1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "qemu-common.h" 22 #define NO_CPU_IO_DEFS 23 #include "cpu.h" 24 #include "trace.h" 25 #include "disas/disas.h" 26 #include "exec/exec-all.h" 27 #include "tcg.h" 28 #if defined(CONFIG_USER_ONLY) 29 #include "qemu.h" 30 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 31 #include <sys/param.h> 32 #if __FreeBSD_version >= 700104 33 #define HAVE_KINFO_GETVMMAP 34 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 35 #include <sys/proc.h> 36 #include <machine/profile.h> 37 #define _KERNEL 38 #include <sys/user.h> 39 #undef _KERNEL 40 #undef sigqueue 41 #include <libutil.h> 42 #endif 43 #endif 44 #else 45 #include "exec/ram_addr.h" 46 #endif 47 48 #include "exec/cputlb.h" 49 #include "exec/tb-hash.h" 50 #include "translate-all.h" 51 #include "qemu/bitmap.h" 52 #include "qemu/error-report.h" 53 #include "qemu/qemu-print.h" 54 #include "qemu/timer.h" 55 #include "qemu/main-loop.h" 56 #include "exec/log.h" 57 #include "sysemu/cpus.h" 58 59 /* #define DEBUG_TB_INVALIDATE */ 60 /* #define DEBUG_TB_FLUSH */ 61 /* make various TB consistency checks */ 62 /* #define DEBUG_TB_CHECK */ 63 64 #ifdef DEBUG_TB_INVALIDATE 65 #define DEBUG_TB_INVALIDATE_GATE 1 66 #else 67 #define DEBUG_TB_INVALIDATE_GATE 0 68 #endif 69 70 #ifdef DEBUG_TB_FLUSH 71 #define DEBUG_TB_FLUSH_GATE 1 72 #else 73 #define DEBUG_TB_FLUSH_GATE 0 74 #endif 75 76 #if !defined(CONFIG_USER_ONLY) 77 /* TB consistency checks only implemented for usermode emulation. */ 78 #undef DEBUG_TB_CHECK 79 #endif 80 81 #ifdef DEBUG_TB_CHECK 82 #define DEBUG_TB_CHECK_GATE 1 83 #else 84 #define DEBUG_TB_CHECK_GATE 0 85 #endif 86 87 /* Access to the various translations structures need to be serialised via locks 88 * for consistency. 89 * In user-mode emulation access to the memory related structures are protected 90 * with mmap_lock. 91 * In !user-mode we use per-page locks. 92 */ 93 #ifdef CONFIG_SOFTMMU 94 #define assert_memory_lock() 95 #else 96 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 97 #endif 98 99 #define SMC_BITMAP_USE_THRESHOLD 10 100 101 typedef struct PageDesc { 102 /* list of TBs intersecting this ram page */ 103 uintptr_t first_tb; 104 #ifdef CONFIG_SOFTMMU 105 /* in order to optimize self modifying code, we count the number 106 of lookups we do to a given page to use a bitmap */ 107 unsigned long *code_bitmap; 108 unsigned int code_write_count; 109 #else 110 unsigned long flags; 111 #endif 112 #ifndef CONFIG_USER_ONLY 113 QemuSpin lock; 114 #endif 115 } PageDesc; 116 117 /** 118 * struct page_entry - page descriptor entry 119 * @pd: pointer to the &struct PageDesc of the page this entry represents 120 * @index: page index of the page 121 * @locked: whether the page is locked 122 * 123 * This struct helps us keep track of the locked state of a page, without 124 * bloating &struct PageDesc. 125 * 126 * A page lock protects accesses to all fields of &struct PageDesc. 127 * 128 * See also: &struct page_collection. 129 */ 130 struct page_entry { 131 PageDesc *pd; 132 tb_page_addr_t index; 133 bool locked; 134 }; 135 136 /** 137 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 138 * @tree: Binary search tree (BST) of the pages, with key == page index 139 * @max: Pointer to the page in @tree with the highest page index 140 * 141 * To avoid deadlock we lock pages in ascending order of page index. 142 * When operating on a set of pages, we need to keep track of them so that 143 * we can lock them in order and also unlock them later. For this we collect 144 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 145 * @tree implementation we use does not provide an O(1) operation to obtain the 146 * highest-ranked element, we use @max to keep track of the inserted page 147 * with the highest index. This is valuable because if a page is not in 148 * the tree and its index is higher than @max's, then we can lock it 149 * without breaking the locking order rule. 150 * 151 * Note on naming: 'struct page_set' would be shorter, but we already have a few 152 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 153 * 154 * See also: page_collection_lock(). 155 */ 156 struct page_collection { 157 GTree *tree; 158 struct page_entry *max; 159 }; 160 161 /* list iterators for lists of tagged pointers in TranslationBlock */ 162 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 163 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 164 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 165 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 166 167 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 168 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 169 170 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 171 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 172 173 /* In system mode we want L1_MAP to be based on ram offsets, 174 while in user mode we want it to be based on virtual addresses. */ 175 #if !defined(CONFIG_USER_ONLY) 176 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 177 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 178 #else 179 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 180 #endif 181 #else 182 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 183 #endif 184 185 /* Size of the L2 (and L3, etc) page tables. */ 186 #define V_L2_BITS 10 187 #define V_L2_SIZE (1 << V_L2_BITS) 188 189 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 190 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 191 sizeof_field(TranslationBlock, trace_vcpu_dstate) 192 * BITS_PER_BYTE); 193 194 /* 195 * L1 Mapping properties 196 */ 197 static int v_l1_size; 198 static int v_l1_shift; 199 static int v_l2_levels; 200 201 /* The bottom level has pointers to PageDesc, and is indexed by 202 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 203 */ 204 #define V_L1_MIN_BITS 4 205 #define V_L1_MAX_BITS (V_L2_BITS + 3) 206 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 207 208 static void *l1_map[V_L1_MAX_SIZE]; 209 210 /* code generation context */ 211 TCGContext tcg_init_ctx; 212 __thread TCGContext *tcg_ctx; 213 TBContext tb_ctx; 214 bool parallel_cpus; 215 216 static void page_table_config_init(void) 217 { 218 uint32_t v_l1_bits; 219 220 assert(TARGET_PAGE_BITS); 221 /* The bits remaining after N lower levels of page tables. */ 222 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 223 if (v_l1_bits < V_L1_MIN_BITS) { 224 v_l1_bits += V_L2_BITS; 225 } 226 227 v_l1_size = 1 << v_l1_bits; 228 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 229 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 230 231 assert(v_l1_bits <= V_L1_MAX_BITS); 232 assert(v_l1_shift % V_L2_BITS == 0); 233 assert(v_l2_levels >= 0); 234 } 235 236 void cpu_gen_init(void) 237 { 238 tcg_context_init(&tcg_init_ctx); 239 } 240 241 /* Encode VAL as a signed leb128 sequence at P. 242 Return P incremented past the encoded value. */ 243 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 244 { 245 int more, byte; 246 247 do { 248 byte = val & 0x7f; 249 val >>= 7; 250 more = !((val == 0 && (byte & 0x40) == 0) 251 || (val == -1 && (byte & 0x40) != 0)); 252 if (more) { 253 byte |= 0x80; 254 } 255 *p++ = byte; 256 } while (more); 257 258 return p; 259 } 260 261 /* Decode a signed leb128 sequence at *PP; increment *PP past the 262 decoded value. Return the decoded value. */ 263 static target_long decode_sleb128(uint8_t **pp) 264 { 265 uint8_t *p = *pp; 266 target_long val = 0; 267 int byte, shift = 0; 268 269 do { 270 byte = *p++; 271 val |= (target_ulong)(byte & 0x7f) << shift; 272 shift += 7; 273 } while (byte & 0x80); 274 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 275 val |= -(target_ulong)1 << shift; 276 } 277 278 *pp = p; 279 return val; 280 } 281 282 /* Encode the data collected about the instructions while compiling TB. 283 Place the data at BLOCK, and return the number of bytes consumed. 284 285 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 286 which come from the target's insn_start data, followed by a uintptr_t 287 which comes from the host pc of the end of the code implementing the insn. 288 289 Each line of the table is encoded as sleb128 deltas from the previous 290 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 291 That is, the first column is seeded with the guest pc, the last column 292 with the host pc, and the middle columns with zeros. */ 293 294 static int encode_search(TranslationBlock *tb, uint8_t *block) 295 { 296 uint8_t *highwater = tcg_ctx->code_gen_highwater; 297 uint8_t *p = block; 298 int i, j, n; 299 300 for (i = 0, n = tb->icount; i < n; ++i) { 301 target_ulong prev; 302 303 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 304 if (i == 0) { 305 prev = (j == 0 ? tb->pc : 0); 306 } else { 307 prev = tcg_ctx->gen_insn_data[i - 1][j]; 308 } 309 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 310 } 311 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 312 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 313 314 /* Test for (pending) buffer overflow. The assumption is that any 315 one row beginning below the high water mark cannot overrun 316 the buffer completely. Thus we can test for overflow after 317 encoding a row without having to check during encoding. */ 318 if (unlikely(p > highwater)) { 319 return -1; 320 } 321 } 322 323 return p - block; 324 } 325 326 /* The cpu state corresponding to 'searched_pc' is restored. 327 * When reset_icount is true, current TB will be interrupted and 328 * icount should be recalculated. 329 */ 330 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 331 uintptr_t searched_pc, bool reset_icount) 332 { 333 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 334 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 335 CPUArchState *env = cpu->env_ptr; 336 uint8_t *p = tb->tc.ptr + tb->tc.size; 337 int i, j, num_insns = tb->icount; 338 #ifdef CONFIG_PROFILER 339 TCGProfile *prof = &tcg_ctx->prof; 340 int64_t ti = profile_getclock(); 341 #endif 342 343 searched_pc -= GETPC_ADJ; 344 345 if (searched_pc < host_pc) { 346 return -1; 347 } 348 349 /* Reconstruct the stored insn data while looking for the point at 350 which the end of the insn exceeds the searched_pc. */ 351 for (i = 0; i < num_insns; ++i) { 352 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 353 data[j] += decode_sleb128(&p); 354 } 355 host_pc += decode_sleb128(&p); 356 if (host_pc > searched_pc) { 357 goto found; 358 } 359 } 360 return -1; 361 362 found: 363 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 364 assert(use_icount); 365 /* Reset the cycle counter to the start of the block 366 and shift if to the number of actually executed instructions */ 367 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 368 } 369 restore_state_to_opc(env, tb, data); 370 371 #ifdef CONFIG_PROFILER 372 atomic_set(&prof->restore_time, 373 prof->restore_time + profile_getclock() - ti); 374 atomic_set(&prof->restore_count, prof->restore_count + 1); 375 #endif 376 return 0; 377 } 378 379 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 380 { 381 TranslationBlock *tb; 382 bool r = false; 383 uintptr_t check_offset; 384 385 /* The host_pc has to be in the region of current code buffer. If 386 * it is not we will not be able to resolve it here. The two cases 387 * where host_pc will not be correct are: 388 * 389 * - fault during translation (instruction fetch) 390 * - fault from helper (not using GETPC() macro) 391 * 392 * Either way we need return early as we can't resolve it here. 393 * 394 * We are using unsigned arithmetic so if host_pc < 395 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 396 * above the code_gen_buffer_size 397 */ 398 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 399 400 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 401 tb = tcg_tb_lookup(host_pc); 402 if (tb) { 403 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 404 if (tb_cflags(tb) & CF_NOCACHE) { 405 /* one-shot translation, invalidate it immediately */ 406 tb_phys_invalidate(tb, -1); 407 tcg_tb_remove(tb); 408 } 409 r = true; 410 } 411 } 412 413 return r; 414 } 415 416 static void page_init(void) 417 { 418 page_size_init(); 419 page_table_config_init(); 420 421 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 422 { 423 #ifdef HAVE_KINFO_GETVMMAP 424 struct kinfo_vmentry *freep; 425 int i, cnt; 426 427 freep = kinfo_getvmmap(getpid(), &cnt); 428 if (freep) { 429 mmap_lock(); 430 for (i = 0; i < cnt; i++) { 431 unsigned long startaddr, endaddr; 432 433 startaddr = freep[i].kve_start; 434 endaddr = freep[i].kve_end; 435 if (h2g_valid(startaddr)) { 436 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 437 438 if (h2g_valid(endaddr)) { 439 endaddr = h2g(endaddr); 440 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 441 } else { 442 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 443 endaddr = ~0ul; 444 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 445 #endif 446 } 447 } 448 } 449 free(freep); 450 mmap_unlock(); 451 } 452 #else 453 FILE *f; 454 455 last_brk = (unsigned long)sbrk(0); 456 457 f = fopen("/compat/linux/proc/self/maps", "r"); 458 if (f) { 459 mmap_lock(); 460 461 do { 462 unsigned long startaddr, endaddr; 463 int n; 464 465 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 466 467 if (n == 2 && h2g_valid(startaddr)) { 468 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 469 470 if (h2g_valid(endaddr)) { 471 endaddr = h2g(endaddr); 472 } else { 473 endaddr = ~0ul; 474 } 475 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 476 } 477 } while (!feof(f)); 478 479 fclose(f); 480 mmap_unlock(); 481 } 482 #endif 483 } 484 #endif 485 } 486 487 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 488 { 489 PageDesc *pd; 490 void **lp; 491 int i; 492 493 /* Level 1. Always allocated. */ 494 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 495 496 /* Level 2..N-1. */ 497 for (i = v_l2_levels; i > 0; i--) { 498 void **p = atomic_rcu_read(lp); 499 500 if (p == NULL) { 501 void *existing; 502 503 if (!alloc) { 504 return NULL; 505 } 506 p = g_new0(void *, V_L2_SIZE); 507 existing = atomic_cmpxchg(lp, NULL, p); 508 if (unlikely(existing)) { 509 g_free(p); 510 p = existing; 511 } 512 } 513 514 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 515 } 516 517 pd = atomic_rcu_read(lp); 518 if (pd == NULL) { 519 void *existing; 520 521 if (!alloc) { 522 return NULL; 523 } 524 pd = g_new0(PageDesc, V_L2_SIZE); 525 #ifndef CONFIG_USER_ONLY 526 { 527 int i; 528 529 for (i = 0; i < V_L2_SIZE; i++) { 530 qemu_spin_init(&pd[i].lock); 531 } 532 } 533 #endif 534 existing = atomic_cmpxchg(lp, NULL, pd); 535 if (unlikely(existing)) { 536 g_free(pd); 537 pd = existing; 538 } 539 } 540 541 return pd + (index & (V_L2_SIZE - 1)); 542 } 543 544 static inline PageDesc *page_find(tb_page_addr_t index) 545 { 546 return page_find_alloc(index, 0); 547 } 548 549 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 550 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 551 552 /* In user-mode page locks aren't used; mmap_lock is enough */ 553 #ifdef CONFIG_USER_ONLY 554 555 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 556 557 static inline void page_lock(PageDesc *pd) 558 { } 559 560 static inline void page_unlock(PageDesc *pd) 561 { } 562 563 static inline void page_lock_tb(const TranslationBlock *tb) 564 { } 565 566 static inline void page_unlock_tb(const TranslationBlock *tb) 567 { } 568 569 struct page_collection * 570 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 571 { 572 return NULL; 573 } 574 575 void page_collection_unlock(struct page_collection *set) 576 { } 577 #else /* !CONFIG_USER_ONLY */ 578 579 #ifdef CONFIG_DEBUG_TCG 580 581 static __thread GHashTable *ht_pages_locked_debug; 582 583 static void ht_pages_locked_debug_init(void) 584 { 585 if (ht_pages_locked_debug) { 586 return; 587 } 588 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 589 } 590 591 static bool page_is_locked(const PageDesc *pd) 592 { 593 PageDesc *found; 594 595 ht_pages_locked_debug_init(); 596 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 597 return !!found; 598 } 599 600 static void page_lock__debug(PageDesc *pd) 601 { 602 ht_pages_locked_debug_init(); 603 g_assert(!page_is_locked(pd)); 604 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 605 } 606 607 static void page_unlock__debug(const PageDesc *pd) 608 { 609 bool removed; 610 611 ht_pages_locked_debug_init(); 612 g_assert(page_is_locked(pd)); 613 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 614 g_assert(removed); 615 } 616 617 static void 618 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 619 { 620 if (unlikely(!page_is_locked(pd))) { 621 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 622 pd, file, line); 623 abort(); 624 } 625 } 626 627 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 628 629 void assert_no_pages_locked(void) 630 { 631 ht_pages_locked_debug_init(); 632 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 633 } 634 635 #else /* !CONFIG_DEBUG_TCG */ 636 637 #define assert_page_locked(pd) 638 639 static inline void page_lock__debug(const PageDesc *pd) 640 { 641 } 642 643 static inline void page_unlock__debug(const PageDesc *pd) 644 { 645 } 646 647 #endif /* CONFIG_DEBUG_TCG */ 648 649 static inline void page_lock(PageDesc *pd) 650 { 651 page_lock__debug(pd); 652 qemu_spin_lock(&pd->lock); 653 } 654 655 static inline void page_unlock(PageDesc *pd) 656 { 657 qemu_spin_unlock(&pd->lock); 658 page_unlock__debug(pd); 659 } 660 661 /* lock the page(s) of a TB in the correct acquisition order */ 662 static inline void page_lock_tb(const TranslationBlock *tb) 663 { 664 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 665 } 666 667 static inline void page_unlock_tb(const TranslationBlock *tb) 668 { 669 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 670 671 page_unlock(p1); 672 if (unlikely(tb->page_addr[1] != -1)) { 673 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 674 675 if (p2 != p1) { 676 page_unlock(p2); 677 } 678 } 679 } 680 681 static inline struct page_entry * 682 page_entry_new(PageDesc *pd, tb_page_addr_t index) 683 { 684 struct page_entry *pe = g_malloc(sizeof(*pe)); 685 686 pe->index = index; 687 pe->pd = pd; 688 pe->locked = false; 689 return pe; 690 } 691 692 static void page_entry_destroy(gpointer p) 693 { 694 struct page_entry *pe = p; 695 696 g_assert(pe->locked); 697 page_unlock(pe->pd); 698 g_free(pe); 699 } 700 701 /* returns false on success */ 702 static bool page_entry_trylock(struct page_entry *pe) 703 { 704 bool busy; 705 706 busy = qemu_spin_trylock(&pe->pd->lock); 707 if (!busy) { 708 g_assert(!pe->locked); 709 pe->locked = true; 710 page_lock__debug(pe->pd); 711 } 712 return busy; 713 } 714 715 static void do_page_entry_lock(struct page_entry *pe) 716 { 717 page_lock(pe->pd); 718 g_assert(!pe->locked); 719 pe->locked = true; 720 } 721 722 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 723 { 724 struct page_entry *pe = value; 725 726 do_page_entry_lock(pe); 727 return FALSE; 728 } 729 730 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 731 { 732 struct page_entry *pe = value; 733 734 if (pe->locked) { 735 pe->locked = false; 736 page_unlock(pe->pd); 737 } 738 return FALSE; 739 } 740 741 /* 742 * Trylock a page, and if successful, add the page to a collection. 743 * Returns true ("busy") if the page could not be locked; false otherwise. 744 */ 745 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 746 { 747 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 748 struct page_entry *pe; 749 PageDesc *pd; 750 751 pe = g_tree_lookup(set->tree, &index); 752 if (pe) { 753 return false; 754 } 755 756 pd = page_find(index); 757 if (pd == NULL) { 758 return false; 759 } 760 761 pe = page_entry_new(pd, index); 762 g_tree_insert(set->tree, &pe->index, pe); 763 764 /* 765 * If this is either (1) the first insertion or (2) a page whose index 766 * is higher than any other so far, just lock the page and move on. 767 */ 768 if (set->max == NULL || pe->index > set->max->index) { 769 set->max = pe; 770 do_page_entry_lock(pe); 771 return false; 772 } 773 /* 774 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 775 * locks in order. 776 */ 777 return page_entry_trylock(pe); 778 } 779 780 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 781 { 782 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 783 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 784 785 if (a == b) { 786 return 0; 787 } else if (a < b) { 788 return -1; 789 } 790 return 1; 791 } 792 793 /* 794 * Lock a range of pages ([@start,@end[) as well as the pages of all 795 * intersecting TBs. 796 * Locking order: acquire locks in ascending order of page index. 797 */ 798 struct page_collection * 799 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 800 { 801 struct page_collection *set = g_malloc(sizeof(*set)); 802 tb_page_addr_t index; 803 PageDesc *pd; 804 805 start >>= TARGET_PAGE_BITS; 806 end >>= TARGET_PAGE_BITS; 807 g_assert(start <= end); 808 809 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 810 page_entry_destroy); 811 set->max = NULL; 812 assert_no_pages_locked(); 813 814 retry: 815 g_tree_foreach(set->tree, page_entry_lock, NULL); 816 817 for (index = start; index <= end; index++) { 818 TranslationBlock *tb; 819 int n; 820 821 pd = page_find(index); 822 if (pd == NULL) { 823 continue; 824 } 825 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 826 g_tree_foreach(set->tree, page_entry_unlock, NULL); 827 goto retry; 828 } 829 assert_page_locked(pd); 830 PAGE_FOR_EACH_TB(pd, tb, n) { 831 if (page_trylock_add(set, tb->page_addr[0]) || 832 (tb->page_addr[1] != -1 && 833 page_trylock_add(set, tb->page_addr[1]))) { 834 /* drop all locks, and reacquire in order */ 835 g_tree_foreach(set->tree, page_entry_unlock, NULL); 836 goto retry; 837 } 838 } 839 } 840 return set; 841 } 842 843 void page_collection_unlock(struct page_collection *set) 844 { 845 /* entries are unlocked and freed via page_entry_destroy */ 846 g_tree_destroy(set->tree); 847 g_free(set); 848 } 849 850 #endif /* !CONFIG_USER_ONLY */ 851 852 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 853 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 854 { 855 PageDesc *p1, *p2; 856 tb_page_addr_t page1; 857 tb_page_addr_t page2; 858 859 assert_memory_lock(); 860 g_assert(phys1 != -1); 861 862 page1 = phys1 >> TARGET_PAGE_BITS; 863 page2 = phys2 >> TARGET_PAGE_BITS; 864 865 p1 = page_find_alloc(page1, alloc); 866 if (ret_p1) { 867 *ret_p1 = p1; 868 } 869 if (likely(phys2 == -1)) { 870 page_lock(p1); 871 return; 872 } else if (page1 == page2) { 873 page_lock(p1); 874 if (ret_p2) { 875 *ret_p2 = p1; 876 } 877 return; 878 } 879 p2 = page_find_alloc(page2, alloc); 880 if (ret_p2) { 881 *ret_p2 = p2; 882 } 883 if (page1 < page2) { 884 page_lock(p1); 885 page_lock(p2); 886 } else { 887 page_lock(p2); 888 page_lock(p1); 889 } 890 } 891 892 #if defined(CONFIG_USER_ONLY) 893 /* Currently it is not recommended to allocate big chunks of data in 894 user mode. It will change when a dedicated libc will be used. */ 895 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 896 region in which the guest needs to run. Revisit this. */ 897 #define USE_STATIC_CODE_GEN_BUFFER 898 #endif 899 900 /* Minimum size of the code gen buffer. This number is randomly chosen, 901 but not so small that we can't have a fair number of TB's live. */ 902 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) 903 904 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 905 indicated, this is constrained by the range of direct branches on the 906 host cpu, as used by the TCG implementation of goto_tb. */ 907 #if defined(__x86_64__) 908 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 909 #elif defined(__sparc__) 910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 911 #elif defined(__powerpc64__) 912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 913 #elif defined(__powerpc__) 914 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) 915 #elif defined(__aarch64__) 916 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 917 #elif defined(__s390x__) 918 /* We have a +- 4GB range on the branches; leave some slop. */ 919 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) 920 #elif defined(__mips__) 921 /* We have a 256MB branch region, but leave room to make sure the 922 main executable is also within that region. */ 923 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) 924 #else 925 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 926 #endif 927 928 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) 929 930 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 931 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 932 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 933 934 static inline size_t size_code_gen_buffer(size_t tb_size) 935 { 936 /* Size the buffer. */ 937 if (tb_size == 0) { 938 #ifdef USE_STATIC_CODE_GEN_BUFFER 939 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 940 #else 941 /* ??? Needs adjustments. */ 942 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 943 static buffer, we could size this on RESERVED_VA, on the text 944 segment size of the executable, or continue to use the default. */ 945 tb_size = (unsigned long)(ram_size / 4); 946 #endif 947 } 948 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 949 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 950 } 951 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 952 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 953 } 954 return tb_size; 955 } 956 957 #ifdef __mips__ 958 /* In order to use J and JAL within the code_gen_buffer, we require 959 that the buffer not cross a 256MB boundary. */ 960 static inline bool cross_256mb(void *addr, size_t size) 961 { 962 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 963 } 964 965 /* We weren't able to allocate a buffer without crossing that boundary, 966 so make do with the larger portion of the buffer that doesn't cross. 967 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 968 static inline void *split_cross_256mb(void *buf1, size_t size1) 969 { 970 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 971 size_t size2 = buf1 + size1 - buf2; 972 973 size1 = buf2 - buf1; 974 if (size1 < size2) { 975 size1 = size2; 976 buf1 = buf2; 977 } 978 979 tcg_ctx->code_gen_buffer_size = size1; 980 return buf1; 981 } 982 #endif 983 984 #ifdef USE_STATIC_CODE_GEN_BUFFER 985 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 986 __attribute__((aligned(CODE_GEN_ALIGN))); 987 988 static inline void *alloc_code_gen_buffer(void) 989 { 990 void *buf = static_code_gen_buffer; 991 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 992 size_t size; 993 994 /* page-align the beginning and end of the buffer */ 995 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 996 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 997 998 size = end - buf; 999 1000 /* Honor a command-line option limiting the size of the buffer. */ 1001 if (size > tcg_ctx->code_gen_buffer_size) { 1002 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1003 qemu_real_host_page_size); 1004 } 1005 tcg_ctx->code_gen_buffer_size = size; 1006 1007 #ifdef __mips__ 1008 if (cross_256mb(buf, size)) { 1009 buf = split_cross_256mb(buf, size); 1010 size = tcg_ctx->code_gen_buffer_size; 1011 } 1012 #endif 1013 1014 if (qemu_mprotect_rwx(buf, size)) { 1015 abort(); 1016 } 1017 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1018 1019 return buf; 1020 } 1021 #elif defined(_WIN32) 1022 static inline void *alloc_code_gen_buffer(void) 1023 { 1024 size_t size = tcg_ctx->code_gen_buffer_size; 1025 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1026 PAGE_EXECUTE_READWRITE); 1027 } 1028 #else 1029 static inline void *alloc_code_gen_buffer(void) 1030 { 1031 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1032 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1033 uintptr_t start = 0; 1034 size_t size = tcg_ctx->code_gen_buffer_size; 1035 void *buf; 1036 1037 /* Constrain the position of the buffer based on the host cpu. 1038 Note that these addresses are chosen in concert with the 1039 addresses assigned in the relevant linker script file. */ 1040 # if defined(__PIE__) || defined(__PIC__) 1041 /* Don't bother setting a preferred location if we're building 1042 a position-independent executable. We're more likely to get 1043 an address near the main executable if we let the kernel 1044 choose the address. */ 1045 # elif defined(__x86_64__) && defined(MAP_32BIT) 1046 /* Force the memory down into low memory with the executable. 1047 Leave the choice of exact location with the kernel. */ 1048 flags |= MAP_32BIT; 1049 /* Cannot expect to map more than 800MB in low memory. */ 1050 if (size > 800u * 1024 * 1024) { 1051 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1052 } 1053 # elif defined(__sparc__) 1054 start = 0x40000000ul; 1055 # elif defined(__s390x__) 1056 start = 0x90000000ul; 1057 # elif defined(__mips__) 1058 # if _MIPS_SIM == _ABI64 1059 start = 0x128000000ul; 1060 # else 1061 start = 0x08000000ul; 1062 # endif 1063 # endif 1064 1065 buf = mmap((void *)start, size, prot, flags, -1, 0); 1066 if (buf == MAP_FAILED) { 1067 return NULL; 1068 } 1069 1070 #ifdef __mips__ 1071 if (cross_256mb(buf, size)) { 1072 /* Try again, with the original still mapped, to avoid re-acquiring 1073 that 256mb crossing. This time don't specify an address. */ 1074 size_t size2; 1075 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1076 switch ((int)(buf2 != MAP_FAILED)) { 1077 case 1: 1078 if (!cross_256mb(buf2, size)) { 1079 /* Success! Use the new buffer. */ 1080 munmap(buf, size); 1081 break; 1082 } 1083 /* Failure. Work with what we had. */ 1084 munmap(buf2, size); 1085 /* fallthru */ 1086 default: 1087 /* Split the original buffer. Free the smaller half. */ 1088 buf2 = split_cross_256mb(buf, size); 1089 size2 = tcg_ctx->code_gen_buffer_size; 1090 if (buf == buf2) { 1091 munmap(buf + size2, size - size2); 1092 } else { 1093 munmap(buf, size - size2); 1094 } 1095 size = size2; 1096 break; 1097 } 1098 buf = buf2; 1099 } 1100 #endif 1101 1102 /* Request large pages for the buffer. */ 1103 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1104 1105 return buf; 1106 } 1107 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1108 1109 static inline void code_gen_alloc(size_t tb_size) 1110 { 1111 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1112 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1113 if (tcg_ctx->code_gen_buffer == NULL) { 1114 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1115 exit(1); 1116 } 1117 } 1118 1119 static bool tb_cmp(const void *ap, const void *bp) 1120 { 1121 const TranslationBlock *a = ap; 1122 const TranslationBlock *b = bp; 1123 1124 return a->pc == b->pc && 1125 a->cs_base == b->cs_base && 1126 a->flags == b->flags && 1127 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1128 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1129 a->page_addr[0] == b->page_addr[0] && 1130 a->page_addr[1] == b->page_addr[1]; 1131 } 1132 1133 static void tb_htable_init(void) 1134 { 1135 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1136 1137 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1138 } 1139 1140 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1141 (in bytes) allocated to the translation buffer. Zero means default 1142 size. */ 1143 void tcg_exec_init(unsigned long tb_size) 1144 { 1145 tcg_allowed = true; 1146 cpu_gen_init(); 1147 page_init(); 1148 tb_htable_init(); 1149 code_gen_alloc(tb_size); 1150 #if defined(CONFIG_SOFTMMU) 1151 /* There's no guest base to take into account, so go ahead and 1152 initialize the prologue now. */ 1153 tcg_prologue_init(tcg_ctx); 1154 #endif 1155 } 1156 1157 /* 1158 * Allocate a new translation block. Flush the translation buffer if 1159 * too many translation blocks or too much generated code. 1160 */ 1161 static TranslationBlock *tb_alloc(target_ulong pc) 1162 { 1163 TranslationBlock *tb; 1164 1165 assert_memory_lock(); 1166 1167 tb = tcg_tb_alloc(tcg_ctx); 1168 if (unlikely(tb == NULL)) { 1169 return NULL; 1170 } 1171 return tb; 1172 } 1173 1174 /* call with @p->lock held */ 1175 static inline void invalidate_page_bitmap(PageDesc *p) 1176 { 1177 assert_page_locked(p); 1178 #ifdef CONFIG_SOFTMMU 1179 g_free(p->code_bitmap); 1180 p->code_bitmap = NULL; 1181 p->code_write_count = 0; 1182 #endif 1183 } 1184 1185 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1186 static void page_flush_tb_1(int level, void **lp) 1187 { 1188 int i; 1189 1190 if (*lp == NULL) { 1191 return; 1192 } 1193 if (level == 0) { 1194 PageDesc *pd = *lp; 1195 1196 for (i = 0; i < V_L2_SIZE; ++i) { 1197 page_lock(&pd[i]); 1198 pd[i].first_tb = (uintptr_t)NULL; 1199 invalidate_page_bitmap(pd + i); 1200 page_unlock(&pd[i]); 1201 } 1202 } else { 1203 void **pp = *lp; 1204 1205 for (i = 0; i < V_L2_SIZE; ++i) { 1206 page_flush_tb_1(level - 1, pp + i); 1207 } 1208 } 1209 } 1210 1211 static void page_flush_tb(void) 1212 { 1213 int i, l1_sz = v_l1_size; 1214 1215 for (i = 0; i < l1_sz; i++) { 1216 page_flush_tb_1(v_l2_levels, l1_map + i); 1217 } 1218 } 1219 1220 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1221 { 1222 const TranslationBlock *tb = value; 1223 size_t *size = data; 1224 1225 *size += tb->tc.size; 1226 return false; 1227 } 1228 1229 /* flush all the translation blocks */ 1230 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1231 { 1232 mmap_lock(); 1233 /* If it is already been done on request of another CPU, 1234 * just retry. 1235 */ 1236 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1237 goto done; 1238 } 1239 1240 if (DEBUG_TB_FLUSH_GATE) { 1241 size_t nb_tbs = tcg_nb_tbs(); 1242 size_t host_size = 0; 1243 1244 tcg_tb_foreach(tb_host_size_iter, &host_size); 1245 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1246 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1247 } 1248 1249 CPU_FOREACH(cpu) { 1250 cpu_tb_jmp_cache_clear(cpu); 1251 } 1252 1253 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1254 page_flush_tb(); 1255 1256 tcg_region_reset_all(); 1257 /* XXX: flush processor icache at this point if cache flush is 1258 expensive */ 1259 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1260 1261 done: 1262 mmap_unlock(); 1263 } 1264 1265 void tb_flush(CPUState *cpu) 1266 { 1267 if (tcg_enabled()) { 1268 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1269 async_safe_run_on_cpu(cpu, do_tb_flush, 1270 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1271 } 1272 } 1273 1274 /* 1275 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1276 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1277 * and let the optimizer get rid of them by wrapping their user-only callers 1278 * with if (DEBUG_TB_CHECK_GATE). 1279 */ 1280 #ifdef CONFIG_USER_ONLY 1281 1282 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1283 { 1284 TranslationBlock *tb = p; 1285 target_ulong addr = *(target_ulong *)userp; 1286 1287 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1288 printf("ERROR invalidate: address=" TARGET_FMT_lx 1289 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1290 } 1291 } 1292 1293 /* verify that all the pages have correct rights for code 1294 * 1295 * Called with mmap_lock held. 1296 */ 1297 static void tb_invalidate_check(target_ulong address) 1298 { 1299 address &= TARGET_PAGE_MASK; 1300 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1301 } 1302 1303 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1304 { 1305 TranslationBlock *tb = p; 1306 int flags1, flags2; 1307 1308 flags1 = page_get_flags(tb->pc); 1309 flags2 = page_get_flags(tb->pc + tb->size - 1); 1310 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1311 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1312 (long)tb->pc, tb->size, flags1, flags2); 1313 } 1314 } 1315 1316 /* verify that all the pages have correct rights for code */ 1317 static void tb_page_check(void) 1318 { 1319 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1320 } 1321 1322 #endif /* CONFIG_USER_ONLY */ 1323 1324 /* 1325 * user-mode: call with mmap_lock held 1326 * !user-mode: call with @pd->lock held 1327 */ 1328 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1329 { 1330 TranslationBlock *tb1; 1331 uintptr_t *pprev; 1332 unsigned int n1; 1333 1334 assert_page_locked(pd); 1335 pprev = &pd->first_tb; 1336 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1337 if (tb1 == tb) { 1338 *pprev = tb1->page_next[n1]; 1339 return; 1340 } 1341 pprev = &tb1->page_next[n1]; 1342 } 1343 g_assert_not_reached(); 1344 } 1345 1346 /* remove @orig from its @n_orig-th jump list */ 1347 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1348 { 1349 uintptr_t ptr, ptr_locked; 1350 TranslationBlock *dest; 1351 TranslationBlock *tb; 1352 uintptr_t *pprev; 1353 int n; 1354 1355 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1356 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1357 dest = (TranslationBlock *)(ptr & ~1); 1358 if (dest == NULL) { 1359 return; 1360 } 1361 1362 qemu_spin_lock(&dest->jmp_lock); 1363 /* 1364 * While acquiring the lock, the jump might have been removed if the 1365 * destination TB was invalidated; check again. 1366 */ 1367 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1368 if (ptr_locked != ptr) { 1369 qemu_spin_unlock(&dest->jmp_lock); 1370 /* 1371 * The only possibility is that the jump was unlinked via 1372 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1373 * because we set the LSB above. 1374 */ 1375 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1376 return; 1377 } 1378 /* 1379 * We first acquired the lock, and since the destination pointer matches, 1380 * we know for sure that @orig is in the jmp list. 1381 */ 1382 pprev = &dest->jmp_list_head; 1383 TB_FOR_EACH_JMP(dest, tb, n) { 1384 if (tb == orig && n == n_orig) { 1385 *pprev = tb->jmp_list_next[n]; 1386 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1387 qemu_spin_unlock(&dest->jmp_lock); 1388 return; 1389 } 1390 pprev = &tb->jmp_list_next[n]; 1391 } 1392 g_assert_not_reached(); 1393 } 1394 1395 /* reset the jump entry 'n' of a TB so that it is not chained to 1396 another TB */ 1397 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1398 { 1399 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1400 tb_set_jmp_target(tb, n, addr); 1401 } 1402 1403 /* remove any jumps to the TB */ 1404 static inline void tb_jmp_unlink(TranslationBlock *dest) 1405 { 1406 TranslationBlock *tb; 1407 int n; 1408 1409 qemu_spin_lock(&dest->jmp_lock); 1410 1411 TB_FOR_EACH_JMP(dest, tb, n) { 1412 tb_reset_jump(tb, n); 1413 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1414 /* No need to clear the list entry; setting the dest ptr is enough */ 1415 } 1416 dest->jmp_list_head = (uintptr_t)NULL; 1417 1418 qemu_spin_unlock(&dest->jmp_lock); 1419 } 1420 1421 /* 1422 * In user-mode, call with mmap_lock held. 1423 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1424 * locks held. 1425 */ 1426 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1427 { 1428 CPUState *cpu; 1429 PageDesc *p; 1430 uint32_t h; 1431 tb_page_addr_t phys_pc; 1432 1433 assert_memory_lock(); 1434 1435 /* make sure no further incoming jumps will be chained to this TB */ 1436 qemu_spin_lock(&tb->jmp_lock); 1437 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1438 qemu_spin_unlock(&tb->jmp_lock); 1439 1440 /* remove the TB from the hash list */ 1441 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1442 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1443 tb->trace_vcpu_dstate); 1444 if (!(tb->cflags & CF_NOCACHE) && 1445 !qht_remove(&tb_ctx.htable, tb, h)) { 1446 return; 1447 } 1448 1449 /* remove the TB from the page list */ 1450 if (rm_from_page_list) { 1451 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1452 tb_page_remove(p, tb); 1453 invalidate_page_bitmap(p); 1454 if (tb->page_addr[1] != -1) { 1455 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1456 tb_page_remove(p, tb); 1457 invalidate_page_bitmap(p); 1458 } 1459 } 1460 1461 /* remove the TB from the hash list */ 1462 h = tb_jmp_cache_hash_func(tb->pc); 1463 CPU_FOREACH(cpu) { 1464 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1465 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1466 } 1467 } 1468 1469 /* suppress this TB from the two jump lists */ 1470 tb_remove_from_jmp_list(tb, 0); 1471 tb_remove_from_jmp_list(tb, 1); 1472 1473 /* suppress any remaining jumps to this TB */ 1474 tb_jmp_unlink(tb); 1475 1476 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1477 tcg_ctx->tb_phys_invalidate_count + 1); 1478 } 1479 1480 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1481 { 1482 do_tb_phys_invalidate(tb, true); 1483 } 1484 1485 /* invalidate one TB 1486 * 1487 * Called with mmap_lock held in user-mode. 1488 */ 1489 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1490 { 1491 if (page_addr == -1 && tb->page_addr[0] != -1) { 1492 page_lock_tb(tb); 1493 do_tb_phys_invalidate(tb, true); 1494 page_unlock_tb(tb); 1495 } else { 1496 do_tb_phys_invalidate(tb, false); 1497 } 1498 } 1499 1500 #ifdef CONFIG_SOFTMMU 1501 /* call with @p->lock held */ 1502 static void build_page_bitmap(PageDesc *p) 1503 { 1504 int n, tb_start, tb_end; 1505 TranslationBlock *tb; 1506 1507 assert_page_locked(p); 1508 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1509 1510 PAGE_FOR_EACH_TB(p, tb, n) { 1511 /* NOTE: this is subtle as a TB may span two physical pages */ 1512 if (n == 0) { 1513 /* NOTE: tb_end may be after the end of the page, but 1514 it is not a problem */ 1515 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1516 tb_end = tb_start + tb->size; 1517 if (tb_end > TARGET_PAGE_SIZE) { 1518 tb_end = TARGET_PAGE_SIZE; 1519 } 1520 } else { 1521 tb_start = 0; 1522 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1523 } 1524 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1525 } 1526 } 1527 #endif 1528 1529 /* add the tb in the target page and protect it if necessary 1530 * 1531 * Called with mmap_lock held for user-mode emulation. 1532 * Called with @p->lock held in !user-mode. 1533 */ 1534 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1535 unsigned int n, tb_page_addr_t page_addr) 1536 { 1537 #ifndef CONFIG_USER_ONLY 1538 bool page_already_protected; 1539 #endif 1540 1541 assert_page_locked(p); 1542 1543 tb->page_addr[n] = page_addr; 1544 tb->page_next[n] = p->first_tb; 1545 #ifndef CONFIG_USER_ONLY 1546 page_already_protected = p->first_tb != (uintptr_t)NULL; 1547 #endif 1548 p->first_tb = (uintptr_t)tb | n; 1549 invalidate_page_bitmap(p); 1550 1551 #if defined(CONFIG_USER_ONLY) 1552 if (p->flags & PAGE_WRITE) { 1553 target_ulong addr; 1554 PageDesc *p2; 1555 int prot; 1556 1557 /* force the host page as non writable (writes will have a 1558 page fault + mprotect overhead) */ 1559 page_addr &= qemu_host_page_mask; 1560 prot = 0; 1561 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1562 addr += TARGET_PAGE_SIZE) { 1563 1564 p2 = page_find(addr >> TARGET_PAGE_BITS); 1565 if (!p2) { 1566 continue; 1567 } 1568 prot |= p2->flags; 1569 p2->flags &= ~PAGE_WRITE; 1570 } 1571 mprotect(g2h(page_addr), qemu_host_page_size, 1572 (prot & PAGE_BITS) & ~PAGE_WRITE); 1573 if (DEBUG_TB_INVALIDATE_GATE) { 1574 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1575 } 1576 } 1577 #else 1578 /* if some code is already present, then the pages are already 1579 protected. So we handle the case where only the first TB is 1580 allocated in a physical page */ 1581 if (!page_already_protected) { 1582 tlb_protect_code(page_addr); 1583 } 1584 #endif 1585 } 1586 1587 /* add a new TB and link it to the physical page tables. phys_page2 is 1588 * (-1) to indicate that only one page contains the TB. 1589 * 1590 * Called with mmap_lock held for user-mode emulation. 1591 * 1592 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1593 * Note that in !user-mode, another thread might have already added a TB 1594 * for the same block of guest code that @tb corresponds to. In that case, 1595 * the caller should discard the original @tb, and use instead the returned TB. 1596 */ 1597 static TranslationBlock * 1598 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1599 tb_page_addr_t phys_page2) 1600 { 1601 PageDesc *p; 1602 PageDesc *p2 = NULL; 1603 1604 assert_memory_lock(); 1605 1606 if (phys_pc == -1) { 1607 /* 1608 * If the TB is not associated with a physical RAM page then 1609 * it must be a temporary one-insn TB, and we have nothing to do 1610 * except fill in the page_addr[] fields. 1611 */ 1612 assert(tb->cflags & CF_NOCACHE); 1613 tb->page_addr[0] = tb->page_addr[1] = -1; 1614 return tb; 1615 } 1616 1617 /* 1618 * Add the TB to the page list, acquiring first the pages's locks. 1619 * We keep the locks held until after inserting the TB in the hash table, 1620 * so that if the insertion fails we know for sure that the TBs are still 1621 * in the page descriptors. 1622 * Note that inserting into the hash table first isn't an option, since 1623 * we can only insert TBs that are fully initialized. 1624 */ 1625 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1626 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1627 if (p2) { 1628 tb_page_add(p2, tb, 1, phys_page2); 1629 } else { 1630 tb->page_addr[1] = -1; 1631 } 1632 1633 if (!(tb->cflags & CF_NOCACHE)) { 1634 void *existing_tb = NULL; 1635 uint32_t h; 1636 1637 /* add in the hash table */ 1638 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1639 tb->trace_vcpu_dstate); 1640 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1641 1642 /* remove TB from the page(s) if we couldn't insert it */ 1643 if (unlikely(existing_tb)) { 1644 tb_page_remove(p, tb); 1645 invalidate_page_bitmap(p); 1646 if (p2) { 1647 tb_page_remove(p2, tb); 1648 invalidate_page_bitmap(p2); 1649 } 1650 tb = existing_tb; 1651 } 1652 } 1653 1654 if (p2 && p2 != p) { 1655 page_unlock(p2); 1656 } 1657 page_unlock(p); 1658 1659 #ifdef CONFIG_USER_ONLY 1660 if (DEBUG_TB_CHECK_GATE) { 1661 tb_page_check(); 1662 } 1663 #endif 1664 return tb; 1665 } 1666 1667 /* Called with mmap_lock held for user mode emulation. */ 1668 TranslationBlock *tb_gen_code(CPUState *cpu, 1669 target_ulong pc, target_ulong cs_base, 1670 uint32_t flags, int cflags) 1671 { 1672 CPUArchState *env = cpu->env_ptr; 1673 TranslationBlock *tb, *existing_tb; 1674 tb_page_addr_t phys_pc, phys_page2; 1675 target_ulong virt_page2; 1676 tcg_insn_unit *gen_code_buf; 1677 int gen_code_size, search_size, max_insns; 1678 #ifdef CONFIG_PROFILER 1679 TCGProfile *prof = &tcg_ctx->prof; 1680 int64_t ti; 1681 #endif 1682 assert_memory_lock(); 1683 1684 phys_pc = get_page_addr_code(env, pc); 1685 1686 if (phys_pc == -1) { 1687 /* Generate a temporary TB with 1 insn in it */ 1688 cflags &= ~CF_COUNT_MASK; 1689 cflags |= CF_NOCACHE | 1; 1690 } 1691 1692 cflags &= ~CF_CLUSTER_MASK; 1693 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1694 1695 max_insns = cflags & CF_COUNT_MASK; 1696 if (max_insns == 0) { 1697 max_insns = CF_COUNT_MASK; 1698 } 1699 if (max_insns > TCG_MAX_INSNS) { 1700 max_insns = TCG_MAX_INSNS; 1701 } 1702 if (cpu->singlestep_enabled || singlestep) { 1703 max_insns = 1; 1704 } 1705 1706 buffer_overflow: 1707 tb = tb_alloc(pc); 1708 if (unlikely(!tb)) { 1709 /* flush must be done */ 1710 tb_flush(cpu); 1711 mmap_unlock(); 1712 /* Make the execution loop process the flush as soon as possible. */ 1713 cpu->exception_index = EXCP_INTERRUPT; 1714 cpu_loop_exit(cpu); 1715 } 1716 1717 gen_code_buf = tcg_ctx->code_gen_ptr; 1718 tb->tc.ptr = gen_code_buf; 1719 tb->pc = pc; 1720 tb->cs_base = cs_base; 1721 tb->flags = flags; 1722 tb->cflags = cflags; 1723 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1724 tcg_ctx->tb_cflags = cflags; 1725 tb_overflow: 1726 1727 #ifdef CONFIG_PROFILER 1728 /* includes aborted translations because of exceptions */ 1729 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1730 ti = profile_getclock(); 1731 #endif 1732 1733 tcg_func_start(tcg_ctx); 1734 1735 tcg_ctx->cpu = env_cpu(env); 1736 gen_intermediate_code(cpu, tb, max_insns); 1737 tcg_ctx->cpu = NULL; 1738 1739 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1740 1741 /* generate machine code */ 1742 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1743 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1744 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1745 if (TCG_TARGET_HAS_direct_jump) { 1746 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1747 tcg_ctx->tb_jmp_target_addr = NULL; 1748 } else { 1749 tcg_ctx->tb_jmp_insn_offset = NULL; 1750 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1751 } 1752 1753 #ifdef CONFIG_PROFILER 1754 atomic_set(&prof->tb_count, prof->tb_count + 1); 1755 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1756 ti = profile_getclock(); 1757 #endif 1758 1759 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1760 if (unlikely(gen_code_size < 0)) { 1761 switch (gen_code_size) { 1762 case -1: 1763 /* 1764 * Overflow of code_gen_buffer, or the current slice of it. 1765 * 1766 * TODO: We don't need to re-do gen_intermediate_code, nor 1767 * should we re-do the tcg optimization currently hidden 1768 * inside tcg_gen_code. All that should be required is to 1769 * flush the TBs, allocate a new TB, re-initialize it per 1770 * above, and re-do the actual code generation. 1771 */ 1772 goto buffer_overflow; 1773 1774 case -2: 1775 /* 1776 * The code generated for the TranslationBlock is too large. 1777 * The maximum size allowed by the unwind info is 64k. 1778 * There may be stricter constraints from relocations 1779 * in the tcg backend. 1780 * 1781 * Try again with half as many insns as we attempted this time. 1782 * If a single insn overflows, there's a bug somewhere... 1783 */ 1784 max_insns = tb->icount; 1785 assert(max_insns > 1); 1786 max_insns /= 2; 1787 goto tb_overflow; 1788 1789 default: 1790 g_assert_not_reached(); 1791 } 1792 } 1793 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1794 if (unlikely(search_size < 0)) { 1795 goto buffer_overflow; 1796 } 1797 tb->tc.size = gen_code_size; 1798 1799 #ifdef CONFIG_PROFILER 1800 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1801 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1802 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1803 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1804 #endif 1805 1806 #ifdef DEBUG_DISAS 1807 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1808 qemu_log_in_addr_range(tb->pc)) { 1809 qemu_log_lock(); 1810 qemu_log("OUT: [size=%d]\n", gen_code_size); 1811 if (tcg_ctx->data_gen_ptr) { 1812 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1813 size_t data_size = gen_code_size - code_size; 1814 size_t i; 1815 1816 log_disas(tb->tc.ptr, code_size); 1817 1818 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1819 if (sizeof(tcg_target_ulong) == 8) { 1820 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1821 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1822 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1823 } else { 1824 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1825 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1826 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1827 } 1828 } 1829 } else { 1830 log_disas(tb->tc.ptr, gen_code_size); 1831 } 1832 qemu_log("\n"); 1833 qemu_log_flush(); 1834 qemu_log_unlock(); 1835 } 1836 #endif 1837 1838 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1839 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1840 CODE_GEN_ALIGN)); 1841 1842 /* init jump list */ 1843 qemu_spin_init(&tb->jmp_lock); 1844 tb->jmp_list_head = (uintptr_t)NULL; 1845 tb->jmp_list_next[0] = (uintptr_t)NULL; 1846 tb->jmp_list_next[1] = (uintptr_t)NULL; 1847 tb->jmp_dest[0] = (uintptr_t)NULL; 1848 tb->jmp_dest[1] = (uintptr_t)NULL; 1849 1850 /* init original jump addresses which have been set during tcg_gen_code() */ 1851 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1852 tb_reset_jump(tb, 0); 1853 } 1854 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1855 tb_reset_jump(tb, 1); 1856 } 1857 1858 /* check next page if needed */ 1859 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1860 phys_page2 = -1; 1861 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1862 phys_page2 = get_page_addr_code(env, virt_page2); 1863 } 1864 /* 1865 * No explicit memory barrier is required -- tb_link_page() makes the 1866 * TB visible in a consistent state. 1867 */ 1868 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1869 /* if the TB already exists, discard what we just translated */ 1870 if (unlikely(existing_tb != tb)) { 1871 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1872 1873 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1874 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1875 return existing_tb; 1876 } 1877 tcg_tb_insert(tb); 1878 return tb; 1879 } 1880 1881 /* 1882 * @p must be non-NULL. 1883 * user-mode: call with mmap_lock held. 1884 * !user-mode: call with all @pages locked. 1885 */ 1886 static void 1887 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1888 PageDesc *p, tb_page_addr_t start, 1889 tb_page_addr_t end, 1890 int is_cpu_write_access) 1891 { 1892 TranslationBlock *tb; 1893 tb_page_addr_t tb_start, tb_end; 1894 int n; 1895 #ifdef TARGET_HAS_PRECISE_SMC 1896 CPUState *cpu = current_cpu; 1897 CPUArchState *env = NULL; 1898 int current_tb_not_found = is_cpu_write_access; 1899 TranslationBlock *current_tb = NULL; 1900 int current_tb_modified = 0; 1901 target_ulong current_pc = 0; 1902 target_ulong current_cs_base = 0; 1903 uint32_t current_flags = 0; 1904 #endif /* TARGET_HAS_PRECISE_SMC */ 1905 1906 assert_page_locked(p); 1907 1908 #if defined(TARGET_HAS_PRECISE_SMC) 1909 if (cpu != NULL) { 1910 env = cpu->env_ptr; 1911 } 1912 #endif 1913 1914 /* we remove all the TBs in the range [start, end[ */ 1915 /* XXX: see if in some cases it could be faster to invalidate all 1916 the code */ 1917 PAGE_FOR_EACH_TB(p, tb, n) { 1918 assert_page_locked(p); 1919 /* NOTE: this is subtle as a TB may span two physical pages */ 1920 if (n == 0) { 1921 /* NOTE: tb_end may be after the end of the page, but 1922 it is not a problem */ 1923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1924 tb_end = tb_start + tb->size; 1925 } else { 1926 tb_start = tb->page_addr[1]; 1927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1928 } 1929 if (!(tb_end <= start || tb_start >= end)) { 1930 #ifdef TARGET_HAS_PRECISE_SMC 1931 if (current_tb_not_found) { 1932 current_tb_not_found = 0; 1933 current_tb = NULL; 1934 if (cpu->mem_io_pc) { 1935 /* now we have a real cpu fault */ 1936 current_tb = tcg_tb_lookup(cpu->mem_io_pc); 1937 } 1938 } 1939 if (current_tb == tb && 1940 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1941 /* If we are modifying the current TB, we must stop 1942 its execution. We could be more precise by checking 1943 that the modification is after the current PC, but it 1944 would require a specialized function to partially 1945 restore the CPU state */ 1946 1947 current_tb_modified = 1; 1948 cpu_restore_state_from_tb(cpu, current_tb, 1949 cpu->mem_io_pc, true); 1950 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1951 ¤t_flags); 1952 } 1953 #endif /* TARGET_HAS_PRECISE_SMC */ 1954 tb_phys_invalidate__locked(tb); 1955 } 1956 } 1957 #if !defined(CONFIG_USER_ONLY) 1958 /* if no code remaining, no need to continue to use slow writes */ 1959 if (!p->first_tb) { 1960 invalidate_page_bitmap(p); 1961 tlb_unprotect_code(start); 1962 } 1963 #endif 1964 #ifdef TARGET_HAS_PRECISE_SMC 1965 if (current_tb_modified) { 1966 page_collection_unlock(pages); 1967 /* Force execution of one insn next time. */ 1968 cpu->cflags_next_tb = 1 | curr_cflags(); 1969 mmap_unlock(); 1970 cpu_loop_exit_noexc(cpu); 1971 } 1972 #endif 1973 } 1974 1975 /* 1976 * Invalidate all TBs which intersect with the target physical address range 1977 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1978 * 'is_cpu_write_access' should be true if called from a real cpu write 1979 * access: the virtual CPU will exit the current TB if code is modified inside 1980 * this TB. 1981 * 1982 * Called with mmap_lock held for user-mode emulation 1983 */ 1984 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, 1985 int is_cpu_write_access) 1986 { 1987 struct page_collection *pages; 1988 PageDesc *p; 1989 1990 assert_memory_lock(); 1991 1992 p = page_find(start >> TARGET_PAGE_BITS); 1993 if (p == NULL) { 1994 return; 1995 } 1996 pages = page_collection_lock(start, end); 1997 tb_invalidate_phys_page_range__locked(pages, p, start, end, 1998 is_cpu_write_access); 1999 page_collection_unlock(pages); 2000 } 2001 2002 /* 2003 * Invalidate all TBs which intersect with the target physical address range 2004 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2005 * 'is_cpu_write_access' should be true if called from a real cpu write 2006 * access: the virtual CPU will exit the current TB if code is modified inside 2007 * this TB. 2008 * 2009 * Called with mmap_lock held for user-mode emulation. 2010 */ 2011 #ifdef CONFIG_SOFTMMU 2012 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2013 #else 2014 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2015 #endif 2016 { 2017 struct page_collection *pages; 2018 tb_page_addr_t next; 2019 2020 assert_memory_lock(); 2021 2022 pages = page_collection_lock(start, end); 2023 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2024 start < end; 2025 start = next, next += TARGET_PAGE_SIZE) { 2026 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2027 tb_page_addr_t bound = MIN(next, end); 2028 2029 if (pd == NULL) { 2030 continue; 2031 } 2032 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2033 } 2034 page_collection_unlock(pages); 2035 } 2036 2037 #ifdef CONFIG_SOFTMMU 2038 /* len must be <= 8 and start must be a multiple of len. 2039 * Called via softmmu_template.h when code areas are written to with 2040 * iothread mutex not held. 2041 * 2042 * Call with all @pages in the range [@start, @start + len[ locked. 2043 */ 2044 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2045 tb_page_addr_t start, int len) 2046 { 2047 PageDesc *p; 2048 2049 assert_memory_lock(); 2050 2051 p = page_find(start >> TARGET_PAGE_BITS); 2052 if (!p) { 2053 return; 2054 } 2055 2056 assert_page_locked(p); 2057 if (!p->code_bitmap && 2058 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2059 build_page_bitmap(p); 2060 } 2061 if (p->code_bitmap) { 2062 unsigned int nr; 2063 unsigned long b; 2064 2065 nr = start & ~TARGET_PAGE_MASK; 2066 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2067 if (b & ((1 << len) - 1)) { 2068 goto do_invalidate; 2069 } 2070 } else { 2071 do_invalidate: 2072 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1); 2073 } 2074 } 2075 #else 2076 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2077 * host PC of the faulting store instruction that caused this invalidate. 2078 * Returns true if the caller needs to abort execution of the current 2079 * TB (because it was modified by this store and the guest CPU has 2080 * precise-SMC semantics). 2081 */ 2082 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2083 { 2084 TranslationBlock *tb; 2085 PageDesc *p; 2086 int n; 2087 #ifdef TARGET_HAS_PRECISE_SMC 2088 TranslationBlock *current_tb = NULL; 2089 CPUState *cpu = current_cpu; 2090 CPUArchState *env = NULL; 2091 int current_tb_modified = 0; 2092 target_ulong current_pc = 0; 2093 target_ulong current_cs_base = 0; 2094 uint32_t current_flags = 0; 2095 #endif 2096 2097 assert_memory_lock(); 2098 2099 addr &= TARGET_PAGE_MASK; 2100 p = page_find(addr >> TARGET_PAGE_BITS); 2101 if (!p) { 2102 return false; 2103 } 2104 2105 #ifdef TARGET_HAS_PRECISE_SMC 2106 if (p->first_tb && pc != 0) { 2107 current_tb = tcg_tb_lookup(pc); 2108 } 2109 if (cpu != NULL) { 2110 env = cpu->env_ptr; 2111 } 2112 #endif 2113 assert_page_locked(p); 2114 PAGE_FOR_EACH_TB(p, tb, n) { 2115 #ifdef TARGET_HAS_PRECISE_SMC 2116 if (current_tb == tb && 2117 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2118 /* If we are modifying the current TB, we must stop 2119 its execution. We could be more precise by checking 2120 that the modification is after the current PC, but it 2121 would require a specialized function to partially 2122 restore the CPU state */ 2123 2124 current_tb_modified = 1; 2125 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2126 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2127 ¤t_flags); 2128 } 2129 #endif /* TARGET_HAS_PRECISE_SMC */ 2130 tb_phys_invalidate(tb, addr); 2131 } 2132 p->first_tb = (uintptr_t)NULL; 2133 #ifdef TARGET_HAS_PRECISE_SMC 2134 if (current_tb_modified) { 2135 /* Force execution of one insn next time. */ 2136 cpu->cflags_next_tb = 1 | curr_cflags(); 2137 return true; 2138 } 2139 #endif 2140 2141 return false; 2142 } 2143 #endif 2144 2145 /* user-mode: call with mmap_lock held */ 2146 void tb_check_watchpoint(CPUState *cpu) 2147 { 2148 TranslationBlock *tb; 2149 2150 assert_memory_lock(); 2151 2152 tb = tcg_tb_lookup(cpu->mem_io_pc); 2153 if (tb) { 2154 /* We can use retranslation to find the PC. */ 2155 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true); 2156 tb_phys_invalidate(tb, -1); 2157 } else { 2158 /* The exception probably happened in a helper. The CPU state should 2159 have been saved before calling it. Fetch the PC from there. */ 2160 CPUArchState *env = cpu->env_ptr; 2161 target_ulong pc, cs_base; 2162 tb_page_addr_t addr; 2163 uint32_t flags; 2164 2165 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2166 addr = get_page_addr_code(env, pc); 2167 if (addr != -1) { 2168 tb_invalidate_phys_range(addr, addr + 1); 2169 } 2170 } 2171 } 2172 2173 #ifndef CONFIG_USER_ONLY 2174 /* in deterministic execution mode, instructions doing device I/Os 2175 * must be at the end of the TB. 2176 * 2177 * Called by softmmu_template.h, with iothread mutex not held. 2178 */ 2179 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2180 { 2181 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2182 CPUArchState *env = cpu->env_ptr; 2183 #endif 2184 TranslationBlock *tb; 2185 uint32_t n; 2186 2187 tb = tcg_tb_lookup(retaddr); 2188 if (!tb) { 2189 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2190 (void *)retaddr); 2191 } 2192 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2193 2194 /* On MIPS and SH, delay slot instructions can only be restarted if 2195 they were already the first instruction in the TB. If this is not 2196 the first instruction in a TB then re-execute the preceding 2197 branch. */ 2198 n = 1; 2199 #if defined(TARGET_MIPS) 2200 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2201 && env->active_tc.PC != tb->pc) { 2202 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2203 cpu_neg(cpu)->icount_decr.u16.low++; 2204 env->hflags &= ~MIPS_HFLAG_BMASK; 2205 n = 2; 2206 } 2207 #elif defined(TARGET_SH4) 2208 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2209 && env->pc != tb->pc) { 2210 env->pc -= 2; 2211 cpu_neg(cpu)->icount_decr.u16.low++; 2212 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2213 n = 2; 2214 } 2215 #endif 2216 2217 /* Generate a new TB executing the I/O insn. */ 2218 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2219 2220 if (tb_cflags(tb) & CF_NOCACHE) { 2221 if (tb->orig_tb) { 2222 /* Invalidate original TB if this TB was generated in 2223 * cpu_exec_nocache() */ 2224 tb_phys_invalidate(tb->orig_tb, -1); 2225 } 2226 tcg_tb_remove(tb); 2227 } 2228 2229 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2230 * the first in the TB) then we end up generating a whole new TB and 2231 * repeating the fault, which is horribly inefficient. 2232 * Better would be to execute just this insn uncached, or generate a 2233 * second new TB. 2234 */ 2235 cpu_loop_exit_noexc(cpu); 2236 } 2237 2238 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2239 { 2240 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2241 2242 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2243 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2244 } 2245 } 2246 2247 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2248 { 2249 /* Discard jump cache entries for any tb which might potentially 2250 overlap the flushed page. */ 2251 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2252 tb_jmp_cache_clear_page(cpu, addr); 2253 } 2254 2255 static void print_qht_statistics(struct qht_stats hst) 2256 { 2257 uint32_t hgram_opts; 2258 size_t hgram_bins; 2259 char *hgram; 2260 2261 if (!hst.head_buckets) { 2262 return; 2263 } 2264 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2265 hst.used_head_buckets, hst.head_buckets, 2266 (double)hst.used_head_buckets / hst.head_buckets * 100); 2267 2268 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2269 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2270 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2271 hgram_opts |= QDIST_PR_NODECIMAL; 2272 } 2273 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2274 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2275 qdist_avg(&hst.occupancy) * 100, hgram); 2276 g_free(hgram); 2277 2278 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2279 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2280 if (hgram_bins > 10) { 2281 hgram_bins = 10; 2282 } else { 2283 hgram_bins = 0; 2284 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2285 } 2286 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2287 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2288 qdist_avg(&hst.chain), hgram); 2289 g_free(hgram); 2290 } 2291 2292 struct tb_tree_stats { 2293 size_t nb_tbs; 2294 size_t host_size; 2295 size_t target_size; 2296 size_t max_target_size; 2297 size_t direct_jmp_count; 2298 size_t direct_jmp2_count; 2299 size_t cross_page; 2300 }; 2301 2302 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2303 { 2304 const TranslationBlock *tb = value; 2305 struct tb_tree_stats *tst = data; 2306 2307 tst->nb_tbs++; 2308 tst->host_size += tb->tc.size; 2309 tst->target_size += tb->size; 2310 if (tb->size > tst->max_target_size) { 2311 tst->max_target_size = tb->size; 2312 } 2313 if (tb->page_addr[1] != -1) { 2314 tst->cross_page++; 2315 } 2316 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2317 tst->direct_jmp_count++; 2318 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2319 tst->direct_jmp2_count++; 2320 } 2321 } 2322 return false; 2323 } 2324 2325 void dump_exec_info(void) 2326 { 2327 struct tb_tree_stats tst = {}; 2328 struct qht_stats hst; 2329 size_t nb_tbs, flush_full, flush_part, flush_elide; 2330 2331 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2332 nb_tbs = tst.nb_tbs; 2333 /* XXX: avoid using doubles ? */ 2334 qemu_printf("Translation buffer state:\n"); 2335 /* 2336 * Report total code size including the padding and TB structs; 2337 * otherwise users might think "-tb-size" is not honoured. 2338 * For avg host size we use the precise numbers from tb_tree_stats though. 2339 */ 2340 qemu_printf("gen code size %zu/%zu\n", 2341 tcg_code_size(), tcg_code_capacity()); 2342 qemu_printf("TB count %zu\n", nb_tbs); 2343 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2344 nb_tbs ? tst.target_size / nb_tbs : 0, 2345 tst.max_target_size); 2346 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2347 nb_tbs ? tst.host_size / nb_tbs : 0, 2348 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2349 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2350 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2351 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2352 tst.direct_jmp_count, 2353 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2354 tst.direct_jmp2_count, 2355 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2356 2357 qht_statistics_init(&tb_ctx.htable, &hst); 2358 print_qht_statistics(hst); 2359 qht_statistics_destroy(&hst); 2360 2361 qemu_printf("\nStatistics:\n"); 2362 qemu_printf("TB flush count %u\n", 2363 atomic_read(&tb_ctx.tb_flush_count)); 2364 qemu_printf("TB invalidate count %zu\n", 2365 tcg_tb_phys_invalidate_count()); 2366 2367 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2368 qemu_printf("TLB full flushes %zu\n", flush_full); 2369 qemu_printf("TLB partial flushes %zu\n", flush_part); 2370 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2371 tcg_dump_info(); 2372 } 2373 2374 void dump_opcount_info(void) 2375 { 2376 tcg_dump_op_count(); 2377 } 2378 2379 #else /* CONFIG_USER_ONLY */ 2380 2381 void cpu_interrupt(CPUState *cpu, int mask) 2382 { 2383 g_assert(qemu_mutex_iothread_locked()); 2384 cpu->interrupt_request |= mask; 2385 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2386 } 2387 2388 /* 2389 * Walks guest process memory "regions" one by one 2390 * and calls callback function 'fn' for each region. 2391 */ 2392 struct walk_memory_regions_data { 2393 walk_memory_regions_fn fn; 2394 void *priv; 2395 target_ulong start; 2396 int prot; 2397 }; 2398 2399 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2400 target_ulong end, int new_prot) 2401 { 2402 if (data->start != -1u) { 2403 int rc = data->fn(data->priv, data->start, end, data->prot); 2404 if (rc != 0) { 2405 return rc; 2406 } 2407 } 2408 2409 data->start = (new_prot ? end : -1u); 2410 data->prot = new_prot; 2411 2412 return 0; 2413 } 2414 2415 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2416 target_ulong base, int level, void **lp) 2417 { 2418 target_ulong pa; 2419 int i, rc; 2420 2421 if (*lp == NULL) { 2422 return walk_memory_regions_end(data, base, 0); 2423 } 2424 2425 if (level == 0) { 2426 PageDesc *pd = *lp; 2427 2428 for (i = 0; i < V_L2_SIZE; ++i) { 2429 int prot = pd[i].flags; 2430 2431 pa = base | (i << TARGET_PAGE_BITS); 2432 if (prot != data->prot) { 2433 rc = walk_memory_regions_end(data, pa, prot); 2434 if (rc != 0) { 2435 return rc; 2436 } 2437 } 2438 } 2439 } else { 2440 void **pp = *lp; 2441 2442 for (i = 0; i < V_L2_SIZE; ++i) { 2443 pa = base | ((target_ulong)i << 2444 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2445 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2446 if (rc != 0) { 2447 return rc; 2448 } 2449 } 2450 } 2451 2452 return 0; 2453 } 2454 2455 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2456 { 2457 struct walk_memory_regions_data data; 2458 uintptr_t i, l1_sz = v_l1_size; 2459 2460 data.fn = fn; 2461 data.priv = priv; 2462 data.start = -1u; 2463 data.prot = 0; 2464 2465 for (i = 0; i < l1_sz; i++) { 2466 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2467 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2468 if (rc != 0) { 2469 return rc; 2470 } 2471 } 2472 2473 return walk_memory_regions_end(&data, 0, 0); 2474 } 2475 2476 static int dump_region(void *priv, target_ulong start, 2477 target_ulong end, unsigned long prot) 2478 { 2479 FILE *f = (FILE *)priv; 2480 2481 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2482 " "TARGET_FMT_lx" %c%c%c\n", 2483 start, end, end - start, 2484 ((prot & PAGE_READ) ? 'r' : '-'), 2485 ((prot & PAGE_WRITE) ? 'w' : '-'), 2486 ((prot & PAGE_EXEC) ? 'x' : '-')); 2487 2488 return 0; 2489 } 2490 2491 /* dump memory mappings */ 2492 void page_dump(FILE *f) 2493 { 2494 const int length = sizeof(target_ulong) * 2; 2495 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2496 length, "start", length, "end", length, "size", "prot"); 2497 walk_memory_regions(f, dump_region); 2498 } 2499 2500 int page_get_flags(target_ulong address) 2501 { 2502 PageDesc *p; 2503 2504 p = page_find(address >> TARGET_PAGE_BITS); 2505 if (!p) { 2506 return 0; 2507 } 2508 return p->flags; 2509 } 2510 2511 /* Modify the flags of a page and invalidate the code if necessary. 2512 The flag PAGE_WRITE_ORG is positioned automatically depending 2513 on PAGE_WRITE. The mmap_lock should already be held. */ 2514 void page_set_flags(target_ulong start, target_ulong end, int flags) 2515 { 2516 target_ulong addr, len; 2517 2518 /* This function should never be called with addresses outside the 2519 guest address space. If this assert fires, it probably indicates 2520 a missing call to h2g_valid. */ 2521 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2522 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2523 #endif 2524 assert(start < end); 2525 assert_memory_lock(); 2526 2527 start = start & TARGET_PAGE_MASK; 2528 end = TARGET_PAGE_ALIGN(end); 2529 2530 if (flags & PAGE_WRITE) { 2531 flags |= PAGE_WRITE_ORG; 2532 } 2533 2534 for (addr = start, len = end - start; 2535 len != 0; 2536 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2537 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2538 2539 /* If the write protection bit is set, then we invalidate 2540 the code inside. */ 2541 if (!(p->flags & PAGE_WRITE) && 2542 (flags & PAGE_WRITE) && 2543 p->first_tb) { 2544 tb_invalidate_phys_page(addr, 0); 2545 } 2546 p->flags = flags; 2547 } 2548 } 2549 2550 int page_check_range(target_ulong start, target_ulong len, int flags) 2551 { 2552 PageDesc *p; 2553 target_ulong end; 2554 target_ulong addr; 2555 2556 /* This function should never be called with addresses outside the 2557 guest address space. If this assert fires, it probably indicates 2558 a missing call to h2g_valid. */ 2559 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2560 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2561 #endif 2562 2563 if (len == 0) { 2564 return 0; 2565 } 2566 if (start + len - 1 < start) { 2567 /* We've wrapped around. */ 2568 return -1; 2569 } 2570 2571 /* must do before we loose bits in the next step */ 2572 end = TARGET_PAGE_ALIGN(start + len); 2573 start = start & TARGET_PAGE_MASK; 2574 2575 for (addr = start, len = end - start; 2576 len != 0; 2577 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2578 p = page_find(addr >> TARGET_PAGE_BITS); 2579 if (!p) { 2580 return -1; 2581 } 2582 if (!(p->flags & PAGE_VALID)) { 2583 return -1; 2584 } 2585 2586 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2587 return -1; 2588 } 2589 if (flags & PAGE_WRITE) { 2590 if (!(p->flags & PAGE_WRITE_ORG)) { 2591 return -1; 2592 } 2593 /* unprotect the page if it was put read-only because it 2594 contains translated code */ 2595 if (!(p->flags & PAGE_WRITE)) { 2596 if (!page_unprotect(addr, 0)) { 2597 return -1; 2598 } 2599 } 2600 } 2601 } 2602 return 0; 2603 } 2604 2605 /* called from signal handler: invalidate the code and unprotect the 2606 * page. Return 0 if the fault was not handled, 1 if it was handled, 2607 * and 2 if it was handled but the caller must cause the TB to be 2608 * immediately exited. (We can only return 2 if the 'pc' argument is 2609 * non-zero.) 2610 */ 2611 int page_unprotect(target_ulong address, uintptr_t pc) 2612 { 2613 unsigned int prot; 2614 bool current_tb_invalidated; 2615 PageDesc *p; 2616 target_ulong host_start, host_end, addr; 2617 2618 /* Technically this isn't safe inside a signal handler. However we 2619 know this only ever happens in a synchronous SEGV handler, so in 2620 practice it seems to be ok. */ 2621 mmap_lock(); 2622 2623 p = page_find(address >> TARGET_PAGE_BITS); 2624 if (!p) { 2625 mmap_unlock(); 2626 return 0; 2627 } 2628 2629 /* if the page was really writable, then we change its 2630 protection back to writable */ 2631 if (p->flags & PAGE_WRITE_ORG) { 2632 current_tb_invalidated = false; 2633 if (p->flags & PAGE_WRITE) { 2634 /* If the page is actually marked WRITE then assume this is because 2635 * this thread raced with another one which got here first and 2636 * set the page to PAGE_WRITE and did the TB invalidate for us. 2637 */ 2638 #ifdef TARGET_HAS_PRECISE_SMC 2639 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2640 if (current_tb) { 2641 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2642 } 2643 #endif 2644 } else { 2645 host_start = address & qemu_host_page_mask; 2646 host_end = host_start + qemu_host_page_size; 2647 2648 prot = 0; 2649 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2650 p = page_find(addr >> TARGET_PAGE_BITS); 2651 p->flags |= PAGE_WRITE; 2652 prot |= p->flags; 2653 2654 /* and since the content will be modified, we must invalidate 2655 the corresponding translated code. */ 2656 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2657 #ifdef CONFIG_USER_ONLY 2658 if (DEBUG_TB_CHECK_GATE) { 2659 tb_invalidate_check(addr); 2660 } 2661 #endif 2662 } 2663 mprotect((void *)g2h(host_start), qemu_host_page_size, 2664 prot & PAGE_BITS); 2665 } 2666 mmap_unlock(); 2667 /* If current TB was invalidated return to main loop */ 2668 return current_tb_invalidated ? 2 : 1; 2669 } 2670 mmap_unlock(); 2671 return 0; 2672 } 2673 #endif /* CONFIG_USER_ONLY */ 2674 2675 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2676 void tcg_flush_softmmu_tlb(CPUState *cs) 2677 { 2678 #ifdef CONFIG_SOFTMMU 2679 tlb_flush(cs); 2680 #endif 2681 } 2682