xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 5773c0494ae8045250288a801417270e0ef5de55)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
23 
24 
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/ram_addr.h"
50 #endif
51 
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/error-report.h"
57 #include "qemu/timer.h"
58 #include "qemu/main-loop.h"
59 #include "exec/log.h"
60 #include "sysemu/cpus.h"
61 
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66 
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72 
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78 
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation.  */
81 #undef DEBUG_TB_CHECK
82 #endif
83 
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89 
90 /* Access to the various translations structures need to be serialised via locks
91  * for consistency.
92  * In user-mode emulation access to the memory related structures are protected
93  * with mmap_lock.
94  * In !user-mode we use per-page locks.
95  */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101 
102 #define SMC_BITMAP_USE_THRESHOLD 10
103 
104 typedef struct PageDesc {
105     /* list of TBs intersecting this ram page */
106     uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108     /* in order to optimize self modifying code, we count the number
109        of lookups we do to a given page to use a bitmap */
110     unsigned long *code_bitmap;
111     unsigned int code_write_count;
112 #else
113     unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116     QemuSpin lock;
117 #endif
118 } PageDesc;
119 
120 /**
121  * struct page_entry - page descriptor entry
122  * @pd:     pointer to the &struct PageDesc of the page this entry represents
123  * @index:  page index of the page
124  * @locked: whether the page is locked
125  *
126  * This struct helps us keep track of the locked state of a page, without
127  * bloating &struct PageDesc.
128  *
129  * A page lock protects accesses to all fields of &struct PageDesc.
130  *
131  * See also: &struct page_collection.
132  */
133 struct page_entry {
134     PageDesc *pd;
135     tb_page_addr_t index;
136     bool locked;
137 };
138 
139 /**
140  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141  * @tree:   Binary search tree (BST) of the pages, with key == page index
142  * @max:    Pointer to the page in @tree with the highest page index
143  *
144  * To avoid deadlock we lock pages in ascending order of page index.
145  * When operating on a set of pages, we need to keep track of them so that
146  * we can lock them in order and also unlock them later. For this we collect
147  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148  * @tree implementation we use does not provide an O(1) operation to obtain the
149  * highest-ranked element, we use @max to keep track of the inserted page
150  * with the highest index. This is valuable because if a page is not in
151  * the tree and its index is higher than @max's, then we can lock it
152  * without breaking the locking order rule.
153  *
154  * Note on naming: 'struct page_set' would be shorter, but we already have a few
155  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156  *
157  * See also: page_collection_lock().
158  */
159 struct page_collection {
160     GTree *tree;
161     struct page_entry *max;
162 };
163 
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
166     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
167          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
171     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 
173 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
174     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 
176 /* In system mode we want L1_MAP to be based on ram offsets,
177    while in user mode we want it to be based on virtual addresses.  */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
187 
188 /* Size of the L2 (and L3, etc) page tables.  */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
191 
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
195                   * BITS_PER_BYTE);
196 
197 /*
198  * L1 Mapping properties
199  */
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
203 
204 /* The bottom level has pointers to PageDesc, and is indexed by
205  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206  */
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210 
211 static void *l1_map[V_L1_MAX_SIZE];
212 
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
218 
219 static void page_table_config_init(void)
220 {
221     uint32_t v_l1_bits;
222 
223     assert(TARGET_PAGE_BITS);
224     /* The bits remaining after N lower levels of page tables.  */
225     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226     if (v_l1_bits < V_L1_MIN_BITS) {
227         v_l1_bits += V_L2_BITS;
228     }
229 
230     v_l1_size = 1 << v_l1_bits;
231     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233 
234     assert(v_l1_bits <= V_L1_MAX_BITS);
235     assert(v_l1_shift % V_L2_BITS == 0);
236     assert(v_l2_levels >= 0);
237 }
238 
239 void cpu_gen_init(void)
240 {
241     tcg_context_init(&tcg_init_ctx);
242 }
243 
244 /* Encode VAL as a signed leb128 sequence at P.
245    Return P incremented past the encoded value.  */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
247 {
248     int more, byte;
249 
250     do {
251         byte = val & 0x7f;
252         val >>= 7;
253         more = !((val == 0 && (byte & 0x40) == 0)
254                  || (val == -1 && (byte & 0x40) != 0));
255         if (more) {
256             byte |= 0x80;
257         }
258         *p++ = byte;
259     } while (more);
260 
261     return p;
262 }
263 
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265    decoded value.  Return the decoded value.  */
266 static target_long decode_sleb128(uint8_t **pp)
267 {
268     uint8_t *p = *pp;
269     target_long val = 0;
270     int byte, shift = 0;
271 
272     do {
273         byte = *p++;
274         val |= (target_ulong)(byte & 0x7f) << shift;
275         shift += 7;
276     } while (byte & 0x80);
277     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278         val |= -(target_ulong)1 << shift;
279     }
280 
281     *pp = p;
282     return val;
283 }
284 
285 /* Encode the data collected about the instructions while compiling TB.
286    Place the data at BLOCK, and return the number of bytes consumed.
287 
288    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289    which come from the target's insn_start data, followed by a uintptr_t
290    which comes from the host pc of the end of the code implementing the insn.
291 
292    Each line of the table is encoded as sleb128 deltas from the previous
293    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294    That is, the first column is seeded with the guest pc, the last column
295    with the host pc, and the middle columns with zeros.  */
296 
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 {
299     uint8_t *highwater = tcg_ctx->code_gen_highwater;
300     uint8_t *p = block;
301     int i, j, n;
302 
303     for (i = 0, n = tb->icount; i < n; ++i) {
304         target_ulong prev;
305 
306         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307             if (i == 0) {
308                 prev = (j == 0 ? tb->pc : 0);
309             } else {
310                 prev = tcg_ctx->gen_insn_data[i - 1][j];
311             }
312             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313         }
314         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316 
317         /* Test for (pending) buffer overflow.  The assumption is that any
318            one row beginning below the high water mark cannot overrun
319            the buffer completely.  Thus we can test for overflow after
320            encoding a row without having to check during encoding.  */
321         if (unlikely(p > highwater)) {
322             return -1;
323         }
324     }
325 
326     return p - block;
327 }
328 
329 /* The cpu state corresponding to 'searched_pc' is restored.
330  * When reset_icount is true, current TB will be interrupted and
331  * icount should be recalculated.
332  */
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334                                      uintptr_t searched_pc, bool reset_icount)
335 {
336     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338     CPUArchState *env = cpu->env_ptr;
339     uint8_t *p = tb->tc.ptr + tb->tc.size;
340     int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342     TCGProfile *prof = &tcg_ctx->prof;
343     int64_t ti = profile_getclock();
344 #endif
345 
346     searched_pc -= GETPC_ADJ;
347 
348     if (searched_pc < host_pc) {
349         return -1;
350     }
351 
352     /* Reconstruct the stored insn data while looking for the point at
353        which the end of the insn exceeds the searched_pc.  */
354     for (i = 0; i < num_insns; ++i) {
355         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356             data[j] += decode_sleb128(&p);
357         }
358         host_pc += decode_sleb128(&p);
359         if (host_pc > searched_pc) {
360             goto found;
361         }
362     }
363     return -1;
364 
365  found:
366     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367         assert(use_icount);
368         /* Reset the cycle counter to the start of the block
369            and shift if to the number of actually executed instructions */
370         cpu->icount_decr.u16.low += num_insns - i;
371     }
372     restore_state_to_opc(env, tb, data);
373 
374 #ifdef CONFIG_PROFILER
375     atomic_set(&prof->restore_time,
376                 prof->restore_time + profile_getclock() - ti);
377     atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379     return 0;
380 }
381 
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 {
384     TranslationBlock *tb;
385     bool r = false;
386     uintptr_t check_offset;
387 
388     /* The host_pc has to be in the region of current code buffer. If
389      * it is not we will not be able to resolve it here. The two cases
390      * where host_pc will not be correct are:
391      *
392      *  - fault during translation (instruction fetch)
393      *  - fault from helper (not using GETPC() macro)
394      *
395      * Either way we need return early as we can't resolve it here.
396      *
397      * We are using unsigned arithmetic so if host_pc <
398      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399      * above the code_gen_buffer_size
400      */
401     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402 
403     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404         tb = tcg_tb_lookup(host_pc);
405         if (tb) {
406             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407             if (tb_cflags(tb) & CF_NOCACHE) {
408                 /* one-shot translation, invalidate it immediately */
409                 tb_phys_invalidate(tb, -1);
410                 tcg_tb_remove(tb);
411             }
412             r = true;
413         }
414     }
415 
416     return r;
417 }
418 
419 static void page_init(void)
420 {
421     page_size_init();
422     page_table_config_init();
423 
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425     {
426 #ifdef HAVE_KINFO_GETVMMAP
427         struct kinfo_vmentry *freep;
428         int i, cnt;
429 
430         freep = kinfo_getvmmap(getpid(), &cnt);
431         if (freep) {
432             mmap_lock();
433             for (i = 0; i < cnt; i++) {
434                 unsigned long startaddr, endaddr;
435 
436                 startaddr = freep[i].kve_start;
437                 endaddr = freep[i].kve_end;
438                 if (h2g_valid(startaddr)) {
439                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 
441                     if (h2g_valid(endaddr)) {
442                         endaddr = h2g(endaddr);
443                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444                     } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446                         endaddr = ~0ul;
447                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449                     }
450                 }
451             }
452             free(freep);
453             mmap_unlock();
454         }
455 #else
456         FILE *f;
457 
458         last_brk = (unsigned long)sbrk(0);
459 
460         f = fopen("/compat/linux/proc/self/maps", "r");
461         if (f) {
462             mmap_lock();
463 
464             do {
465                 unsigned long startaddr, endaddr;
466                 int n;
467 
468                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 
470                 if (n == 2 && h2g_valid(startaddr)) {
471                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 
473                     if (h2g_valid(endaddr)) {
474                         endaddr = h2g(endaddr);
475                     } else {
476                         endaddr = ~0ul;
477                     }
478                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479                 }
480             } while (!feof(f));
481 
482             fclose(f);
483             mmap_unlock();
484         }
485 #endif
486     }
487 #endif
488 }
489 
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492     PageDesc *pd;
493     void **lp;
494     int i;
495 
496     /* Level 1.  Always allocated.  */
497     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498 
499     /* Level 2..N-1.  */
500     for (i = v_l2_levels; i > 0; i--) {
501         void **p = atomic_rcu_read(lp);
502 
503         if (p == NULL) {
504             void *existing;
505 
506             if (!alloc) {
507                 return NULL;
508             }
509             p = g_new0(void *, V_L2_SIZE);
510             existing = atomic_cmpxchg(lp, NULL, p);
511             if (unlikely(existing)) {
512                 g_free(p);
513                 p = existing;
514             }
515         }
516 
517         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518     }
519 
520     pd = atomic_rcu_read(lp);
521     if (pd == NULL) {
522         void *existing;
523 
524         if (!alloc) {
525             return NULL;
526         }
527         pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529         {
530             int i;
531 
532             for (i = 0; i < V_L2_SIZE; i++) {
533                 qemu_spin_init(&pd[i].lock);
534             }
535         }
536 #endif
537         existing = atomic_cmpxchg(lp, NULL, pd);
538         if (unlikely(existing)) {
539             g_free(pd);
540             pd = existing;
541         }
542     }
543 
544     return pd + (index & (V_L2_SIZE - 1));
545 }
546 
547 static inline PageDesc *page_find(tb_page_addr_t index)
548 {
549     return page_find_alloc(index, 0);
550 }
551 
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554 
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
557 
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559 
560 static inline void page_lock(PageDesc *pd)
561 { }
562 
563 static inline void page_unlock(PageDesc *pd)
564 { }
565 
566 static inline void page_lock_tb(const TranslationBlock *tb)
567 { }
568 
569 static inline void page_unlock_tb(const TranslationBlock *tb)
570 { }
571 
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
574 {
575     return NULL;
576 }
577 
578 void page_collection_unlock(struct page_collection *set)
579 { }
580 #else /* !CONFIG_USER_ONLY */
581 
582 #ifdef CONFIG_DEBUG_TCG
583 
584 static __thread GHashTable *ht_pages_locked_debug;
585 
586 static void ht_pages_locked_debug_init(void)
587 {
588     if (ht_pages_locked_debug) {
589         return;
590     }
591     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
592 }
593 
594 static bool page_is_locked(const PageDesc *pd)
595 {
596     PageDesc *found;
597 
598     ht_pages_locked_debug_init();
599     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600     return !!found;
601 }
602 
603 static void page_lock__debug(PageDesc *pd)
604 {
605     ht_pages_locked_debug_init();
606     g_assert(!page_is_locked(pd));
607     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
608 }
609 
610 static void page_unlock__debug(const PageDesc *pd)
611 {
612     bool removed;
613 
614     ht_pages_locked_debug_init();
615     g_assert(page_is_locked(pd));
616     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617     g_assert(removed);
618 }
619 
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 {
623     if (unlikely(!page_is_locked(pd))) {
624         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625                      pd, file, line);
626         abort();
627     }
628 }
629 
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631 
632 void assert_no_pages_locked(void)
633 {
634     ht_pages_locked_debug_init();
635     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
636 }
637 
638 #else /* !CONFIG_DEBUG_TCG */
639 
640 #define assert_page_locked(pd)
641 
642 static inline void page_lock__debug(const PageDesc *pd)
643 {
644 }
645 
646 static inline void page_unlock__debug(const PageDesc *pd)
647 {
648 }
649 
650 #endif /* CONFIG_DEBUG_TCG */
651 
652 static inline void page_lock(PageDesc *pd)
653 {
654     page_lock__debug(pd);
655     qemu_spin_lock(&pd->lock);
656 }
657 
658 static inline void page_unlock(PageDesc *pd)
659 {
660     qemu_spin_unlock(&pd->lock);
661     page_unlock__debug(pd);
662 }
663 
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
666 {
667     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
668 }
669 
670 static inline void page_unlock_tb(const TranslationBlock *tb)
671 {
672     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
673 
674     page_unlock(p1);
675     if (unlikely(tb->page_addr[1] != -1)) {
676         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
677 
678         if (p2 != p1) {
679             page_unlock(p2);
680         }
681     }
682 }
683 
684 static inline struct page_entry *
685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
686 {
687     struct page_entry *pe = g_malloc(sizeof(*pe));
688 
689     pe->index = index;
690     pe->pd = pd;
691     pe->locked = false;
692     return pe;
693 }
694 
695 static void page_entry_destroy(gpointer p)
696 {
697     struct page_entry *pe = p;
698 
699     g_assert(pe->locked);
700     page_unlock(pe->pd);
701     g_free(pe);
702 }
703 
704 /* returns false on success */
705 static bool page_entry_trylock(struct page_entry *pe)
706 {
707     bool busy;
708 
709     busy = qemu_spin_trylock(&pe->pd->lock);
710     if (!busy) {
711         g_assert(!pe->locked);
712         pe->locked = true;
713         page_lock__debug(pe->pd);
714     }
715     return busy;
716 }
717 
718 static void do_page_entry_lock(struct page_entry *pe)
719 {
720     page_lock(pe->pd);
721     g_assert(!pe->locked);
722     pe->locked = true;
723 }
724 
725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
726 {
727     struct page_entry *pe = value;
728 
729     do_page_entry_lock(pe);
730     return FALSE;
731 }
732 
733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
734 {
735     struct page_entry *pe = value;
736 
737     if (pe->locked) {
738         pe->locked = false;
739         page_unlock(pe->pd);
740     }
741     return FALSE;
742 }
743 
744 /*
745  * Trylock a page, and if successful, add the page to a collection.
746  * Returns true ("busy") if the page could not be locked; false otherwise.
747  */
748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
749 {
750     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751     struct page_entry *pe;
752     PageDesc *pd;
753 
754     pe = g_tree_lookup(set->tree, &index);
755     if (pe) {
756         return false;
757     }
758 
759     pd = page_find(index);
760     if (pd == NULL) {
761         return false;
762     }
763 
764     pe = page_entry_new(pd, index);
765     g_tree_insert(set->tree, &pe->index, pe);
766 
767     /*
768      * If this is either (1) the first insertion or (2) a page whose index
769      * is higher than any other so far, just lock the page and move on.
770      */
771     if (set->max == NULL || pe->index > set->max->index) {
772         set->max = pe;
773         do_page_entry_lock(pe);
774         return false;
775     }
776     /*
777      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778      * locks in order.
779      */
780     return page_entry_trylock(pe);
781 }
782 
783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
784 {
785     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
787 
788     if (a == b) {
789         return 0;
790     } else if (a < b) {
791         return -1;
792     }
793     return 1;
794 }
795 
796 /*
797  * Lock a range of pages ([@start,@end[) as well as the pages of all
798  * intersecting TBs.
799  * Locking order: acquire locks in ascending order of page index.
800  */
801 struct page_collection *
802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
803 {
804     struct page_collection *set = g_malloc(sizeof(*set));
805     tb_page_addr_t index;
806     PageDesc *pd;
807 
808     start >>= TARGET_PAGE_BITS;
809     end   >>= TARGET_PAGE_BITS;
810     g_assert(start <= end);
811 
812     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813                                 page_entry_destroy);
814     set->max = NULL;
815     assert_no_pages_locked();
816 
817  retry:
818     g_tree_foreach(set->tree, page_entry_lock, NULL);
819 
820     for (index = start; index <= end; index++) {
821         TranslationBlock *tb;
822         int n;
823 
824         pd = page_find(index);
825         if (pd == NULL) {
826             continue;
827         }
828         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829             g_tree_foreach(set->tree, page_entry_unlock, NULL);
830             goto retry;
831         }
832         assert_page_locked(pd);
833         PAGE_FOR_EACH_TB(pd, tb, n) {
834             if (page_trylock_add(set, tb->page_addr[0]) ||
835                 (tb->page_addr[1] != -1 &&
836                  page_trylock_add(set, tb->page_addr[1]))) {
837                 /* drop all locks, and reacquire in order */
838                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839                 goto retry;
840             }
841         }
842     }
843     return set;
844 }
845 
846 void page_collection_unlock(struct page_collection *set)
847 {
848     /* entries are unlocked and freed via page_entry_destroy */
849     g_tree_destroy(set->tree);
850     g_free(set);
851 }
852 
853 #endif /* !CONFIG_USER_ONLY */
854 
855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
857 {
858     PageDesc *p1, *p2;
859     tb_page_addr_t page1;
860     tb_page_addr_t page2;
861 
862     assert_memory_lock();
863     g_assert(phys1 != -1);
864 
865     page1 = phys1 >> TARGET_PAGE_BITS;
866     page2 = phys2 >> TARGET_PAGE_BITS;
867 
868     p1 = page_find_alloc(page1, alloc);
869     if (ret_p1) {
870         *ret_p1 = p1;
871     }
872     if (likely(phys2 == -1)) {
873         page_lock(p1);
874         return;
875     } else if (page1 == page2) {
876         page_lock(p1);
877         if (ret_p2) {
878             *ret_p2 = p1;
879         }
880         return;
881     }
882     p2 = page_find_alloc(page2, alloc);
883     if (ret_p2) {
884         *ret_p2 = p2;
885     }
886     if (page1 < page2) {
887         page_lock(p1);
888         page_lock(p2);
889     } else {
890         page_lock(p2);
891         page_lock(p1);
892     }
893 }
894 
895 #if defined(CONFIG_USER_ONLY)
896 /* Currently it is not recommended to allocate big chunks of data in
897    user mode. It will change when a dedicated libc will be used.  */
898 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
899    region in which the guest needs to run.  Revisit this.  */
900 #define USE_STATIC_CODE_GEN_BUFFER
901 #endif
902 
903 /* Minimum size of the code gen buffer.  This number is randomly chosen,
904    but not so small that we can't have a fair number of TB's live.  */
905 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
906 
907 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
908    indicated, this is constrained by the range of direct branches on the
909    host cpu, as used by the TCG implementation of goto_tb.  */
910 #if defined(__x86_64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
912 #elif defined(__sparc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
914 #elif defined(__powerpc64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
916 #elif defined(__powerpc__)
917 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
918 #elif defined(__aarch64__)
919 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
920 #elif defined(__s390x__)
921   /* We have a +- 4GB range on the branches; leave some slop.  */
922 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
923 #elif defined(__mips__)
924   /* We have a 256MB branch region, but leave room to make sure the
925      main executable is also within that region.  */
926 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
927 #else
928 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
929 #endif
930 
931 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
932 
933 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
934   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
935    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
936 
937 static inline size_t size_code_gen_buffer(size_t tb_size)
938 {
939     /* Size the buffer.  */
940     if (tb_size == 0) {
941 #ifdef USE_STATIC_CODE_GEN_BUFFER
942         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
943 #else
944         /* ??? Needs adjustments.  */
945         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
946            static buffer, we could size this on RESERVED_VA, on the text
947            segment size of the executable, or continue to use the default.  */
948         tb_size = (unsigned long)(ram_size / 4);
949 #endif
950     }
951     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
952         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
953     }
954     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
955         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
956     }
957     return tb_size;
958 }
959 
960 #ifdef __mips__
961 /* In order to use J and JAL within the code_gen_buffer, we require
962    that the buffer not cross a 256MB boundary.  */
963 static inline bool cross_256mb(void *addr, size_t size)
964 {
965     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
966 }
967 
968 /* We weren't able to allocate a buffer without crossing that boundary,
969    so make do with the larger portion of the buffer that doesn't cross.
970    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
971 static inline void *split_cross_256mb(void *buf1, size_t size1)
972 {
973     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
974     size_t size2 = buf1 + size1 - buf2;
975 
976     size1 = buf2 - buf1;
977     if (size1 < size2) {
978         size1 = size2;
979         buf1 = buf2;
980     }
981 
982     tcg_ctx->code_gen_buffer_size = size1;
983     return buf1;
984 }
985 #endif
986 
987 #ifdef USE_STATIC_CODE_GEN_BUFFER
988 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
989     __attribute__((aligned(CODE_GEN_ALIGN)));
990 
991 static inline void *alloc_code_gen_buffer(void)
992 {
993     void *buf = static_code_gen_buffer;
994     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
995     size_t size;
996 
997     /* page-align the beginning and end of the buffer */
998     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
999     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1000 
1001     size = end - buf;
1002 
1003     /* Honor a command-line option limiting the size of the buffer.  */
1004     if (size > tcg_ctx->code_gen_buffer_size) {
1005         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1006                                qemu_real_host_page_size);
1007     }
1008     tcg_ctx->code_gen_buffer_size = size;
1009 
1010 #ifdef __mips__
1011     if (cross_256mb(buf, size)) {
1012         buf = split_cross_256mb(buf, size);
1013         size = tcg_ctx->code_gen_buffer_size;
1014     }
1015 #endif
1016 
1017     if (qemu_mprotect_rwx(buf, size)) {
1018         abort();
1019     }
1020     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1021 
1022     return buf;
1023 }
1024 #elif defined(_WIN32)
1025 static inline void *alloc_code_gen_buffer(void)
1026 {
1027     size_t size = tcg_ctx->code_gen_buffer_size;
1028     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1029                         PAGE_EXECUTE_READWRITE);
1030 }
1031 #else
1032 static inline void *alloc_code_gen_buffer(void)
1033 {
1034     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1035     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1036     uintptr_t start = 0;
1037     size_t size = tcg_ctx->code_gen_buffer_size;
1038     void *buf;
1039 
1040     /* Constrain the position of the buffer based on the host cpu.
1041        Note that these addresses are chosen in concert with the
1042        addresses assigned in the relevant linker script file.  */
1043 # if defined(__PIE__) || defined(__PIC__)
1044     /* Don't bother setting a preferred location if we're building
1045        a position-independent executable.  We're more likely to get
1046        an address near the main executable if we let the kernel
1047        choose the address.  */
1048 # elif defined(__x86_64__) && defined(MAP_32BIT)
1049     /* Force the memory down into low memory with the executable.
1050        Leave the choice of exact location with the kernel.  */
1051     flags |= MAP_32BIT;
1052     /* Cannot expect to map more than 800MB in low memory.  */
1053     if (size > 800u * 1024 * 1024) {
1054         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1055     }
1056 # elif defined(__sparc__)
1057     start = 0x40000000ul;
1058 # elif defined(__s390x__)
1059     start = 0x90000000ul;
1060 # elif defined(__mips__)
1061 #  if _MIPS_SIM == _ABI64
1062     start = 0x128000000ul;
1063 #  else
1064     start = 0x08000000ul;
1065 #  endif
1066 # endif
1067 
1068     buf = mmap((void *)start, size, prot, flags, -1, 0);
1069     if (buf == MAP_FAILED) {
1070         return NULL;
1071     }
1072 
1073 #ifdef __mips__
1074     if (cross_256mb(buf, size)) {
1075         /* Try again, with the original still mapped, to avoid re-acquiring
1076            that 256mb crossing.  This time don't specify an address.  */
1077         size_t size2;
1078         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1079         switch ((int)(buf2 != MAP_FAILED)) {
1080         case 1:
1081             if (!cross_256mb(buf2, size)) {
1082                 /* Success!  Use the new buffer.  */
1083                 munmap(buf, size);
1084                 break;
1085             }
1086             /* Failure.  Work with what we had.  */
1087             munmap(buf2, size);
1088             /* fallthru */
1089         default:
1090             /* Split the original buffer.  Free the smaller half.  */
1091             buf2 = split_cross_256mb(buf, size);
1092             size2 = tcg_ctx->code_gen_buffer_size;
1093             if (buf == buf2) {
1094                 munmap(buf + size2, size - size2);
1095             } else {
1096                 munmap(buf, size - size2);
1097             }
1098             size = size2;
1099             break;
1100         }
1101         buf = buf2;
1102     }
1103 #endif
1104 
1105     /* Request large pages for the buffer.  */
1106     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1107 
1108     return buf;
1109 }
1110 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1111 
1112 static inline void code_gen_alloc(size_t tb_size)
1113 {
1114     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1115     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1116     if (tcg_ctx->code_gen_buffer == NULL) {
1117         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1118         exit(1);
1119     }
1120 }
1121 
1122 static bool tb_cmp(const void *ap, const void *bp)
1123 {
1124     const TranslationBlock *a = ap;
1125     const TranslationBlock *b = bp;
1126 
1127     return a->pc == b->pc &&
1128         a->cs_base == b->cs_base &&
1129         a->flags == b->flags &&
1130         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1131         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1132         a->page_addr[0] == b->page_addr[0] &&
1133         a->page_addr[1] == b->page_addr[1];
1134 }
1135 
1136 static void tb_htable_init(void)
1137 {
1138     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1139 
1140     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1141 }
1142 
1143 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1144    (in bytes) allocated to the translation buffer. Zero means default
1145    size. */
1146 void tcg_exec_init(unsigned long tb_size)
1147 {
1148     tcg_allowed = true;
1149     cpu_gen_init();
1150     page_init();
1151     tb_htable_init();
1152     code_gen_alloc(tb_size);
1153 #if defined(CONFIG_SOFTMMU)
1154     /* There's no guest base to take into account, so go ahead and
1155        initialize the prologue now.  */
1156     tcg_prologue_init(tcg_ctx);
1157 #endif
1158 }
1159 
1160 /*
1161  * Allocate a new translation block. Flush the translation buffer if
1162  * too many translation blocks or too much generated code.
1163  */
1164 static TranslationBlock *tb_alloc(target_ulong pc)
1165 {
1166     TranslationBlock *tb;
1167 
1168     assert_memory_lock();
1169 
1170     tb = tcg_tb_alloc(tcg_ctx);
1171     if (unlikely(tb == NULL)) {
1172         return NULL;
1173     }
1174     return tb;
1175 }
1176 
1177 /* call with @p->lock held */
1178 static inline void invalidate_page_bitmap(PageDesc *p)
1179 {
1180     assert_page_locked(p);
1181 #ifdef CONFIG_SOFTMMU
1182     g_free(p->code_bitmap);
1183     p->code_bitmap = NULL;
1184     p->code_write_count = 0;
1185 #endif
1186 }
1187 
1188 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1189 static void page_flush_tb_1(int level, void **lp)
1190 {
1191     int i;
1192 
1193     if (*lp == NULL) {
1194         return;
1195     }
1196     if (level == 0) {
1197         PageDesc *pd = *lp;
1198 
1199         for (i = 0; i < V_L2_SIZE; ++i) {
1200             page_lock(&pd[i]);
1201             pd[i].first_tb = (uintptr_t)NULL;
1202             invalidate_page_bitmap(pd + i);
1203             page_unlock(&pd[i]);
1204         }
1205     } else {
1206         void **pp = *lp;
1207 
1208         for (i = 0; i < V_L2_SIZE; ++i) {
1209             page_flush_tb_1(level - 1, pp + i);
1210         }
1211     }
1212 }
1213 
1214 static void page_flush_tb(void)
1215 {
1216     int i, l1_sz = v_l1_size;
1217 
1218     for (i = 0; i < l1_sz; i++) {
1219         page_flush_tb_1(v_l2_levels, l1_map + i);
1220     }
1221 }
1222 
1223 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1224 {
1225     const TranslationBlock *tb = value;
1226     size_t *size = data;
1227 
1228     *size += tb->tc.size;
1229     return false;
1230 }
1231 
1232 /* flush all the translation blocks */
1233 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1234 {
1235     mmap_lock();
1236     /* If it is already been done on request of another CPU,
1237      * just retry.
1238      */
1239     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1240         goto done;
1241     }
1242 
1243     if (DEBUG_TB_FLUSH_GATE) {
1244         size_t nb_tbs = tcg_nb_tbs();
1245         size_t host_size = 0;
1246 
1247         tcg_tb_foreach(tb_host_size_iter, &host_size);
1248         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1249                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1250     }
1251 
1252     CPU_FOREACH(cpu) {
1253         cpu_tb_jmp_cache_clear(cpu);
1254     }
1255 
1256     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1257     page_flush_tb();
1258 
1259     tcg_region_reset_all();
1260     /* XXX: flush processor icache at this point if cache flush is
1261        expensive */
1262     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1263 
1264 done:
1265     mmap_unlock();
1266 }
1267 
1268 void tb_flush(CPUState *cpu)
1269 {
1270     if (tcg_enabled()) {
1271         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1272         async_safe_run_on_cpu(cpu, do_tb_flush,
1273                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1274     }
1275 }
1276 
1277 /*
1278  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1279  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1280  * and let the optimizer get rid of them by wrapping their user-only callers
1281  * with if (DEBUG_TB_CHECK_GATE).
1282  */
1283 #ifdef CONFIG_USER_ONLY
1284 
1285 static void
1286 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1287 {
1288     TranslationBlock *tb = p;
1289     target_ulong addr = *(target_ulong *)userp;
1290 
1291     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1292         printf("ERROR invalidate: address=" TARGET_FMT_lx
1293                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1294     }
1295 }
1296 
1297 /* verify that all the pages have correct rights for code
1298  *
1299  * Called with mmap_lock held.
1300  */
1301 static void tb_invalidate_check(target_ulong address)
1302 {
1303     address &= TARGET_PAGE_MASK;
1304     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1305 }
1306 
1307 static void
1308 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1309 {
1310     TranslationBlock *tb = p;
1311     int flags1, flags2;
1312 
1313     flags1 = page_get_flags(tb->pc);
1314     flags2 = page_get_flags(tb->pc + tb->size - 1);
1315     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1316         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1317                (long)tb->pc, tb->size, flags1, flags2);
1318     }
1319 }
1320 
1321 /* verify that all the pages have correct rights for code */
1322 static void tb_page_check(void)
1323 {
1324     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1325 }
1326 
1327 #endif /* CONFIG_USER_ONLY */
1328 
1329 /*
1330  * user-mode: call with mmap_lock held
1331  * !user-mode: call with @pd->lock held
1332  */
1333 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1334 {
1335     TranslationBlock *tb1;
1336     uintptr_t *pprev;
1337     unsigned int n1;
1338 
1339     assert_page_locked(pd);
1340     pprev = &pd->first_tb;
1341     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1342         if (tb1 == tb) {
1343             *pprev = tb1->page_next[n1];
1344             return;
1345         }
1346         pprev = &tb1->page_next[n1];
1347     }
1348     g_assert_not_reached();
1349 }
1350 
1351 /* remove @orig from its @n_orig-th jump list */
1352 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1353 {
1354     uintptr_t ptr, ptr_locked;
1355     TranslationBlock *dest;
1356     TranslationBlock *tb;
1357     uintptr_t *pprev;
1358     int n;
1359 
1360     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1361     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1362     dest = (TranslationBlock *)(ptr & ~1);
1363     if (dest == NULL) {
1364         return;
1365     }
1366 
1367     qemu_spin_lock(&dest->jmp_lock);
1368     /*
1369      * While acquiring the lock, the jump might have been removed if the
1370      * destination TB was invalidated; check again.
1371      */
1372     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1373     if (ptr_locked != ptr) {
1374         qemu_spin_unlock(&dest->jmp_lock);
1375         /*
1376          * The only possibility is that the jump was unlinked via
1377          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1378          * because we set the LSB above.
1379          */
1380         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1381         return;
1382     }
1383     /*
1384      * We first acquired the lock, and since the destination pointer matches,
1385      * we know for sure that @orig is in the jmp list.
1386      */
1387     pprev = &dest->jmp_list_head;
1388     TB_FOR_EACH_JMP(dest, tb, n) {
1389         if (tb == orig && n == n_orig) {
1390             *pprev = tb->jmp_list_next[n];
1391             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1392             qemu_spin_unlock(&dest->jmp_lock);
1393             return;
1394         }
1395         pprev = &tb->jmp_list_next[n];
1396     }
1397     g_assert_not_reached();
1398 }
1399 
1400 /* reset the jump entry 'n' of a TB so that it is not chained to
1401    another TB */
1402 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1403 {
1404     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1405     tb_set_jmp_target(tb, n, addr);
1406 }
1407 
1408 /* remove any jumps to the TB */
1409 static inline void tb_jmp_unlink(TranslationBlock *dest)
1410 {
1411     TranslationBlock *tb;
1412     int n;
1413 
1414     qemu_spin_lock(&dest->jmp_lock);
1415 
1416     TB_FOR_EACH_JMP(dest, tb, n) {
1417         tb_reset_jump(tb, n);
1418         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1419         /* No need to clear the list entry; setting the dest ptr is enough */
1420     }
1421     dest->jmp_list_head = (uintptr_t)NULL;
1422 
1423     qemu_spin_unlock(&dest->jmp_lock);
1424 }
1425 
1426 /*
1427  * In user-mode, call with mmap_lock held.
1428  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1429  * locks held.
1430  */
1431 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1432 {
1433     CPUState *cpu;
1434     PageDesc *p;
1435     uint32_t h;
1436     tb_page_addr_t phys_pc;
1437 
1438     assert_memory_lock();
1439 
1440     /* make sure no further incoming jumps will be chained to this TB */
1441     qemu_spin_lock(&tb->jmp_lock);
1442     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1443     qemu_spin_unlock(&tb->jmp_lock);
1444 
1445     /* remove the TB from the hash list */
1446     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1447     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1448                      tb->trace_vcpu_dstate);
1449     if (!(tb->cflags & CF_NOCACHE) &&
1450         !qht_remove(&tb_ctx.htable, tb, h)) {
1451         return;
1452     }
1453 
1454     /* remove the TB from the page list */
1455     if (rm_from_page_list) {
1456         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1457         tb_page_remove(p, tb);
1458         invalidate_page_bitmap(p);
1459         if (tb->page_addr[1] != -1) {
1460             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1461             tb_page_remove(p, tb);
1462             invalidate_page_bitmap(p);
1463         }
1464     }
1465 
1466     /* remove the TB from the hash list */
1467     h = tb_jmp_cache_hash_func(tb->pc);
1468     CPU_FOREACH(cpu) {
1469         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1470             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1471         }
1472     }
1473 
1474     /* suppress this TB from the two jump lists */
1475     tb_remove_from_jmp_list(tb, 0);
1476     tb_remove_from_jmp_list(tb, 1);
1477 
1478     /* suppress any remaining jumps to this TB */
1479     tb_jmp_unlink(tb);
1480 
1481     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1482                tcg_ctx->tb_phys_invalidate_count + 1);
1483 }
1484 
1485 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1486 {
1487     do_tb_phys_invalidate(tb, true);
1488 }
1489 
1490 /* invalidate one TB
1491  *
1492  * Called with mmap_lock held in user-mode.
1493  */
1494 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1495 {
1496     if (page_addr == -1 && tb->page_addr[0] != -1) {
1497         page_lock_tb(tb);
1498         do_tb_phys_invalidate(tb, true);
1499         page_unlock_tb(tb);
1500     } else {
1501         do_tb_phys_invalidate(tb, false);
1502     }
1503 }
1504 
1505 #ifdef CONFIG_SOFTMMU
1506 /* call with @p->lock held */
1507 static void build_page_bitmap(PageDesc *p)
1508 {
1509     int n, tb_start, tb_end;
1510     TranslationBlock *tb;
1511 
1512     assert_page_locked(p);
1513     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1514 
1515     PAGE_FOR_EACH_TB(p, tb, n) {
1516         /* NOTE: this is subtle as a TB may span two physical pages */
1517         if (n == 0) {
1518             /* NOTE: tb_end may be after the end of the page, but
1519                it is not a problem */
1520             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1521             tb_end = tb_start + tb->size;
1522             if (tb_end > TARGET_PAGE_SIZE) {
1523                 tb_end = TARGET_PAGE_SIZE;
1524              }
1525         } else {
1526             tb_start = 0;
1527             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1528         }
1529         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1530     }
1531 }
1532 #endif
1533 
1534 /* add the tb in the target page and protect it if necessary
1535  *
1536  * Called with mmap_lock held for user-mode emulation.
1537  * Called with @p->lock held in !user-mode.
1538  */
1539 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1540                                unsigned int n, tb_page_addr_t page_addr)
1541 {
1542 #ifndef CONFIG_USER_ONLY
1543     bool page_already_protected;
1544 #endif
1545 
1546     assert_page_locked(p);
1547 
1548     tb->page_addr[n] = page_addr;
1549     tb->page_next[n] = p->first_tb;
1550 #ifndef CONFIG_USER_ONLY
1551     page_already_protected = p->first_tb != (uintptr_t)NULL;
1552 #endif
1553     p->first_tb = (uintptr_t)tb | n;
1554     invalidate_page_bitmap(p);
1555 
1556 #if defined(CONFIG_USER_ONLY)
1557     if (p->flags & PAGE_WRITE) {
1558         target_ulong addr;
1559         PageDesc *p2;
1560         int prot;
1561 
1562         /* force the host page as non writable (writes will have a
1563            page fault + mprotect overhead) */
1564         page_addr &= qemu_host_page_mask;
1565         prot = 0;
1566         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1567             addr += TARGET_PAGE_SIZE) {
1568 
1569             p2 = page_find(addr >> TARGET_PAGE_BITS);
1570             if (!p2) {
1571                 continue;
1572             }
1573             prot |= p2->flags;
1574             p2->flags &= ~PAGE_WRITE;
1575           }
1576         mprotect(g2h(page_addr), qemu_host_page_size,
1577                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1578         if (DEBUG_TB_INVALIDATE_GATE) {
1579             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1580         }
1581     }
1582 #else
1583     /* if some code is already present, then the pages are already
1584        protected. So we handle the case where only the first TB is
1585        allocated in a physical page */
1586     if (!page_already_protected) {
1587         tlb_protect_code(page_addr);
1588     }
1589 #endif
1590 }
1591 
1592 /* add a new TB and link it to the physical page tables. phys_page2 is
1593  * (-1) to indicate that only one page contains the TB.
1594  *
1595  * Called with mmap_lock held for user-mode emulation.
1596  *
1597  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1598  * Note that in !user-mode, another thread might have already added a TB
1599  * for the same block of guest code that @tb corresponds to. In that case,
1600  * the caller should discard the original @tb, and use instead the returned TB.
1601  */
1602 static TranslationBlock *
1603 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1604              tb_page_addr_t phys_page2)
1605 {
1606     PageDesc *p;
1607     PageDesc *p2 = NULL;
1608 
1609     assert_memory_lock();
1610 
1611     if (phys_pc == -1) {
1612         /*
1613          * If the TB is not associated with a physical RAM page then
1614          * it must be a temporary one-insn TB, and we have nothing to do
1615          * except fill in the page_addr[] fields.
1616          */
1617         assert(tb->cflags & CF_NOCACHE);
1618         tb->page_addr[0] = tb->page_addr[1] = -1;
1619         return tb;
1620     }
1621 
1622     /*
1623      * Add the TB to the page list, acquiring first the pages's locks.
1624      * We keep the locks held until after inserting the TB in the hash table,
1625      * so that if the insertion fails we know for sure that the TBs are still
1626      * in the page descriptors.
1627      * Note that inserting into the hash table first isn't an option, since
1628      * we can only insert TBs that are fully initialized.
1629      */
1630     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1631     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1632     if (p2) {
1633         tb_page_add(p2, tb, 1, phys_page2);
1634     } else {
1635         tb->page_addr[1] = -1;
1636     }
1637 
1638     if (!(tb->cflags & CF_NOCACHE)) {
1639         void *existing_tb = NULL;
1640         uint32_t h;
1641 
1642         /* add in the hash table */
1643         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1644                          tb->trace_vcpu_dstate);
1645         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1646 
1647         /* remove TB from the page(s) if we couldn't insert it */
1648         if (unlikely(existing_tb)) {
1649             tb_page_remove(p, tb);
1650             invalidate_page_bitmap(p);
1651             if (p2) {
1652                 tb_page_remove(p2, tb);
1653                 invalidate_page_bitmap(p2);
1654             }
1655             tb = existing_tb;
1656         }
1657     }
1658 
1659     if (p2 && p2 != p) {
1660         page_unlock(p2);
1661     }
1662     page_unlock(p);
1663 
1664 #ifdef CONFIG_USER_ONLY
1665     if (DEBUG_TB_CHECK_GATE) {
1666         tb_page_check();
1667     }
1668 #endif
1669     return tb;
1670 }
1671 
1672 /* Called with mmap_lock held for user mode emulation.  */
1673 TranslationBlock *tb_gen_code(CPUState *cpu,
1674                               target_ulong pc, target_ulong cs_base,
1675                               uint32_t flags, int cflags)
1676 {
1677     CPUArchState *env = cpu->env_ptr;
1678     TranslationBlock *tb, *existing_tb;
1679     tb_page_addr_t phys_pc, phys_page2;
1680     target_ulong virt_page2;
1681     tcg_insn_unit *gen_code_buf;
1682     int gen_code_size, search_size;
1683 #ifdef CONFIG_PROFILER
1684     TCGProfile *prof = &tcg_ctx->prof;
1685     int64_t ti;
1686 #endif
1687     assert_memory_lock();
1688 
1689     phys_pc = get_page_addr_code(env, pc);
1690 
1691     if (phys_pc == -1) {
1692         /* Generate a temporary TB with 1 insn in it */
1693         cflags &= ~CF_COUNT_MASK;
1694         cflags |= CF_NOCACHE | 1;
1695     }
1696 
1697  buffer_overflow:
1698     tb = tb_alloc(pc);
1699     if (unlikely(!tb)) {
1700         /* flush must be done */
1701         tb_flush(cpu);
1702         mmap_unlock();
1703         /* Make the execution loop process the flush as soon as possible.  */
1704         cpu->exception_index = EXCP_INTERRUPT;
1705         cpu_loop_exit(cpu);
1706     }
1707 
1708     gen_code_buf = tcg_ctx->code_gen_ptr;
1709     tb->tc.ptr = gen_code_buf;
1710     tb->pc = pc;
1711     tb->cs_base = cs_base;
1712     tb->flags = flags;
1713     tb->cflags = cflags;
1714     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1715     tcg_ctx->tb_cflags = cflags;
1716 
1717 #ifdef CONFIG_PROFILER
1718     /* includes aborted translations because of exceptions */
1719     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1720     ti = profile_getclock();
1721 #endif
1722 
1723     tcg_func_start(tcg_ctx);
1724 
1725     tcg_ctx->cpu = ENV_GET_CPU(env);
1726     gen_intermediate_code(cpu, tb);
1727     tcg_ctx->cpu = NULL;
1728 
1729     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1730 
1731     /* generate machine code */
1732     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1733     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1734     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1735     if (TCG_TARGET_HAS_direct_jump) {
1736         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1737         tcg_ctx->tb_jmp_target_addr = NULL;
1738     } else {
1739         tcg_ctx->tb_jmp_insn_offset = NULL;
1740         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1741     }
1742 
1743 #ifdef CONFIG_PROFILER
1744     atomic_set(&prof->tb_count, prof->tb_count + 1);
1745     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1746     ti = profile_getclock();
1747 #endif
1748 
1749     /* ??? Overflow could be handled better here.  In particular, we
1750        don't need to re-do gen_intermediate_code, nor should we re-do
1751        the tcg optimization currently hidden inside tcg_gen_code.  All
1752        that should be required is to flush the TBs, allocate a new TB,
1753        re-initialize it per above, and re-do the actual code generation.  */
1754     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1755     if (unlikely(gen_code_size < 0)) {
1756         goto buffer_overflow;
1757     }
1758     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1759     if (unlikely(search_size < 0)) {
1760         goto buffer_overflow;
1761     }
1762     tb->tc.size = gen_code_size;
1763 
1764 #ifdef CONFIG_PROFILER
1765     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1766     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1767     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1768     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1769 #endif
1770 
1771 #ifdef DEBUG_DISAS
1772     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1773         qemu_log_in_addr_range(tb->pc)) {
1774         qemu_log_lock();
1775         qemu_log("OUT: [size=%d]\n", gen_code_size);
1776         if (tcg_ctx->data_gen_ptr) {
1777             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1778             size_t data_size = gen_code_size - code_size;
1779             size_t i;
1780 
1781             log_disas(tb->tc.ptr, code_size);
1782 
1783             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1784                 if (sizeof(tcg_target_ulong) == 8) {
1785                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1786                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1787                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1788                 } else {
1789                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1790                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1791                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1792                 }
1793             }
1794         } else {
1795             log_disas(tb->tc.ptr, gen_code_size);
1796         }
1797         qemu_log("\n");
1798         qemu_log_flush();
1799         qemu_log_unlock();
1800     }
1801 #endif
1802 
1803     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1804         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1805                  CODE_GEN_ALIGN));
1806 
1807     /* init jump list */
1808     qemu_spin_init(&tb->jmp_lock);
1809     tb->jmp_list_head = (uintptr_t)NULL;
1810     tb->jmp_list_next[0] = (uintptr_t)NULL;
1811     tb->jmp_list_next[1] = (uintptr_t)NULL;
1812     tb->jmp_dest[0] = (uintptr_t)NULL;
1813     tb->jmp_dest[1] = (uintptr_t)NULL;
1814 
1815     /* init original jump addresses which have been set during tcg_gen_code() */
1816     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1817         tb_reset_jump(tb, 0);
1818     }
1819     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1820         tb_reset_jump(tb, 1);
1821     }
1822 
1823     /* check next page if needed */
1824     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1825     phys_page2 = -1;
1826     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1827         phys_page2 = get_page_addr_code(env, virt_page2);
1828     }
1829     /*
1830      * No explicit memory barrier is required -- tb_link_page() makes the
1831      * TB visible in a consistent state.
1832      */
1833     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1834     /* if the TB already exists, discard what we just translated */
1835     if (unlikely(existing_tb != tb)) {
1836         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1837 
1838         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1839         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1840         return existing_tb;
1841     }
1842     tcg_tb_insert(tb);
1843     return tb;
1844 }
1845 
1846 /*
1847  * @p must be non-NULL.
1848  * user-mode: call with mmap_lock held.
1849  * !user-mode: call with all @pages locked.
1850  */
1851 static void
1852 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1853                                       PageDesc *p, tb_page_addr_t start,
1854                                       tb_page_addr_t end,
1855                                       int is_cpu_write_access)
1856 {
1857     TranslationBlock *tb;
1858     tb_page_addr_t tb_start, tb_end;
1859     int n;
1860 #ifdef TARGET_HAS_PRECISE_SMC
1861     CPUState *cpu = current_cpu;
1862     CPUArchState *env = NULL;
1863     int current_tb_not_found = is_cpu_write_access;
1864     TranslationBlock *current_tb = NULL;
1865     int current_tb_modified = 0;
1866     target_ulong current_pc = 0;
1867     target_ulong current_cs_base = 0;
1868     uint32_t current_flags = 0;
1869 #endif /* TARGET_HAS_PRECISE_SMC */
1870 
1871     assert_page_locked(p);
1872 
1873 #if defined(TARGET_HAS_PRECISE_SMC)
1874     if (cpu != NULL) {
1875         env = cpu->env_ptr;
1876     }
1877 #endif
1878 
1879     /* we remove all the TBs in the range [start, end[ */
1880     /* XXX: see if in some cases it could be faster to invalidate all
1881        the code */
1882     PAGE_FOR_EACH_TB(p, tb, n) {
1883         assert_page_locked(p);
1884         /* NOTE: this is subtle as a TB may span two physical pages */
1885         if (n == 0) {
1886             /* NOTE: tb_end may be after the end of the page, but
1887                it is not a problem */
1888             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1889             tb_end = tb_start + tb->size;
1890         } else {
1891             tb_start = tb->page_addr[1];
1892             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1893         }
1894         if (!(tb_end <= start || tb_start >= end)) {
1895 #ifdef TARGET_HAS_PRECISE_SMC
1896             if (current_tb_not_found) {
1897                 current_tb_not_found = 0;
1898                 current_tb = NULL;
1899                 if (cpu->mem_io_pc) {
1900                     /* now we have a real cpu fault */
1901                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1902                 }
1903             }
1904             if (current_tb == tb &&
1905                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1906                 /* If we are modifying the current TB, we must stop
1907                 its execution. We could be more precise by checking
1908                 that the modification is after the current PC, but it
1909                 would require a specialized function to partially
1910                 restore the CPU state */
1911 
1912                 current_tb_modified = 1;
1913                 cpu_restore_state_from_tb(cpu, current_tb,
1914                                           cpu->mem_io_pc, true);
1915                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1916                                      &current_flags);
1917             }
1918 #endif /* TARGET_HAS_PRECISE_SMC */
1919             tb_phys_invalidate__locked(tb);
1920         }
1921     }
1922 #if !defined(CONFIG_USER_ONLY)
1923     /* if no code remaining, no need to continue to use slow writes */
1924     if (!p->first_tb) {
1925         invalidate_page_bitmap(p);
1926         tlb_unprotect_code(start);
1927     }
1928 #endif
1929 #ifdef TARGET_HAS_PRECISE_SMC
1930     if (current_tb_modified) {
1931         page_collection_unlock(pages);
1932         /* Force execution of one insn next time.  */
1933         cpu->cflags_next_tb = 1 | curr_cflags();
1934         mmap_unlock();
1935         cpu_loop_exit_noexc(cpu);
1936     }
1937 #endif
1938 }
1939 
1940 /*
1941  * Invalidate all TBs which intersect with the target physical address range
1942  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1943  * 'is_cpu_write_access' should be true if called from a real cpu write
1944  * access: the virtual CPU will exit the current TB if code is modified inside
1945  * this TB.
1946  *
1947  * Called with mmap_lock held for user-mode emulation
1948  */
1949 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1950                                    int is_cpu_write_access)
1951 {
1952     struct page_collection *pages;
1953     PageDesc *p;
1954 
1955     assert_memory_lock();
1956 
1957     p = page_find(start >> TARGET_PAGE_BITS);
1958     if (p == NULL) {
1959         return;
1960     }
1961     pages = page_collection_lock(start, end);
1962     tb_invalidate_phys_page_range__locked(pages, p, start, end,
1963                                           is_cpu_write_access);
1964     page_collection_unlock(pages);
1965 }
1966 
1967 /*
1968  * Invalidate all TBs which intersect with the target physical address range
1969  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1970  * 'is_cpu_write_access' should be true if called from a real cpu write
1971  * access: the virtual CPU will exit the current TB if code is modified inside
1972  * this TB.
1973  *
1974  * Called with mmap_lock held for user-mode emulation.
1975  */
1976 #ifdef CONFIG_SOFTMMU
1977 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1978 #else
1979 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1980 #endif
1981 {
1982     struct page_collection *pages;
1983     tb_page_addr_t next;
1984 
1985     assert_memory_lock();
1986 
1987     pages = page_collection_lock(start, end);
1988     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1989          start < end;
1990          start = next, next += TARGET_PAGE_SIZE) {
1991         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1992         tb_page_addr_t bound = MIN(next, end);
1993 
1994         if (pd == NULL) {
1995             continue;
1996         }
1997         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1998     }
1999     page_collection_unlock(pages);
2000 }
2001 
2002 #ifdef CONFIG_SOFTMMU
2003 /* len must be <= 8 and start must be a multiple of len.
2004  * Called via softmmu_template.h when code areas are written to with
2005  * iothread mutex not held.
2006  *
2007  * Call with all @pages in the range [@start, @start + len[ locked.
2008  */
2009 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2010                                   tb_page_addr_t start, int len)
2011 {
2012     PageDesc *p;
2013 
2014 #if 0
2015     if (1) {
2016         qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2017                   cpu_single_env->mem_io_vaddr, len,
2018                   cpu_single_env->eip,
2019                   cpu_single_env->eip +
2020                   (intptr_t)cpu_single_env->segs[R_CS].base);
2021     }
2022 #endif
2023     assert_memory_lock();
2024 
2025     p = page_find(start >> TARGET_PAGE_BITS);
2026     if (!p) {
2027         return;
2028     }
2029 
2030     assert_page_locked(p);
2031     if (!p->code_bitmap &&
2032         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2033         build_page_bitmap(p);
2034     }
2035     if (p->code_bitmap) {
2036         unsigned int nr;
2037         unsigned long b;
2038 
2039         nr = start & ~TARGET_PAGE_MASK;
2040         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2041         if (b & ((1 << len) - 1)) {
2042             goto do_invalidate;
2043         }
2044     } else {
2045     do_invalidate:
2046         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2047     }
2048 }
2049 #else
2050 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2051  * host PC of the faulting store instruction that caused this invalidate.
2052  * Returns true if the caller needs to abort execution of the current
2053  * TB (because it was modified by this store and the guest CPU has
2054  * precise-SMC semantics).
2055  */
2056 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2057 {
2058     TranslationBlock *tb;
2059     PageDesc *p;
2060     int n;
2061 #ifdef TARGET_HAS_PRECISE_SMC
2062     TranslationBlock *current_tb = NULL;
2063     CPUState *cpu = current_cpu;
2064     CPUArchState *env = NULL;
2065     int current_tb_modified = 0;
2066     target_ulong current_pc = 0;
2067     target_ulong current_cs_base = 0;
2068     uint32_t current_flags = 0;
2069 #endif
2070 
2071     assert_memory_lock();
2072 
2073     addr &= TARGET_PAGE_MASK;
2074     p = page_find(addr >> TARGET_PAGE_BITS);
2075     if (!p) {
2076         return false;
2077     }
2078 
2079 #ifdef TARGET_HAS_PRECISE_SMC
2080     if (p->first_tb && pc != 0) {
2081         current_tb = tcg_tb_lookup(pc);
2082     }
2083     if (cpu != NULL) {
2084         env = cpu->env_ptr;
2085     }
2086 #endif
2087     assert_page_locked(p);
2088     PAGE_FOR_EACH_TB(p, tb, n) {
2089 #ifdef TARGET_HAS_PRECISE_SMC
2090         if (current_tb == tb &&
2091             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2092                 /* If we are modifying the current TB, we must stop
2093                    its execution. We could be more precise by checking
2094                    that the modification is after the current PC, but it
2095                    would require a specialized function to partially
2096                    restore the CPU state */
2097 
2098             current_tb_modified = 1;
2099             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2100             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2101                                  &current_flags);
2102         }
2103 #endif /* TARGET_HAS_PRECISE_SMC */
2104         tb_phys_invalidate(tb, addr);
2105     }
2106     p->first_tb = (uintptr_t)NULL;
2107 #ifdef TARGET_HAS_PRECISE_SMC
2108     if (current_tb_modified) {
2109         /* Force execution of one insn next time.  */
2110         cpu->cflags_next_tb = 1 | curr_cflags();
2111         return true;
2112     }
2113 #endif
2114 
2115     return false;
2116 }
2117 #endif
2118 
2119 /* user-mode: call with mmap_lock held */
2120 void tb_check_watchpoint(CPUState *cpu)
2121 {
2122     TranslationBlock *tb;
2123 
2124     assert_memory_lock();
2125 
2126     tb = tcg_tb_lookup(cpu->mem_io_pc);
2127     if (tb) {
2128         /* We can use retranslation to find the PC.  */
2129         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2130         tb_phys_invalidate(tb, -1);
2131     } else {
2132         /* The exception probably happened in a helper.  The CPU state should
2133            have been saved before calling it. Fetch the PC from there.  */
2134         CPUArchState *env = cpu->env_ptr;
2135         target_ulong pc, cs_base;
2136         tb_page_addr_t addr;
2137         uint32_t flags;
2138 
2139         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2140         addr = get_page_addr_code(env, pc);
2141         if (addr != -1) {
2142             tb_invalidate_phys_range(addr, addr + 1);
2143         }
2144     }
2145 }
2146 
2147 #ifndef CONFIG_USER_ONLY
2148 /* in deterministic execution mode, instructions doing device I/Os
2149  * must be at the end of the TB.
2150  *
2151  * Called by softmmu_template.h, with iothread mutex not held.
2152  */
2153 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2154 {
2155 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2156     CPUArchState *env = cpu->env_ptr;
2157 #endif
2158     TranslationBlock *tb;
2159     uint32_t n;
2160 
2161     tb = tcg_tb_lookup(retaddr);
2162     if (!tb) {
2163         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2164                   (void *)retaddr);
2165     }
2166     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2167 
2168     /* On MIPS and SH, delay slot instructions can only be restarted if
2169        they were already the first instruction in the TB.  If this is not
2170        the first instruction in a TB then re-execute the preceding
2171        branch.  */
2172     n = 1;
2173 #if defined(TARGET_MIPS)
2174     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2175         && env->active_tc.PC != tb->pc) {
2176         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2177         cpu->icount_decr.u16.low++;
2178         env->hflags &= ~MIPS_HFLAG_BMASK;
2179         n = 2;
2180     }
2181 #elif defined(TARGET_SH4)
2182     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2183         && env->pc != tb->pc) {
2184         env->pc -= 2;
2185         cpu->icount_decr.u16.low++;
2186         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2187         n = 2;
2188     }
2189 #endif
2190 
2191     /* Generate a new TB executing the I/O insn.  */
2192     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2193 
2194     if (tb_cflags(tb) & CF_NOCACHE) {
2195         if (tb->orig_tb) {
2196             /* Invalidate original TB if this TB was generated in
2197              * cpu_exec_nocache() */
2198             tb_phys_invalidate(tb->orig_tb, -1);
2199         }
2200         tcg_tb_remove(tb);
2201     }
2202 
2203     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2204      * the first in the TB) then we end up generating a whole new TB and
2205      *  repeating the fault, which is horribly inefficient.
2206      *  Better would be to execute just this insn uncached, or generate a
2207      *  second new TB.
2208      */
2209     cpu_loop_exit_noexc(cpu);
2210 }
2211 
2212 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2213 {
2214     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2215 
2216     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2217         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2218     }
2219 }
2220 
2221 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2222 {
2223     /* Discard jump cache entries for any tb which might potentially
2224        overlap the flushed page.  */
2225     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2226     tb_jmp_cache_clear_page(cpu, addr);
2227 }
2228 
2229 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
2230                                  struct qht_stats hst)
2231 {
2232     uint32_t hgram_opts;
2233     size_t hgram_bins;
2234     char *hgram;
2235 
2236     if (!hst.head_buckets) {
2237         return;
2238     }
2239     cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2240                 hst.used_head_buckets, hst.head_buckets,
2241                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2242 
2243     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2244     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2245     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2246         hgram_opts |= QDIST_PR_NODECIMAL;
2247     }
2248     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2249     cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2250                 qdist_avg(&hst.occupancy) * 100, hgram);
2251     g_free(hgram);
2252 
2253     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2254     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2255     if (hgram_bins > 10) {
2256         hgram_bins = 10;
2257     } else {
2258         hgram_bins = 0;
2259         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2260     }
2261     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2262     cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2263                 qdist_avg(&hst.chain), hgram);
2264     g_free(hgram);
2265 }
2266 
2267 struct tb_tree_stats {
2268     size_t nb_tbs;
2269     size_t host_size;
2270     size_t target_size;
2271     size_t max_target_size;
2272     size_t direct_jmp_count;
2273     size_t direct_jmp2_count;
2274     size_t cross_page;
2275 };
2276 
2277 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2278 {
2279     const TranslationBlock *tb = value;
2280     struct tb_tree_stats *tst = data;
2281 
2282     tst->nb_tbs++;
2283     tst->host_size += tb->tc.size;
2284     tst->target_size += tb->size;
2285     if (tb->size > tst->max_target_size) {
2286         tst->max_target_size = tb->size;
2287     }
2288     if (tb->page_addr[1] != -1) {
2289         tst->cross_page++;
2290     }
2291     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2292         tst->direct_jmp_count++;
2293         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2294             tst->direct_jmp2_count++;
2295         }
2296     }
2297     return false;
2298 }
2299 
2300 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
2301 {
2302     struct tb_tree_stats tst = {};
2303     struct qht_stats hst;
2304     size_t nb_tbs;
2305 
2306     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2307     nb_tbs = tst.nb_tbs;
2308     /* XXX: avoid using doubles ? */
2309     cpu_fprintf(f, "Translation buffer state:\n");
2310     /*
2311      * Report total code size including the padding and TB structs;
2312      * otherwise users might think "-tb-size" is not honoured.
2313      * For avg host size we use the precise numbers from tb_tree_stats though.
2314      */
2315     cpu_fprintf(f, "gen code size       %zu/%zu\n",
2316                 tcg_code_size(), tcg_code_capacity());
2317     cpu_fprintf(f, "TB count            %zu\n", nb_tbs);
2318     cpu_fprintf(f, "TB avg target size  %zu max=%zu bytes\n",
2319                 nb_tbs ? tst.target_size / nb_tbs : 0,
2320                 tst.max_target_size);
2321     cpu_fprintf(f, "TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2322                 nb_tbs ? tst.host_size / nb_tbs : 0,
2323                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2324     cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
2325             nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2326     cpu_fprintf(f, "direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2327                 tst.direct_jmp_count,
2328                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2329                 tst.direct_jmp2_count,
2330                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2331 
2332     qht_statistics_init(&tb_ctx.htable, &hst);
2333     print_qht_statistics(f, cpu_fprintf, hst);
2334     qht_statistics_destroy(&hst);
2335 
2336     cpu_fprintf(f, "\nStatistics:\n");
2337     cpu_fprintf(f, "TB flush count      %u\n",
2338                 atomic_read(&tb_ctx.tb_flush_count));
2339     cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
2340     cpu_fprintf(f, "TLB flush count     %zu\n", tlb_flush_count());
2341     tcg_dump_info(f, cpu_fprintf);
2342 }
2343 
2344 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
2345 {
2346     tcg_dump_op_count(f, cpu_fprintf);
2347 }
2348 
2349 #else /* CONFIG_USER_ONLY */
2350 
2351 void cpu_interrupt(CPUState *cpu, int mask)
2352 {
2353     g_assert(qemu_mutex_iothread_locked());
2354     cpu->interrupt_request |= mask;
2355     cpu->icount_decr.u16.high = -1;
2356 }
2357 
2358 /*
2359  * Walks guest process memory "regions" one by one
2360  * and calls callback function 'fn' for each region.
2361  */
2362 struct walk_memory_regions_data {
2363     walk_memory_regions_fn fn;
2364     void *priv;
2365     target_ulong start;
2366     int prot;
2367 };
2368 
2369 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2370                                    target_ulong end, int new_prot)
2371 {
2372     if (data->start != -1u) {
2373         int rc = data->fn(data->priv, data->start, end, data->prot);
2374         if (rc != 0) {
2375             return rc;
2376         }
2377     }
2378 
2379     data->start = (new_prot ? end : -1u);
2380     data->prot = new_prot;
2381 
2382     return 0;
2383 }
2384 
2385 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2386                                  target_ulong base, int level, void **lp)
2387 {
2388     target_ulong pa;
2389     int i, rc;
2390 
2391     if (*lp == NULL) {
2392         return walk_memory_regions_end(data, base, 0);
2393     }
2394 
2395     if (level == 0) {
2396         PageDesc *pd = *lp;
2397 
2398         for (i = 0; i < V_L2_SIZE; ++i) {
2399             int prot = pd[i].flags;
2400 
2401             pa = base | (i << TARGET_PAGE_BITS);
2402             if (prot != data->prot) {
2403                 rc = walk_memory_regions_end(data, pa, prot);
2404                 if (rc != 0) {
2405                     return rc;
2406                 }
2407             }
2408         }
2409     } else {
2410         void **pp = *lp;
2411 
2412         for (i = 0; i < V_L2_SIZE; ++i) {
2413             pa = base | ((target_ulong)i <<
2414                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2415             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2416             if (rc != 0) {
2417                 return rc;
2418             }
2419         }
2420     }
2421 
2422     return 0;
2423 }
2424 
2425 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2426 {
2427     struct walk_memory_regions_data data;
2428     uintptr_t i, l1_sz = v_l1_size;
2429 
2430     data.fn = fn;
2431     data.priv = priv;
2432     data.start = -1u;
2433     data.prot = 0;
2434 
2435     for (i = 0; i < l1_sz; i++) {
2436         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2437         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2438         if (rc != 0) {
2439             return rc;
2440         }
2441     }
2442 
2443     return walk_memory_regions_end(&data, 0, 0);
2444 }
2445 
2446 static int dump_region(void *priv, target_ulong start,
2447     target_ulong end, unsigned long prot)
2448 {
2449     FILE *f = (FILE *)priv;
2450 
2451     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2452         " "TARGET_FMT_lx" %c%c%c\n",
2453         start, end, end - start,
2454         ((prot & PAGE_READ) ? 'r' : '-'),
2455         ((prot & PAGE_WRITE) ? 'w' : '-'),
2456         ((prot & PAGE_EXEC) ? 'x' : '-'));
2457 
2458     return 0;
2459 }
2460 
2461 /* dump memory mappings */
2462 void page_dump(FILE *f)
2463 {
2464     const int length = sizeof(target_ulong) * 2;
2465     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2466             length, "start", length, "end", length, "size", "prot");
2467     walk_memory_regions(f, dump_region);
2468 }
2469 
2470 int page_get_flags(target_ulong address)
2471 {
2472     PageDesc *p;
2473 
2474     p = page_find(address >> TARGET_PAGE_BITS);
2475     if (!p) {
2476         return 0;
2477     }
2478     return p->flags;
2479 }
2480 
2481 /* Modify the flags of a page and invalidate the code if necessary.
2482    The flag PAGE_WRITE_ORG is positioned automatically depending
2483    on PAGE_WRITE.  The mmap_lock should already be held.  */
2484 void page_set_flags(target_ulong start, target_ulong end, int flags)
2485 {
2486     target_ulong addr, len;
2487 
2488     /* This function should never be called with addresses outside the
2489        guest address space.  If this assert fires, it probably indicates
2490        a missing call to h2g_valid.  */
2491 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2492     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2493 #endif
2494     assert(start < end);
2495     assert_memory_lock();
2496 
2497     start = start & TARGET_PAGE_MASK;
2498     end = TARGET_PAGE_ALIGN(end);
2499 
2500     if (flags & PAGE_WRITE) {
2501         flags |= PAGE_WRITE_ORG;
2502     }
2503 
2504     for (addr = start, len = end - start;
2505          len != 0;
2506          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2507         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2508 
2509         /* If the write protection bit is set, then we invalidate
2510            the code inside.  */
2511         if (!(p->flags & PAGE_WRITE) &&
2512             (flags & PAGE_WRITE) &&
2513             p->first_tb) {
2514             tb_invalidate_phys_page(addr, 0);
2515         }
2516         p->flags = flags;
2517     }
2518 }
2519 
2520 int page_check_range(target_ulong start, target_ulong len, int flags)
2521 {
2522     PageDesc *p;
2523     target_ulong end;
2524     target_ulong addr;
2525 
2526     /* This function should never be called with addresses outside the
2527        guest address space.  If this assert fires, it probably indicates
2528        a missing call to h2g_valid.  */
2529 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2530     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2531 #endif
2532 
2533     if (len == 0) {
2534         return 0;
2535     }
2536     if (start + len - 1 < start) {
2537         /* We've wrapped around.  */
2538         return -1;
2539     }
2540 
2541     /* must do before we loose bits in the next step */
2542     end = TARGET_PAGE_ALIGN(start + len);
2543     start = start & TARGET_PAGE_MASK;
2544 
2545     for (addr = start, len = end - start;
2546          len != 0;
2547          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2548         p = page_find(addr >> TARGET_PAGE_BITS);
2549         if (!p) {
2550             return -1;
2551         }
2552         if (!(p->flags & PAGE_VALID)) {
2553             return -1;
2554         }
2555 
2556         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2557             return -1;
2558         }
2559         if (flags & PAGE_WRITE) {
2560             if (!(p->flags & PAGE_WRITE_ORG)) {
2561                 return -1;
2562             }
2563             /* unprotect the page if it was put read-only because it
2564                contains translated code */
2565             if (!(p->flags & PAGE_WRITE)) {
2566                 if (!page_unprotect(addr, 0)) {
2567                     return -1;
2568                 }
2569             }
2570         }
2571     }
2572     return 0;
2573 }
2574 
2575 /* called from signal handler: invalidate the code and unprotect the
2576  * page. Return 0 if the fault was not handled, 1 if it was handled,
2577  * and 2 if it was handled but the caller must cause the TB to be
2578  * immediately exited. (We can only return 2 if the 'pc' argument is
2579  * non-zero.)
2580  */
2581 int page_unprotect(target_ulong address, uintptr_t pc)
2582 {
2583     unsigned int prot;
2584     bool current_tb_invalidated;
2585     PageDesc *p;
2586     target_ulong host_start, host_end, addr;
2587 
2588     /* Technically this isn't safe inside a signal handler.  However we
2589        know this only ever happens in a synchronous SEGV handler, so in
2590        practice it seems to be ok.  */
2591     mmap_lock();
2592 
2593     p = page_find(address >> TARGET_PAGE_BITS);
2594     if (!p) {
2595         mmap_unlock();
2596         return 0;
2597     }
2598 
2599     /* if the page was really writable, then we change its
2600        protection back to writable */
2601     if (p->flags & PAGE_WRITE_ORG) {
2602         current_tb_invalidated = false;
2603         if (p->flags & PAGE_WRITE) {
2604             /* If the page is actually marked WRITE then assume this is because
2605              * this thread raced with another one which got here first and
2606              * set the page to PAGE_WRITE and did the TB invalidate for us.
2607              */
2608 #ifdef TARGET_HAS_PRECISE_SMC
2609             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2610             if (current_tb) {
2611                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2612             }
2613 #endif
2614         } else {
2615             host_start = address & qemu_host_page_mask;
2616             host_end = host_start + qemu_host_page_size;
2617 
2618             prot = 0;
2619             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2620                 p = page_find(addr >> TARGET_PAGE_BITS);
2621                 p->flags |= PAGE_WRITE;
2622                 prot |= p->flags;
2623 
2624                 /* and since the content will be modified, we must invalidate
2625                    the corresponding translated code. */
2626                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2627 #ifdef CONFIG_USER_ONLY
2628                 if (DEBUG_TB_CHECK_GATE) {
2629                     tb_invalidate_check(addr);
2630                 }
2631 #endif
2632             }
2633             mprotect((void *)g2h(host_start), qemu_host_page_size,
2634                      prot & PAGE_BITS);
2635         }
2636         mmap_unlock();
2637         /* If current TB was invalidated return to main loop */
2638         return current_tb_invalidated ? 2 : 1;
2639     }
2640     mmap_unlock();
2641     return 0;
2642 }
2643 #endif /* CONFIG_USER_ONLY */
2644 
2645 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2646 void tcg_flush_softmmu_tlb(CPUState *cs)
2647 {
2648 #ifdef CONFIG_SOFTMMU
2649     tlb_flush(cs);
2650 #endif
2651 }
2652