1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 23 #define NO_CPU_IO_DEFS 24 #include "cpu.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg.h" 29 #if defined(CONFIG_USER_ONLY) 30 #include "qemu.h" 31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 32 #include <sys/param.h> 33 #if __FreeBSD_version >= 700104 34 #define HAVE_KINFO_GETVMMAP 35 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 36 #include <sys/proc.h> 37 #include <machine/profile.h> 38 #define _KERNEL 39 #include <sys/user.h> 40 #undef _KERNEL 41 #undef sigqueue 42 #include <libutil.h> 43 #endif 44 #endif 45 #else 46 #include "exec/ram_addr.h" 47 #endif 48 49 #include "exec/cputlb.h" 50 #include "exec/tb-hash.h" 51 #include "translate-all.h" 52 #include "qemu/bitmap.h" 53 #include "qemu/error-report.h" 54 #include "qemu/qemu-print.h" 55 #include "qemu/timer.h" 56 #include "qemu/main-loop.h" 57 #include "exec/log.h" 58 #include "sysemu/cpus.h" 59 #include "sysemu/tcg.h" 60 61 /* #define DEBUG_TB_INVALIDATE */ 62 /* #define DEBUG_TB_FLUSH */ 63 /* make various TB consistency checks */ 64 /* #define DEBUG_TB_CHECK */ 65 66 #ifdef DEBUG_TB_INVALIDATE 67 #define DEBUG_TB_INVALIDATE_GATE 1 68 #else 69 #define DEBUG_TB_INVALIDATE_GATE 0 70 #endif 71 72 #ifdef DEBUG_TB_FLUSH 73 #define DEBUG_TB_FLUSH_GATE 1 74 #else 75 #define DEBUG_TB_FLUSH_GATE 0 76 #endif 77 78 #if !defined(CONFIG_USER_ONLY) 79 /* TB consistency checks only implemented for usermode emulation. */ 80 #undef DEBUG_TB_CHECK 81 #endif 82 83 #ifdef DEBUG_TB_CHECK 84 #define DEBUG_TB_CHECK_GATE 1 85 #else 86 #define DEBUG_TB_CHECK_GATE 0 87 #endif 88 89 /* Access to the various translations structures need to be serialised via locks 90 * for consistency. 91 * In user-mode emulation access to the memory related structures are protected 92 * with mmap_lock. 93 * In !user-mode we use per-page locks. 94 */ 95 #ifdef CONFIG_SOFTMMU 96 #define assert_memory_lock() 97 #else 98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 99 #endif 100 101 #define SMC_BITMAP_USE_THRESHOLD 10 102 103 typedef struct PageDesc { 104 /* list of TBs intersecting this ram page */ 105 uintptr_t first_tb; 106 #ifdef CONFIG_SOFTMMU 107 /* in order to optimize self modifying code, we count the number 108 of lookups we do to a given page to use a bitmap */ 109 unsigned long *code_bitmap; 110 unsigned int code_write_count; 111 #else 112 unsigned long flags; 113 #endif 114 #ifndef CONFIG_USER_ONLY 115 QemuSpin lock; 116 #endif 117 } PageDesc; 118 119 /** 120 * struct page_entry - page descriptor entry 121 * @pd: pointer to the &struct PageDesc of the page this entry represents 122 * @index: page index of the page 123 * @locked: whether the page is locked 124 * 125 * This struct helps us keep track of the locked state of a page, without 126 * bloating &struct PageDesc. 127 * 128 * A page lock protects accesses to all fields of &struct PageDesc. 129 * 130 * See also: &struct page_collection. 131 */ 132 struct page_entry { 133 PageDesc *pd; 134 tb_page_addr_t index; 135 bool locked; 136 }; 137 138 /** 139 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 140 * @tree: Binary search tree (BST) of the pages, with key == page index 141 * @max: Pointer to the page in @tree with the highest page index 142 * 143 * To avoid deadlock we lock pages in ascending order of page index. 144 * When operating on a set of pages, we need to keep track of them so that 145 * we can lock them in order and also unlock them later. For this we collect 146 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 147 * @tree implementation we use does not provide an O(1) operation to obtain the 148 * highest-ranked element, we use @max to keep track of the inserted page 149 * with the highest index. This is valuable because if a page is not in 150 * the tree and its index is higher than @max's, then we can lock it 151 * without breaking the locking order rule. 152 * 153 * Note on naming: 'struct page_set' would be shorter, but we already have a few 154 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 155 * 156 * See also: page_collection_lock(). 157 */ 158 struct page_collection { 159 GTree *tree; 160 struct page_entry *max; 161 }; 162 163 /* list iterators for lists of tagged pointers in TranslationBlock */ 164 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 165 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 166 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 167 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 168 169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 170 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 171 172 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 173 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 174 175 /* In system mode we want L1_MAP to be based on ram offsets, 176 while in user mode we want it to be based on virtual addresses. */ 177 #if !defined(CONFIG_USER_ONLY) 178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 179 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 180 #else 181 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 182 #endif 183 #else 184 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 185 #endif 186 187 /* Size of the L2 (and L3, etc) page tables. */ 188 #define V_L2_BITS 10 189 #define V_L2_SIZE (1 << V_L2_BITS) 190 191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 193 sizeof_field(TranslationBlock, trace_vcpu_dstate) 194 * BITS_PER_BYTE); 195 196 /* 197 * L1 Mapping properties 198 */ 199 static int v_l1_size; 200 static int v_l1_shift; 201 static int v_l2_levels; 202 203 /* The bottom level has pointers to PageDesc, and is indexed by 204 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 205 */ 206 #define V_L1_MIN_BITS 4 207 #define V_L1_MAX_BITS (V_L2_BITS + 3) 208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 209 210 static void *l1_map[V_L1_MAX_SIZE]; 211 212 /* code generation context */ 213 TCGContext tcg_init_ctx; 214 __thread TCGContext *tcg_ctx; 215 TBContext tb_ctx; 216 bool parallel_cpus; 217 218 static void page_table_config_init(void) 219 { 220 uint32_t v_l1_bits; 221 222 assert(TARGET_PAGE_BITS); 223 /* The bits remaining after N lower levels of page tables. */ 224 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 225 if (v_l1_bits < V_L1_MIN_BITS) { 226 v_l1_bits += V_L2_BITS; 227 } 228 229 v_l1_size = 1 << v_l1_bits; 230 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 231 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 232 233 assert(v_l1_bits <= V_L1_MAX_BITS); 234 assert(v_l1_shift % V_L2_BITS == 0); 235 assert(v_l2_levels >= 0); 236 } 237 238 void cpu_gen_init(void) 239 { 240 tcg_context_init(&tcg_init_ctx); 241 } 242 243 /* Encode VAL as a signed leb128 sequence at P. 244 Return P incremented past the encoded value. */ 245 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 246 { 247 int more, byte; 248 249 do { 250 byte = val & 0x7f; 251 val >>= 7; 252 more = !((val == 0 && (byte & 0x40) == 0) 253 || (val == -1 && (byte & 0x40) != 0)); 254 if (more) { 255 byte |= 0x80; 256 } 257 *p++ = byte; 258 } while (more); 259 260 return p; 261 } 262 263 /* Decode a signed leb128 sequence at *PP; increment *PP past the 264 decoded value. Return the decoded value. */ 265 static target_long decode_sleb128(uint8_t **pp) 266 { 267 uint8_t *p = *pp; 268 target_long val = 0; 269 int byte, shift = 0; 270 271 do { 272 byte = *p++; 273 val |= (target_ulong)(byte & 0x7f) << shift; 274 shift += 7; 275 } while (byte & 0x80); 276 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 277 val |= -(target_ulong)1 << shift; 278 } 279 280 *pp = p; 281 return val; 282 } 283 284 /* Encode the data collected about the instructions while compiling TB. 285 Place the data at BLOCK, and return the number of bytes consumed. 286 287 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 288 which come from the target's insn_start data, followed by a uintptr_t 289 which comes from the host pc of the end of the code implementing the insn. 290 291 Each line of the table is encoded as sleb128 deltas from the previous 292 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 293 That is, the first column is seeded with the guest pc, the last column 294 with the host pc, and the middle columns with zeros. */ 295 296 static int encode_search(TranslationBlock *tb, uint8_t *block) 297 { 298 uint8_t *highwater = tcg_ctx->code_gen_highwater; 299 uint8_t *p = block; 300 int i, j, n; 301 302 for (i = 0, n = tb->icount; i < n; ++i) { 303 target_ulong prev; 304 305 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 306 if (i == 0) { 307 prev = (j == 0 ? tb->pc : 0); 308 } else { 309 prev = tcg_ctx->gen_insn_data[i - 1][j]; 310 } 311 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 312 } 313 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 314 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 315 316 /* Test for (pending) buffer overflow. The assumption is that any 317 one row beginning below the high water mark cannot overrun 318 the buffer completely. Thus we can test for overflow after 319 encoding a row without having to check during encoding. */ 320 if (unlikely(p > highwater)) { 321 return -1; 322 } 323 } 324 325 return p - block; 326 } 327 328 /* The cpu state corresponding to 'searched_pc' is restored. 329 * When reset_icount is true, current TB will be interrupted and 330 * icount should be recalculated. 331 */ 332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 333 uintptr_t searched_pc, bool reset_icount) 334 { 335 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 336 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 337 CPUArchState *env = cpu->env_ptr; 338 uint8_t *p = tb->tc.ptr + tb->tc.size; 339 int i, j, num_insns = tb->icount; 340 #ifdef CONFIG_PROFILER 341 TCGProfile *prof = &tcg_ctx->prof; 342 int64_t ti = profile_getclock(); 343 #endif 344 345 searched_pc -= GETPC_ADJ; 346 347 if (searched_pc < host_pc) { 348 return -1; 349 } 350 351 /* Reconstruct the stored insn data while looking for the point at 352 which the end of the insn exceeds the searched_pc. */ 353 for (i = 0; i < num_insns; ++i) { 354 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 355 data[j] += decode_sleb128(&p); 356 } 357 host_pc += decode_sleb128(&p); 358 if (host_pc > searched_pc) { 359 goto found; 360 } 361 } 362 return -1; 363 364 found: 365 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 366 assert(use_icount); 367 /* Reset the cycle counter to the start of the block 368 and shift if to the number of actually executed instructions */ 369 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 370 } 371 restore_state_to_opc(env, tb, data); 372 373 #ifdef CONFIG_PROFILER 374 atomic_set(&prof->restore_time, 375 prof->restore_time + profile_getclock() - ti); 376 atomic_set(&prof->restore_count, prof->restore_count + 1); 377 #endif 378 return 0; 379 } 380 381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 382 { 383 TranslationBlock *tb; 384 bool r = false; 385 uintptr_t check_offset; 386 387 /* The host_pc has to be in the region of current code buffer. If 388 * it is not we will not be able to resolve it here. The two cases 389 * where host_pc will not be correct are: 390 * 391 * - fault during translation (instruction fetch) 392 * - fault from helper (not using GETPC() macro) 393 * 394 * Either way we need return early as we can't resolve it here. 395 * 396 * We are using unsigned arithmetic so if host_pc < 397 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 398 * above the code_gen_buffer_size 399 */ 400 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 401 402 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 403 tb = tcg_tb_lookup(host_pc); 404 if (tb) { 405 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 406 if (tb_cflags(tb) & CF_NOCACHE) { 407 /* one-shot translation, invalidate it immediately */ 408 tb_phys_invalidate(tb, -1); 409 tcg_tb_remove(tb); 410 } 411 r = true; 412 } 413 } 414 415 return r; 416 } 417 418 static void page_init(void) 419 { 420 page_size_init(); 421 page_table_config_init(); 422 423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 424 { 425 #ifdef HAVE_KINFO_GETVMMAP 426 struct kinfo_vmentry *freep; 427 int i, cnt; 428 429 freep = kinfo_getvmmap(getpid(), &cnt); 430 if (freep) { 431 mmap_lock(); 432 for (i = 0; i < cnt; i++) { 433 unsigned long startaddr, endaddr; 434 435 startaddr = freep[i].kve_start; 436 endaddr = freep[i].kve_end; 437 if (h2g_valid(startaddr)) { 438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 439 440 if (h2g_valid(endaddr)) { 441 endaddr = h2g(endaddr); 442 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 443 } else { 444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 445 endaddr = ~0ul; 446 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 447 #endif 448 } 449 } 450 } 451 free(freep); 452 mmap_unlock(); 453 } 454 #else 455 FILE *f; 456 457 last_brk = (unsigned long)sbrk(0); 458 459 f = fopen("/compat/linux/proc/self/maps", "r"); 460 if (f) { 461 mmap_lock(); 462 463 do { 464 unsigned long startaddr, endaddr; 465 int n; 466 467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 468 469 if (n == 2 && h2g_valid(startaddr)) { 470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 471 472 if (h2g_valid(endaddr)) { 473 endaddr = h2g(endaddr); 474 } else { 475 endaddr = ~0ul; 476 } 477 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 478 } 479 } while (!feof(f)); 480 481 fclose(f); 482 mmap_unlock(); 483 } 484 #endif 485 } 486 #endif 487 } 488 489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 490 { 491 PageDesc *pd; 492 void **lp; 493 int i; 494 495 /* Level 1. Always allocated. */ 496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 497 498 /* Level 2..N-1. */ 499 for (i = v_l2_levels; i > 0; i--) { 500 void **p = atomic_rcu_read(lp); 501 502 if (p == NULL) { 503 void *existing; 504 505 if (!alloc) { 506 return NULL; 507 } 508 p = g_new0(void *, V_L2_SIZE); 509 existing = atomic_cmpxchg(lp, NULL, p); 510 if (unlikely(existing)) { 511 g_free(p); 512 p = existing; 513 } 514 } 515 516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 517 } 518 519 pd = atomic_rcu_read(lp); 520 if (pd == NULL) { 521 void *existing; 522 523 if (!alloc) { 524 return NULL; 525 } 526 pd = g_new0(PageDesc, V_L2_SIZE); 527 #ifndef CONFIG_USER_ONLY 528 { 529 int i; 530 531 for (i = 0; i < V_L2_SIZE; i++) { 532 qemu_spin_init(&pd[i].lock); 533 } 534 } 535 #endif 536 existing = atomic_cmpxchg(lp, NULL, pd); 537 if (unlikely(existing)) { 538 g_free(pd); 539 pd = existing; 540 } 541 } 542 543 return pd + (index & (V_L2_SIZE - 1)); 544 } 545 546 static inline PageDesc *page_find(tb_page_addr_t index) 547 { 548 return page_find_alloc(index, 0); 549 } 550 551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 552 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 553 554 /* In user-mode page locks aren't used; mmap_lock is enough */ 555 #ifdef CONFIG_USER_ONLY 556 557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 558 559 static inline void page_lock(PageDesc *pd) 560 { } 561 562 static inline void page_unlock(PageDesc *pd) 563 { } 564 565 static inline void page_lock_tb(const TranslationBlock *tb) 566 { } 567 568 static inline void page_unlock_tb(const TranslationBlock *tb) 569 { } 570 571 struct page_collection * 572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 573 { 574 return NULL; 575 } 576 577 void page_collection_unlock(struct page_collection *set) 578 { } 579 #else /* !CONFIG_USER_ONLY */ 580 581 #ifdef CONFIG_DEBUG_TCG 582 583 static __thread GHashTable *ht_pages_locked_debug; 584 585 static void ht_pages_locked_debug_init(void) 586 { 587 if (ht_pages_locked_debug) { 588 return; 589 } 590 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 591 } 592 593 static bool page_is_locked(const PageDesc *pd) 594 { 595 PageDesc *found; 596 597 ht_pages_locked_debug_init(); 598 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 599 return !!found; 600 } 601 602 static void page_lock__debug(PageDesc *pd) 603 { 604 ht_pages_locked_debug_init(); 605 g_assert(!page_is_locked(pd)); 606 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 607 } 608 609 static void page_unlock__debug(const PageDesc *pd) 610 { 611 bool removed; 612 613 ht_pages_locked_debug_init(); 614 g_assert(page_is_locked(pd)); 615 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 616 g_assert(removed); 617 } 618 619 static void 620 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 621 { 622 if (unlikely(!page_is_locked(pd))) { 623 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 624 pd, file, line); 625 abort(); 626 } 627 } 628 629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 630 631 void assert_no_pages_locked(void) 632 { 633 ht_pages_locked_debug_init(); 634 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 635 } 636 637 #else /* !CONFIG_DEBUG_TCG */ 638 639 #define assert_page_locked(pd) 640 641 static inline void page_lock__debug(const PageDesc *pd) 642 { 643 } 644 645 static inline void page_unlock__debug(const PageDesc *pd) 646 { 647 } 648 649 #endif /* CONFIG_DEBUG_TCG */ 650 651 static inline void page_lock(PageDesc *pd) 652 { 653 page_lock__debug(pd); 654 qemu_spin_lock(&pd->lock); 655 } 656 657 static inline void page_unlock(PageDesc *pd) 658 { 659 qemu_spin_unlock(&pd->lock); 660 page_unlock__debug(pd); 661 } 662 663 /* lock the page(s) of a TB in the correct acquisition order */ 664 static inline void page_lock_tb(const TranslationBlock *tb) 665 { 666 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 667 } 668 669 static inline void page_unlock_tb(const TranslationBlock *tb) 670 { 671 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 672 673 page_unlock(p1); 674 if (unlikely(tb->page_addr[1] != -1)) { 675 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 676 677 if (p2 != p1) { 678 page_unlock(p2); 679 } 680 } 681 } 682 683 static inline struct page_entry * 684 page_entry_new(PageDesc *pd, tb_page_addr_t index) 685 { 686 struct page_entry *pe = g_malloc(sizeof(*pe)); 687 688 pe->index = index; 689 pe->pd = pd; 690 pe->locked = false; 691 return pe; 692 } 693 694 static void page_entry_destroy(gpointer p) 695 { 696 struct page_entry *pe = p; 697 698 g_assert(pe->locked); 699 page_unlock(pe->pd); 700 g_free(pe); 701 } 702 703 /* returns false on success */ 704 static bool page_entry_trylock(struct page_entry *pe) 705 { 706 bool busy; 707 708 busy = qemu_spin_trylock(&pe->pd->lock); 709 if (!busy) { 710 g_assert(!pe->locked); 711 pe->locked = true; 712 page_lock__debug(pe->pd); 713 } 714 return busy; 715 } 716 717 static void do_page_entry_lock(struct page_entry *pe) 718 { 719 page_lock(pe->pd); 720 g_assert(!pe->locked); 721 pe->locked = true; 722 } 723 724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 725 { 726 struct page_entry *pe = value; 727 728 do_page_entry_lock(pe); 729 return FALSE; 730 } 731 732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 733 { 734 struct page_entry *pe = value; 735 736 if (pe->locked) { 737 pe->locked = false; 738 page_unlock(pe->pd); 739 } 740 return FALSE; 741 } 742 743 /* 744 * Trylock a page, and if successful, add the page to a collection. 745 * Returns true ("busy") if the page could not be locked; false otherwise. 746 */ 747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 748 { 749 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 750 struct page_entry *pe; 751 PageDesc *pd; 752 753 pe = g_tree_lookup(set->tree, &index); 754 if (pe) { 755 return false; 756 } 757 758 pd = page_find(index); 759 if (pd == NULL) { 760 return false; 761 } 762 763 pe = page_entry_new(pd, index); 764 g_tree_insert(set->tree, &pe->index, pe); 765 766 /* 767 * If this is either (1) the first insertion or (2) a page whose index 768 * is higher than any other so far, just lock the page and move on. 769 */ 770 if (set->max == NULL || pe->index > set->max->index) { 771 set->max = pe; 772 do_page_entry_lock(pe); 773 return false; 774 } 775 /* 776 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 777 * locks in order. 778 */ 779 return page_entry_trylock(pe); 780 } 781 782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 783 { 784 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 785 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 786 787 if (a == b) { 788 return 0; 789 } else if (a < b) { 790 return -1; 791 } 792 return 1; 793 } 794 795 /* 796 * Lock a range of pages ([@start,@end[) as well as the pages of all 797 * intersecting TBs. 798 * Locking order: acquire locks in ascending order of page index. 799 */ 800 struct page_collection * 801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 802 { 803 struct page_collection *set = g_malloc(sizeof(*set)); 804 tb_page_addr_t index; 805 PageDesc *pd; 806 807 start >>= TARGET_PAGE_BITS; 808 end >>= TARGET_PAGE_BITS; 809 g_assert(start <= end); 810 811 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 812 page_entry_destroy); 813 set->max = NULL; 814 assert_no_pages_locked(); 815 816 retry: 817 g_tree_foreach(set->tree, page_entry_lock, NULL); 818 819 for (index = start; index <= end; index++) { 820 TranslationBlock *tb; 821 int n; 822 823 pd = page_find(index); 824 if (pd == NULL) { 825 continue; 826 } 827 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 828 g_tree_foreach(set->tree, page_entry_unlock, NULL); 829 goto retry; 830 } 831 assert_page_locked(pd); 832 PAGE_FOR_EACH_TB(pd, tb, n) { 833 if (page_trylock_add(set, tb->page_addr[0]) || 834 (tb->page_addr[1] != -1 && 835 page_trylock_add(set, tb->page_addr[1]))) { 836 /* drop all locks, and reacquire in order */ 837 g_tree_foreach(set->tree, page_entry_unlock, NULL); 838 goto retry; 839 } 840 } 841 } 842 return set; 843 } 844 845 void page_collection_unlock(struct page_collection *set) 846 { 847 /* entries are unlocked and freed via page_entry_destroy */ 848 g_tree_destroy(set->tree); 849 g_free(set); 850 } 851 852 #endif /* !CONFIG_USER_ONLY */ 853 854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 855 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 856 { 857 PageDesc *p1, *p2; 858 tb_page_addr_t page1; 859 tb_page_addr_t page2; 860 861 assert_memory_lock(); 862 g_assert(phys1 != -1); 863 864 page1 = phys1 >> TARGET_PAGE_BITS; 865 page2 = phys2 >> TARGET_PAGE_BITS; 866 867 p1 = page_find_alloc(page1, alloc); 868 if (ret_p1) { 869 *ret_p1 = p1; 870 } 871 if (likely(phys2 == -1)) { 872 page_lock(p1); 873 return; 874 } else if (page1 == page2) { 875 page_lock(p1); 876 if (ret_p2) { 877 *ret_p2 = p1; 878 } 879 return; 880 } 881 p2 = page_find_alloc(page2, alloc); 882 if (ret_p2) { 883 *ret_p2 = p2; 884 } 885 if (page1 < page2) { 886 page_lock(p1); 887 page_lock(p2); 888 } else { 889 page_lock(p2); 890 page_lock(p1); 891 } 892 } 893 894 #if defined(CONFIG_USER_ONLY) 895 /* Currently it is not recommended to allocate big chunks of data in 896 user mode. It will change when a dedicated libc will be used. */ 897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 898 region in which the guest needs to run. Revisit this. */ 899 #define USE_STATIC_CODE_GEN_BUFFER 900 #endif 901 902 /* Minimum size of the code gen buffer. This number is randomly chosen, 903 but not so small that we can't have a fair number of TB's live. */ 904 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) 905 906 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 907 indicated, this is constrained by the range of direct branches on the 908 host cpu, as used by the TCG implementation of goto_tb. */ 909 #if defined(__x86_64__) 910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 911 #elif defined(__sparc__) 912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 913 #elif defined(__powerpc64__) 914 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 915 #elif defined(__powerpc__) 916 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) 917 #elif defined(__aarch64__) 918 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 919 #elif defined(__s390x__) 920 /* We have a +- 4GB range on the branches; leave some slop. */ 921 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) 922 #elif defined(__mips__) 923 /* We have a 256MB branch region, but leave room to make sure the 924 main executable is also within that region. */ 925 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) 926 #else 927 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 928 #endif 929 930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) 931 932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 933 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 934 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 935 936 static inline size_t size_code_gen_buffer(size_t tb_size) 937 { 938 /* Size the buffer. */ 939 if (tb_size == 0) { 940 #ifdef USE_STATIC_CODE_GEN_BUFFER 941 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 942 #else 943 /* ??? Needs adjustments. */ 944 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 945 static buffer, we could size this on RESERVED_VA, on the text 946 segment size of the executable, or continue to use the default. */ 947 tb_size = (unsigned long)(ram_size / 4); 948 #endif 949 } 950 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 951 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 952 } 953 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 954 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 955 } 956 return tb_size; 957 } 958 959 #ifdef __mips__ 960 /* In order to use J and JAL within the code_gen_buffer, we require 961 that the buffer not cross a 256MB boundary. */ 962 static inline bool cross_256mb(void *addr, size_t size) 963 { 964 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 965 } 966 967 /* We weren't able to allocate a buffer without crossing that boundary, 968 so make do with the larger portion of the buffer that doesn't cross. 969 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 970 static inline void *split_cross_256mb(void *buf1, size_t size1) 971 { 972 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 973 size_t size2 = buf1 + size1 - buf2; 974 975 size1 = buf2 - buf1; 976 if (size1 < size2) { 977 size1 = size2; 978 buf1 = buf2; 979 } 980 981 tcg_ctx->code_gen_buffer_size = size1; 982 return buf1; 983 } 984 #endif 985 986 #ifdef USE_STATIC_CODE_GEN_BUFFER 987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 988 __attribute__((aligned(CODE_GEN_ALIGN))); 989 990 static inline void *alloc_code_gen_buffer(void) 991 { 992 void *buf = static_code_gen_buffer; 993 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 994 size_t size; 995 996 /* page-align the beginning and end of the buffer */ 997 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 998 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 999 1000 size = end - buf; 1001 1002 /* Honor a command-line option limiting the size of the buffer. */ 1003 if (size > tcg_ctx->code_gen_buffer_size) { 1004 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1005 qemu_real_host_page_size); 1006 } 1007 tcg_ctx->code_gen_buffer_size = size; 1008 1009 #ifdef __mips__ 1010 if (cross_256mb(buf, size)) { 1011 buf = split_cross_256mb(buf, size); 1012 size = tcg_ctx->code_gen_buffer_size; 1013 } 1014 #endif 1015 1016 if (qemu_mprotect_rwx(buf, size)) { 1017 abort(); 1018 } 1019 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1020 1021 return buf; 1022 } 1023 #elif defined(_WIN32) 1024 static inline void *alloc_code_gen_buffer(void) 1025 { 1026 size_t size = tcg_ctx->code_gen_buffer_size; 1027 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1028 PAGE_EXECUTE_READWRITE); 1029 } 1030 #else 1031 static inline void *alloc_code_gen_buffer(void) 1032 { 1033 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1034 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1035 uintptr_t start = 0; 1036 size_t size = tcg_ctx->code_gen_buffer_size; 1037 void *buf; 1038 1039 /* Constrain the position of the buffer based on the host cpu. 1040 Note that these addresses are chosen in concert with the 1041 addresses assigned in the relevant linker script file. */ 1042 # if defined(__PIE__) || defined(__PIC__) 1043 /* Don't bother setting a preferred location if we're building 1044 a position-independent executable. We're more likely to get 1045 an address near the main executable if we let the kernel 1046 choose the address. */ 1047 # elif defined(__x86_64__) && defined(MAP_32BIT) 1048 /* Force the memory down into low memory with the executable. 1049 Leave the choice of exact location with the kernel. */ 1050 flags |= MAP_32BIT; 1051 /* Cannot expect to map more than 800MB in low memory. */ 1052 if (size > 800u * 1024 * 1024) { 1053 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1054 } 1055 # elif defined(__sparc__) 1056 start = 0x40000000ul; 1057 # elif defined(__s390x__) 1058 start = 0x90000000ul; 1059 # elif defined(__mips__) 1060 # if _MIPS_SIM == _ABI64 1061 start = 0x128000000ul; 1062 # else 1063 start = 0x08000000ul; 1064 # endif 1065 # endif 1066 1067 buf = mmap((void *)start, size, prot, flags, -1, 0); 1068 if (buf == MAP_FAILED) { 1069 return NULL; 1070 } 1071 1072 #ifdef __mips__ 1073 if (cross_256mb(buf, size)) { 1074 /* Try again, with the original still mapped, to avoid re-acquiring 1075 that 256mb crossing. This time don't specify an address. */ 1076 size_t size2; 1077 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1078 switch ((int)(buf2 != MAP_FAILED)) { 1079 case 1: 1080 if (!cross_256mb(buf2, size)) { 1081 /* Success! Use the new buffer. */ 1082 munmap(buf, size); 1083 break; 1084 } 1085 /* Failure. Work with what we had. */ 1086 munmap(buf2, size); 1087 /* fallthru */ 1088 default: 1089 /* Split the original buffer. Free the smaller half. */ 1090 buf2 = split_cross_256mb(buf, size); 1091 size2 = tcg_ctx->code_gen_buffer_size; 1092 if (buf == buf2) { 1093 munmap(buf + size2, size - size2); 1094 } else { 1095 munmap(buf, size - size2); 1096 } 1097 size = size2; 1098 break; 1099 } 1100 buf = buf2; 1101 } 1102 #endif 1103 1104 /* Request large pages for the buffer. */ 1105 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1106 1107 return buf; 1108 } 1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1110 1111 static inline void code_gen_alloc(size_t tb_size) 1112 { 1113 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1114 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1115 if (tcg_ctx->code_gen_buffer == NULL) { 1116 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1117 exit(1); 1118 } 1119 } 1120 1121 static bool tb_cmp(const void *ap, const void *bp) 1122 { 1123 const TranslationBlock *a = ap; 1124 const TranslationBlock *b = bp; 1125 1126 return a->pc == b->pc && 1127 a->cs_base == b->cs_base && 1128 a->flags == b->flags && 1129 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1130 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1131 a->page_addr[0] == b->page_addr[0] && 1132 a->page_addr[1] == b->page_addr[1]; 1133 } 1134 1135 static void tb_htable_init(void) 1136 { 1137 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1138 1139 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1140 } 1141 1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1143 (in bytes) allocated to the translation buffer. Zero means default 1144 size. */ 1145 void tcg_exec_init(unsigned long tb_size) 1146 { 1147 tcg_allowed = true; 1148 cpu_gen_init(); 1149 page_init(); 1150 tb_htable_init(); 1151 code_gen_alloc(tb_size); 1152 #if defined(CONFIG_SOFTMMU) 1153 /* There's no guest base to take into account, so go ahead and 1154 initialize the prologue now. */ 1155 tcg_prologue_init(tcg_ctx); 1156 #endif 1157 } 1158 1159 /* 1160 * Allocate a new translation block. Flush the translation buffer if 1161 * too many translation blocks or too much generated code. 1162 */ 1163 static TranslationBlock *tb_alloc(target_ulong pc) 1164 { 1165 TranslationBlock *tb; 1166 1167 assert_memory_lock(); 1168 1169 tb = tcg_tb_alloc(tcg_ctx); 1170 if (unlikely(tb == NULL)) { 1171 return NULL; 1172 } 1173 return tb; 1174 } 1175 1176 /* call with @p->lock held */ 1177 static inline void invalidate_page_bitmap(PageDesc *p) 1178 { 1179 assert_page_locked(p); 1180 #ifdef CONFIG_SOFTMMU 1181 g_free(p->code_bitmap); 1182 p->code_bitmap = NULL; 1183 p->code_write_count = 0; 1184 #endif 1185 } 1186 1187 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1188 static void page_flush_tb_1(int level, void **lp) 1189 { 1190 int i; 1191 1192 if (*lp == NULL) { 1193 return; 1194 } 1195 if (level == 0) { 1196 PageDesc *pd = *lp; 1197 1198 for (i = 0; i < V_L2_SIZE; ++i) { 1199 page_lock(&pd[i]); 1200 pd[i].first_tb = (uintptr_t)NULL; 1201 invalidate_page_bitmap(pd + i); 1202 page_unlock(&pd[i]); 1203 } 1204 } else { 1205 void **pp = *lp; 1206 1207 for (i = 0; i < V_L2_SIZE; ++i) { 1208 page_flush_tb_1(level - 1, pp + i); 1209 } 1210 } 1211 } 1212 1213 static void page_flush_tb(void) 1214 { 1215 int i, l1_sz = v_l1_size; 1216 1217 for (i = 0; i < l1_sz; i++) { 1218 page_flush_tb_1(v_l2_levels, l1_map + i); 1219 } 1220 } 1221 1222 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1223 { 1224 const TranslationBlock *tb = value; 1225 size_t *size = data; 1226 1227 *size += tb->tc.size; 1228 return false; 1229 } 1230 1231 /* flush all the translation blocks */ 1232 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1233 { 1234 mmap_lock(); 1235 /* If it is already been done on request of another CPU, 1236 * just retry. 1237 */ 1238 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1239 goto done; 1240 } 1241 1242 if (DEBUG_TB_FLUSH_GATE) { 1243 size_t nb_tbs = tcg_nb_tbs(); 1244 size_t host_size = 0; 1245 1246 tcg_tb_foreach(tb_host_size_iter, &host_size); 1247 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1248 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1249 } 1250 1251 CPU_FOREACH(cpu) { 1252 cpu_tb_jmp_cache_clear(cpu); 1253 } 1254 1255 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1256 page_flush_tb(); 1257 1258 tcg_region_reset_all(); 1259 /* XXX: flush processor icache at this point if cache flush is 1260 expensive */ 1261 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1262 1263 done: 1264 mmap_unlock(); 1265 } 1266 1267 void tb_flush(CPUState *cpu) 1268 { 1269 if (tcg_enabled()) { 1270 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1271 1272 if (cpu_in_exclusive_context(cpu)) { 1273 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1274 } else { 1275 async_safe_run_on_cpu(cpu, do_tb_flush, 1276 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1277 } 1278 } 1279 } 1280 1281 /* 1282 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1283 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1284 * and let the optimizer get rid of them by wrapping their user-only callers 1285 * with if (DEBUG_TB_CHECK_GATE). 1286 */ 1287 #ifdef CONFIG_USER_ONLY 1288 1289 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1290 { 1291 TranslationBlock *tb = p; 1292 target_ulong addr = *(target_ulong *)userp; 1293 1294 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1295 printf("ERROR invalidate: address=" TARGET_FMT_lx 1296 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1297 } 1298 } 1299 1300 /* verify that all the pages have correct rights for code 1301 * 1302 * Called with mmap_lock held. 1303 */ 1304 static void tb_invalidate_check(target_ulong address) 1305 { 1306 address &= TARGET_PAGE_MASK; 1307 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1308 } 1309 1310 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1311 { 1312 TranslationBlock *tb = p; 1313 int flags1, flags2; 1314 1315 flags1 = page_get_flags(tb->pc); 1316 flags2 = page_get_flags(tb->pc + tb->size - 1); 1317 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1318 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1319 (long)tb->pc, tb->size, flags1, flags2); 1320 } 1321 } 1322 1323 /* verify that all the pages have correct rights for code */ 1324 static void tb_page_check(void) 1325 { 1326 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1327 } 1328 1329 #endif /* CONFIG_USER_ONLY */ 1330 1331 /* 1332 * user-mode: call with mmap_lock held 1333 * !user-mode: call with @pd->lock held 1334 */ 1335 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1336 { 1337 TranslationBlock *tb1; 1338 uintptr_t *pprev; 1339 unsigned int n1; 1340 1341 assert_page_locked(pd); 1342 pprev = &pd->first_tb; 1343 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1344 if (tb1 == tb) { 1345 *pprev = tb1->page_next[n1]; 1346 return; 1347 } 1348 pprev = &tb1->page_next[n1]; 1349 } 1350 g_assert_not_reached(); 1351 } 1352 1353 /* remove @orig from its @n_orig-th jump list */ 1354 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1355 { 1356 uintptr_t ptr, ptr_locked; 1357 TranslationBlock *dest; 1358 TranslationBlock *tb; 1359 uintptr_t *pprev; 1360 int n; 1361 1362 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1363 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1364 dest = (TranslationBlock *)(ptr & ~1); 1365 if (dest == NULL) { 1366 return; 1367 } 1368 1369 qemu_spin_lock(&dest->jmp_lock); 1370 /* 1371 * While acquiring the lock, the jump might have been removed if the 1372 * destination TB was invalidated; check again. 1373 */ 1374 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1375 if (ptr_locked != ptr) { 1376 qemu_spin_unlock(&dest->jmp_lock); 1377 /* 1378 * The only possibility is that the jump was unlinked via 1379 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1380 * because we set the LSB above. 1381 */ 1382 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1383 return; 1384 } 1385 /* 1386 * We first acquired the lock, and since the destination pointer matches, 1387 * we know for sure that @orig is in the jmp list. 1388 */ 1389 pprev = &dest->jmp_list_head; 1390 TB_FOR_EACH_JMP(dest, tb, n) { 1391 if (tb == orig && n == n_orig) { 1392 *pprev = tb->jmp_list_next[n]; 1393 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1394 qemu_spin_unlock(&dest->jmp_lock); 1395 return; 1396 } 1397 pprev = &tb->jmp_list_next[n]; 1398 } 1399 g_assert_not_reached(); 1400 } 1401 1402 /* reset the jump entry 'n' of a TB so that it is not chained to 1403 another TB */ 1404 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1405 { 1406 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1407 tb_set_jmp_target(tb, n, addr); 1408 } 1409 1410 /* remove any jumps to the TB */ 1411 static inline void tb_jmp_unlink(TranslationBlock *dest) 1412 { 1413 TranslationBlock *tb; 1414 int n; 1415 1416 qemu_spin_lock(&dest->jmp_lock); 1417 1418 TB_FOR_EACH_JMP(dest, tb, n) { 1419 tb_reset_jump(tb, n); 1420 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1421 /* No need to clear the list entry; setting the dest ptr is enough */ 1422 } 1423 dest->jmp_list_head = (uintptr_t)NULL; 1424 1425 qemu_spin_unlock(&dest->jmp_lock); 1426 } 1427 1428 /* 1429 * In user-mode, call with mmap_lock held. 1430 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1431 * locks held. 1432 */ 1433 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1434 { 1435 CPUState *cpu; 1436 PageDesc *p; 1437 uint32_t h; 1438 tb_page_addr_t phys_pc; 1439 1440 assert_memory_lock(); 1441 1442 /* make sure no further incoming jumps will be chained to this TB */ 1443 qemu_spin_lock(&tb->jmp_lock); 1444 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1445 qemu_spin_unlock(&tb->jmp_lock); 1446 1447 /* remove the TB from the hash list */ 1448 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1449 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1450 tb->trace_vcpu_dstate); 1451 if (!(tb->cflags & CF_NOCACHE) && 1452 !qht_remove(&tb_ctx.htable, tb, h)) { 1453 return; 1454 } 1455 1456 /* remove the TB from the page list */ 1457 if (rm_from_page_list) { 1458 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1459 tb_page_remove(p, tb); 1460 invalidate_page_bitmap(p); 1461 if (tb->page_addr[1] != -1) { 1462 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1463 tb_page_remove(p, tb); 1464 invalidate_page_bitmap(p); 1465 } 1466 } 1467 1468 /* remove the TB from the hash list */ 1469 h = tb_jmp_cache_hash_func(tb->pc); 1470 CPU_FOREACH(cpu) { 1471 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1472 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1473 } 1474 } 1475 1476 /* suppress this TB from the two jump lists */ 1477 tb_remove_from_jmp_list(tb, 0); 1478 tb_remove_from_jmp_list(tb, 1); 1479 1480 /* suppress any remaining jumps to this TB */ 1481 tb_jmp_unlink(tb); 1482 1483 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1484 tcg_ctx->tb_phys_invalidate_count + 1); 1485 } 1486 1487 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1488 { 1489 do_tb_phys_invalidate(tb, true); 1490 } 1491 1492 /* invalidate one TB 1493 * 1494 * Called with mmap_lock held in user-mode. 1495 */ 1496 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1497 { 1498 if (page_addr == -1 && tb->page_addr[0] != -1) { 1499 page_lock_tb(tb); 1500 do_tb_phys_invalidate(tb, true); 1501 page_unlock_tb(tb); 1502 } else { 1503 do_tb_phys_invalidate(tb, false); 1504 } 1505 } 1506 1507 #ifdef CONFIG_SOFTMMU 1508 /* call with @p->lock held */ 1509 static void build_page_bitmap(PageDesc *p) 1510 { 1511 int n, tb_start, tb_end; 1512 TranslationBlock *tb; 1513 1514 assert_page_locked(p); 1515 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1516 1517 PAGE_FOR_EACH_TB(p, tb, n) { 1518 /* NOTE: this is subtle as a TB may span two physical pages */ 1519 if (n == 0) { 1520 /* NOTE: tb_end may be after the end of the page, but 1521 it is not a problem */ 1522 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1523 tb_end = tb_start + tb->size; 1524 if (tb_end > TARGET_PAGE_SIZE) { 1525 tb_end = TARGET_PAGE_SIZE; 1526 } 1527 } else { 1528 tb_start = 0; 1529 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1530 } 1531 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1532 } 1533 } 1534 #endif 1535 1536 /* add the tb in the target page and protect it if necessary 1537 * 1538 * Called with mmap_lock held for user-mode emulation. 1539 * Called with @p->lock held in !user-mode. 1540 */ 1541 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1542 unsigned int n, tb_page_addr_t page_addr) 1543 { 1544 #ifndef CONFIG_USER_ONLY 1545 bool page_already_protected; 1546 #endif 1547 1548 assert_page_locked(p); 1549 1550 tb->page_addr[n] = page_addr; 1551 tb->page_next[n] = p->first_tb; 1552 #ifndef CONFIG_USER_ONLY 1553 page_already_protected = p->first_tb != (uintptr_t)NULL; 1554 #endif 1555 p->first_tb = (uintptr_t)tb | n; 1556 invalidate_page_bitmap(p); 1557 1558 #if defined(CONFIG_USER_ONLY) 1559 if (p->flags & PAGE_WRITE) { 1560 target_ulong addr; 1561 PageDesc *p2; 1562 int prot; 1563 1564 /* force the host page as non writable (writes will have a 1565 page fault + mprotect overhead) */ 1566 page_addr &= qemu_host_page_mask; 1567 prot = 0; 1568 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1569 addr += TARGET_PAGE_SIZE) { 1570 1571 p2 = page_find(addr >> TARGET_PAGE_BITS); 1572 if (!p2) { 1573 continue; 1574 } 1575 prot |= p2->flags; 1576 p2->flags &= ~PAGE_WRITE; 1577 } 1578 mprotect(g2h(page_addr), qemu_host_page_size, 1579 (prot & PAGE_BITS) & ~PAGE_WRITE); 1580 if (DEBUG_TB_INVALIDATE_GATE) { 1581 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1582 } 1583 } 1584 #else 1585 /* if some code is already present, then the pages are already 1586 protected. So we handle the case where only the first TB is 1587 allocated in a physical page */ 1588 if (!page_already_protected) { 1589 tlb_protect_code(page_addr); 1590 } 1591 #endif 1592 } 1593 1594 /* add a new TB and link it to the physical page tables. phys_page2 is 1595 * (-1) to indicate that only one page contains the TB. 1596 * 1597 * Called with mmap_lock held for user-mode emulation. 1598 * 1599 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1600 * Note that in !user-mode, another thread might have already added a TB 1601 * for the same block of guest code that @tb corresponds to. In that case, 1602 * the caller should discard the original @tb, and use instead the returned TB. 1603 */ 1604 static TranslationBlock * 1605 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1606 tb_page_addr_t phys_page2) 1607 { 1608 PageDesc *p; 1609 PageDesc *p2 = NULL; 1610 1611 assert_memory_lock(); 1612 1613 if (phys_pc == -1) { 1614 /* 1615 * If the TB is not associated with a physical RAM page then 1616 * it must be a temporary one-insn TB, and we have nothing to do 1617 * except fill in the page_addr[] fields. 1618 */ 1619 assert(tb->cflags & CF_NOCACHE); 1620 tb->page_addr[0] = tb->page_addr[1] = -1; 1621 return tb; 1622 } 1623 1624 /* 1625 * Add the TB to the page list, acquiring first the pages's locks. 1626 * We keep the locks held until after inserting the TB in the hash table, 1627 * so that if the insertion fails we know for sure that the TBs are still 1628 * in the page descriptors. 1629 * Note that inserting into the hash table first isn't an option, since 1630 * we can only insert TBs that are fully initialized. 1631 */ 1632 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1633 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1634 if (p2) { 1635 tb_page_add(p2, tb, 1, phys_page2); 1636 } else { 1637 tb->page_addr[1] = -1; 1638 } 1639 1640 if (!(tb->cflags & CF_NOCACHE)) { 1641 void *existing_tb = NULL; 1642 uint32_t h; 1643 1644 /* add in the hash table */ 1645 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1646 tb->trace_vcpu_dstate); 1647 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1648 1649 /* remove TB from the page(s) if we couldn't insert it */ 1650 if (unlikely(existing_tb)) { 1651 tb_page_remove(p, tb); 1652 invalidate_page_bitmap(p); 1653 if (p2) { 1654 tb_page_remove(p2, tb); 1655 invalidate_page_bitmap(p2); 1656 } 1657 tb = existing_tb; 1658 } 1659 } 1660 1661 if (p2 && p2 != p) { 1662 page_unlock(p2); 1663 } 1664 page_unlock(p); 1665 1666 #ifdef CONFIG_USER_ONLY 1667 if (DEBUG_TB_CHECK_GATE) { 1668 tb_page_check(); 1669 } 1670 #endif 1671 return tb; 1672 } 1673 1674 /* Called with mmap_lock held for user mode emulation. */ 1675 TranslationBlock *tb_gen_code(CPUState *cpu, 1676 target_ulong pc, target_ulong cs_base, 1677 uint32_t flags, int cflags) 1678 { 1679 CPUArchState *env = cpu->env_ptr; 1680 TranslationBlock *tb, *existing_tb; 1681 tb_page_addr_t phys_pc, phys_page2; 1682 target_ulong virt_page2; 1683 tcg_insn_unit *gen_code_buf; 1684 int gen_code_size, search_size, max_insns; 1685 #ifdef CONFIG_PROFILER 1686 TCGProfile *prof = &tcg_ctx->prof; 1687 int64_t ti; 1688 #endif 1689 assert_memory_lock(); 1690 1691 phys_pc = get_page_addr_code(env, pc); 1692 1693 if (phys_pc == -1) { 1694 /* Generate a temporary TB with 1 insn in it */ 1695 cflags &= ~CF_COUNT_MASK; 1696 cflags |= CF_NOCACHE | 1; 1697 } 1698 1699 cflags &= ~CF_CLUSTER_MASK; 1700 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1701 1702 max_insns = cflags & CF_COUNT_MASK; 1703 if (max_insns == 0) { 1704 max_insns = CF_COUNT_MASK; 1705 } 1706 if (max_insns > TCG_MAX_INSNS) { 1707 max_insns = TCG_MAX_INSNS; 1708 } 1709 if (cpu->singlestep_enabled || singlestep) { 1710 max_insns = 1; 1711 } 1712 1713 buffer_overflow: 1714 tb = tb_alloc(pc); 1715 if (unlikely(!tb)) { 1716 /* flush must be done */ 1717 tb_flush(cpu); 1718 mmap_unlock(); 1719 /* Make the execution loop process the flush as soon as possible. */ 1720 cpu->exception_index = EXCP_INTERRUPT; 1721 cpu_loop_exit(cpu); 1722 } 1723 1724 gen_code_buf = tcg_ctx->code_gen_ptr; 1725 tb->tc.ptr = gen_code_buf; 1726 tb->pc = pc; 1727 tb->cs_base = cs_base; 1728 tb->flags = flags; 1729 tb->cflags = cflags; 1730 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1731 tcg_ctx->tb_cflags = cflags; 1732 tb_overflow: 1733 1734 #ifdef CONFIG_PROFILER 1735 /* includes aborted translations because of exceptions */ 1736 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1737 ti = profile_getclock(); 1738 #endif 1739 1740 tcg_func_start(tcg_ctx); 1741 1742 tcg_ctx->cpu = env_cpu(env); 1743 gen_intermediate_code(cpu, tb, max_insns); 1744 tcg_ctx->cpu = NULL; 1745 1746 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1747 1748 /* generate machine code */ 1749 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1750 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1751 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1752 if (TCG_TARGET_HAS_direct_jump) { 1753 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1754 tcg_ctx->tb_jmp_target_addr = NULL; 1755 } else { 1756 tcg_ctx->tb_jmp_insn_offset = NULL; 1757 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1758 } 1759 1760 #ifdef CONFIG_PROFILER 1761 atomic_set(&prof->tb_count, prof->tb_count + 1); 1762 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1763 ti = profile_getclock(); 1764 #endif 1765 1766 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1767 if (unlikely(gen_code_size < 0)) { 1768 switch (gen_code_size) { 1769 case -1: 1770 /* 1771 * Overflow of code_gen_buffer, or the current slice of it. 1772 * 1773 * TODO: We don't need to re-do gen_intermediate_code, nor 1774 * should we re-do the tcg optimization currently hidden 1775 * inside tcg_gen_code. All that should be required is to 1776 * flush the TBs, allocate a new TB, re-initialize it per 1777 * above, and re-do the actual code generation. 1778 */ 1779 goto buffer_overflow; 1780 1781 case -2: 1782 /* 1783 * The code generated for the TranslationBlock is too large. 1784 * The maximum size allowed by the unwind info is 64k. 1785 * There may be stricter constraints from relocations 1786 * in the tcg backend. 1787 * 1788 * Try again with half as many insns as we attempted this time. 1789 * If a single insn overflows, there's a bug somewhere... 1790 */ 1791 max_insns = tb->icount; 1792 assert(max_insns > 1); 1793 max_insns /= 2; 1794 goto tb_overflow; 1795 1796 default: 1797 g_assert_not_reached(); 1798 } 1799 } 1800 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1801 if (unlikely(search_size < 0)) { 1802 goto buffer_overflow; 1803 } 1804 tb->tc.size = gen_code_size; 1805 1806 #ifdef CONFIG_PROFILER 1807 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1808 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1809 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1810 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1811 #endif 1812 1813 #ifdef DEBUG_DISAS 1814 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1815 qemu_log_in_addr_range(tb->pc)) { 1816 qemu_log_lock(); 1817 qemu_log("OUT: [size=%d]\n", gen_code_size); 1818 if (tcg_ctx->data_gen_ptr) { 1819 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1820 size_t data_size = gen_code_size - code_size; 1821 size_t i; 1822 1823 log_disas(tb->tc.ptr, code_size); 1824 1825 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1826 if (sizeof(tcg_target_ulong) == 8) { 1827 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1828 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1829 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1830 } else { 1831 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1832 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1833 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1834 } 1835 } 1836 } else { 1837 log_disas(tb->tc.ptr, gen_code_size); 1838 } 1839 qemu_log("\n"); 1840 qemu_log_flush(); 1841 qemu_log_unlock(); 1842 } 1843 #endif 1844 1845 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1846 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1847 CODE_GEN_ALIGN)); 1848 1849 /* init jump list */ 1850 qemu_spin_init(&tb->jmp_lock); 1851 tb->jmp_list_head = (uintptr_t)NULL; 1852 tb->jmp_list_next[0] = (uintptr_t)NULL; 1853 tb->jmp_list_next[1] = (uintptr_t)NULL; 1854 tb->jmp_dest[0] = (uintptr_t)NULL; 1855 tb->jmp_dest[1] = (uintptr_t)NULL; 1856 1857 /* init original jump addresses which have been set during tcg_gen_code() */ 1858 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1859 tb_reset_jump(tb, 0); 1860 } 1861 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1862 tb_reset_jump(tb, 1); 1863 } 1864 1865 /* check next page if needed */ 1866 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1867 phys_page2 = -1; 1868 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1869 phys_page2 = get_page_addr_code(env, virt_page2); 1870 } 1871 /* 1872 * No explicit memory barrier is required -- tb_link_page() makes the 1873 * TB visible in a consistent state. 1874 */ 1875 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1876 /* if the TB already exists, discard what we just translated */ 1877 if (unlikely(existing_tb != tb)) { 1878 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1879 1880 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1881 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1882 return existing_tb; 1883 } 1884 tcg_tb_insert(tb); 1885 return tb; 1886 } 1887 1888 /* 1889 * @p must be non-NULL. 1890 * user-mode: call with mmap_lock held. 1891 * !user-mode: call with all @pages locked. 1892 */ 1893 static void 1894 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1895 PageDesc *p, tb_page_addr_t start, 1896 tb_page_addr_t end, 1897 uintptr_t retaddr) 1898 { 1899 TranslationBlock *tb; 1900 tb_page_addr_t tb_start, tb_end; 1901 int n; 1902 #ifdef TARGET_HAS_PRECISE_SMC 1903 CPUState *cpu = current_cpu; 1904 CPUArchState *env = NULL; 1905 bool current_tb_not_found = retaddr != 0; 1906 bool current_tb_modified = false; 1907 TranslationBlock *current_tb = NULL; 1908 target_ulong current_pc = 0; 1909 target_ulong current_cs_base = 0; 1910 uint32_t current_flags = 0; 1911 #endif /* TARGET_HAS_PRECISE_SMC */ 1912 1913 assert_page_locked(p); 1914 1915 #if defined(TARGET_HAS_PRECISE_SMC) 1916 if (cpu != NULL) { 1917 env = cpu->env_ptr; 1918 } 1919 #endif 1920 1921 /* we remove all the TBs in the range [start, end[ */ 1922 /* XXX: see if in some cases it could be faster to invalidate all 1923 the code */ 1924 PAGE_FOR_EACH_TB(p, tb, n) { 1925 assert_page_locked(p); 1926 /* NOTE: this is subtle as a TB may span two physical pages */ 1927 if (n == 0) { 1928 /* NOTE: tb_end may be after the end of the page, but 1929 it is not a problem */ 1930 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1931 tb_end = tb_start + tb->size; 1932 } else { 1933 tb_start = tb->page_addr[1]; 1934 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1935 } 1936 if (!(tb_end <= start || tb_start >= end)) { 1937 #ifdef TARGET_HAS_PRECISE_SMC 1938 if (current_tb_not_found) { 1939 current_tb_not_found = false; 1940 /* now we have a real cpu fault */ 1941 current_tb = tcg_tb_lookup(retaddr); 1942 } 1943 if (current_tb == tb && 1944 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1945 /* 1946 * If we are modifying the current TB, we must stop 1947 * its execution. We could be more precise by checking 1948 * that the modification is after the current PC, but it 1949 * would require a specialized function to partially 1950 * restore the CPU state. 1951 */ 1952 current_tb_modified = true; 1953 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1954 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1955 ¤t_flags); 1956 } 1957 #endif /* TARGET_HAS_PRECISE_SMC */ 1958 tb_phys_invalidate__locked(tb); 1959 } 1960 } 1961 #if !defined(CONFIG_USER_ONLY) 1962 /* if no code remaining, no need to continue to use slow writes */ 1963 if (!p->first_tb) { 1964 invalidate_page_bitmap(p); 1965 tlb_unprotect_code(start); 1966 } 1967 #endif 1968 #ifdef TARGET_HAS_PRECISE_SMC 1969 if (current_tb_modified) { 1970 page_collection_unlock(pages); 1971 /* Force execution of one insn next time. */ 1972 cpu->cflags_next_tb = 1 | curr_cflags(); 1973 mmap_unlock(); 1974 cpu_loop_exit_noexc(cpu); 1975 } 1976 #endif 1977 } 1978 1979 /* 1980 * Invalidate all TBs which intersect with the target physical address range 1981 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1982 * 'is_cpu_write_access' should be true if called from a real cpu write 1983 * access: the virtual CPU will exit the current TB if code is modified inside 1984 * this TB. 1985 * 1986 * Called with mmap_lock held for user-mode emulation 1987 */ 1988 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 1989 { 1990 struct page_collection *pages; 1991 PageDesc *p; 1992 1993 assert_memory_lock(); 1994 1995 p = page_find(start >> TARGET_PAGE_BITS); 1996 if (p == NULL) { 1997 return; 1998 } 1999 pages = page_collection_lock(start, end); 2000 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 2001 page_collection_unlock(pages); 2002 } 2003 2004 /* 2005 * Invalidate all TBs which intersect with the target physical address range 2006 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2007 * 'is_cpu_write_access' should be true if called from a real cpu write 2008 * access: the virtual CPU will exit the current TB if code is modified inside 2009 * this TB. 2010 * 2011 * Called with mmap_lock held for user-mode emulation. 2012 */ 2013 #ifdef CONFIG_SOFTMMU 2014 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2015 #else 2016 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2017 #endif 2018 { 2019 struct page_collection *pages; 2020 tb_page_addr_t next; 2021 2022 assert_memory_lock(); 2023 2024 pages = page_collection_lock(start, end); 2025 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2026 start < end; 2027 start = next, next += TARGET_PAGE_SIZE) { 2028 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2029 tb_page_addr_t bound = MIN(next, end); 2030 2031 if (pd == NULL) { 2032 continue; 2033 } 2034 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2035 } 2036 page_collection_unlock(pages); 2037 } 2038 2039 #ifdef CONFIG_SOFTMMU 2040 /* len must be <= 8 and start must be a multiple of len. 2041 * Called via softmmu_template.h when code areas are written to with 2042 * iothread mutex not held. 2043 * 2044 * Call with all @pages in the range [@start, @start + len[ locked. 2045 */ 2046 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2047 tb_page_addr_t start, int len, 2048 uintptr_t retaddr) 2049 { 2050 PageDesc *p; 2051 2052 assert_memory_lock(); 2053 2054 p = page_find(start >> TARGET_PAGE_BITS); 2055 if (!p) { 2056 return; 2057 } 2058 2059 assert_page_locked(p); 2060 if (!p->code_bitmap && 2061 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2062 build_page_bitmap(p); 2063 } 2064 if (p->code_bitmap) { 2065 unsigned int nr; 2066 unsigned long b; 2067 2068 nr = start & ~TARGET_PAGE_MASK; 2069 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2070 if (b & ((1 << len) - 1)) { 2071 goto do_invalidate; 2072 } 2073 } else { 2074 do_invalidate: 2075 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2076 retaddr); 2077 } 2078 } 2079 #else 2080 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2081 * host PC of the faulting store instruction that caused this invalidate. 2082 * Returns true if the caller needs to abort execution of the current 2083 * TB (because it was modified by this store and the guest CPU has 2084 * precise-SMC semantics). 2085 */ 2086 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2087 { 2088 TranslationBlock *tb; 2089 PageDesc *p; 2090 int n; 2091 #ifdef TARGET_HAS_PRECISE_SMC 2092 TranslationBlock *current_tb = NULL; 2093 CPUState *cpu = current_cpu; 2094 CPUArchState *env = NULL; 2095 int current_tb_modified = 0; 2096 target_ulong current_pc = 0; 2097 target_ulong current_cs_base = 0; 2098 uint32_t current_flags = 0; 2099 #endif 2100 2101 assert_memory_lock(); 2102 2103 addr &= TARGET_PAGE_MASK; 2104 p = page_find(addr >> TARGET_PAGE_BITS); 2105 if (!p) { 2106 return false; 2107 } 2108 2109 #ifdef TARGET_HAS_PRECISE_SMC 2110 if (p->first_tb && pc != 0) { 2111 current_tb = tcg_tb_lookup(pc); 2112 } 2113 if (cpu != NULL) { 2114 env = cpu->env_ptr; 2115 } 2116 #endif 2117 assert_page_locked(p); 2118 PAGE_FOR_EACH_TB(p, tb, n) { 2119 #ifdef TARGET_HAS_PRECISE_SMC 2120 if (current_tb == tb && 2121 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2122 /* If we are modifying the current TB, we must stop 2123 its execution. We could be more precise by checking 2124 that the modification is after the current PC, but it 2125 would require a specialized function to partially 2126 restore the CPU state */ 2127 2128 current_tb_modified = 1; 2129 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2130 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2131 ¤t_flags); 2132 } 2133 #endif /* TARGET_HAS_PRECISE_SMC */ 2134 tb_phys_invalidate(tb, addr); 2135 } 2136 p->first_tb = (uintptr_t)NULL; 2137 #ifdef TARGET_HAS_PRECISE_SMC 2138 if (current_tb_modified) { 2139 /* Force execution of one insn next time. */ 2140 cpu->cflags_next_tb = 1 | curr_cflags(); 2141 return true; 2142 } 2143 #endif 2144 2145 return false; 2146 } 2147 #endif 2148 2149 /* user-mode: call with mmap_lock held */ 2150 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2151 { 2152 TranslationBlock *tb; 2153 2154 assert_memory_lock(); 2155 2156 tb = tcg_tb_lookup(retaddr); 2157 if (tb) { 2158 /* We can use retranslation to find the PC. */ 2159 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2160 tb_phys_invalidate(tb, -1); 2161 } else { 2162 /* The exception probably happened in a helper. The CPU state should 2163 have been saved before calling it. Fetch the PC from there. */ 2164 CPUArchState *env = cpu->env_ptr; 2165 target_ulong pc, cs_base; 2166 tb_page_addr_t addr; 2167 uint32_t flags; 2168 2169 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2170 addr = get_page_addr_code(env, pc); 2171 if (addr != -1) { 2172 tb_invalidate_phys_range(addr, addr + 1); 2173 } 2174 } 2175 } 2176 2177 #ifndef CONFIG_USER_ONLY 2178 /* in deterministic execution mode, instructions doing device I/Os 2179 * must be at the end of the TB. 2180 * 2181 * Called by softmmu_template.h, with iothread mutex not held. 2182 */ 2183 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2184 { 2185 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2186 CPUArchState *env = cpu->env_ptr; 2187 #endif 2188 TranslationBlock *tb; 2189 uint32_t n; 2190 2191 tb = tcg_tb_lookup(retaddr); 2192 if (!tb) { 2193 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2194 (void *)retaddr); 2195 } 2196 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2197 2198 /* On MIPS and SH, delay slot instructions can only be restarted if 2199 they were already the first instruction in the TB. If this is not 2200 the first instruction in a TB then re-execute the preceding 2201 branch. */ 2202 n = 1; 2203 #if defined(TARGET_MIPS) 2204 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2205 && env->active_tc.PC != tb->pc) { 2206 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2207 cpu_neg(cpu)->icount_decr.u16.low++; 2208 env->hflags &= ~MIPS_HFLAG_BMASK; 2209 n = 2; 2210 } 2211 #elif defined(TARGET_SH4) 2212 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2213 && env->pc != tb->pc) { 2214 env->pc -= 2; 2215 cpu_neg(cpu)->icount_decr.u16.low++; 2216 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2217 n = 2; 2218 } 2219 #endif 2220 2221 /* Generate a new TB executing the I/O insn. */ 2222 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2223 2224 if (tb_cflags(tb) & CF_NOCACHE) { 2225 if (tb->orig_tb) { 2226 /* Invalidate original TB if this TB was generated in 2227 * cpu_exec_nocache() */ 2228 tb_phys_invalidate(tb->orig_tb, -1); 2229 } 2230 tcg_tb_remove(tb); 2231 } 2232 2233 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2234 * the first in the TB) then we end up generating a whole new TB and 2235 * repeating the fault, which is horribly inefficient. 2236 * Better would be to execute just this insn uncached, or generate a 2237 * second new TB. 2238 */ 2239 cpu_loop_exit_noexc(cpu); 2240 } 2241 2242 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2243 { 2244 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2245 2246 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2247 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2248 } 2249 } 2250 2251 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2252 { 2253 /* Discard jump cache entries for any tb which might potentially 2254 overlap the flushed page. */ 2255 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2256 tb_jmp_cache_clear_page(cpu, addr); 2257 } 2258 2259 static void print_qht_statistics(struct qht_stats hst) 2260 { 2261 uint32_t hgram_opts; 2262 size_t hgram_bins; 2263 char *hgram; 2264 2265 if (!hst.head_buckets) { 2266 return; 2267 } 2268 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2269 hst.used_head_buckets, hst.head_buckets, 2270 (double)hst.used_head_buckets / hst.head_buckets * 100); 2271 2272 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2273 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2274 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2275 hgram_opts |= QDIST_PR_NODECIMAL; 2276 } 2277 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2278 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2279 qdist_avg(&hst.occupancy) * 100, hgram); 2280 g_free(hgram); 2281 2282 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2283 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2284 if (hgram_bins > 10) { 2285 hgram_bins = 10; 2286 } else { 2287 hgram_bins = 0; 2288 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2289 } 2290 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2291 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2292 qdist_avg(&hst.chain), hgram); 2293 g_free(hgram); 2294 } 2295 2296 struct tb_tree_stats { 2297 size_t nb_tbs; 2298 size_t host_size; 2299 size_t target_size; 2300 size_t max_target_size; 2301 size_t direct_jmp_count; 2302 size_t direct_jmp2_count; 2303 size_t cross_page; 2304 }; 2305 2306 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2307 { 2308 const TranslationBlock *tb = value; 2309 struct tb_tree_stats *tst = data; 2310 2311 tst->nb_tbs++; 2312 tst->host_size += tb->tc.size; 2313 tst->target_size += tb->size; 2314 if (tb->size > tst->max_target_size) { 2315 tst->max_target_size = tb->size; 2316 } 2317 if (tb->page_addr[1] != -1) { 2318 tst->cross_page++; 2319 } 2320 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2321 tst->direct_jmp_count++; 2322 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2323 tst->direct_jmp2_count++; 2324 } 2325 } 2326 return false; 2327 } 2328 2329 void dump_exec_info(void) 2330 { 2331 struct tb_tree_stats tst = {}; 2332 struct qht_stats hst; 2333 size_t nb_tbs, flush_full, flush_part, flush_elide; 2334 2335 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2336 nb_tbs = tst.nb_tbs; 2337 /* XXX: avoid using doubles ? */ 2338 qemu_printf("Translation buffer state:\n"); 2339 /* 2340 * Report total code size including the padding and TB structs; 2341 * otherwise users might think "-tb-size" is not honoured. 2342 * For avg host size we use the precise numbers from tb_tree_stats though. 2343 */ 2344 qemu_printf("gen code size %zu/%zu\n", 2345 tcg_code_size(), tcg_code_capacity()); 2346 qemu_printf("TB count %zu\n", nb_tbs); 2347 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2348 nb_tbs ? tst.target_size / nb_tbs : 0, 2349 tst.max_target_size); 2350 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2351 nb_tbs ? tst.host_size / nb_tbs : 0, 2352 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2353 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2354 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2355 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2356 tst.direct_jmp_count, 2357 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2358 tst.direct_jmp2_count, 2359 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2360 2361 qht_statistics_init(&tb_ctx.htable, &hst); 2362 print_qht_statistics(hst); 2363 qht_statistics_destroy(&hst); 2364 2365 qemu_printf("\nStatistics:\n"); 2366 qemu_printf("TB flush count %u\n", 2367 atomic_read(&tb_ctx.tb_flush_count)); 2368 qemu_printf("TB invalidate count %zu\n", 2369 tcg_tb_phys_invalidate_count()); 2370 2371 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2372 qemu_printf("TLB full flushes %zu\n", flush_full); 2373 qemu_printf("TLB partial flushes %zu\n", flush_part); 2374 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2375 tcg_dump_info(); 2376 } 2377 2378 void dump_opcount_info(void) 2379 { 2380 tcg_dump_op_count(); 2381 } 2382 2383 #else /* CONFIG_USER_ONLY */ 2384 2385 void cpu_interrupt(CPUState *cpu, int mask) 2386 { 2387 g_assert(qemu_mutex_iothread_locked()); 2388 cpu->interrupt_request |= mask; 2389 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2390 } 2391 2392 /* 2393 * Walks guest process memory "regions" one by one 2394 * and calls callback function 'fn' for each region. 2395 */ 2396 struct walk_memory_regions_data { 2397 walk_memory_regions_fn fn; 2398 void *priv; 2399 target_ulong start; 2400 int prot; 2401 }; 2402 2403 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2404 target_ulong end, int new_prot) 2405 { 2406 if (data->start != -1u) { 2407 int rc = data->fn(data->priv, data->start, end, data->prot); 2408 if (rc != 0) { 2409 return rc; 2410 } 2411 } 2412 2413 data->start = (new_prot ? end : -1u); 2414 data->prot = new_prot; 2415 2416 return 0; 2417 } 2418 2419 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2420 target_ulong base, int level, void **lp) 2421 { 2422 target_ulong pa; 2423 int i, rc; 2424 2425 if (*lp == NULL) { 2426 return walk_memory_regions_end(data, base, 0); 2427 } 2428 2429 if (level == 0) { 2430 PageDesc *pd = *lp; 2431 2432 for (i = 0; i < V_L2_SIZE; ++i) { 2433 int prot = pd[i].flags; 2434 2435 pa = base | (i << TARGET_PAGE_BITS); 2436 if (prot != data->prot) { 2437 rc = walk_memory_regions_end(data, pa, prot); 2438 if (rc != 0) { 2439 return rc; 2440 } 2441 } 2442 } 2443 } else { 2444 void **pp = *lp; 2445 2446 for (i = 0; i < V_L2_SIZE; ++i) { 2447 pa = base | ((target_ulong)i << 2448 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2449 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2450 if (rc != 0) { 2451 return rc; 2452 } 2453 } 2454 } 2455 2456 return 0; 2457 } 2458 2459 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2460 { 2461 struct walk_memory_regions_data data; 2462 uintptr_t i, l1_sz = v_l1_size; 2463 2464 data.fn = fn; 2465 data.priv = priv; 2466 data.start = -1u; 2467 data.prot = 0; 2468 2469 for (i = 0; i < l1_sz; i++) { 2470 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2471 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2472 if (rc != 0) { 2473 return rc; 2474 } 2475 } 2476 2477 return walk_memory_regions_end(&data, 0, 0); 2478 } 2479 2480 static int dump_region(void *priv, target_ulong start, 2481 target_ulong end, unsigned long prot) 2482 { 2483 FILE *f = (FILE *)priv; 2484 2485 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2486 " "TARGET_FMT_lx" %c%c%c\n", 2487 start, end, end - start, 2488 ((prot & PAGE_READ) ? 'r' : '-'), 2489 ((prot & PAGE_WRITE) ? 'w' : '-'), 2490 ((prot & PAGE_EXEC) ? 'x' : '-')); 2491 2492 return 0; 2493 } 2494 2495 /* dump memory mappings */ 2496 void page_dump(FILE *f) 2497 { 2498 const int length = sizeof(target_ulong) * 2; 2499 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2500 length, "start", length, "end", length, "size", "prot"); 2501 walk_memory_regions(f, dump_region); 2502 } 2503 2504 int page_get_flags(target_ulong address) 2505 { 2506 PageDesc *p; 2507 2508 p = page_find(address >> TARGET_PAGE_BITS); 2509 if (!p) { 2510 return 0; 2511 } 2512 return p->flags; 2513 } 2514 2515 /* Modify the flags of a page and invalidate the code if necessary. 2516 The flag PAGE_WRITE_ORG is positioned automatically depending 2517 on PAGE_WRITE. The mmap_lock should already be held. */ 2518 void page_set_flags(target_ulong start, target_ulong end, int flags) 2519 { 2520 target_ulong addr, len; 2521 2522 /* This function should never be called with addresses outside the 2523 guest address space. If this assert fires, it probably indicates 2524 a missing call to h2g_valid. */ 2525 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2526 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2527 #endif 2528 assert(start < end); 2529 assert_memory_lock(); 2530 2531 start = start & TARGET_PAGE_MASK; 2532 end = TARGET_PAGE_ALIGN(end); 2533 2534 if (flags & PAGE_WRITE) { 2535 flags |= PAGE_WRITE_ORG; 2536 } 2537 2538 for (addr = start, len = end - start; 2539 len != 0; 2540 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2541 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2542 2543 /* If the write protection bit is set, then we invalidate 2544 the code inside. */ 2545 if (!(p->flags & PAGE_WRITE) && 2546 (flags & PAGE_WRITE) && 2547 p->first_tb) { 2548 tb_invalidate_phys_page(addr, 0); 2549 } 2550 p->flags = flags; 2551 } 2552 } 2553 2554 int page_check_range(target_ulong start, target_ulong len, int flags) 2555 { 2556 PageDesc *p; 2557 target_ulong end; 2558 target_ulong addr; 2559 2560 /* This function should never be called with addresses outside the 2561 guest address space. If this assert fires, it probably indicates 2562 a missing call to h2g_valid. */ 2563 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2564 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2565 #endif 2566 2567 if (len == 0) { 2568 return 0; 2569 } 2570 if (start + len - 1 < start) { 2571 /* We've wrapped around. */ 2572 return -1; 2573 } 2574 2575 /* must do before we loose bits in the next step */ 2576 end = TARGET_PAGE_ALIGN(start + len); 2577 start = start & TARGET_PAGE_MASK; 2578 2579 for (addr = start, len = end - start; 2580 len != 0; 2581 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2582 p = page_find(addr >> TARGET_PAGE_BITS); 2583 if (!p) { 2584 return -1; 2585 } 2586 if (!(p->flags & PAGE_VALID)) { 2587 return -1; 2588 } 2589 2590 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2591 return -1; 2592 } 2593 if (flags & PAGE_WRITE) { 2594 if (!(p->flags & PAGE_WRITE_ORG)) { 2595 return -1; 2596 } 2597 /* unprotect the page if it was put read-only because it 2598 contains translated code */ 2599 if (!(p->flags & PAGE_WRITE)) { 2600 if (!page_unprotect(addr, 0)) { 2601 return -1; 2602 } 2603 } 2604 } 2605 } 2606 return 0; 2607 } 2608 2609 /* called from signal handler: invalidate the code and unprotect the 2610 * page. Return 0 if the fault was not handled, 1 if it was handled, 2611 * and 2 if it was handled but the caller must cause the TB to be 2612 * immediately exited. (We can only return 2 if the 'pc' argument is 2613 * non-zero.) 2614 */ 2615 int page_unprotect(target_ulong address, uintptr_t pc) 2616 { 2617 unsigned int prot; 2618 bool current_tb_invalidated; 2619 PageDesc *p; 2620 target_ulong host_start, host_end, addr; 2621 2622 /* Technically this isn't safe inside a signal handler. However we 2623 know this only ever happens in a synchronous SEGV handler, so in 2624 practice it seems to be ok. */ 2625 mmap_lock(); 2626 2627 p = page_find(address >> TARGET_PAGE_BITS); 2628 if (!p) { 2629 mmap_unlock(); 2630 return 0; 2631 } 2632 2633 /* if the page was really writable, then we change its 2634 protection back to writable */ 2635 if (p->flags & PAGE_WRITE_ORG) { 2636 current_tb_invalidated = false; 2637 if (p->flags & PAGE_WRITE) { 2638 /* If the page is actually marked WRITE then assume this is because 2639 * this thread raced with another one which got here first and 2640 * set the page to PAGE_WRITE and did the TB invalidate for us. 2641 */ 2642 #ifdef TARGET_HAS_PRECISE_SMC 2643 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2644 if (current_tb) { 2645 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2646 } 2647 #endif 2648 } else { 2649 host_start = address & qemu_host_page_mask; 2650 host_end = host_start + qemu_host_page_size; 2651 2652 prot = 0; 2653 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2654 p = page_find(addr >> TARGET_PAGE_BITS); 2655 p->flags |= PAGE_WRITE; 2656 prot |= p->flags; 2657 2658 /* and since the content will be modified, we must invalidate 2659 the corresponding translated code. */ 2660 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2661 #ifdef CONFIG_USER_ONLY 2662 if (DEBUG_TB_CHECK_GATE) { 2663 tb_invalidate_check(addr); 2664 } 2665 #endif 2666 } 2667 mprotect((void *)g2h(host_start), qemu_host_page_size, 2668 prot & PAGE_BITS); 2669 } 2670 mmap_unlock(); 2671 /* If current TB was invalidated return to main loop */ 2672 return current_tb_invalidated ? 2 : 1; 2673 } 2674 mmap_unlock(); 2675 return 0; 2676 } 2677 #endif /* CONFIG_USER_ONLY */ 2678 2679 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2680 void tcg_flush_softmmu_tlb(CPUState *cs) 2681 { 2682 #ifdef CONFIG_SOFTMMU 2683 tlb_flush(cs); 2684 #endif 2685 } 2686