERROR invalidate: address=" TARGET_FMT_lx
1269                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1270     }
1271 }
1272 
1273 /* verify that all the pages have correct rights for code
1274  *
1275  * Called with mmap_lock held.
1276  */
1277 static void tb_invalidate_check(target_ulong address)
1278 {
1279     address &= TARGET_PAGE_MASK;
1280     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1281 }
1282 
1283 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1284 {
1285     TranslationBlock *tb = p;
1286     int flags1, flags2;
1287 
1288     flags1 = page_get_flags(tb->pc);
1289     flags2 = page_get_flags(tb->pc + tb->size - 1);
1290     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1291         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1292                (long)tb->pc, tb->size, flags1, flags2);
1293     }
1294 }
1295 
1296 /* verify that all the pages have correct rights for code */
1297 static void tb_page_check(void)
1298 {
1299     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1300 }
1301 
1302 #endif /* CONFIG_USER_ONLY */
1303 
1304 /*
1305  * user-mode: call with mmap_lock held
1306  * !user-mode: call with @pd->lock held
1307  */
1308 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1309 {
1310     TranslationBlock *tb1;
1311     uintptr_t *pprev;
1312     unsigned int n1;
1313 
1314     assert_page_locked(pd);
1315     pprev = &pd->first_tb;
1316     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1317         if (tb1 == tb) {
1318             *pprev = tb1->page_next[n1];
1319             return;
1320         }
1321         pprev = &tb1->page_next[n1];
1322     }
1323     g_assert_not_reached();
1324 }
1325 
1326 /* remove @orig from its @n_orig-th jump list */
1327 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1328 {
1329     uintptr_t ptr, ptr_locked;
1330     TranslationBlock *dest;
1331     TranslationBlock *tb;
1332     uintptr_t *pprev;
1333     int n;
1334 
1335     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1336     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1337     dest = (TranslationBlock *)(ptr & ~1);
1338     if (dest == NULL) {
1339         return;
1340     }
1341 
1342     qemu_spin_lock(&dest->jmp_lock);
1343     /*
1344      * While acquiring the lock, the jump might have been removed if the
1345      * destination TB was invalidated; check again.
1346      */
1347     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1348     if (ptr_locked != ptr) {
1349         qemu_spin_unlock(&dest->jmp_lock);
1350         /*
1351          * The only possibility is that the jump was unlinked via
1352          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1353          * because we set the LSB above.
1354          */
1355         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1356         return;
1357     }
1358     /*
1359      * We first acquired the lock, and since the destination pointer matches,
1360      * we know for sure that @orig is in the jmp list.
1361      */
1362     pprev = &dest->jmp_list_head;
1363     TB_FOR_EACH_JMP(dest, tb, n) {
1364         if (tb == orig && n == n_orig) {
1365             *pprev = tb->jmp_list_next[n];
1366             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1367             qemu_spin_unlock(&dest->jmp_lock);
1368             return;
1369         }
1370         pprev = &tb->jmp_list_next[n];
1371     }
1372     g_assert_not_reached();
1373 }
1374 
1375 /* reset the jump entry 'n' of a TB so that it is not chained to
1376    another TB */
1377 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1378 {
1379     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1380     tb_set_jmp_target(tb, n, addr);
1381 }
1382 
1383 /* remove any jumps to the TB */
1384 static inline void tb_jmp_unlink(TranslationBlock *dest)
1385 {
1386     TranslationBlock *tb;
1387     int n;
1388 
1389     qemu_spin_lock(&dest->jmp_lock);
1390 
1391     TB_FOR_EACH_JMP(dest, tb, n) {
1392         tb_reset_jump(tb, n);
1393         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1394         /* No need to clear the list entry; setting the dest ptr is enough */
1395     }
1396     dest->jmp_list_head = (uintptr_t)NULL;
1397 
1398     qemu_spin_unlock(&dest->jmp_lock);
1399 }
1400 
1401 /*
1402  * In user-mode, call with mmap_lock held.
1403  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1404  * locks held.
1405  */
1406 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1407 {
1408     CPUState *cpu;
1409     PageDesc *p;
1410     uint32_t h;
1411     tb_page_addr_t phys_pc;
1412 
1413     assert_memory_lock();
1414 
1415     /* make sure no further incoming jumps will be chained to this TB */
1416     qemu_spin_lock(&tb->jmp_lock);
1417     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1418     qemu_spin_unlock(&tb->jmp_lock);
1419 
1420     /* remove the TB from the hash list */
1421     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1422     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1423                      tb->trace_vcpu_dstate);
1424     if (!(tb->cflags & CF_NOCACHE) &&
1425         !qht_remove(&tb_ctx.htable, tb, h)) {
1426         return;
1427     }
1428 
1429     /* remove the TB from the page list */
1430     if (rm_from_page_list) {
1431         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1432         tb_page_remove(p, tb);
1433         invalidate_page_bitmap(p);
1434         if (tb->page_addr[1] != -1) {
1435             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1436             tb_page_remove(p, tb);
1437             invalidate_page_bitmap(p);
1438         }
1439     }
1440 
1441     /* remove the TB from the hash list */
1442     h = tb_jmp_cache_hash_func(tb->pc);
1443     CPU_FOREACH(cpu) {
1444         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1445             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1446         }
1447     }
1448 
1449     /* suppress this TB from the two jump lists */
1450     tb_remove_from_jmp_list(tb, 0);
1451     tb_remove_from_jmp_list(tb, 1);
1452 
1453     /* suppress any remaining jumps to this TB */
1454     tb_jmp_unlink(tb);
1455 
1456     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1457                tcg_ctx->tb_phys_invalidate_count + 1);
1458 }
1459 
1460 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1461 {
1462     do_tb_phys_invalidate(tb, true);
1463 }
1464 
1465 /* invalidate one TB
1466  *
1467  * Called with mmap_lock held in user-mode.
1468  */
1469 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1470 {
1471     if (page_addr == -1 && tb->page_addr[0] != -1) {
1472         page_lock_tb(tb);
1473         do_tb_phys_invalidate(tb, true);
1474         page_unlock_tb(tb);
1475     } else {
1476         do_tb_phys_invalidate(tb, false);
1477     }
1478 }
1479 
1480 #ifdef CONFIG_SOFTMMU
1481 /* call with @p->lock held */
1482 static void build_page_bitmap(PageDesc *p)
1483 {
1484     int n, tb_start, tb_end;
1485     TranslationBlock *tb;
1486 
1487     assert_page_locked(p);
1488     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1489 
1490     PAGE_FOR_EACH_TB(p, tb, n) {
1491         /* NOTE: this is subtle as a TB may span two physical pages */
1492         if (n == 0) {
1493             /* NOTE: tb_end may be after the end of the page, but
1494                it is not a problem */
1495             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1496             tb_end = tb_start + tb->size;
1497             if (tb_end > TARGET_PAGE_SIZE) {
1498                 tb_end = TARGET_PAGE_SIZE;
1499              }
1500         } else {
1501             tb_start = 0;
1502             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1503         }
1504         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1505     }
1506 }
1507 #endif
1508 
1509 /* add the tb in the target page and protect it if necessary
1510  *
1511  * Called with mmap_lock held for user-mode emulation.
1512  * Called with @p->lock held in !user-mode.
1513  */
1514 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1515                                unsigned int n, tb_page_addr_t page_addr)
1516 {
1517 #ifndef CONFIG_USER_ONLY
1518     bool page_already_protected;
1519 #endif
1520 
1521     assert_page_locked(p);
1522 
1523     tb->page_addr[n] = page_addr;
1524     tb->page_next[n] = p->first_tb;
1525 #ifndef CONFIG_USER_ONLY
1526     page_already_protected = p->first_tb != (uintptr_t)NULL;
1527 #endif
1528     p->first_tb = (uintptr_t)tb | n;
1529     invalidate_page_bitmap(p);
1530 
1531 #if defined(CONFIG_USER_ONLY)
1532     if (p->flags & PAGE_WRITE) {
1533         target_ulong addr;
1534         PageDesc *p2;
1535         int prot;
1536 
1537         /* force the host page as non writable (writes will have a
1538            page fault + mprotect overhead) */
1539         page_addr &= qemu_host_page_mask;
1540         prot = 0;
1541         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1542             addr += TARGET_PAGE_SIZE) {
1543 
1544             p2 = page_find(addr >> TARGET_PAGE_BITS);
1545             if (!p2) {
1546                 continue;
1547             }
1548             prot |= p2->flags;
1549             p2->flags &= ~PAGE_WRITE;
1550           }
1551         mprotect(g2h(page_addr), qemu_host_page_size,
1552                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1553         if (DEBUG_TB_INVALIDATE_GATE) {
1554             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1555         }
1556     }
1557 #else
1558     /* if some code is already present, then the pages are already
1559        protected. So we handle the case where only the first TB is
1560        allocated in a physical page */
1561     if (!page_already_protected) {
1562         tlb_protect_code(page_addr);
1563     }
1564 #endif
1565 }
1566 
1567 /* add a new TB and link it to the physical page tables. phys_page2 is
1568  * (-1) to indicate that only one page contains the TB.
1569  *
1570  * Called with mmap_lock held for user-mode emulation.
1571  *
1572  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1573  * Note that in !user-mode, another thread might have already added a TB
1574  * for the same block of guest code that @tb corresponds to. In that case,
1575  * the caller should discard the original @tb, and use instead the returned TB.
1576  */
1577 static TranslationBlock *
1578 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1579              tb_page_addr_t phys_page2)
1580 {
1581     PageDesc *p;
1582     PageDesc *p2 = NULL;
1583 
1584     assert_memory_lock();
1585 
1586     if (phys_pc == -1) {
1587         /*
1588          * If the TB is not associated with a physical RAM page then
1589          * it must be a temporary one-insn TB, and we have nothing to do
1590          * except fill in the page_addr[] fields.
1591          */
1592         assert(tb->cflags & CF_NOCACHE);
1593         tb->page_addr[0] = tb->page_addr[1] = -1;
1594         return tb;
1595     }
1596 
1597     /*
1598      * Add the TB to the page list, acquiring first the pages's locks.
1599      * We keep the locks held until after inserting the TB in the hash table,
1600      * so that if the insertion fails we know for sure that the TBs are still
1601      * in the page descriptors.
1602      * Note that inserting into the hash table first isn't an option, since
1603      * we can only insert TBs that are fully initialized.
1604      */
1605     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1606     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1607     if (p2) {
1608         tb_page_add(p2, tb, 1, phys_page2);
1609     } else {
1610         tb->page_addr[1] = -1;
1611     }
1612 
1613     if (!(tb->cflags & CF_NOCACHE)) {
1614         void *existing_tb = NULL;
1615         uint32_t h;
1616 
1617         /* add in the hash table */
1618         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1619                          tb->trace_vcpu_dstate);
1620         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1621 
1622         /* remove TB from the page(s) if we couldn't insert it */
1623         if (unlikely(existing_tb)) {
1624             tb_page_remove(p, tb);
1625             invalidate_page_bitmap(p);
1626             if (p2) {
1627                 tb_page_remove(p2, tb);
1628                 invalidate_page_bitmap(p2);
1629             }
1630             tb = existing_tb;
1631         }
1632     }
1633 
1634     if (p2 && p2 != p) {
1635         page_unlock(p2);
1636     }
1637     page_unlock(p);
1638 
1639 #ifdef CONFIG_USER_ONLY
1640     if (DEBUG_TB_CHECK_GATE) {
1641         tb_page_check();
1642     }
1643 #endif
1644     return tb;
1645 }
1646 
1647 /* Called with mmap_lock held for user mode emulation.  */
1648 TranslationBlock *tb_gen_code(CPUState *cpu,
1649                               target_ulong pc, target_ulong cs_base,
1650                               uint32_t flags, int cflags)
1651 {
1652     CPUArchState *env = cpu->env_ptr;
1653     TranslationBlock *tb, *existing_tb;
1654     tb_page_addr_t phys_pc, phys_page2;
1655     target_ulong virt_page2;
1656     tcg_insn_unit *gen_code_buf;
1657     int gen_code_size, search_size, max_insns;
1658 #ifdef CONFIG_PROFILER
1659     TCGProfile *prof = &tcg_ctx->prof;
1660     int64_t ti;
1661 #endif
1662 
1663     assert_memory_lock();
1664 
1665     phys_pc = get_page_addr_code(env, pc);
1666 
1667     if (phys_pc == -1) {
1668         /* Generate a temporary TB with 1 insn in it */
1669         cflags &= ~CF_COUNT_MASK;
1670         cflags |= CF_NOCACHE | 1;
1671     }
1672 
1673     cflags &= ~CF_CLUSTER_MASK;
1674     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1675 
1676     max_insns = cflags & CF_COUNT_MASK;
1677     if (max_insns == 0) {
1678         max_insns = CF_COUNT_MASK;
1679     }
1680     if (max_insns > TCG_MAX_INSNS) {
1681         max_insns = TCG_MAX_INSNS;
1682     }
1683     if (cpu->singlestep_enabled || singlestep) {
1684         max_insns = 1;
1685     }
1686 
1687  buffer_overflow:
1688     tb = tcg_tb_alloc(tcg_ctx);
1689     if (unlikely(!tb)) {
1690         /* flush must be done */
1691         tb_flush(cpu);
1692         mmap_unlock();
1693         /* Make the execution loop process the flush as soon as possible.  */
1694         cpu->exception_index = EXCP_INTERRUPT;
1695         cpu_loop_exit(cpu);
1696     }
1697 
1698     gen_code_buf = tcg_ctx->code_gen_ptr;
1699     tb->tc.ptr = gen_code_buf;
1700     tb->pc = pc;
1701     tb->cs_base = cs_base;
1702     tb->flags = flags;
1703     tb->cflags = cflags;
1704     tb->orig_tb = NULL;
1705     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1706     tcg_ctx->tb_cflags = cflags;
1707  tb_overflow:
1708 
1709 #ifdef CONFIG_PROFILER
1710     /* includes aborted translations because of exceptions */
1711     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1712     ti = profile_getclock();
1713 #endif
1714 
1715     tcg_func_start(tcg_ctx);
1716 
1717     tcg_ctx->cpu = env_cpu(env);
1718     gen_intermediate_code(cpu, tb, max_insns);
1719     tcg_ctx->cpu = NULL;
1720 
1721     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1722 
1723     /* generate machine code */
1724     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1725     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1726     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1727     if (TCG_TARGET_HAS_direct_jump) {
1728         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1729         tcg_ctx->tb_jmp_target_addr = NULL;
1730     } else {
1731         tcg_ctx->tb_jmp_insn_offset = NULL;
1732         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1733     }
1734 
1735 #ifdef CONFIG_PROFILER
1736     atomic_set(&prof->tb_count, prof->tb_count + 1);
1737     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1738     ti = profile_getclock();
1739 #endif
1740 
1741     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1742     if (unlikely(gen_code_size < 0)) {
1743         switch (gen_code_size) {
1744         case -1:
1745             /*
1746              * Overflow of code_gen_buffer, or the current slice of it.
1747              *
1748              * TODO: We don't need to re-do gen_intermediate_code, nor
1749              * should we re-do the tcg optimization currently hidden
1750              * inside tcg_gen_code.  All that should be required is to
1751              * flush the TBs, allocate a new TB, re-initialize it per
1752              * above, and re-do the actual code generation.
1753              */
1754             goto buffer_overflow;
1755 
1756         case -2:
1757             /*
1758              * The code generated for the TranslationBlock is too large.
1759              * The maximum size allowed by the unwind info is 64k.
1760              * There may be stricter constraints from relocations
1761              * in the tcg backend.
1762              *
1763              * Try again with half as many insns as we attempted this time.
1764              * If a single insn overflows, there's a bug somewhere...
1765              */
1766             max_insns = tb->icount;
1767             assert(max_insns > 1);
1768             max_insns /= 2;
1769             goto tb_overflow;
1770 
1771         default:
1772             g_assert_not_reached();
1773         }
1774     }
1775     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1776     if (unlikely(search_size < 0)) {
1777         goto buffer_overflow;
1778     }
1779     tb->tc.size = gen_code_size;
1780 
1781 #ifdef CONFIG_PROFILER
1782     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1783     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1784     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1785     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1786 #endif
1787 
1788 #ifdef DEBUG_DISAS
1789     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1790         qemu_log_in_addr_range(tb->pc)) {
1791         FILE *logfile = qemu_log_lock();
1792         qemu_log("OUT: [size=%d]\n", gen_code_size);
1793         if (tcg_ctx->data_gen_ptr) {
1794             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1795             size_t data_size = gen_code_size - code_size;
1796             size_t i;
1797 
1798             log_disas(tb->tc.ptr, code_size);
1799 
1800             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1801                 if (sizeof(tcg_target_ulong) == 8) {
1802                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1803                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1804                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1805                 } else {
1806                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1807                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1808                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1809                 }
1810             }
1811         } else {
1812             log_disas(tb->tc.ptr, gen_code_size);
1813         }
1814         qemu_log("\n");
1815         qemu_log_flush();
1816         qemu_log_unlock(logfile);
1817     }
1818 #endif
1819 
1820     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1821         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1822                  CODE_GEN_ALIGN));
1823 
1824     /* init jump list */
1825     qemu_spin_init(&tb->jmp_lock);
1826     tb->jmp_list_head = (uintptr_t)NULL;
1827     tb->jmp_list_next[0] = (uintptr_t)NULL;
1828     tb->jmp_list_next[1] = (uintptr_t)NULL;
1829     tb->jmp_dest[0] = (uintptr_t)NULL;
1830     tb->jmp_dest[1] = (uintptr_t)NULL;
1831 
1832     /* init original jump addresses which have been set during tcg_gen_code() */
1833     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1834         tb_reset_jump(tb, 0);
1835     }
1836     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1837         tb_reset_jump(tb, 1);
1838     }
1839 
1840     /* check next page if needed */
1841     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1842     phys_page2 = -1;
1843     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1844         phys_page2 = get_page_addr_code(env, virt_page2);
1845     }
1846     /*
1847      * No explicit memory barrier is required -- tb_link_page() makes the
1848      * TB visible in a consistent state.
1849      */
1850     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1851     /* if the TB already exists, discard what we just translated */
1852     if (unlikely(existing_tb != tb)) {
1853         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1854 
1855         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1856         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1857         return existing_tb;
1858     }
1859     tcg_tb_insert(tb);
1860     return tb;
1861 }
1862 
1863 /*
1864  * @p must be non-NULL.
1865  * user-mode: call with mmap_lock held.
1866  * !user-mode: call with all @pages locked.
1867  */
1868 static void
1869 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1870                                       PageDesc *p, tb_page_addr_t start,
1871                                       tb_page_addr_t end,
1872                                       uintptr_t retaddr)
1873 {
1874     TranslationBlock *tb;
1875     tb_page_addr_t tb_start, tb_end;
1876     int n;
1877 #ifdef TARGET_HAS_PRECISE_SMC
1878     CPUState *cpu = current_cpu;
1879     CPUArchState *env = NULL;
1880     bool current_tb_not_found = retaddr != 0;
1881     bool current_tb_modified = false;
1882     TranslationBlock *current_tb = NULL;
1883     target_ulong current_pc = 0;
1884     target_ulong current_cs_base = 0;
1885     uint32_t current_flags = 0;
1886 #endif /* TARGET_HAS_PRECISE_SMC */
1887 
1888     assert_page_locked(p);
1889 
1890 #if defined(TARGET_HAS_PRECISE_SMC)
1891     if (cpu != NULL) {
1892         env = cpu->env_ptr;
1893     }
1894 #endif
1895 
1896     /* we remove all the TBs in the range [start, end[ */
1897     /* XXX: see if in some cases it could be faster to invalidate all
1898        the code */
1899     PAGE_FOR_EACH_TB(p, tb, n) {
1900         assert_page_locked(p);
1901         /* NOTE: this is subtle as a TB may span two physical pages */
1902         if (n == 0) {
1903             /* NOTE: tb_end may be after the end of the page, but
1904                it is not a problem */
1905             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1906             tb_end = tb_start + tb->size;
1907         } else {
1908             tb_start = tb->page_addr[1];
1909             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1910         }
1911         if (!(tb_end <= start || tb_start >= end)) {
1912 #ifdef TARGET_HAS_PRECISE_SMC
1913             if (current_tb_not_found) {
1914                 current_tb_not_found = false;
1915                 /* now we have a real cpu fault */
1916                 current_tb = tcg_tb_lookup(retaddr);
1917             }
1918             if (current_tb == tb &&
1919                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1920                 /*
1921                  * If we are modifying the current TB, we must stop
1922                  * its execution. We could be more precise by checking
1923                  * that the modification is after the current PC, but it
1924                  * would require a specialized function to partially
1925                  * restore the CPU state.
1926                  */
1927                 current_tb_modified = true;
1928                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1929                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1930                                      &current_flags);
1931             }
1932 #endif /* TARGET_HAS_PRECISE_SMC */
1933             tb_phys_invalidate__locked(tb);
1934         }
1935     }
1936 #if !defined(CONFIG_USER_ONLY)
1937     /* if no code remaining, no need to continue to use slow writes */
1938     if (!p->first_tb) {
1939         invalidate_page_bitmap(p);
1940         tlb_unprotect_code(start);
1941     }
1942 #endif
1943 #ifdef TARGET_HAS_PRECISE_SMC
1944     if (current_tb_modified) {
1945         page_collection_unlock(pages);
1946         /* Force execution of one insn next time.  */
1947         cpu->cflags_next_tb = 1 | curr_cflags();
1948         mmap_unlock();
1949         cpu_loop_exit_noexc(cpu);
1950     }
1951 #endif
1952 }
1953 
1954 /*
1955  * Invalidate all TBs which intersect with the target physical address range
1956  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1957  * 'is_cpu_write_access' should be true if called from a real cpu write
1958  * access: the virtual CPU will exit the current TB if code is modified inside
1959  * this TB.
1960  *
1961  * Called with mmap_lock held for user-mode emulation
1962  */
1963 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1964 {
1965     struct page_collection *pages;
1966     PageDesc *p;
1967 
1968     assert_memory_lock();
1969 
1970     p = page_find(start >> TARGET_PAGE_BITS);
1971     if (p == NULL) {
1972         return;
1973     }
1974     pages = page_collection_lock(start, end);
1975     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1976     page_collection_unlock(pages);
1977 }
1978 
1979 /*
1980  * Invalidate all TBs which intersect with the target physical address range
1981  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1982  * 'is_cpu_write_access' should be true if called from a real cpu write
1983  * access: the virtual CPU will exit the current TB if code is modified inside
1984  * this TB.
1985  *
1986  * Called with mmap_lock held for user-mode emulation.
1987  */
1988 #ifdef CONFIG_SOFTMMU
1989 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1990 #else
1991 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1992 #endif
1993 {
1994     struct page_collection *pages;
1995     tb_page_addr_t next;
1996 
1997     assert_memory_lock();
1998 
1999     pages = page_collection_lock(start, end);
2000     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2001          start < end;
2002          start = next, next += TARGET_PAGE_SIZE) {
2003         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2004         tb_page_addr_t bound = MIN(next, end);
2005 
2006         if (pd == NULL) {
2007             continue;
2008         }
2009         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2010     }
2011     page_collection_unlock(pages);
2012 }
2013 
2014 #ifdef CONFIG_SOFTMMU
2015 /* len must be <= 8 and start must be a multiple of len.
2016  * Called via softmmu_template.h when code areas are written to with
2017  * iothread mutex not held.
2018  *
2019  * Call with all @pages in the range [@start, @start + len[ locked.
2020  */
2021 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2022                                   tb_page_addr_t start, int len,
2023                                   uintptr_t retaddr)
2024 {
2025     PageDesc *p;
2026 
2027     assert_memory_lock();
2028 
2029     p = page_find(start >> TARGET_PAGE_BITS);
2030     if (!p) {
2031         return;
2032     }
2033 
2034     assert_page_locked(p);
2035     if (!p->code_bitmap &&
2036         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2037         build_page_bitmap(p);
2038     }
2039     if (p->code_bitmap) {
2040         unsigned int nr;
2041         unsigned long b;
2042 
2043         nr = start & ~TARGET_PAGE_MASK;
2044         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2045         if (b & ((1 << len) - 1)) {
2046             goto do_invalidate;
2047         }
2048     } else {
2049     do_invalidate:
2050         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2051                                               retaddr);
2052     }
2053 }
2054 #else
2055 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2056  * host PC of the faulting store instruction that caused this invalidate.
2057  * Returns true if the caller needs to abort execution of the current
2058  * TB (because it was modified by this store and the guest CPU has
2059  * precise-SMC semantics).
2060  */
2061 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2062 {
2063     TranslationBlock *tb;
2064     PageDesc *p;
2065     int n;
2066 #ifdef TARGET_HAS_PRECISE_SMC
2067     TranslationBlock *current_tb = NULL;
2068     CPUState *cpu = current_cpu;
2069     CPUArchState *env = NULL;
2070     int current_tb_modified = 0;
2071     target_ulong current_pc = 0;
2072     target_ulong current_cs_base = 0;
2073     uint32_t current_flags = 0;
2074 #endif
2075 
2076     assert_memory_lock();
2077 
2078     addr &= TARGET_PAGE_MASK;
2079     p = page_find(addr >> TARGET_PAGE_BITS);
2080     if (!p) {
2081         return false;
2082     }
2083 
2084 #ifdef TARGET_HAS_PRECISE_SMC
2085     if (p->first_tb && pc != 0) {
2086         current_tb = tcg_tb_lookup(pc);
2087     }
2088     if (cpu != NULL) {
2089         env = cpu->env_ptr;
2090     }
2091 #endif
2092     assert_page_locked(p);
2093     PAGE_FOR_EACH_TB(p, tb, n) {
2094 #ifdef TARGET_HAS_PRECISE_SMC
2095         if (current_tb == tb &&
2096             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2097                 /* If we are modifying the current TB, we must stop
2098                    its execution. We could be more precise by checking
2099                    that the modification is after the current PC, but it
2100                    would require a specialized function to partially
2101                    restore the CPU state */
2102 
2103             current_tb_modified = 1;
2104             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2105             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2106                                  &current_flags);
2107         }
2108 #endif /* TARGET_HAS_PRECISE_SMC */
2109         tb_phys_invalidate(tb, addr);
2110     }
2111     p->first_tb = (uintptr_t)NULL;
2112 #ifdef TARGET_HAS_PRECISE_SMC
2113     if (current_tb_modified) {
2114         /* Force execution of one insn next time.  */
2115         cpu->cflags_next_tb = 1 | curr_cflags();
2116         return true;
2117     }
2118 #endif
2119 
2120     return false;
2121 }
2122 #endif
2123 
2124 /* user-mode: call with mmap_lock held */
2125 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2126 {
2127     TranslationBlock *tb;
2128 
2129     assert_memory_lock();
2130 
2131     tb = tcg_tb_lookup(retaddr);
2132     if (tb) {
2133         /* We can use retranslation to find the PC.  */
2134         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2135         tb_phys_invalidate(tb, -1);
2136     } else {
2137         /* The exception probably happened in a helper.  The CPU state should
2138            have been saved before calling it. Fetch the PC from there.  */
2139         CPUArchState *env = cpu->env_ptr;
2140         target_ulong pc, cs_base;
2141         tb_page_addr_t addr;
2142         uint32_t flags;
2143 
2144         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2145         addr = get_page_addr_code(env, pc);
2146         if (addr != -1) {
2147             tb_invalidate_phys_range(addr, addr + 1);
2148         }
2149     }
2150 }
2151 
2152 #ifndef CONFIG_USER_ONLY
2153 /* in deterministic execution mode, instructions doing device I/Os
2154  * must be at the end of the TB.
2155  *
2156  * Called by softmmu_template.h, with iothread mutex not held.
2157  */
2158 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2159 {
2160 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2161     CPUArchState *env = cpu->env_ptr;
2162 #endif
2163     TranslationBlock *tb;
2164     uint32_t n;
2165 
2166     tb = tcg_tb_lookup(retaddr);
2167     if (!tb) {
2168         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2169                   (void *)retaddr);
2170     }
2171     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2172 
2173     /* On MIPS and SH, delay slot instructions can only be restarted if
2174        they were already the first instruction in the TB.  If this is not
2175        the first instruction in a TB then re-execute the preceding
2176        branch.  */
2177     n = 1;
2178 #if defined(TARGET_MIPS)
2179     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2180         && env->active_tc.PC != tb->pc) {
2181         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2182         cpu_neg(cpu)->icount_decr.u16.low++;
2183         env->hflags &= ~MIPS_HFLAG_BMASK;
2184         n = 2;
2185     }
2186 #elif defined(TARGET_SH4)
2187     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2188         && env->pc != tb->pc) {
2189         env->pc -= 2;
2190         cpu_neg(cpu)->icount_decr.u16.low++;
2191         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2192         n = 2;
2193     }
2194 #endif
2195 
2196     /* Generate a new TB executing the I/O insn.  */
2197     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2198 
2199     if (tb_cflags(tb) & CF_NOCACHE) {
2200         if (tb->orig_tb) {
2201             /* Invalidate original TB if this TB was generated in
2202              * cpu_exec_nocache() */
2203             tb_phys_invalidate(tb->orig_tb, -1);
2204         }
2205         tcg_tb_remove(tb);
2206     }
2207 
2208     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2209      * the first in the TB) then we end up generating a whole new TB and
2210      *  repeating the fault, which is horribly inefficient.
2211      *  Better would be to execute just this insn uncached, or generate a
2212      *  second new TB.
2213      */
2214     cpu_loop_exit_noexc(cpu);
2215 }
2216 
2217 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2218 {
2219     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2220 
2221     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2222         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2223     }
2224 }
2225 
2226 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2227 {
2228     /* Discard jump cache entries for any tb which might potentially
2229        overlap the flushed page.  */
2230     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2231     tb_jmp_cache_clear_page(cpu, addr);
2232 }
2233 
2234 static void print_qht_statistics(struct qht_stats hst)
2235 {
2236     uint32_t hgram_opts;
2237     size_t hgram_bins;
2238     char *hgram;
2239 
2240     if (!hst.head_buckets) {
2241         return;
2242     }
2243     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2244                 hst.used_head_buckets, hst.head_buckets,
2245                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2246 
2247     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2248     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2249     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2250         hgram_opts |= QDIST_PR_NODECIMAL;
2251     }
2252     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2253     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2254                 qdist_avg(&hst.occupancy) * 100, hgram);
2255     g_free(hgram);
2256 
2257     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2258     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2259     if (hgram_bins > 10) {
2260         hgram_bins = 10;
2261     } else {
2262         hgram_bins = 0;
2263         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2264     }
2265     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2266     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2267                 qdist_avg(&hst.chain), hgram);
2268     g_free(hgram);
2269 }
2270 
2271 struct tb_tree_stats {
2272     size_t nb_tbs;
2273     size_t host_size;
2274     size_t target_size;
2275     size_t max_target_size;
2276     size_t direct_jmp_count;
2277     size_t direct_jmp2_count;
2278     size_t cross_page;
2279 };
2280 
2281 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2282 {
2283     const TranslationBlock *tb = value;
2284     struct tb_tree_stats *tst = data;
2285 
2286     tst->nb_tbs++;
2287     tst->host_size += tb->tc.size;
2288     tst->target_size += tb->size;
2289     if (tb->size > tst->max_target_size) {
2290         tst->max_target_size = tb->size;
2291     }
2292     if (tb->page_addr[1] != -1) {
2293         tst->cross_page++;
2294     }
2295     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2296         tst->direct_jmp_count++;
2297         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2298             tst->direct_jmp2_count++;
2299         }
2300     }
2301     return false;
2302 }
2303 
2304 void dump_exec_info(void)
2305 {
2306     struct tb_tree_stats tst = {};
2307     struct qht_stats hst;
2308     size_t nb_tbs, flush_full, flush_part, flush_elide;
2309 
2310     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2311     nb_tbs = tst.nb_tbs;
2312     /* XXX: avoid using doubles ? */
2313     qemu_printf("Translation buffer state:\n");
2314     /*
2315      * Report total code size including the padding and TB structs;
2316      * otherwise users might think "-tb-size" is not honoured.
2317      * For avg host size we use the precise numbers from tb_tree_stats though.
2318      */
2319     qemu_printf("gen code size       %zu/%zu\n",
2320                 tcg_code_size(), tcg_code_capacity());
2321     qemu_printf("TB count            %zu\n", nb_tbs);
2322     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2323                 nb_tbs ? tst.target_size / nb_tbs : 0,
2324                 tst.max_target_size);
2325     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2326                 nb_tbs ? tst.host_size / nb_tbs : 0,
2327                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2328     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2329                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2330     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2331                 tst.direct_jmp_count,
2332                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2333                 tst.direct_jmp2_count,
2334                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2335 
2336     qht_statistics_init(&tb_ctx.htable, &hst);
2337     print_qht_statistics(hst);
2338     qht_statistics_destroy(&hst);
2339 
2340     qemu_printf("\nStatistics:\n");
2341     qemu_printf("TB flush count      %u\n",
2342                 atomic_read(&tb_ctx.tb_flush_count));
2343     qemu_printf("TB invalidate count %zu\n",
2344                 tcg_tb_phys_invalidate_count());
2345 
2346     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2347     qemu_printf("TLB full flushes    %zu\n", flush_full);
2348     qemu_printf("TLB partial flushes %zu\n", flush_part);
2349     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2350     tcg_dump_info();
2351 }
2352 
2353 void dump_opcount_info(void)
2354 {
2355     tcg_dump_op_count();
2356 }
2357 
2358 #else /* CONFIG_USER_ONLY */
2359 
2360 void cpu_interrupt(CPUState *cpu, int mask)
2361 {
2362     g_assert(qemu_mutex_iothread_locked());
2363     cpu->interrupt_request |= mask;
2364     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2365 }
2366 
2367 /*
2368  * Walks guest process memory "regions" one by one
2369  * and calls callback function 'fn' for each region.
2370  */
2371 struct walk_memory_regions_data {
2372     walk_memory_regions_fn fn;
2373     void *priv;
2374     target_ulong start;
2375     int prot;
2376 };
2377 
2378 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2379                                    target_ulong end, int new_prot)
2380 {
2381     if (data->start != -1u) {
2382         int rc = data->fn(data->priv, data->start, end, data->prot);
2383         if (rc != 0) {
2384             return rc;
2385         }
2386     }
2387 
2388     data->start = (new_prot ? end : -1u);
2389     data->prot = new_prot;
2390 
2391     return 0;
2392 }
2393 
2394 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2395                                  target_ulong base, int level, void **lp)
2396 {
2397     target_ulong pa;
2398     int i, rc;
2399 
2400     if (*lp == NULL) {
2401         return walk_memory_regions_end(data, base, 0);
2402     }
2403 
2404     if (level == 0) {
2405         PageDesc *pd = *lp;
2406 
2407         for (i = 0; i < V_L2_SIZE; ++i) {
2408             int prot = pd[i].flags;
2409 
2410             pa = base | (i << TARGET_PAGE_BITS);
2411             if (prot != data->prot) {
2412                 rc = walk_memory_regions_end(data, pa, prot);
2413                 if (rc != 0) {
2414                     return rc;
2415                 }
2416             }
2417         }
2418     } else {
2419         void **pp = *lp;
2420 
2421         for (i = 0; i < V_L2_SIZE; ++i) {
2422             pa = base | ((target_ulong)i <<
2423                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2424             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2425             if (rc != 0) {
2426                 return rc;
2427             }
2428         }
2429     }
2430 
2431     return 0;
2432 }
2433 
2434 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2435 {
2436     struct walk_memory_regions_data data;
2437     uintptr_t i, l1_sz = v_l1_size;
2438 
2439     data.fn = fn;
2440     data.priv = priv;
2441     data.start = -1u;
2442     data.prot = 0;
2443 
2444     for (i = 0; i < l1_sz; i++) {
2445         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2446         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2447         if (rc != 0) {
2448             return rc;
2449         }
2450     }
2451 
2452     return walk_memory_regions_end(&data, 0, 0);
2453 }
2454 
2455 static int dump_region(void *priv, target_ulong start,
2456     target_ulong end, unsigned long prot)
2457 {
2458     FILE *f = (FILE *)priv;
2459 
2460     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2461         " "TARGET_FMT_lx" %c%c%c\n",
2462         start, end, end - start,
2463         ((prot & PAGE_READ) ? 'r' : '-'),
2464         ((prot & PAGE_WRITE) ? 'w' : '-'),
2465         ((prot & PAGE_EXEC) ? 'x' : '-'));
2466 
2467     return 0;
2468 }
2469 
2470 /* dump memory mappings */
2471 void page_dump(FILE *f)
2472 {
2473     const int length = sizeof(target_ulong) * 2;
2474     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2475             length, "start", length, "end", length, "size", "prot");
2476     walk_memory_regions(f, dump_region);
2477 }
2478 
2479 int page_get_flags(target_ulong address)
2480 {
2481     PageDesc *p;
2482 
2483     p = page_find(address >> TARGET_PAGE_BITS);
2484     if (!p) {
2485         return 0;
2486     }
2487     return p->flags;
2488 }
2489 
2490 /* Modify the flags of a page and invalidate the code if necessary.
2491    The flag PAGE_WRITE_ORG is positioned automatically depending
2492    on PAGE_WRITE.  The mmap_lock should already be held.  */
2493 void page_set_flags(target_ulong start, target_ulong end, int flags)
2494 {
2495     target_ulong addr, len;
2496 
2497     /* This function should never be called with addresses outside the
2498        guest address space.  If this assert fires, it probably indicates
2499        a missing call to h2g_valid.  */
2500 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2501     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2502 #endif
2503     assert(start < end);
2504     assert_memory_lock();
2505 
2506     start = start & TARGET_PAGE_MASK;
2507     end = TARGET_PAGE_ALIGN(end);
2508 
2509     if (flags & PAGE_WRITE) {
2510         flags |= PAGE_WRITE_ORG;
2511     }
2512 
2513     for (addr = start, len = end - start;
2514          len != 0;
2515          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2516         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2517 
2518         /* If the write protection bit is set, then we invalidate
2519            the code inside.  */
2520         if (!(p->flags & PAGE_WRITE) &&
2521             (flags & PAGE_WRITE) &&
2522             p->first_tb) {
2523             tb_invalidate_phys_page(addr, 0);
2524         }
2525         p->flags = flags;
2526     }
2527 }
2528 
2529 int page_check_range(target_ulong start, target_ulong len, int flags)
2530 {
2531     PageDesc *p;
2532     target_ulong end;
2533     target_ulong addr;
2534 
2535     /* This function should never be called with addresses outside the
2536        guest address space.  If this assert fires, it probably indicates
2537        a missing call to h2g_valid.  */
2538 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2539     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2540 #endif
2541 
2542     if (len == 0) {
2543         return 0;
2544     }
2545     if (start + len - 1 < start) {
2546         /* We've wrapped around.  */
2547         return -1;
2548     }
2549 
2550     /* must do before we loose bits in the next step */
2551     end = TARGET_PAGE_ALIGN(start + len);
2552     start = start & TARGET_PAGE_MASK;
2553 
2554     for (addr = start, len = end - start;
2555          len != 0;
2556          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2557         p = page_find(addr >> TARGET_PAGE_BITS);
2558         if (!p) {
2559             return -1;
2560         }
2561         if (!(p->flags & PAGE_VALID)) {
2562             return -1;
2563         }
2564 
2565         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2566             return -1;
2567         }
2568         if (flags & PAGE_WRITE) {
2569             if (!(p->flags & PAGE_WRITE_ORG)) {
2570                 return -1;
2571             }
2572             /* unprotect the page if it was put read-only because it
2573                contains translated code */
2574             if (!(p->flags & PAGE_WRITE)) {
2575                 if (!page_unprotect(addr, 0)) {
2576                     return -1;
2577                 }
2578             }
2579         }
2580     }
2581     return 0;
2582 }
2583 
2584 /* called from signal handler: invalidate the code and unprotect the
2585  * page. Return 0 if the fault was not handled, 1 if it was handled,
2586  * and 2 if it was handled but the caller must cause the TB to be
2587  * immediately exited. (We can only return 2 if the 'pc' argument is
2588  * non-zero.)
2589  */
2590 int page_unprotect(target_ulong address, uintptr_t pc)
2591 {
2592     unsigned int prot;
2593     bool current_tb_invalidated;
2594     PageDesc *p;
2595     target_ulong host_start, host_end, addr;
2596 
2597     /* Technically this isn't safe inside a signal handler.  However we
2598        know this only ever happens in a synchronous SEGV handler, so in
2599        practice it seems to be ok.  */
2600     mmap_lock();
2601 
2602     p = page_find(address >> TARGET_PAGE_BITS);
2603     if (!p) {
2604         mmap_unlock();
2605         return 0;
2606     }
2607 
2608     /* if the page was really writable, then we change its
2609        protection back to writable */
2610     if (p->flags & PAGE_WRITE_ORG) {
2611         current_tb_invalidated = false;
2612         if (p->flags & PAGE_WRITE) {
2613             /* If the page is actually marked WRITE then assume this is because
2614              * this thread raced with another one which got here first and
2615              * set the page to PAGE_WRITE and did the TB invalidate for us.
2616              */
2617 #ifdef TARGET_HAS_PRECISE_SMC
2618             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2619             if (current_tb) {
2620                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2621             }
2622 #endif
2623         } else {
2624             host_start = address & qemu_host_page_mask;
2625             host_end = host_start + qemu_host_page_size;
2626 
2627             prot = 0;
2628             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2629                 p = page_find(addr >> TARGET_PAGE_BITS);
2630                 p->flags |= PAGE_WRITE;
2631                 prot |= p->flags;
2632 
2633                 /* and since the content will be modified, we must invalidate
2634                    the corresponding translated code. */
2635                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2636 #ifdef CONFIG_USER_ONLY
2637                 if (DEBUG_TB_CHECK_GATE) {
2638                     tb_invalidate_check(addr);
2639                 }
2640 #endif
2641             }
2642             mprotect((void *)g2h(host_start), qemu_host_page_size,
2643                      prot & PAGE_BITS);
2644         }
2645         mmap_unlock();
2646         /* If current TB was invalidated return to main loop */
2647         return current_tb_invalidated ? 2 : 1;
2648     }
2649     mmap_unlock();
2650     return 0;
2651 }
2652 #endif /* CONFIG_USER_ONLY */
2653 
2654 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2655 void tcg_flush_softmmu_tlb(CPUState *cs)
2656 {
2657 #ifdef CONFIG_SOFTMMU
2658     tlb_flush(cs);
2659 #endif
2660 }
2661