xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 54cb65d8588b67853a8898eb73e82d76c1a1e2e1)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 
23 #define NO_CPU_IO_DEFS
24 #include "cpu.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg.h"
29 #if defined(CONFIG_USER_ONLY)
30 #include "qemu.h"
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
36 #include <sys/proc.h>
37 #include <machine/profile.h>
38 #define _KERNEL
39 #include <sys/user.h>
40 #undef _KERNEL
41 #undef sigqueue
42 #include <libutil.h>
43 #endif
44 #endif
45 #else
46 #include "exec/ram_addr.h"
47 #endif
48 
49 #include "exec/cputlb.h"
50 #include "exec/tb-hash.h"
51 #include "translate-all.h"
52 #include "qemu/bitmap.h"
53 #include "qemu/error-report.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/timer.h"
56 #include "qemu/main-loop.h"
57 #include "exec/log.h"
58 #include "sysemu/cpus.h"
59 #include "sysemu/tcg.h"
60 
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
65 
66 #ifdef DEBUG_TB_INVALIDATE
67 #define DEBUG_TB_INVALIDATE_GATE 1
68 #else
69 #define DEBUG_TB_INVALIDATE_GATE 0
70 #endif
71 
72 #ifdef DEBUG_TB_FLUSH
73 #define DEBUG_TB_FLUSH_GATE 1
74 #else
75 #define DEBUG_TB_FLUSH_GATE 0
76 #endif
77 
78 #if !defined(CONFIG_USER_ONLY)
79 /* TB consistency checks only implemented for usermode emulation.  */
80 #undef DEBUG_TB_CHECK
81 #endif
82 
83 #ifdef DEBUG_TB_CHECK
84 #define DEBUG_TB_CHECK_GATE 1
85 #else
86 #define DEBUG_TB_CHECK_GATE 0
87 #endif
88 
89 /* Access to the various translations structures need to be serialised via locks
90  * for consistency.
91  * In user-mode emulation access to the memory related structures are protected
92  * with mmap_lock.
93  * In !user-mode we use per-page locks.
94  */
95 #ifdef CONFIG_SOFTMMU
96 #define assert_memory_lock()
97 #else
98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
99 #endif
100 
101 #define SMC_BITMAP_USE_THRESHOLD 10
102 
103 typedef struct PageDesc {
104     /* list of TBs intersecting this ram page */
105     uintptr_t first_tb;
106 #ifdef CONFIG_SOFTMMU
107     /* in order to optimize self modifying code, we count the number
108        of lookups we do to a given page to use a bitmap */
109     unsigned long *code_bitmap;
110     unsigned int code_write_count;
111 #else
112     unsigned long flags;
113 #endif
114 #ifndef CONFIG_USER_ONLY
115     QemuSpin lock;
116 #endif
117 } PageDesc;
118 
119 /**
120  * struct page_entry - page descriptor entry
121  * @pd:     pointer to the &struct PageDesc of the page this entry represents
122  * @index:  page index of the page
123  * @locked: whether the page is locked
124  *
125  * This struct helps us keep track of the locked state of a page, without
126  * bloating &struct PageDesc.
127  *
128  * A page lock protects accesses to all fields of &struct PageDesc.
129  *
130  * See also: &struct page_collection.
131  */
132 struct page_entry {
133     PageDesc *pd;
134     tb_page_addr_t index;
135     bool locked;
136 };
137 
138 /**
139  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
140  * @tree:   Binary search tree (BST) of the pages, with key == page index
141  * @max:    Pointer to the page in @tree with the highest page index
142  *
143  * To avoid deadlock we lock pages in ascending order of page index.
144  * When operating on a set of pages, we need to keep track of them so that
145  * we can lock them in order and also unlock them later. For this we collect
146  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
147  * @tree implementation we use does not provide an O(1) operation to obtain the
148  * highest-ranked element, we use @max to keep track of the inserted page
149  * with the highest index. This is valuable because if a page is not in
150  * the tree and its index is higher than @max's, then we can lock it
151  * without breaking the locking order rule.
152  *
153  * Note on naming: 'struct page_set' would be shorter, but we already have a few
154  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
155  *
156  * See also: page_collection_lock().
157  */
158 struct page_collection {
159     GTree *tree;
160     struct page_entry *max;
161 };
162 
163 /* list iterators for lists of tagged pointers in TranslationBlock */
164 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
165     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
166          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
167              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
168 
169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
170     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
171 
172 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
173     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
174 
175 /* In system mode we want L1_MAP to be based on ram offsets,
176    while in user mode we want it to be based on virtual addresses.  */
177 #if !defined(CONFIG_USER_ONLY)
178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
179 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
182 #endif
183 #else
184 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
185 #endif
186 
187 /* Size of the L2 (and L3, etc) page tables.  */
188 #define V_L2_BITS 10
189 #define V_L2_SIZE (1 << V_L2_BITS)
190 
191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
193                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
194                   * BITS_PER_BYTE);
195 
196 /*
197  * L1 Mapping properties
198  */
199 static int v_l1_size;
200 static int v_l1_shift;
201 static int v_l2_levels;
202 
203 /* The bottom level has pointers to PageDesc, and is indexed by
204  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
205  */
206 #define V_L1_MIN_BITS 4
207 #define V_L1_MAX_BITS (V_L2_BITS + 3)
208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
209 
210 static void *l1_map[V_L1_MAX_SIZE];
211 
212 /* code generation context */
213 TCGContext tcg_init_ctx;
214 __thread TCGContext *tcg_ctx;
215 TBContext tb_ctx;
216 bool parallel_cpus;
217 
218 static void page_table_config_init(void)
219 {
220     uint32_t v_l1_bits;
221 
222     assert(TARGET_PAGE_BITS);
223     /* The bits remaining after N lower levels of page tables.  */
224     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
225     if (v_l1_bits < V_L1_MIN_BITS) {
226         v_l1_bits += V_L2_BITS;
227     }
228 
229     v_l1_size = 1 << v_l1_bits;
230     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
231     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
232 
233     assert(v_l1_bits <= V_L1_MAX_BITS);
234     assert(v_l1_shift % V_L2_BITS == 0);
235     assert(v_l2_levels >= 0);
236 }
237 
238 void cpu_gen_init(void)
239 {
240     tcg_context_init(&tcg_init_ctx);
241 }
242 
243 /* Encode VAL as a signed leb128 sequence at P.
244    Return P incremented past the encoded value.  */
245 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
246 {
247     int more, byte;
248 
249     do {
250         byte = val & 0x7f;
251         val >>= 7;
252         more = !((val == 0 && (byte & 0x40) == 0)
253                  || (val == -1 && (byte & 0x40) != 0));
254         if (more) {
255             byte |= 0x80;
256         }
257         *p++ = byte;
258     } while (more);
259 
260     return p;
261 }
262 
263 /* Decode a signed leb128 sequence at *PP; increment *PP past the
264    decoded value.  Return the decoded value.  */
265 static target_long decode_sleb128(uint8_t **pp)
266 {
267     uint8_t *p = *pp;
268     target_long val = 0;
269     int byte, shift = 0;
270 
271     do {
272         byte = *p++;
273         val |= (target_ulong)(byte & 0x7f) << shift;
274         shift += 7;
275     } while (byte & 0x80);
276     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
277         val |= -(target_ulong)1 << shift;
278     }
279 
280     *pp = p;
281     return val;
282 }
283 
284 /* Encode the data collected about the instructions while compiling TB.
285    Place the data at BLOCK, and return the number of bytes consumed.
286 
287    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
288    which come from the target's insn_start data, followed by a uintptr_t
289    which comes from the host pc of the end of the code implementing the insn.
290 
291    Each line of the table is encoded as sleb128 deltas from the previous
292    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
293    That is, the first column is seeded with the guest pc, the last column
294    with the host pc, and the middle columns with zeros.  */
295 
296 static int encode_search(TranslationBlock *tb, uint8_t *block)
297 {
298     uint8_t *highwater = tcg_ctx->code_gen_highwater;
299     uint8_t *p = block;
300     int i, j, n;
301 
302     for (i = 0, n = tb->icount; i < n; ++i) {
303         target_ulong prev;
304 
305         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
306             if (i == 0) {
307                 prev = (j == 0 ? tb->pc : 0);
308             } else {
309                 prev = tcg_ctx->gen_insn_data[i - 1][j];
310             }
311             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
312         }
313         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
314         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
315 
316         /* Test for (pending) buffer overflow.  The assumption is that any
317            one row beginning below the high water mark cannot overrun
318            the buffer completely.  Thus we can test for overflow after
319            encoding a row without having to check during encoding.  */
320         if (unlikely(p > highwater)) {
321             return -1;
322         }
323     }
324 
325     return p - block;
326 }
327 
328 /* The cpu state corresponding to 'searched_pc' is restored.
329  * When reset_icount is true, current TB will be interrupted and
330  * icount should be recalculated.
331  */
332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
333                                      uintptr_t searched_pc, bool reset_icount)
334 {
335     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
336     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
337     CPUArchState *env = cpu->env_ptr;
338     uint8_t *p = tb->tc.ptr + tb->tc.size;
339     int i, j, num_insns = tb->icount;
340 #ifdef CONFIG_PROFILER
341     TCGProfile *prof = &tcg_ctx->prof;
342     int64_t ti = profile_getclock();
343 #endif
344 
345     searched_pc -= GETPC_ADJ;
346 
347     if (searched_pc < host_pc) {
348         return -1;
349     }
350 
351     /* Reconstruct the stored insn data while looking for the point at
352        which the end of the insn exceeds the searched_pc.  */
353     for (i = 0; i < num_insns; ++i) {
354         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
355             data[j] += decode_sleb128(&p);
356         }
357         host_pc += decode_sleb128(&p);
358         if (host_pc > searched_pc) {
359             goto found;
360         }
361     }
362     return -1;
363 
364  found:
365     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
366         assert(use_icount);
367         /* Reset the cycle counter to the start of the block
368            and shift if to the number of actually executed instructions */
369         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
370     }
371     restore_state_to_opc(env, tb, data);
372 
373 #ifdef CONFIG_PROFILER
374     atomic_set(&prof->restore_time,
375                 prof->restore_time + profile_getclock() - ti);
376     atomic_set(&prof->restore_count, prof->restore_count + 1);
377 #endif
378     return 0;
379 }
380 
381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
382 {
383     TranslationBlock *tb;
384     bool r = false;
385     uintptr_t check_offset;
386 
387     /* The host_pc has to be in the region of current code buffer. If
388      * it is not we will not be able to resolve it here. The two cases
389      * where host_pc will not be correct are:
390      *
391      *  - fault during translation (instruction fetch)
392      *  - fault from helper (not using GETPC() macro)
393      *
394      * Either way we need return early as we can't resolve it here.
395      *
396      * We are using unsigned arithmetic so if host_pc <
397      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
398      * above the code_gen_buffer_size
399      */
400     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
401 
402     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
403         tb = tcg_tb_lookup(host_pc);
404         if (tb) {
405             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
406             if (tb_cflags(tb) & CF_NOCACHE) {
407                 /* one-shot translation, invalidate it immediately */
408                 tb_phys_invalidate(tb, -1);
409                 tcg_tb_remove(tb);
410             }
411             r = true;
412         }
413     }
414 
415     return r;
416 }
417 
418 static void page_init(void)
419 {
420     page_size_init();
421     page_table_config_init();
422 
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424     {
425 #ifdef HAVE_KINFO_GETVMMAP
426         struct kinfo_vmentry *freep;
427         int i, cnt;
428 
429         freep = kinfo_getvmmap(getpid(), &cnt);
430         if (freep) {
431             mmap_lock();
432             for (i = 0; i < cnt; i++) {
433                 unsigned long startaddr, endaddr;
434 
435                 startaddr = freep[i].kve_start;
436                 endaddr = freep[i].kve_end;
437                 if (h2g_valid(startaddr)) {
438                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439 
440                     if (h2g_valid(endaddr)) {
441                         endaddr = h2g(endaddr);
442                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443                     } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445                         endaddr = ~0ul;
446                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448                     }
449                 }
450             }
451             free(freep);
452             mmap_unlock();
453         }
454 #else
455         FILE *f;
456 
457         last_brk = (unsigned long)sbrk(0);
458 
459         f = fopen("/compat/linux/proc/self/maps", "r");
460         if (f) {
461             mmap_lock();
462 
463             do {
464                 unsigned long startaddr, endaddr;
465                 int n;
466 
467                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468 
469                 if (n == 2 && h2g_valid(startaddr)) {
470                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471 
472                     if (h2g_valid(endaddr)) {
473                         endaddr = h2g(endaddr);
474                     } else {
475                         endaddr = ~0ul;
476                     }
477                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478                 }
479             } while (!feof(f));
480 
481             fclose(f);
482             mmap_unlock();
483         }
484 #endif
485     }
486 #endif
487 }
488 
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491     PageDesc *pd;
492     void **lp;
493     int i;
494 
495     /* Level 1.  Always allocated.  */
496     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497 
498     /* Level 2..N-1.  */
499     for (i = v_l2_levels; i > 0; i--) {
500         void **p = atomic_rcu_read(lp);
501 
502         if (p == NULL) {
503             void *existing;
504 
505             if (!alloc) {
506                 return NULL;
507             }
508             p = g_new0(void *, V_L2_SIZE);
509             existing = atomic_cmpxchg(lp, NULL, p);
510             if (unlikely(existing)) {
511                 g_free(p);
512                 p = existing;
513             }
514         }
515 
516         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517     }
518 
519     pd = atomic_rcu_read(lp);
520     if (pd == NULL) {
521         void *existing;
522 
523         if (!alloc) {
524             return NULL;
525         }
526         pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528         {
529             int i;
530 
531             for (i = 0; i < V_L2_SIZE; i++) {
532                 qemu_spin_init(&pd[i].lock);
533             }
534         }
535 #endif
536         existing = atomic_cmpxchg(lp, NULL, pd);
537         if (unlikely(existing)) {
538             g_free(pd);
539             pd = existing;
540         }
541     }
542 
543     return pd + (index & (V_L2_SIZE - 1));
544 }
545 
546 static inline PageDesc *page_find(tb_page_addr_t index)
547 {
548     return page_find_alloc(index, 0);
549 }
550 
551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
552                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
553 
554 /* In user-mode page locks aren't used; mmap_lock is enough */
555 #ifdef CONFIG_USER_ONLY
556 
557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
558 
559 static inline void page_lock(PageDesc *pd)
560 { }
561 
562 static inline void page_unlock(PageDesc *pd)
563 { }
564 
565 static inline void page_lock_tb(const TranslationBlock *tb)
566 { }
567 
568 static inline void page_unlock_tb(const TranslationBlock *tb)
569 { }
570 
571 struct page_collection *
572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
573 {
574     return NULL;
575 }
576 
577 void page_collection_unlock(struct page_collection *set)
578 { }
579 #else /* !CONFIG_USER_ONLY */
580 
581 #ifdef CONFIG_DEBUG_TCG
582 
583 static __thread GHashTable *ht_pages_locked_debug;
584 
585 static void ht_pages_locked_debug_init(void)
586 {
587     if (ht_pages_locked_debug) {
588         return;
589     }
590     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
591 }
592 
593 static bool page_is_locked(const PageDesc *pd)
594 {
595     PageDesc *found;
596 
597     ht_pages_locked_debug_init();
598     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
599     return !!found;
600 }
601 
602 static void page_lock__debug(PageDesc *pd)
603 {
604     ht_pages_locked_debug_init();
605     g_assert(!page_is_locked(pd));
606     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
607 }
608 
609 static void page_unlock__debug(const PageDesc *pd)
610 {
611     bool removed;
612 
613     ht_pages_locked_debug_init();
614     g_assert(page_is_locked(pd));
615     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
616     g_assert(removed);
617 }
618 
619 static void
620 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
621 {
622     if (unlikely(!page_is_locked(pd))) {
623         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
624                      pd, file, line);
625         abort();
626     }
627 }
628 
629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
630 
631 void assert_no_pages_locked(void)
632 {
633     ht_pages_locked_debug_init();
634     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
635 }
636 
637 #else /* !CONFIG_DEBUG_TCG */
638 
639 #define assert_page_locked(pd)
640 
641 static inline void page_lock__debug(const PageDesc *pd)
642 {
643 }
644 
645 static inline void page_unlock__debug(const PageDesc *pd)
646 {
647 }
648 
649 #endif /* CONFIG_DEBUG_TCG */
650 
651 static inline void page_lock(PageDesc *pd)
652 {
653     page_lock__debug(pd);
654     qemu_spin_lock(&pd->lock);
655 }
656 
657 static inline void page_unlock(PageDesc *pd)
658 {
659     qemu_spin_unlock(&pd->lock);
660     page_unlock__debug(pd);
661 }
662 
663 /* lock the page(s) of a TB in the correct acquisition order */
664 static inline void page_lock_tb(const TranslationBlock *tb)
665 {
666     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
667 }
668 
669 static inline void page_unlock_tb(const TranslationBlock *tb)
670 {
671     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
672 
673     page_unlock(p1);
674     if (unlikely(tb->page_addr[1] != -1)) {
675         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
676 
677         if (p2 != p1) {
678             page_unlock(p2);
679         }
680     }
681 }
682 
683 static inline struct page_entry *
684 page_entry_new(PageDesc *pd, tb_page_addr_t index)
685 {
686     struct page_entry *pe = g_malloc(sizeof(*pe));
687 
688     pe->index = index;
689     pe->pd = pd;
690     pe->locked = false;
691     return pe;
692 }
693 
694 static void page_entry_destroy(gpointer p)
695 {
696     struct page_entry *pe = p;
697 
698     g_assert(pe->locked);
699     page_unlock(pe->pd);
700     g_free(pe);
701 }
702 
703 /* returns false on success */
704 static bool page_entry_trylock(struct page_entry *pe)
705 {
706     bool busy;
707 
708     busy = qemu_spin_trylock(&pe->pd->lock);
709     if (!busy) {
710         g_assert(!pe->locked);
711         pe->locked = true;
712         page_lock__debug(pe->pd);
713     }
714     return busy;
715 }
716 
717 static void do_page_entry_lock(struct page_entry *pe)
718 {
719     page_lock(pe->pd);
720     g_assert(!pe->locked);
721     pe->locked = true;
722 }
723 
724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
725 {
726     struct page_entry *pe = value;
727 
728     do_page_entry_lock(pe);
729     return FALSE;
730 }
731 
732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
733 {
734     struct page_entry *pe = value;
735 
736     if (pe->locked) {
737         pe->locked = false;
738         page_unlock(pe->pd);
739     }
740     return FALSE;
741 }
742 
743 /*
744  * Trylock a page, and if successful, add the page to a collection.
745  * Returns true ("busy") if the page could not be locked; false otherwise.
746  */
747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
748 {
749     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
750     struct page_entry *pe;
751     PageDesc *pd;
752 
753     pe = g_tree_lookup(set->tree, &index);
754     if (pe) {
755         return false;
756     }
757 
758     pd = page_find(index);
759     if (pd == NULL) {
760         return false;
761     }
762 
763     pe = page_entry_new(pd, index);
764     g_tree_insert(set->tree, &pe->index, pe);
765 
766     /*
767      * If this is either (1) the first insertion or (2) a page whose index
768      * is higher than any other so far, just lock the page and move on.
769      */
770     if (set->max == NULL || pe->index > set->max->index) {
771         set->max = pe;
772         do_page_entry_lock(pe);
773         return false;
774     }
775     /*
776      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
777      * locks in order.
778      */
779     return page_entry_trylock(pe);
780 }
781 
782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
783 {
784     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
785     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
786 
787     if (a == b) {
788         return 0;
789     } else if (a < b) {
790         return -1;
791     }
792     return 1;
793 }
794 
795 /*
796  * Lock a range of pages ([@start,@end[) as well as the pages of all
797  * intersecting TBs.
798  * Locking order: acquire locks in ascending order of page index.
799  */
800 struct page_collection *
801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
802 {
803     struct page_collection *set = g_malloc(sizeof(*set));
804     tb_page_addr_t index;
805     PageDesc *pd;
806 
807     start >>= TARGET_PAGE_BITS;
808     end   >>= TARGET_PAGE_BITS;
809     g_assert(start <= end);
810 
811     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
812                                 page_entry_destroy);
813     set->max = NULL;
814     assert_no_pages_locked();
815 
816  retry:
817     g_tree_foreach(set->tree, page_entry_lock, NULL);
818 
819     for (index = start; index <= end; index++) {
820         TranslationBlock *tb;
821         int n;
822 
823         pd = page_find(index);
824         if (pd == NULL) {
825             continue;
826         }
827         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
828             g_tree_foreach(set->tree, page_entry_unlock, NULL);
829             goto retry;
830         }
831         assert_page_locked(pd);
832         PAGE_FOR_EACH_TB(pd, tb, n) {
833             if (page_trylock_add(set, tb->page_addr[0]) ||
834                 (tb->page_addr[1] != -1 &&
835                  page_trylock_add(set, tb->page_addr[1]))) {
836                 /* drop all locks, and reacquire in order */
837                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
838                 goto retry;
839             }
840         }
841     }
842     return set;
843 }
844 
845 void page_collection_unlock(struct page_collection *set)
846 {
847     /* entries are unlocked and freed via page_entry_destroy */
848     g_tree_destroy(set->tree);
849     g_free(set);
850 }
851 
852 #endif /* !CONFIG_USER_ONLY */
853 
854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
855                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
856 {
857     PageDesc *p1, *p2;
858     tb_page_addr_t page1;
859     tb_page_addr_t page2;
860 
861     assert_memory_lock();
862     g_assert(phys1 != -1);
863 
864     page1 = phys1 >> TARGET_PAGE_BITS;
865     page2 = phys2 >> TARGET_PAGE_BITS;
866 
867     p1 = page_find_alloc(page1, alloc);
868     if (ret_p1) {
869         *ret_p1 = p1;
870     }
871     if (likely(phys2 == -1)) {
872         page_lock(p1);
873         return;
874     } else if (page1 == page2) {
875         page_lock(p1);
876         if (ret_p2) {
877             *ret_p2 = p1;
878         }
879         return;
880     }
881     p2 = page_find_alloc(page2, alloc);
882     if (ret_p2) {
883         *ret_p2 = p2;
884     }
885     if (page1 < page2) {
886         page_lock(p1);
887         page_lock(p2);
888     } else {
889         page_lock(p2);
890         page_lock(p1);
891     }
892 }
893 
894 #if defined(CONFIG_USER_ONLY)
895 /* Currently it is not recommended to allocate big chunks of data in
896    user mode. It will change when a dedicated libc will be used.  */
897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
898    region in which the guest needs to run.  Revisit this.  */
899 #define USE_STATIC_CODE_GEN_BUFFER
900 #endif
901 
902 /* Minimum size of the code gen buffer.  This number is randomly chosen,
903    but not so small that we can't have a fair number of TB's live.  */
904 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
905 
906 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
907    indicated, this is constrained by the range of direct branches on the
908    host cpu, as used by the TCG implementation of goto_tb.  */
909 #if defined(__x86_64__)
910 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
911 #elif defined(__sparc__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc64__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
915 #elif defined(__powerpc__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
917 #elif defined(__aarch64__)
918 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
919 #elif defined(__s390x__)
920   /* We have a +- 4GB range on the branches; leave some slop.  */
921 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
922 #elif defined(__mips__)
923   /* We have a 256MB branch region, but leave room to make sure the
924      main executable is also within that region.  */
925 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
926 #else
927 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
928 #endif
929 
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
931 
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
933   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
934    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
935 
936 static inline size_t size_code_gen_buffer(size_t tb_size)
937 {
938     /* Size the buffer.  */
939     if (tb_size == 0) {
940 #ifdef USE_STATIC_CODE_GEN_BUFFER
941         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
942 #else
943         /* ??? Needs adjustments.  */
944         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
945            static buffer, we could size this on RESERVED_VA, on the text
946            segment size of the executable, or continue to use the default.  */
947         tb_size = (unsigned long)(ram_size / 4);
948 #endif
949     }
950     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
951         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
952     }
953     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
954         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
955     }
956     return tb_size;
957 }
958 
959 #ifdef __mips__
960 /* In order to use J and JAL within the code_gen_buffer, we require
961    that the buffer not cross a 256MB boundary.  */
962 static inline bool cross_256mb(void *addr, size_t size)
963 {
964     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
965 }
966 
967 /* We weren't able to allocate a buffer without crossing that boundary,
968    so make do with the larger portion of the buffer that doesn't cross.
969    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
970 static inline void *split_cross_256mb(void *buf1, size_t size1)
971 {
972     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
973     size_t size2 = buf1 + size1 - buf2;
974 
975     size1 = buf2 - buf1;
976     if (size1 < size2) {
977         size1 = size2;
978         buf1 = buf2;
979     }
980 
981     tcg_ctx->code_gen_buffer_size = size1;
982     return buf1;
983 }
984 #endif
985 
986 #ifdef USE_STATIC_CODE_GEN_BUFFER
987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
988     __attribute__((aligned(CODE_GEN_ALIGN)));
989 
990 static inline void *alloc_code_gen_buffer(void)
991 {
992     void *buf = static_code_gen_buffer;
993     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
994     size_t size;
995 
996     /* page-align the beginning and end of the buffer */
997     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
998     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
999 
1000     size = end - buf;
1001 
1002     /* Honor a command-line option limiting the size of the buffer.  */
1003     if (size > tcg_ctx->code_gen_buffer_size) {
1004         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1005                                qemu_real_host_page_size);
1006     }
1007     tcg_ctx->code_gen_buffer_size = size;
1008 
1009 #ifdef __mips__
1010     if (cross_256mb(buf, size)) {
1011         buf = split_cross_256mb(buf, size);
1012         size = tcg_ctx->code_gen_buffer_size;
1013     }
1014 #endif
1015 
1016     if (qemu_mprotect_rwx(buf, size)) {
1017         abort();
1018     }
1019     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1020 
1021     return buf;
1022 }
1023 #elif defined(_WIN32)
1024 static inline void *alloc_code_gen_buffer(void)
1025 {
1026     size_t size = tcg_ctx->code_gen_buffer_size;
1027     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1028                         PAGE_EXECUTE_READWRITE);
1029 }
1030 #else
1031 static inline void *alloc_code_gen_buffer(void)
1032 {
1033     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1034     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1035     uintptr_t start = 0;
1036     size_t size = tcg_ctx->code_gen_buffer_size;
1037     void *buf;
1038 
1039     /* Constrain the position of the buffer based on the host cpu.
1040        Note that these addresses are chosen in concert with the
1041        addresses assigned in the relevant linker script file.  */
1042 # if defined(__PIE__) || defined(__PIC__)
1043     /* Don't bother setting a preferred location if we're building
1044        a position-independent executable.  We're more likely to get
1045        an address near the main executable if we let the kernel
1046        choose the address.  */
1047 # elif defined(__x86_64__) && defined(MAP_32BIT)
1048     /* Force the memory down into low memory with the executable.
1049        Leave the choice of exact location with the kernel.  */
1050     flags |= MAP_32BIT;
1051     /* Cannot expect to map more than 800MB in low memory.  */
1052     if (size > 800u * 1024 * 1024) {
1053         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1054     }
1055 # elif defined(__sparc__)
1056     start = 0x40000000ul;
1057 # elif defined(__s390x__)
1058     start = 0x90000000ul;
1059 # elif defined(__mips__)
1060 #  if _MIPS_SIM == _ABI64
1061     start = 0x128000000ul;
1062 #  else
1063     start = 0x08000000ul;
1064 #  endif
1065 # endif
1066 
1067     buf = mmap((void *)start, size, prot, flags, -1, 0);
1068     if (buf == MAP_FAILED) {
1069         return NULL;
1070     }
1071 
1072 #ifdef __mips__
1073     if (cross_256mb(buf, size)) {
1074         /* Try again, with the original still mapped, to avoid re-acquiring
1075            that 256mb crossing.  This time don't specify an address.  */
1076         size_t size2;
1077         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1078         switch ((int)(buf2 != MAP_FAILED)) {
1079         case 1:
1080             if (!cross_256mb(buf2, size)) {
1081                 /* Success!  Use the new buffer.  */
1082                 munmap(buf, size);
1083                 break;
1084             }
1085             /* Failure.  Work with what we had.  */
1086             munmap(buf2, size);
1087             /* fallthru */
1088         default:
1089             /* Split the original buffer.  Free the smaller half.  */
1090             buf2 = split_cross_256mb(buf, size);
1091             size2 = tcg_ctx->code_gen_buffer_size;
1092             if (buf == buf2) {
1093                 munmap(buf + size2, size - size2);
1094             } else {
1095                 munmap(buf, size - size2);
1096             }
1097             size = size2;
1098             break;
1099         }
1100         buf = buf2;
1101     }
1102 #endif
1103 
1104     /* Request large pages for the buffer.  */
1105     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1106 
1107     return buf;
1108 }
1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1110 
1111 static inline void code_gen_alloc(size_t tb_size)
1112 {
1113     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1114     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1115     if (tcg_ctx->code_gen_buffer == NULL) {
1116         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1117         exit(1);
1118     }
1119 }
1120 
1121 static bool tb_cmp(const void *ap, const void *bp)
1122 {
1123     const TranslationBlock *a = ap;
1124     const TranslationBlock *b = bp;
1125 
1126     return a->pc == b->pc &&
1127         a->cs_base == b->cs_base &&
1128         a->flags == b->flags &&
1129         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1130         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1131         a->page_addr[0] == b->page_addr[0] &&
1132         a->page_addr[1] == b->page_addr[1];
1133 }
1134 
1135 static void tb_htable_init(void)
1136 {
1137     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1138 
1139     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1140 }
1141 
1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1143    (in bytes) allocated to the translation buffer. Zero means default
1144    size. */
1145 void tcg_exec_init(unsigned long tb_size)
1146 {
1147     tcg_allowed = true;
1148     cpu_gen_init();
1149     page_init();
1150     tb_htable_init();
1151     code_gen_alloc(tb_size);
1152 #if defined(CONFIG_SOFTMMU)
1153     /* There's no guest base to take into account, so go ahead and
1154        initialize the prologue now.  */
1155     tcg_prologue_init(tcg_ctx);
1156 #endif
1157 }
1158 
1159 /*
1160  * Allocate a new translation block. Flush the translation buffer if
1161  * too many translation blocks or too much generated code.
1162  */
1163 static TranslationBlock *tb_alloc(target_ulong pc)
1164 {
1165     TranslationBlock *tb;
1166 
1167     assert_memory_lock();
1168 
1169     tb = tcg_tb_alloc(tcg_ctx);
1170     if (unlikely(tb == NULL)) {
1171         return NULL;
1172     }
1173     return tb;
1174 }
1175 
1176 /* call with @p->lock held */
1177 static inline void invalidate_page_bitmap(PageDesc *p)
1178 {
1179     assert_page_locked(p);
1180 #ifdef CONFIG_SOFTMMU
1181     g_free(p->code_bitmap);
1182     p->code_bitmap = NULL;
1183     p->code_write_count = 0;
1184 #endif
1185 }
1186 
1187 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1188 static void page_flush_tb_1(int level, void **lp)
1189 {
1190     int i;
1191 
1192     if (*lp == NULL) {
1193         return;
1194     }
1195     if (level == 0) {
1196         PageDesc *pd = *lp;
1197 
1198         for (i = 0; i < V_L2_SIZE; ++i) {
1199             page_lock(&pd[i]);
1200             pd[i].first_tb = (uintptr_t)NULL;
1201             invalidate_page_bitmap(pd + i);
1202             page_unlock(&pd[i]);
1203         }
1204     } else {
1205         void **pp = *lp;
1206 
1207         for (i = 0; i < V_L2_SIZE; ++i) {
1208             page_flush_tb_1(level - 1, pp + i);
1209         }
1210     }
1211 }
1212 
1213 static void page_flush_tb(void)
1214 {
1215     int i, l1_sz = v_l1_size;
1216 
1217     for (i = 0; i < l1_sz; i++) {
1218         page_flush_tb_1(v_l2_levels, l1_map + i);
1219     }
1220 }
1221 
1222 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1223 {
1224     const TranslationBlock *tb = value;
1225     size_t *size = data;
1226 
1227     *size += tb->tc.size;
1228     return false;
1229 }
1230 
1231 /* flush all the translation blocks */
1232 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1233 {
1234     mmap_lock();
1235     /* If it is already been done on request of another CPU,
1236      * just retry.
1237      */
1238     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1239         goto done;
1240     }
1241 
1242     if (DEBUG_TB_FLUSH_GATE) {
1243         size_t nb_tbs = tcg_nb_tbs();
1244         size_t host_size = 0;
1245 
1246         tcg_tb_foreach(tb_host_size_iter, &host_size);
1247         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1248                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1249     }
1250 
1251     CPU_FOREACH(cpu) {
1252         cpu_tb_jmp_cache_clear(cpu);
1253     }
1254 
1255     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1256     page_flush_tb();
1257 
1258     tcg_region_reset_all();
1259     /* XXX: flush processor icache at this point if cache flush is
1260        expensive */
1261     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1262 
1263 done:
1264     mmap_unlock();
1265 }
1266 
1267 void tb_flush(CPUState *cpu)
1268 {
1269     if (tcg_enabled()) {
1270         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1271 
1272         if (cpu_in_exclusive_context(cpu)) {
1273             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1274         } else {
1275             async_safe_run_on_cpu(cpu, do_tb_flush,
1276                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1277         }
1278     }
1279 }
1280 
1281 /*
1282  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1283  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1284  * and let the optimizer get rid of them by wrapping their user-only callers
1285  * with if (DEBUG_TB_CHECK_GATE).
1286  */
1287 #ifdef CONFIG_USER_ONLY
1288 
1289 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1290 {
1291     TranslationBlock *tb = p;
1292     target_ulong addr = *(target_ulong *)userp;
1293 
1294     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1295         printf("ERROR invalidate: address=" TARGET_FMT_lx
1296                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1297     }
1298 }
1299 
1300 /* verify that all the pages have correct rights for code
1301  *
1302  * Called with mmap_lock held.
1303  */
1304 static void tb_invalidate_check(target_ulong address)
1305 {
1306     address &= TARGET_PAGE_MASK;
1307     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1308 }
1309 
1310 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1311 {
1312     TranslationBlock *tb = p;
1313     int flags1, flags2;
1314 
1315     flags1 = page_get_flags(tb->pc);
1316     flags2 = page_get_flags(tb->pc + tb->size - 1);
1317     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1318         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1319                (long)tb->pc, tb->size, flags1, flags2);
1320     }
1321 }
1322 
1323 /* verify that all the pages have correct rights for code */
1324 static void tb_page_check(void)
1325 {
1326     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1327 }
1328 
1329 #endif /* CONFIG_USER_ONLY */
1330 
1331 /*
1332  * user-mode: call with mmap_lock held
1333  * !user-mode: call with @pd->lock held
1334  */
1335 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1336 {
1337     TranslationBlock *tb1;
1338     uintptr_t *pprev;
1339     unsigned int n1;
1340 
1341     assert_page_locked(pd);
1342     pprev = &pd->first_tb;
1343     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1344         if (tb1 == tb) {
1345             *pprev = tb1->page_next[n1];
1346             return;
1347         }
1348         pprev = &tb1->page_next[n1];
1349     }
1350     g_assert_not_reached();
1351 }
1352 
1353 /* remove @orig from its @n_orig-th jump list */
1354 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1355 {
1356     uintptr_t ptr, ptr_locked;
1357     TranslationBlock *dest;
1358     TranslationBlock *tb;
1359     uintptr_t *pprev;
1360     int n;
1361 
1362     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1363     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1364     dest = (TranslationBlock *)(ptr & ~1);
1365     if (dest == NULL) {
1366         return;
1367     }
1368 
1369     qemu_spin_lock(&dest->jmp_lock);
1370     /*
1371      * While acquiring the lock, the jump might have been removed if the
1372      * destination TB was invalidated; check again.
1373      */
1374     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1375     if (ptr_locked != ptr) {
1376         qemu_spin_unlock(&dest->jmp_lock);
1377         /*
1378          * The only possibility is that the jump was unlinked via
1379          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1380          * because we set the LSB above.
1381          */
1382         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1383         return;
1384     }
1385     /*
1386      * We first acquired the lock, and since the destination pointer matches,
1387      * we know for sure that @orig is in the jmp list.
1388      */
1389     pprev = &dest->jmp_list_head;
1390     TB_FOR_EACH_JMP(dest, tb, n) {
1391         if (tb == orig && n == n_orig) {
1392             *pprev = tb->jmp_list_next[n];
1393             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1394             qemu_spin_unlock(&dest->jmp_lock);
1395             return;
1396         }
1397         pprev = &tb->jmp_list_next[n];
1398     }
1399     g_assert_not_reached();
1400 }
1401 
1402 /* reset the jump entry 'n' of a TB so that it is not chained to
1403    another TB */
1404 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1405 {
1406     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1407     tb_set_jmp_target(tb, n, addr);
1408 }
1409 
1410 /* remove any jumps to the TB */
1411 static inline void tb_jmp_unlink(TranslationBlock *dest)
1412 {
1413     TranslationBlock *tb;
1414     int n;
1415 
1416     qemu_spin_lock(&dest->jmp_lock);
1417 
1418     TB_FOR_EACH_JMP(dest, tb, n) {
1419         tb_reset_jump(tb, n);
1420         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1421         /* No need to clear the list entry; setting the dest ptr is enough */
1422     }
1423     dest->jmp_list_head = (uintptr_t)NULL;
1424 
1425     qemu_spin_unlock(&dest->jmp_lock);
1426 }
1427 
1428 /*
1429  * In user-mode, call with mmap_lock held.
1430  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1431  * locks held.
1432  */
1433 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1434 {
1435     CPUState *cpu;
1436     PageDesc *p;
1437     uint32_t h;
1438     tb_page_addr_t phys_pc;
1439 
1440     assert_memory_lock();
1441 
1442     /* make sure no further incoming jumps will be chained to this TB */
1443     qemu_spin_lock(&tb->jmp_lock);
1444     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1445     qemu_spin_unlock(&tb->jmp_lock);
1446 
1447     /* remove the TB from the hash list */
1448     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1449     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1450                      tb->trace_vcpu_dstate);
1451     if (!(tb->cflags & CF_NOCACHE) &&
1452         !qht_remove(&tb_ctx.htable, tb, h)) {
1453         return;
1454     }
1455 
1456     /* remove the TB from the page list */
1457     if (rm_from_page_list) {
1458         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1459         tb_page_remove(p, tb);
1460         invalidate_page_bitmap(p);
1461         if (tb->page_addr[1] != -1) {
1462             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1463             tb_page_remove(p, tb);
1464             invalidate_page_bitmap(p);
1465         }
1466     }
1467 
1468     /* remove the TB from the hash list */
1469     h = tb_jmp_cache_hash_func(tb->pc);
1470     CPU_FOREACH(cpu) {
1471         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1472             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1473         }
1474     }
1475 
1476     /* suppress this TB from the two jump lists */
1477     tb_remove_from_jmp_list(tb, 0);
1478     tb_remove_from_jmp_list(tb, 1);
1479 
1480     /* suppress any remaining jumps to this TB */
1481     tb_jmp_unlink(tb);
1482 
1483     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1484                tcg_ctx->tb_phys_invalidate_count + 1);
1485 }
1486 
1487 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1488 {
1489     do_tb_phys_invalidate(tb, true);
1490 }
1491 
1492 /* invalidate one TB
1493  *
1494  * Called with mmap_lock held in user-mode.
1495  */
1496 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1497 {
1498     if (page_addr == -1 && tb->page_addr[0] != -1) {
1499         page_lock_tb(tb);
1500         do_tb_phys_invalidate(tb, true);
1501         page_unlock_tb(tb);
1502     } else {
1503         do_tb_phys_invalidate(tb, false);
1504     }
1505 }
1506 
1507 #ifdef CONFIG_SOFTMMU
1508 /* call with @p->lock held */
1509 static void build_page_bitmap(PageDesc *p)
1510 {
1511     int n, tb_start, tb_end;
1512     TranslationBlock *tb;
1513 
1514     assert_page_locked(p);
1515     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1516 
1517     PAGE_FOR_EACH_TB(p, tb, n) {
1518         /* NOTE: this is subtle as a TB may span two physical pages */
1519         if (n == 0) {
1520             /* NOTE: tb_end may be after the end of the page, but
1521                it is not a problem */
1522             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1523             tb_end = tb_start + tb->size;
1524             if (tb_end > TARGET_PAGE_SIZE) {
1525                 tb_end = TARGET_PAGE_SIZE;
1526              }
1527         } else {
1528             tb_start = 0;
1529             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1530         }
1531         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1532     }
1533 }
1534 #endif
1535 
1536 /* add the tb in the target page and protect it if necessary
1537  *
1538  * Called with mmap_lock held for user-mode emulation.
1539  * Called with @p->lock held in !user-mode.
1540  */
1541 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1542                                unsigned int n, tb_page_addr_t page_addr)
1543 {
1544 #ifndef CONFIG_USER_ONLY
1545     bool page_already_protected;
1546 #endif
1547 
1548     assert_page_locked(p);
1549 
1550     tb->page_addr[n] = page_addr;
1551     tb->page_next[n] = p->first_tb;
1552 #ifndef CONFIG_USER_ONLY
1553     page_already_protected = p->first_tb != (uintptr_t)NULL;
1554 #endif
1555     p->first_tb = (uintptr_t)tb | n;
1556     invalidate_page_bitmap(p);
1557 
1558 #if defined(CONFIG_USER_ONLY)
1559     if (p->flags & PAGE_WRITE) {
1560         target_ulong addr;
1561         PageDesc *p2;
1562         int prot;
1563 
1564         /* force the host page as non writable (writes will have a
1565            page fault + mprotect overhead) */
1566         page_addr &= qemu_host_page_mask;
1567         prot = 0;
1568         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1569             addr += TARGET_PAGE_SIZE) {
1570 
1571             p2 = page_find(addr >> TARGET_PAGE_BITS);
1572             if (!p2) {
1573                 continue;
1574             }
1575             prot |= p2->flags;
1576             p2->flags &= ~PAGE_WRITE;
1577           }
1578         mprotect(g2h(page_addr), qemu_host_page_size,
1579                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1580         if (DEBUG_TB_INVALIDATE_GATE) {
1581             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1582         }
1583     }
1584 #else
1585     /* if some code is already present, then the pages are already
1586        protected. So we handle the case where only the first TB is
1587        allocated in a physical page */
1588     if (!page_already_protected) {
1589         tlb_protect_code(page_addr);
1590     }
1591 #endif
1592 }
1593 
1594 /* add a new TB and link it to the physical page tables. phys_page2 is
1595  * (-1) to indicate that only one page contains the TB.
1596  *
1597  * Called with mmap_lock held for user-mode emulation.
1598  *
1599  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1600  * Note that in !user-mode, another thread might have already added a TB
1601  * for the same block of guest code that @tb corresponds to. In that case,
1602  * the caller should discard the original @tb, and use instead the returned TB.
1603  */
1604 static TranslationBlock *
1605 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1606              tb_page_addr_t phys_page2)
1607 {
1608     PageDesc *p;
1609     PageDesc *p2 = NULL;
1610 
1611     assert_memory_lock();
1612 
1613     if (phys_pc == -1) {
1614         /*
1615          * If the TB is not associated with a physical RAM page then
1616          * it must be a temporary one-insn TB, and we have nothing to do
1617          * except fill in the page_addr[] fields.
1618          */
1619         assert(tb->cflags & CF_NOCACHE);
1620         tb->page_addr[0] = tb->page_addr[1] = -1;
1621         return tb;
1622     }
1623 
1624     /*
1625      * Add the TB to the page list, acquiring first the pages's locks.
1626      * We keep the locks held until after inserting the TB in the hash table,
1627      * so that if the insertion fails we know for sure that the TBs are still
1628      * in the page descriptors.
1629      * Note that inserting into the hash table first isn't an option, since
1630      * we can only insert TBs that are fully initialized.
1631      */
1632     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1633     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1634     if (p2) {
1635         tb_page_add(p2, tb, 1, phys_page2);
1636     } else {
1637         tb->page_addr[1] = -1;
1638     }
1639 
1640     if (!(tb->cflags & CF_NOCACHE)) {
1641         void *existing_tb = NULL;
1642         uint32_t h;
1643 
1644         /* add in the hash table */
1645         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1646                          tb->trace_vcpu_dstate);
1647         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1648 
1649         /* remove TB from the page(s) if we couldn't insert it */
1650         if (unlikely(existing_tb)) {
1651             tb_page_remove(p, tb);
1652             invalidate_page_bitmap(p);
1653             if (p2) {
1654                 tb_page_remove(p2, tb);
1655                 invalidate_page_bitmap(p2);
1656             }
1657             tb = existing_tb;
1658         }
1659     }
1660 
1661     if (p2 && p2 != p) {
1662         page_unlock(p2);
1663     }
1664     page_unlock(p);
1665 
1666 #ifdef CONFIG_USER_ONLY
1667     if (DEBUG_TB_CHECK_GATE) {
1668         tb_page_check();
1669     }
1670 #endif
1671     return tb;
1672 }
1673 
1674 /* Called with mmap_lock held for user mode emulation.  */
1675 TranslationBlock *tb_gen_code(CPUState *cpu,
1676                               target_ulong pc, target_ulong cs_base,
1677                               uint32_t flags, int cflags)
1678 {
1679     CPUArchState *env = cpu->env_ptr;
1680     TranslationBlock *tb, *existing_tb;
1681     tb_page_addr_t phys_pc, phys_page2;
1682     target_ulong virt_page2;
1683     tcg_insn_unit *gen_code_buf;
1684     int gen_code_size, search_size, max_insns;
1685 #ifdef CONFIG_PROFILER
1686     TCGProfile *prof = &tcg_ctx->prof;
1687     int64_t ti;
1688 #endif
1689     assert_memory_lock();
1690 
1691     phys_pc = get_page_addr_code(env, pc);
1692 
1693     if (phys_pc == -1) {
1694         /* Generate a temporary TB with 1 insn in it */
1695         cflags &= ~CF_COUNT_MASK;
1696         cflags |= CF_NOCACHE | 1;
1697     }
1698 
1699     cflags &= ~CF_CLUSTER_MASK;
1700     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1701 
1702     max_insns = cflags & CF_COUNT_MASK;
1703     if (max_insns == 0) {
1704         max_insns = CF_COUNT_MASK;
1705     }
1706     if (max_insns > TCG_MAX_INSNS) {
1707         max_insns = TCG_MAX_INSNS;
1708     }
1709     if (cpu->singlestep_enabled || singlestep) {
1710         max_insns = 1;
1711     }
1712 
1713  buffer_overflow:
1714     tb = tb_alloc(pc);
1715     if (unlikely(!tb)) {
1716         /* flush must be done */
1717         tb_flush(cpu);
1718         mmap_unlock();
1719         /* Make the execution loop process the flush as soon as possible.  */
1720         cpu->exception_index = EXCP_INTERRUPT;
1721         cpu_loop_exit(cpu);
1722     }
1723 
1724     gen_code_buf = tcg_ctx->code_gen_ptr;
1725     tb->tc.ptr = gen_code_buf;
1726     tb->pc = pc;
1727     tb->cs_base = cs_base;
1728     tb->flags = flags;
1729     tb->cflags = cflags;
1730     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1731     tcg_ctx->tb_cflags = cflags;
1732  tb_overflow:
1733 
1734 #ifdef CONFIG_PROFILER
1735     /* includes aborted translations because of exceptions */
1736     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1737     ti = profile_getclock();
1738 #endif
1739 
1740     tcg_func_start(tcg_ctx);
1741 
1742     tcg_ctx->cpu = env_cpu(env);
1743     gen_intermediate_code(cpu, tb, max_insns);
1744     tcg_ctx->cpu = NULL;
1745 
1746     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1747 
1748     /* generate machine code */
1749     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1750     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1751     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1752     if (TCG_TARGET_HAS_direct_jump) {
1753         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1754         tcg_ctx->tb_jmp_target_addr = NULL;
1755     } else {
1756         tcg_ctx->tb_jmp_insn_offset = NULL;
1757         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1758     }
1759 
1760 #ifdef CONFIG_PROFILER
1761     atomic_set(&prof->tb_count, prof->tb_count + 1);
1762     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1763     ti = profile_getclock();
1764 #endif
1765 
1766     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1767     if (unlikely(gen_code_size < 0)) {
1768         switch (gen_code_size) {
1769         case -1:
1770             /*
1771              * Overflow of code_gen_buffer, or the current slice of it.
1772              *
1773              * TODO: We don't need to re-do gen_intermediate_code, nor
1774              * should we re-do the tcg optimization currently hidden
1775              * inside tcg_gen_code.  All that should be required is to
1776              * flush the TBs, allocate a new TB, re-initialize it per
1777              * above, and re-do the actual code generation.
1778              */
1779             goto buffer_overflow;
1780 
1781         case -2:
1782             /*
1783              * The code generated for the TranslationBlock is too large.
1784              * The maximum size allowed by the unwind info is 64k.
1785              * There may be stricter constraints from relocations
1786              * in the tcg backend.
1787              *
1788              * Try again with half as many insns as we attempted this time.
1789              * If a single insn overflows, there's a bug somewhere...
1790              */
1791             max_insns = tb->icount;
1792             assert(max_insns > 1);
1793             max_insns /= 2;
1794             goto tb_overflow;
1795 
1796         default:
1797             g_assert_not_reached();
1798         }
1799     }
1800     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1801     if (unlikely(search_size < 0)) {
1802         goto buffer_overflow;
1803     }
1804     tb->tc.size = gen_code_size;
1805 
1806 #ifdef CONFIG_PROFILER
1807     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1808     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1809     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1810     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1811 #endif
1812 
1813 #ifdef DEBUG_DISAS
1814     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1815         qemu_log_in_addr_range(tb->pc)) {
1816         qemu_log_lock();
1817         qemu_log("OUT: [size=%d]\n", gen_code_size);
1818         if (tcg_ctx->data_gen_ptr) {
1819             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1820             size_t data_size = gen_code_size - code_size;
1821             size_t i;
1822 
1823             log_disas(tb->tc.ptr, code_size);
1824 
1825             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1826                 if (sizeof(tcg_target_ulong) == 8) {
1827                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1828                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1829                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1830                 } else {
1831                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1832                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1833                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1834                 }
1835             }
1836         } else {
1837             log_disas(tb->tc.ptr, gen_code_size);
1838         }
1839         qemu_log("\n");
1840         qemu_log_flush();
1841         qemu_log_unlock();
1842     }
1843 #endif
1844 
1845     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1846         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1847                  CODE_GEN_ALIGN));
1848 
1849     /* init jump list */
1850     qemu_spin_init(&tb->jmp_lock);
1851     tb->jmp_list_head = (uintptr_t)NULL;
1852     tb->jmp_list_next[0] = (uintptr_t)NULL;
1853     tb->jmp_list_next[1] = (uintptr_t)NULL;
1854     tb->jmp_dest[0] = (uintptr_t)NULL;
1855     tb->jmp_dest[1] = (uintptr_t)NULL;
1856 
1857     /* init original jump addresses which have been set during tcg_gen_code() */
1858     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1859         tb_reset_jump(tb, 0);
1860     }
1861     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1862         tb_reset_jump(tb, 1);
1863     }
1864 
1865     /* check next page if needed */
1866     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1867     phys_page2 = -1;
1868     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1869         phys_page2 = get_page_addr_code(env, virt_page2);
1870     }
1871     /*
1872      * No explicit memory barrier is required -- tb_link_page() makes the
1873      * TB visible in a consistent state.
1874      */
1875     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1876     /* if the TB already exists, discard what we just translated */
1877     if (unlikely(existing_tb != tb)) {
1878         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1879 
1880         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1881         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1882         return existing_tb;
1883     }
1884     tcg_tb_insert(tb);
1885     return tb;
1886 }
1887 
1888 /*
1889  * @p must be non-NULL.
1890  * user-mode: call with mmap_lock held.
1891  * !user-mode: call with all @pages locked.
1892  */
1893 static void
1894 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1895                                       PageDesc *p, tb_page_addr_t start,
1896                                       tb_page_addr_t end,
1897                                       uintptr_t retaddr)
1898 {
1899     TranslationBlock *tb;
1900     tb_page_addr_t tb_start, tb_end;
1901     int n;
1902 #ifdef TARGET_HAS_PRECISE_SMC
1903     CPUState *cpu = current_cpu;
1904     CPUArchState *env = NULL;
1905     bool current_tb_not_found = retaddr != 0;
1906     bool current_tb_modified = false;
1907     TranslationBlock *current_tb = NULL;
1908     target_ulong current_pc = 0;
1909     target_ulong current_cs_base = 0;
1910     uint32_t current_flags = 0;
1911 #endif /* TARGET_HAS_PRECISE_SMC */
1912 
1913     assert_page_locked(p);
1914 
1915 #if defined(TARGET_HAS_PRECISE_SMC)
1916     if (cpu != NULL) {
1917         env = cpu->env_ptr;
1918     }
1919 #endif
1920 
1921     /* we remove all the TBs in the range [start, end[ */
1922     /* XXX: see if in some cases it could be faster to invalidate all
1923        the code */
1924     PAGE_FOR_EACH_TB(p, tb, n) {
1925         assert_page_locked(p);
1926         /* NOTE: this is subtle as a TB may span two physical pages */
1927         if (n == 0) {
1928             /* NOTE: tb_end may be after the end of the page, but
1929                it is not a problem */
1930             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1931             tb_end = tb_start + tb->size;
1932         } else {
1933             tb_start = tb->page_addr[1];
1934             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1935         }
1936         if (!(tb_end <= start || tb_start >= end)) {
1937 #ifdef TARGET_HAS_PRECISE_SMC
1938             if (current_tb_not_found) {
1939                 current_tb_not_found = false;
1940                 /* now we have a real cpu fault */
1941                 current_tb = tcg_tb_lookup(retaddr);
1942             }
1943             if (current_tb == tb &&
1944                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1945                 /*
1946                  * If we are modifying the current TB, we must stop
1947                  * its execution. We could be more precise by checking
1948                  * that the modification is after the current PC, but it
1949                  * would require a specialized function to partially
1950                  * restore the CPU state.
1951                  */
1952                 current_tb_modified = true;
1953                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1954                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1955                                      &current_flags);
1956             }
1957 #endif /* TARGET_HAS_PRECISE_SMC */
1958             tb_phys_invalidate__locked(tb);
1959         }
1960     }
1961 #if !defined(CONFIG_USER_ONLY)
1962     /* if no code remaining, no need to continue to use slow writes */
1963     if (!p->first_tb) {
1964         invalidate_page_bitmap(p);
1965         tlb_unprotect_code(start);
1966     }
1967 #endif
1968 #ifdef TARGET_HAS_PRECISE_SMC
1969     if (current_tb_modified) {
1970         page_collection_unlock(pages);
1971         /* Force execution of one insn next time.  */
1972         cpu->cflags_next_tb = 1 | curr_cflags();
1973         mmap_unlock();
1974         cpu_loop_exit_noexc(cpu);
1975     }
1976 #endif
1977 }
1978 
1979 /*
1980  * Invalidate all TBs which intersect with the target physical address range
1981  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1982  * 'is_cpu_write_access' should be true if called from a real cpu write
1983  * access: the virtual CPU will exit the current TB if code is modified inside
1984  * this TB.
1985  *
1986  * Called with mmap_lock held for user-mode emulation
1987  */
1988 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1989 {
1990     struct page_collection *pages;
1991     PageDesc *p;
1992 
1993     assert_memory_lock();
1994 
1995     p = page_find(start >> TARGET_PAGE_BITS);
1996     if (p == NULL) {
1997         return;
1998     }
1999     pages = page_collection_lock(start, end);
2000     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2001     page_collection_unlock(pages);
2002 }
2003 
2004 /*
2005  * Invalidate all TBs which intersect with the target physical address range
2006  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2007  * 'is_cpu_write_access' should be true if called from a real cpu write
2008  * access: the virtual CPU will exit the current TB if code is modified inside
2009  * this TB.
2010  *
2011  * Called with mmap_lock held for user-mode emulation.
2012  */
2013 #ifdef CONFIG_SOFTMMU
2014 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2015 #else
2016 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2017 #endif
2018 {
2019     struct page_collection *pages;
2020     tb_page_addr_t next;
2021 
2022     assert_memory_lock();
2023 
2024     pages = page_collection_lock(start, end);
2025     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2026          start < end;
2027          start = next, next += TARGET_PAGE_SIZE) {
2028         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2029         tb_page_addr_t bound = MIN(next, end);
2030 
2031         if (pd == NULL) {
2032             continue;
2033         }
2034         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2035     }
2036     page_collection_unlock(pages);
2037 }
2038 
2039 #ifdef CONFIG_SOFTMMU
2040 /* len must be <= 8 and start must be a multiple of len.
2041  * Called via softmmu_template.h when code areas are written to with
2042  * iothread mutex not held.
2043  *
2044  * Call with all @pages in the range [@start, @start + len[ locked.
2045  */
2046 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2047                                   tb_page_addr_t start, int len,
2048                                   uintptr_t retaddr)
2049 {
2050     PageDesc *p;
2051 
2052     assert_memory_lock();
2053 
2054     p = page_find(start >> TARGET_PAGE_BITS);
2055     if (!p) {
2056         return;
2057     }
2058 
2059     assert_page_locked(p);
2060     if (!p->code_bitmap &&
2061         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2062         build_page_bitmap(p);
2063     }
2064     if (p->code_bitmap) {
2065         unsigned int nr;
2066         unsigned long b;
2067 
2068         nr = start & ~TARGET_PAGE_MASK;
2069         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2070         if (b & ((1 << len) - 1)) {
2071             goto do_invalidate;
2072         }
2073     } else {
2074     do_invalidate:
2075         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2076                                               retaddr);
2077     }
2078 }
2079 #else
2080 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2081  * host PC of the faulting store instruction that caused this invalidate.
2082  * Returns true if the caller needs to abort execution of the current
2083  * TB (because it was modified by this store and the guest CPU has
2084  * precise-SMC semantics).
2085  */
2086 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2087 {
2088     TranslationBlock *tb;
2089     PageDesc *p;
2090     int n;
2091 #ifdef TARGET_HAS_PRECISE_SMC
2092     TranslationBlock *current_tb = NULL;
2093     CPUState *cpu = current_cpu;
2094     CPUArchState *env = NULL;
2095     int current_tb_modified = 0;
2096     target_ulong current_pc = 0;
2097     target_ulong current_cs_base = 0;
2098     uint32_t current_flags = 0;
2099 #endif
2100 
2101     assert_memory_lock();
2102 
2103     addr &= TARGET_PAGE_MASK;
2104     p = page_find(addr >> TARGET_PAGE_BITS);
2105     if (!p) {
2106         return false;
2107     }
2108 
2109 #ifdef TARGET_HAS_PRECISE_SMC
2110     if (p->first_tb && pc != 0) {
2111         current_tb = tcg_tb_lookup(pc);
2112     }
2113     if (cpu != NULL) {
2114         env = cpu->env_ptr;
2115     }
2116 #endif
2117     assert_page_locked(p);
2118     PAGE_FOR_EACH_TB(p, tb, n) {
2119 #ifdef TARGET_HAS_PRECISE_SMC
2120         if (current_tb == tb &&
2121             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2122                 /* If we are modifying the current TB, we must stop
2123                    its execution. We could be more precise by checking
2124                    that the modification is after the current PC, but it
2125                    would require a specialized function to partially
2126                    restore the CPU state */
2127 
2128             current_tb_modified = 1;
2129             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2130             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2131                                  &current_flags);
2132         }
2133 #endif /* TARGET_HAS_PRECISE_SMC */
2134         tb_phys_invalidate(tb, addr);
2135     }
2136     p->first_tb = (uintptr_t)NULL;
2137 #ifdef TARGET_HAS_PRECISE_SMC
2138     if (current_tb_modified) {
2139         /* Force execution of one insn next time.  */
2140         cpu->cflags_next_tb = 1 | curr_cflags();
2141         return true;
2142     }
2143 #endif
2144 
2145     return false;
2146 }
2147 #endif
2148 
2149 /* user-mode: call with mmap_lock held */
2150 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2151 {
2152     TranslationBlock *tb;
2153 
2154     assert_memory_lock();
2155 
2156     tb = tcg_tb_lookup(retaddr);
2157     if (tb) {
2158         /* We can use retranslation to find the PC.  */
2159         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2160         tb_phys_invalidate(tb, -1);
2161     } else {
2162         /* The exception probably happened in a helper.  The CPU state should
2163            have been saved before calling it. Fetch the PC from there.  */
2164         CPUArchState *env = cpu->env_ptr;
2165         target_ulong pc, cs_base;
2166         tb_page_addr_t addr;
2167         uint32_t flags;
2168 
2169         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2170         addr = get_page_addr_code(env, pc);
2171         if (addr != -1) {
2172             tb_invalidate_phys_range(addr, addr + 1);
2173         }
2174     }
2175 }
2176 
2177 #ifndef CONFIG_USER_ONLY
2178 /* in deterministic execution mode, instructions doing device I/Os
2179  * must be at the end of the TB.
2180  *
2181  * Called by softmmu_template.h, with iothread mutex not held.
2182  */
2183 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2184 {
2185 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2186     CPUArchState *env = cpu->env_ptr;
2187 #endif
2188     TranslationBlock *tb;
2189     uint32_t n;
2190 
2191     tb = tcg_tb_lookup(retaddr);
2192     if (!tb) {
2193         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2194                   (void *)retaddr);
2195     }
2196     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2197 
2198     /* On MIPS and SH, delay slot instructions can only be restarted if
2199        they were already the first instruction in the TB.  If this is not
2200        the first instruction in a TB then re-execute the preceding
2201        branch.  */
2202     n = 1;
2203 #if defined(TARGET_MIPS)
2204     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2205         && env->active_tc.PC != tb->pc) {
2206         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2207         cpu_neg(cpu)->icount_decr.u16.low++;
2208         env->hflags &= ~MIPS_HFLAG_BMASK;
2209         n = 2;
2210     }
2211 #elif defined(TARGET_SH4)
2212     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2213         && env->pc != tb->pc) {
2214         env->pc -= 2;
2215         cpu_neg(cpu)->icount_decr.u16.low++;
2216         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2217         n = 2;
2218     }
2219 #endif
2220 
2221     /* Generate a new TB executing the I/O insn.  */
2222     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2223 
2224     if (tb_cflags(tb) & CF_NOCACHE) {
2225         if (tb->orig_tb) {
2226             /* Invalidate original TB if this TB was generated in
2227              * cpu_exec_nocache() */
2228             tb_phys_invalidate(tb->orig_tb, -1);
2229         }
2230         tcg_tb_remove(tb);
2231     }
2232 
2233     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2234      * the first in the TB) then we end up generating a whole new TB and
2235      *  repeating the fault, which is horribly inefficient.
2236      *  Better would be to execute just this insn uncached, or generate a
2237      *  second new TB.
2238      */
2239     cpu_loop_exit_noexc(cpu);
2240 }
2241 
2242 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2243 {
2244     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2245 
2246     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2247         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2248     }
2249 }
2250 
2251 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2252 {
2253     /* Discard jump cache entries for any tb which might potentially
2254        overlap the flushed page.  */
2255     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2256     tb_jmp_cache_clear_page(cpu, addr);
2257 }
2258 
2259 static void print_qht_statistics(struct qht_stats hst)
2260 {
2261     uint32_t hgram_opts;
2262     size_t hgram_bins;
2263     char *hgram;
2264 
2265     if (!hst.head_buckets) {
2266         return;
2267     }
2268     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2269                 hst.used_head_buckets, hst.head_buckets,
2270                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2271 
2272     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2273     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2274     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2275         hgram_opts |= QDIST_PR_NODECIMAL;
2276     }
2277     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2278     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2279                 qdist_avg(&hst.occupancy) * 100, hgram);
2280     g_free(hgram);
2281 
2282     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2283     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2284     if (hgram_bins > 10) {
2285         hgram_bins = 10;
2286     } else {
2287         hgram_bins = 0;
2288         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2289     }
2290     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2291     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2292                 qdist_avg(&hst.chain), hgram);
2293     g_free(hgram);
2294 }
2295 
2296 struct tb_tree_stats {
2297     size_t nb_tbs;
2298     size_t host_size;
2299     size_t target_size;
2300     size_t max_target_size;
2301     size_t direct_jmp_count;
2302     size_t direct_jmp2_count;
2303     size_t cross_page;
2304 };
2305 
2306 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2307 {
2308     const TranslationBlock *tb = value;
2309     struct tb_tree_stats *tst = data;
2310 
2311     tst->nb_tbs++;
2312     tst->host_size += tb->tc.size;
2313     tst->target_size += tb->size;
2314     if (tb->size > tst->max_target_size) {
2315         tst->max_target_size = tb->size;
2316     }
2317     if (tb->page_addr[1] != -1) {
2318         tst->cross_page++;
2319     }
2320     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2321         tst->direct_jmp_count++;
2322         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2323             tst->direct_jmp2_count++;
2324         }
2325     }
2326     return false;
2327 }
2328 
2329 void dump_exec_info(void)
2330 {
2331     struct tb_tree_stats tst = {};
2332     struct qht_stats hst;
2333     size_t nb_tbs, flush_full, flush_part, flush_elide;
2334 
2335     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2336     nb_tbs = tst.nb_tbs;
2337     /* XXX: avoid using doubles ? */
2338     qemu_printf("Translation buffer state:\n");
2339     /*
2340      * Report total code size including the padding and TB structs;
2341      * otherwise users might think "-tb-size" is not honoured.
2342      * For avg host size we use the precise numbers from tb_tree_stats though.
2343      */
2344     qemu_printf("gen code size       %zu/%zu\n",
2345                 tcg_code_size(), tcg_code_capacity());
2346     qemu_printf("TB count            %zu\n", nb_tbs);
2347     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2348                 nb_tbs ? tst.target_size / nb_tbs : 0,
2349                 tst.max_target_size);
2350     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2351                 nb_tbs ? tst.host_size / nb_tbs : 0,
2352                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2353     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2354                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2355     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2356                 tst.direct_jmp_count,
2357                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2358                 tst.direct_jmp2_count,
2359                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2360 
2361     qht_statistics_init(&tb_ctx.htable, &hst);
2362     print_qht_statistics(hst);
2363     qht_statistics_destroy(&hst);
2364 
2365     qemu_printf("\nStatistics:\n");
2366     qemu_printf("TB flush count      %u\n",
2367                 atomic_read(&tb_ctx.tb_flush_count));
2368     qemu_printf("TB invalidate count %zu\n",
2369                 tcg_tb_phys_invalidate_count());
2370 
2371     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2372     qemu_printf("TLB full flushes    %zu\n", flush_full);
2373     qemu_printf("TLB partial flushes %zu\n", flush_part);
2374     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2375     tcg_dump_info();
2376 }
2377 
2378 void dump_opcount_info(void)
2379 {
2380     tcg_dump_op_count();
2381 }
2382 
2383 #else /* CONFIG_USER_ONLY */
2384 
2385 void cpu_interrupt(CPUState *cpu, int mask)
2386 {
2387     g_assert(qemu_mutex_iothread_locked());
2388     cpu->interrupt_request |= mask;
2389     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2390 }
2391 
2392 /*
2393  * Walks guest process memory "regions" one by one
2394  * and calls callback function 'fn' for each region.
2395  */
2396 struct walk_memory_regions_data {
2397     walk_memory_regions_fn fn;
2398     void *priv;
2399     target_ulong start;
2400     int prot;
2401 };
2402 
2403 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2404                                    target_ulong end, int new_prot)
2405 {
2406     if (data->start != -1u) {
2407         int rc = data->fn(data->priv, data->start, end, data->prot);
2408         if (rc != 0) {
2409             return rc;
2410         }
2411     }
2412 
2413     data->start = (new_prot ? end : -1u);
2414     data->prot = new_prot;
2415 
2416     return 0;
2417 }
2418 
2419 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2420                                  target_ulong base, int level, void **lp)
2421 {
2422     target_ulong pa;
2423     int i, rc;
2424 
2425     if (*lp == NULL) {
2426         return walk_memory_regions_end(data, base, 0);
2427     }
2428 
2429     if (level == 0) {
2430         PageDesc *pd = *lp;
2431 
2432         for (i = 0; i < V_L2_SIZE; ++i) {
2433             int prot = pd[i].flags;
2434 
2435             pa = base | (i << TARGET_PAGE_BITS);
2436             if (prot != data->prot) {
2437                 rc = walk_memory_regions_end(data, pa, prot);
2438                 if (rc != 0) {
2439                     return rc;
2440                 }
2441             }
2442         }
2443     } else {
2444         void **pp = *lp;
2445 
2446         for (i = 0; i < V_L2_SIZE; ++i) {
2447             pa = base | ((target_ulong)i <<
2448                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2449             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2450             if (rc != 0) {
2451                 return rc;
2452             }
2453         }
2454     }
2455 
2456     return 0;
2457 }
2458 
2459 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2460 {
2461     struct walk_memory_regions_data data;
2462     uintptr_t i, l1_sz = v_l1_size;
2463 
2464     data.fn = fn;
2465     data.priv = priv;
2466     data.start = -1u;
2467     data.prot = 0;
2468 
2469     for (i = 0; i < l1_sz; i++) {
2470         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2471         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2472         if (rc != 0) {
2473             return rc;
2474         }
2475     }
2476 
2477     return walk_memory_regions_end(&data, 0, 0);
2478 }
2479 
2480 static int dump_region(void *priv, target_ulong start,
2481     target_ulong end, unsigned long prot)
2482 {
2483     FILE *f = (FILE *)priv;
2484 
2485     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2486         " "TARGET_FMT_lx" %c%c%c\n",
2487         start, end, end - start,
2488         ((prot & PAGE_READ) ? 'r' : '-'),
2489         ((prot & PAGE_WRITE) ? 'w' : '-'),
2490         ((prot & PAGE_EXEC) ? 'x' : '-'));
2491 
2492     return 0;
2493 }
2494 
2495 /* dump memory mappings */
2496 void page_dump(FILE *f)
2497 {
2498     const int length = sizeof(target_ulong) * 2;
2499     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2500             length, "start", length, "end", length, "size", "prot");
2501     walk_memory_regions(f, dump_region);
2502 }
2503 
2504 int page_get_flags(target_ulong address)
2505 {
2506     PageDesc *p;
2507 
2508     p = page_find(address >> TARGET_PAGE_BITS);
2509     if (!p) {
2510         return 0;
2511     }
2512     return p->flags;
2513 }
2514 
2515 /* Modify the flags of a page and invalidate the code if necessary.
2516    The flag PAGE_WRITE_ORG is positioned automatically depending
2517    on PAGE_WRITE.  The mmap_lock should already be held.  */
2518 void page_set_flags(target_ulong start, target_ulong end, int flags)
2519 {
2520     target_ulong addr, len;
2521 
2522     /* This function should never be called with addresses outside the
2523        guest address space.  If this assert fires, it probably indicates
2524        a missing call to h2g_valid.  */
2525 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2526     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2527 #endif
2528     assert(start < end);
2529     assert_memory_lock();
2530 
2531     start = start & TARGET_PAGE_MASK;
2532     end = TARGET_PAGE_ALIGN(end);
2533 
2534     if (flags & PAGE_WRITE) {
2535         flags |= PAGE_WRITE_ORG;
2536     }
2537 
2538     for (addr = start, len = end - start;
2539          len != 0;
2540          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2541         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2542 
2543         /* If the write protection bit is set, then we invalidate
2544            the code inside.  */
2545         if (!(p->flags & PAGE_WRITE) &&
2546             (flags & PAGE_WRITE) &&
2547             p->first_tb) {
2548             tb_invalidate_phys_page(addr, 0);
2549         }
2550         p->flags = flags;
2551     }
2552 }
2553 
2554 int page_check_range(target_ulong start, target_ulong len, int flags)
2555 {
2556     PageDesc *p;
2557     target_ulong end;
2558     target_ulong addr;
2559 
2560     /* This function should never be called with addresses outside the
2561        guest address space.  If this assert fires, it probably indicates
2562        a missing call to h2g_valid.  */
2563 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2564     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2565 #endif
2566 
2567     if (len == 0) {
2568         return 0;
2569     }
2570     if (start + len - 1 < start) {
2571         /* We've wrapped around.  */
2572         return -1;
2573     }
2574 
2575     /* must do before we loose bits in the next step */
2576     end = TARGET_PAGE_ALIGN(start + len);
2577     start = start & TARGET_PAGE_MASK;
2578 
2579     for (addr = start, len = end - start;
2580          len != 0;
2581          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2582         p = page_find(addr >> TARGET_PAGE_BITS);
2583         if (!p) {
2584             return -1;
2585         }
2586         if (!(p->flags & PAGE_VALID)) {
2587             return -1;
2588         }
2589 
2590         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2591             return -1;
2592         }
2593         if (flags & PAGE_WRITE) {
2594             if (!(p->flags & PAGE_WRITE_ORG)) {
2595                 return -1;
2596             }
2597             /* unprotect the page if it was put read-only because it
2598                contains translated code */
2599             if (!(p->flags & PAGE_WRITE)) {
2600                 if (!page_unprotect(addr, 0)) {
2601                     return -1;
2602                 }
2603             }
2604         }
2605     }
2606     return 0;
2607 }
2608 
2609 /* called from signal handler: invalidate the code and unprotect the
2610  * page. Return 0 if the fault was not handled, 1 if it was handled,
2611  * and 2 if it was handled but the caller must cause the TB to be
2612  * immediately exited. (We can only return 2 if the 'pc' argument is
2613  * non-zero.)
2614  */
2615 int page_unprotect(target_ulong address, uintptr_t pc)
2616 {
2617     unsigned int prot;
2618     bool current_tb_invalidated;
2619     PageDesc *p;
2620     target_ulong host_start, host_end, addr;
2621 
2622     /* Technically this isn't safe inside a signal handler.  However we
2623        know this only ever happens in a synchronous SEGV handler, so in
2624        practice it seems to be ok.  */
2625     mmap_lock();
2626 
2627     p = page_find(address >> TARGET_PAGE_BITS);
2628     if (!p) {
2629         mmap_unlock();
2630         return 0;
2631     }
2632 
2633     /* if the page was really writable, then we change its
2634        protection back to writable */
2635     if (p->flags & PAGE_WRITE_ORG) {
2636         current_tb_invalidated = false;
2637         if (p->flags & PAGE_WRITE) {
2638             /* If the page is actually marked WRITE then assume this is because
2639              * this thread raced with another one which got here first and
2640              * set the page to PAGE_WRITE and did the TB invalidate for us.
2641              */
2642 #ifdef TARGET_HAS_PRECISE_SMC
2643             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2644             if (current_tb) {
2645                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2646             }
2647 #endif
2648         } else {
2649             host_start = address & qemu_host_page_mask;
2650             host_end = host_start + qemu_host_page_size;
2651 
2652             prot = 0;
2653             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2654                 p = page_find(addr >> TARGET_PAGE_BITS);
2655                 p->flags |= PAGE_WRITE;
2656                 prot |= p->flags;
2657 
2658                 /* and since the content will be modified, we must invalidate
2659                    the corresponding translated code. */
2660                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2661 #ifdef CONFIG_USER_ONLY
2662                 if (DEBUG_TB_CHECK_GATE) {
2663                     tb_invalidate_check(addr);
2664                 }
2665 #endif
2666             }
2667             mprotect((void *)g2h(host_start), qemu_host_page_size,
2668                      prot & PAGE_BITS);
2669         }
2670         mmap_unlock();
2671         /* If current TB was invalidated return to main loop */
2672         return current_tb_invalidated ? 2 : 1;
2673     }
2674     mmap_unlock();
2675     return 0;
2676 }
2677 #endif /* CONFIG_USER_ONLY */
2678 
2679 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2680 void tcg_flush_softmmu_tlb(CPUState *cs)
2681 {
2682 #ifdef CONFIG_SOFTMMU
2683     tlb_flush(cs);
2684 #endif
2685 }
2686