xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 500eb6db)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 
23 #define NO_CPU_IO_DEFS
24 #include "cpu.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg.h"
29 #if defined(CONFIG_USER_ONLY)
30 #include "qemu.h"
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
36 #include <sys/proc.h>
37 #include <machine/profile.h>
38 #define _KERNEL
39 #include <sys/user.h>
40 #undef _KERNEL
41 #undef sigqueue
42 #include <libutil.h>
43 #endif
44 #endif
45 #else
46 #include "exec/ram_addr.h"
47 #endif
48 
49 #include "exec/cputlb.h"
50 #include "exec/tb-hash.h"
51 #include "translate-all.h"
52 #include "qemu/bitmap.h"
53 #include "qemu/error-report.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/timer.h"
56 #include "qemu/main-loop.h"
57 #include "exec/log.h"
58 #include "sysemu/cpus.h"
59 #include "sysemu/tcg.h"
60 
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
65 
66 #ifdef DEBUG_TB_INVALIDATE
67 #define DEBUG_TB_INVALIDATE_GATE 1
68 #else
69 #define DEBUG_TB_INVALIDATE_GATE 0
70 #endif
71 
72 #ifdef DEBUG_TB_FLUSH
73 #define DEBUG_TB_FLUSH_GATE 1
74 #else
75 #define DEBUG_TB_FLUSH_GATE 0
76 #endif
77 
78 #if !defined(CONFIG_USER_ONLY)
79 /* TB consistency checks only implemented for usermode emulation.  */
80 #undef DEBUG_TB_CHECK
81 #endif
82 
83 #ifdef DEBUG_TB_CHECK
84 #define DEBUG_TB_CHECK_GATE 1
85 #else
86 #define DEBUG_TB_CHECK_GATE 0
87 #endif
88 
89 /* Access to the various translations structures need to be serialised via locks
90  * for consistency.
91  * In user-mode emulation access to the memory related structures are protected
92  * with mmap_lock.
93  * In !user-mode we use per-page locks.
94  */
95 #ifdef CONFIG_SOFTMMU
96 #define assert_memory_lock()
97 #else
98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
99 #endif
100 
101 #define SMC_BITMAP_USE_THRESHOLD 10
102 
103 typedef struct PageDesc {
104     /* list of TBs intersecting this ram page */
105     uintptr_t first_tb;
106 #ifdef CONFIG_SOFTMMU
107     /* in order to optimize self modifying code, we count the number
108        of lookups we do to a given page to use a bitmap */
109     unsigned long *code_bitmap;
110     unsigned int code_write_count;
111 #else
112     unsigned long flags;
113 #endif
114 #ifndef CONFIG_USER_ONLY
115     QemuSpin lock;
116 #endif
117 } PageDesc;
118 
119 /**
120  * struct page_entry - page descriptor entry
121  * @pd:     pointer to the &struct PageDesc of the page this entry represents
122  * @index:  page index of the page
123  * @locked: whether the page is locked
124  *
125  * This struct helps us keep track of the locked state of a page, without
126  * bloating &struct PageDesc.
127  *
128  * A page lock protects accesses to all fields of &struct PageDesc.
129  *
130  * See also: &struct page_collection.
131  */
132 struct page_entry {
133     PageDesc *pd;
134     tb_page_addr_t index;
135     bool locked;
136 };
137 
138 /**
139  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
140  * @tree:   Binary search tree (BST) of the pages, with key == page index
141  * @max:    Pointer to the page in @tree with the highest page index
142  *
143  * To avoid deadlock we lock pages in ascending order of page index.
144  * When operating on a set of pages, we need to keep track of them so that
145  * we can lock them in order and also unlock them later. For this we collect
146  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
147  * @tree implementation we use does not provide an O(1) operation to obtain the
148  * highest-ranked element, we use @max to keep track of the inserted page
149  * with the highest index. This is valuable because if a page is not in
150  * the tree and its index is higher than @max's, then we can lock it
151  * without breaking the locking order rule.
152  *
153  * Note on naming: 'struct page_set' would be shorter, but we already have a few
154  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
155  *
156  * See also: page_collection_lock().
157  */
158 struct page_collection {
159     GTree *tree;
160     struct page_entry *max;
161 };
162 
163 /* list iterators for lists of tagged pointers in TranslationBlock */
164 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
165     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
166          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
167              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
168 
169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
170     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
171 
172 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
173     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
174 
175 /* In system mode we want L1_MAP to be based on ram offsets,
176    while in user mode we want it to be based on virtual addresses.  */
177 #if !defined(CONFIG_USER_ONLY)
178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
179 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
182 #endif
183 #else
184 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
185 #endif
186 
187 /* Size of the L2 (and L3, etc) page tables.  */
188 #define V_L2_BITS 10
189 #define V_L2_SIZE (1 << V_L2_BITS)
190 
191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
193                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
194                   * BITS_PER_BYTE);
195 
196 /*
197  * L1 Mapping properties
198  */
199 static int v_l1_size;
200 static int v_l1_shift;
201 static int v_l2_levels;
202 
203 /* The bottom level has pointers to PageDesc, and is indexed by
204  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
205  */
206 #define V_L1_MIN_BITS 4
207 #define V_L1_MAX_BITS (V_L2_BITS + 3)
208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
209 
210 static void *l1_map[V_L1_MAX_SIZE];
211 
212 /* code generation context */
213 TCGContext tcg_init_ctx;
214 __thread TCGContext *tcg_ctx;
215 TBContext tb_ctx;
216 bool parallel_cpus;
217 
218 static void page_table_config_init(void)
219 {
220     uint32_t v_l1_bits;
221 
222     assert(TARGET_PAGE_BITS);
223     /* The bits remaining after N lower levels of page tables.  */
224     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
225     if (v_l1_bits < V_L1_MIN_BITS) {
226         v_l1_bits += V_L2_BITS;
227     }
228 
229     v_l1_size = 1 << v_l1_bits;
230     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
231     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
232 
233     assert(v_l1_bits <= V_L1_MAX_BITS);
234     assert(v_l1_shift % V_L2_BITS == 0);
235     assert(v_l2_levels >= 0);
236 }
237 
238 void cpu_gen_init(void)
239 {
240     tcg_context_init(&tcg_init_ctx);
241 }
242 
243 /* Encode VAL as a signed leb128 sequence at P.
244    Return P incremented past the encoded value.  */
245 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
246 {
247     int more, byte;
248 
249     do {
250         byte = val & 0x7f;
251         val >>= 7;
252         more = !((val == 0 && (byte & 0x40) == 0)
253                  || (val == -1 && (byte & 0x40) != 0));
254         if (more) {
255             byte |= 0x80;
256         }
257         *p++ = byte;
258     } while (more);
259 
260     return p;
261 }
262 
263 /* Decode a signed leb128 sequence at *PP; increment *PP past the
264    decoded value.  Return the decoded value.  */
265 static target_long decode_sleb128(uint8_t **pp)
266 {
267     uint8_t *p = *pp;
268     target_long val = 0;
269     int byte, shift = 0;
270 
271     do {
272         byte = *p++;
273         val |= (target_ulong)(byte & 0x7f) << shift;
274         shift += 7;
275     } while (byte & 0x80);
276     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
277         val |= -(target_ulong)1 << shift;
278     }
279 
280     *pp = p;
281     return val;
282 }
283 
284 /* Encode the data collected about the instructions while compiling TB.
285    Place the data at BLOCK, and return the number of bytes consumed.
286 
287    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
288    which come from the target's insn_start data, followed by a uintptr_t
289    which comes from the host pc of the end of the code implementing the insn.
290 
291    Each line of the table is encoded as sleb128 deltas from the previous
292    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
293    That is, the first column is seeded with the guest pc, the last column
294    with the host pc, and the middle columns with zeros.  */
295 
296 static int encode_search(TranslationBlock *tb, uint8_t *block)
297 {
298     uint8_t *highwater = tcg_ctx->code_gen_highwater;
299     uint8_t *p = block;
300     int i, j, n;
301 
302     for (i = 0, n = tb->icount; i < n; ++i) {
303         target_ulong prev;
304 
305         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
306             if (i == 0) {
307                 prev = (j == 0 ? tb->pc : 0);
308             } else {
309                 prev = tcg_ctx->gen_insn_data[i - 1][j];
310             }
311             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
312         }
313         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
314         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
315 
316         /* Test for (pending) buffer overflow.  The assumption is that any
317            one row beginning below the high water mark cannot overrun
318            the buffer completely.  Thus we can test for overflow after
319            encoding a row without having to check during encoding.  */
320         if (unlikely(p > highwater)) {
321             return -1;
322         }
323     }
324 
325     return p - block;
326 }
327 
328 /* The cpu state corresponding to 'searched_pc' is restored.
329  * When reset_icount is true, current TB will be interrupted and
330  * icount should be recalculated.
331  */
332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
333                                      uintptr_t searched_pc, bool reset_icount)
334 {
335     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
336     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
337     CPUArchState *env = cpu->env_ptr;
338     uint8_t *p = tb->tc.ptr + tb->tc.size;
339     int i, j, num_insns = tb->icount;
340 #ifdef CONFIG_PROFILER
341     TCGProfile *prof = &tcg_ctx->prof;
342     int64_t ti = profile_getclock();
343 #endif
344 
345     searched_pc -= GETPC_ADJ;
346 
347     if (searched_pc < host_pc) {
348         return -1;
349     }
350 
351     /* Reconstruct the stored insn data while looking for the point at
352        which the end of the insn exceeds the searched_pc.  */
353     for (i = 0; i < num_insns; ++i) {
354         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
355             data[j] += decode_sleb128(&p);
356         }
357         host_pc += decode_sleb128(&p);
358         if (host_pc > searched_pc) {
359             goto found;
360         }
361     }
362     return -1;
363 
364  found:
365     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
366         assert(use_icount);
367         /* Reset the cycle counter to the start of the block
368            and shift if to the number of actually executed instructions */
369         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
370     }
371     restore_state_to_opc(env, tb, data);
372 
373 #ifdef CONFIG_PROFILER
374     atomic_set(&prof->restore_time,
375                 prof->restore_time + profile_getclock() - ti);
376     atomic_set(&prof->restore_count, prof->restore_count + 1);
377 #endif
378     return 0;
379 }
380 
381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
382 {
383     TranslationBlock *tb;
384     bool r = false;
385     uintptr_t check_offset;
386 
387     /* The host_pc has to be in the region of current code buffer. If
388      * it is not we will not be able to resolve it here. The two cases
389      * where host_pc will not be correct are:
390      *
391      *  - fault during translation (instruction fetch)
392      *  - fault from helper (not using GETPC() macro)
393      *
394      * Either way we need return early as we can't resolve it here.
395      *
396      * We are using unsigned arithmetic so if host_pc <
397      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
398      * above the code_gen_buffer_size
399      */
400     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
401 
402     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
403         tb = tcg_tb_lookup(host_pc);
404         if (tb) {
405             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
406             if (tb_cflags(tb) & CF_NOCACHE) {
407                 /* one-shot translation, invalidate it immediately */
408                 tb_phys_invalidate(tb, -1);
409                 tcg_tb_remove(tb);
410             }
411             r = true;
412         }
413     }
414 
415     return r;
416 }
417 
418 static void page_init(void)
419 {
420     page_size_init();
421     page_table_config_init();
422 
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424     {
425 #ifdef HAVE_KINFO_GETVMMAP
426         struct kinfo_vmentry *freep;
427         int i, cnt;
428 
429         freep = kinfo_getvmmap(getpid(), &cnt);
430         if (freep) {
431             mmap_lock();
432             for (i = 0; i < cnt; i++) {
433                 unsigned long startaddr, endaddr;
434 
435                 startaddr = freep[i].kve_start;
436                 endaddr = freep[i].kve_end;
437                 if (h2g_valid(startaddr)) {
438                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439 
440                     if (h2g_valid(endaddr)) {
441                         endaddr = h2g(endaddr);
442                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443                     } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445                         endaddr = ~0ul;
446                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448                     }
449                 }
450             }
451             free(freep);
452             mmap_unlock();
453         }
454 #else
455         FILE *f;
456 
457         last_brk = (unsigned long)sbrk(0);
458 
459         f = fopen("/compat/linux/proc/self/maps", "r");
460         if (f) {
461             mmap_lock();
462 
463             do {
464                 unsigned long startaddr, endaddr;
465                 int n;
466 
467                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468 
469                 if (n == 2 && h2g_valid(startaddr)) {
470                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471 
472                     if (h2g_valid(endaddr)) {
473                         endaddr = h2g(endaddr);
474                     } else {
475                         endaddr = ~0ul;
476                     }
477                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478                 }
479             } while (!feof(f));
480 
481             fclose(f);
482             mmap_unlock();
483         }
484 #endif
485     }
486 #endif
487 }
488 
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491     PageDesc *pd;
492     void **lp;
493     int i;
494 
495     /* Level 1.  Always allocated.  */
496     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497 
498     /* Level 2..N-1.  */
499     for (i = v_l2_levels; i > 0; i--) {
500         void **p = atomic_rcu_read(lp);
501 
502         if (p == NULL) {
503             void *existing;
504 
505             if (!alloc) {
506                 return NULL;
507             }
508             p = g_new0(void *, V_L2_SIZE);
509             existing = atomic_cmpxchg(lp, NULL, p);
510             if (unlikely(existing)) {
511                 g_free(p);
512                 p = existing;
513             }
514         }
515 
516         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517     }
518 
519     pd = atomic_rcu_read(lp);
520     if (pd == NULL) {
521         void *existing;
522 
523         if (!alloc) {
524             return NULL;
525         }
526         pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528         {
529             int i;
530 
531             for (i = 0; i < V_L2_SIZE; i++) {
532                 qemu_spin_init(&pd[i].lock);
533             }
534         }
535 #endif
536         existing = atomic_cmpxchg(lp, NULL, pd);
537         if (unlikely(existing)) {
538             g_free(pd);
539             pd = existing;
540         }
541     }
542 
543     return pd + (index & (V_L2_SIZE - 1));
544 }
545 
546 static inline PageDesc *page_find(tb_page_addr_t index)
547 {
548     return page_find_alloc(index, 0);
549 }
550 
551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
552                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
553 
554 /* In user-mode page locks aren't used; mmap_lock is enough */
555 #ifdef CONFIG_USER_ONLY
556 
557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
558 
559 static inline void page_lock(PageDesc *pd)
560 { }
561 
562 static inline void page_unlock(PageDesc *pd)
563 { }
564 
565 static inline void page_lock_tb(const TranslationBlock *tb)
566 { }
567 
568 static inline void page_unlock_tb(const TranslationBlock *tb)
569 { }
570 
571 struct page_collection *
572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
573 {
574     return NULL;
575 }
576 
577 void page_collection_unlock(struct page_collection *set)
578 { }
579 #else /* !CONFIG_USER_ONLY */
580 
581 #ifdef CONFIG_DEBUG_TCG
582 
583 static __thread GHashTable *ht_pages_locked_debug;
584 
585 static void ht_pages_locked_debug_init(void)
586 {
587     if (ht_pages_locked_debug) {
588         return;
589     }
590     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
591 }
592 
593 static bool page_is_locked(const PageDesc *pd)
594 {
595     PageDesc *found;
596 
597     ht_pages_locked_debug_init();
598     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
599     return !!found;
600 }
601 
602 static void page_lock__debug(PageDesc *pd)
603 {
604     ht_pages_locked_debug_init();
605     g_assert(!page_is_locked(pd));
606     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
607 }
608 
609 static void page_unlock__debug(const PageDesc *pd)
610 {
611     bool removed;
612 
613     ht_pages_locked_debug_init();
614     g_assert(page_is_locked(pd));
615     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
616     g_assert(removed);
617 }
618 
619 static void
620 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
621 {
622     if (unlikely(!page_is_locked(pd))) {
623         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
624                      pd, file, line);
625         abort();
626     }
627 }
628 
629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
630 
631 void assert_no_pages_locked(void)
632 {
633     ht_pages_locked_debug_init();
634     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
635 }
636 
637 #else /* !CONFIG_DEBUG_TCG */
638 
639 #define assert_page_locked(pd)
640 
641 static inline void page_lock__debug(const PageDesc *pd)
642 {
643 }
644 
645 static inline void page_unlock__debug(const PageDesc *pd)
646 {
647 }
648 
649 #endif /* CONFIG_DEBUG_TCG */
650 
651 static inline void page_lock(PageDesc *pd)
652 {
653     page_lock__debug(pd);
654     qemu_spin_lock(&pd->lock);
655 }
656 
657 static inline void page_unlock(PageDesc *pd)
658 {
659     qemu_spin_unlock(&pd->lock);
660     page_unlock__debug(pd);
661 }
662 
663 /* lock the page(s) of a TB in the correct acquisition order */
664 static inline void page_lock_tb(const TranslationBlock *tb)
665 {
666     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
667 }
668 
669 static inline void page_unlock_tb(const TranslationBlock *tb)
670 {
671     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
672 
673     page_unlock(p1);
674     if (unlikely(tb->page_addr[1] != -1)) {
675         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
676 
677         if (p2 != p1) {
678             page_unlock(p2);
679         }
680     }
681 }
682 
683 static inline struct page_entry *
684 page_entry_new(PageDesc *pd, tb_page_addr_t index)
685 {
686     struct page_entry *pe = g_malloc(sizeof(*pe));
687 
688     pe->index = index;
689     pe->pd = pd;
690     pe->locked = false;
691     return pe;
692 }
693 
694 static void page_entry_destroy(gpointer p)
695 {
696     struct page_entry *pe = p;
697 
698     g_assert(pe->locked);
699     page_unlock(pe->pd);
700     g_free(pe);
701 }
702 
703 /* returns false on success */
704 static bool page_entry_trylock(struct page_entry *pe)
705 {
706     bool busy;
707 
708     busy = qemu_spin_trylock(&pe->pd->lock);
709     if (!busy) {
710         g_assert(!pe->locked);
711         pe->locked = true;
712         page_lock__debug(pe->pd);
713     }
714     return busy;
715 }
716 
717 static void do_page_entry_lock(struct page_entry *pe)
718 {
719     page_lock(pe->pd);
720     g_assert(!pe->locked);
721     pe->locked = true;
722 }
723 
724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
725 {
726     struct page_entry *pe = value;
727 
728     do_page_entry_lock(pe);
729     return FALSE;
730 }
731 
732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
733 {
734     struct page_entry *pe = value;
735 
736     if (pe->locked) {
737         pe->locked = false;
738         page_unlock(pe->pd);
739     }
740     return FALSE;
741 }
742 
743 /*
744  * Trylock a page, and if successful, add the page to a collection.
745  * Returns true ("busy") if the page could not be locked; false otherwise.
746  */
747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
748 {
749     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
750     struct page_entry *pe;
751     PageDesc *pd;
752 
753     pe = g_tree_lookup(set->tree, &index);
754     if (pe) {
755         return false;
756     }
757 
758     pd = page_find(index);
759     if (pd == NULL) {
760         return false;
761     }
762 
763     pe = page_entry_new(pd, index);
764     g_tree_insert(set->tree, &pe->index, pe);
765 
766     /*
767      * If this is either (1) the first insertion or (2) a page whose index
768      * is higher than any other so far, just lock the page and move on.
769      */
770     if (set->max == NULL || pe->index > set->max->index) {
771         set->max = pe;
772         do_page_entry_lock(pe);
773         return false;
774     }
775     /*
776      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
777      * locks in order.
778      */
779     return page_entry_trylock(pe);
780 }
781 
782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
783 {
784     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
785     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
786 
787     if (a == b) {
788         return 0;
789     } else if (a < b) {
790         return -1;
791     }
792     return 1;
793 }
794 
795 /*
796  * Lock a range of pages ([@start,@end[) as well as the pages of all
797  * intersecting TBs.
798  * Locking order: acquire locks in ascending order of page index.
799  */
800 struct page_collection *
801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
802 {
803     struct page_collection *set = g_malloc(sizeof(*set));
804     tb_page_addr_t index;
805     PageDesc *pd;
806 
807     start >>= TARGET_PAGE_BITS;
808     end   >>= TARGET_PAGE_BITS;
809     g_assert(start <= end);
810 
811     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
812                                 page_entry_destroy);
813     set->max = NULL;
814     assert_no_pages_locked();
815 
816  retry:
817     g_tree_foreach(set->tree, page_entry_lock, NULL);
818 
819     for (index = start; index <= end; index++) {
820         TranslationBlock *tb;
821         int n;
822 
823         pd = page_find(index);
824         if (pd == NULL) {
825             continue;
826         }
827         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
828             g_tree_foreach(set->tree, page_entry_unlock, NULL);
829             goto retry;
830         }
831         assert_page_locked(pd);
832         PAGE_FOR_EACH_TB(pd, tb, n) {
833             if (page_trylock_add(set, tb->page_addr[0]) ||
834                 (tb->page_addr[1] != -1 &&
835                  page_trylock_add(set, tb->page_addr[1]))) {
836                 /* drop all locks, and reacquire in order */
837                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
838                 goto retry;
839             }
840         }
841     }
842     return set;
843 }
844 
845 void page_collection_unlock(struct page_collection *set)
846 {
847     /* entries are unlocked and freed via page_entry_destroy */
848     g_tree_destroy(set->tree);
849     g_free(set);
850 }
851 
852 #endif /* !CONFIG_USER_ONLY */
853 
854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
855                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
856 {
857     PageDesc *p1, *p2;
858     tb_page_addr_t page1;
859     tb_page_addr_t page2;
860 
861     assert_memory_lock();
862     g_assert(phys1 != -1);
863 
864     page1 = phys1 >> TARGET_PAGE_BITS;
865     page2 = phys2 >> TARGET_PAGE_BITS;
866 
867     p1 = page_find_alloc(page1, alloc);
868     if (ret_p1) {
869         *ret_p1 = p1;
870     }
871     if (likely(phys2 == -1)) {
872         page_lock(p1);
873         return;
874     } else if (page1 == page2) {
875         page_lock(p1);
876         if (ret_p2) {
877             *ret_p2 = p1;
878         }
879         return;
880     }
881     p2 = page_find_alloc(page2, alloc);
882     if (ret_p2) {
883         *ret_p2 = p2;
884     }
885     if (page1 < page2) {
886         page_lock(p1);
887         page_lock(p2);
888     } else {
889         page_lock(p2);
890         page_lock(p1);
891     }
892 }
893 
894 #if defined(CONFIG_USER_ONLY)
895 /* Currently it is not recommended to allocate big chunks of data in
896    user mode. It will change when a dedicated libc will be used.  */
897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
898    region in which the guest needs to run.  Revisit this.  */
899 #define USE_STATIC_CODE_GEN_BUFFER
900 #endif
901 
902 /* Minimum size of the code gen buffer.  This number is randomly chosen,
903    but not so small that we can't have a fair number of TB's live.  */
904 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
905 
906 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
907    indicated, this is constrained by the range of direct branches on the
908    host cpu, as used by the TCG implementation of goto_tb.  */
909 #if defined(__x86_64__)
910 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
911 #elif defined(__sparc__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc64__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
915 #elif defined(__powerpc__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
917 #elif defined(__aarch64__)
918 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
919 #elif defined(__s390x__)
920   /* We have a +- 4GB range on the branches; leave some slop.  */
921 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
922 #elif defined(__mips__)
923   /* We have a 256MB branch region, but leave room to make sure the
924      main executable is also within that region.  */
925 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
926 #else
927 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
928 #endif
929 
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
931 
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
933   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
934    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
935 
936 static inline size_t size_code_gen_buffer(size_t tb_size)
937 {
938     /* Size the buffer.  */
939     if (tb_size == 0) {
940 #ifdef USE_STATIC_CODE_GEN_BUFFER
941         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
942 #else
943         /* ??? Needs adjustments.  */
944         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
945            static buffer, we could size this on RESERVED_VA, on the text
946            segment size of the executable, or continue to use the default.  */
947         tb_size = (unsigned long)(ram_size / 4);
948 #endif
949     }
950     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
951         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
952     }
953     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
954         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
955     }
956     return tb_size;
957 }
958 
959 #ifdef __mips__
960 /* In order to use J and JAL within the code_gen_buffer, we require
961    that the buffer not cross a 256MB boundary.  */
962 static inline bool cross_256mb(void *addr, size_t size)
963 {
964     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
965 }
966 
967 /* We weren't able to allocate a buffer without crossing that boundary,
968    so make do with the larger portion of the buffer that doesn't cross.
969    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
970 static inline void *split_cross_256mb(void *buf1, size_t size1)
971 {
972     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
973     size_t size2 = buf1 + size1 - buf2;
974 
975     size1 = buf2 - buf1;
976     if (size1 < size2) {
977         size1 = size2;
978         buf1 = buf2;
979     }
980 
981     tcg_ctx->code_gen_buffer_size = size1;
982     return buf1;
983 }
984 #endif
985 
986 #ifdef USE_STATIC_CODE_GEN_BUFFER
987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
988     __attribute__((aligned(CODE_GEN_ALIGN)));
989 
990 static inline void *alloc_code_gen_buffer(void)
991 {
992     void *buf = static_code_gen_buffer;
993     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
994     size_t size;
995 
996     /* page-align the beginning and end of the buffer */
997     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
998     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
999 
1000     size = end - buf;
1001 
1002     /* Honor a command-line option limiting the size of the buffer.  */
1003     if (size > tcg_ctx->code_gen_buffer_size) {
1004         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1005                                qemu_real_host_page_size);
1006     }
1007     tcg_ctx->code_gen_buffer_size = size;
1008 
1009 #ifdef __mips__
1010     if (cross_256mb(buf, size)) {
1011         buf = split_cross_256mb(buf, size);
1012         size = tcg_ctx->code_gen_buffer_size;
1013     }
1014 #endif
1015 
1016     if (qemu_mprotect_rwx(buf, size)) {
1017         abort();
1018     }
1019     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1020 
1021     return buf;
1022 }
1023 #elif defined(_WIN32)
1024 static inline void *alloc_code_gen_buffer(void)
1025 {
1026     size_t size = tcg_ctx->code_gen_buffer_size;
1027     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1028                         PAGE_EXECUTE_READWRITE);
1029 }
1030 #else
1031 static inline void *alloc_code_gen_buffer(void)
1032 {
1033     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1034     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1035     uintptr_t start = 0;
1036     size_t size = tcg_ctx->code_gen_buffer_size;
1037     void *buf;
1038 
1039     /* Constrain the position of the buffer based on the host cpu.
1040        Note that these addresses are chosen in concert with the
1041        addresses assigned in the relevant linker script file.  */
1042 # if defined(__PIE__) || defined(__PIC__)
1043     /* Don't bother setting a preferred location if we're building
1044        a position-independent executable.  We're more likely to get
1045        an address near the main executable if we let the kernel
1046        choose the address.  */
1047 # elif defined(__x86_64__) && defined(MAP_32BIT)
1048     /* Force the memory down into low memory with the executable.
1049        Leave the choice of exact location with the kernel.  */
1050     flags |= MAP_32BIT;
1051     /* Cannot expect to map more than 800MB in low memory.  */
1052     if (size > 800u * 1024 * 1024) {
1053         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1054     }
1055 # elif defined(__sparc__)
1056     start = 0x40000000ul;
1057 # elif defined(__s390x__)
1058     start = 0x90000000ul;
1059 # elif defined(__mips__)
1060 #  if _MIPS_SIM == _ABI64
1061     start = 0x128000000ul;
1062 #  else
1063     start = 0x08000000ul;
1064 #  endif
1065 # endif
1066 
1067     buf = mmap((void *)start, size, prot, flags, -1, 0);
1068     if (buf == MAP_FAILED) {
1069         return NULL;
1070     }
1071 
1072 #ifdef __mips__
1073     if (cross_256mb(buf, size)) {
1074         /* Try again, with the original still mapped, to avoid re-acquiring
1075            that 256mb crossing.  This time don't specify an address.  */
1076         size_t size2;
1077         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1078         switch ((int)(buf2 != MAP_FAILED)) {
1079         case 1:
1080             if (!cross_256mb(buf2, size)) {
1081                 /* Success!  Use the new buffer.  */
1082                 munmap(buf, size);
1083                 break;
1084             }
1085             /* Failure.  Work with what we had.  */
1086             munmap(buf2, size);
1087             /* fallthru */
1088         default:
1089             /* Split the original buffer.  Free the smaller half.  */
1090             buf2 = split_cross_256mb(buf, size);
1091             size2 = tcg_ctx->code_gen_buffer_size;
1092             if (buf == buf2) {
1093                 munmap(buf + size2, size - size2);
1094             } else {
1095                 munmap(buf, size - size2);
1096             }
1097             size = size2;
1098             break;
1099         }
1100         buf = buf2;
1101     }
1102 #endif
1103 
1104     /* Request large pages for the buffer.  */
1105     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1106 
1107     return buf;
1108 }
1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1110 
1111 static inline void code_gen_alloc(size_t tb_size)
1112 {
1113     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1114     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1115     if (tcg_ctx->code_gen_buffer == NULL) {
1116         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1117         exit(1);
1118     }
1119 }
1120 
1121 static bool tb_cmp(const void *ap, const void *bp)
1122 {
1123     const TranslationBlock *a = ap;
1124     const TranslationBlock *b = bp;
1125 
1126     return a->pc == b->pc &&
1127         a->cs_base == b->cs_base &&
1128         a->flags == b->flags &&
1129         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1130         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1131         a->page_addr[0] == b->page_addr[0] &&
1132         a->page_addr[1] == b->page_addr[1];
1133 }
1134 
1135 static void tb_htable_init(void)
1136 {
1137     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1138 
1139     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1140 }
1141 
1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1143    (in bytes) allocated to the translation buffer. Zero means default
1144    size. */
1145 void tcg_exec_init(unsigned long tb_size)
1146 {
1147     tcg_allowed = true;
1148     cpu_gen_init();
1149     page_init();
1150     tb_htable_init();
1151     code_gen_alloc(tb_size);
1152 #if defined(CONFIG_SOFTMMU)
1153     /* There's no guest base to take into account, so go ahead and
1154        initialize the prologue now.  */
1155     tcg_prologue_init(tcg_ctx);
1156 #endif
1157 }
1158 
1159 /*
1160  * Allocate a new translation block. Flush the translation buffer if
1161  * too many translation blocks or too much generated code.
1162  */
1163 static TranslationBlock *tb_alloc(target_ulong pc)
1164 {
1165     TranslationBlock *tb;
1166 
1167     assert_memory_lock();
1168 
1169     tb = tcg_tb_alloc(tcg_ctx);
1170     if (unlikely(tb == NULL)) {
1171         return NULL;
1172     }
1173     return tb;
1174 }
1175 
1176 /* call with @p->lock held */
1177 static inline void invalidate_page_bitmap(PageDesc *p)
1178 {
1179     assert_page_locked(p);
1180 #ifdef CONFIG_SOFTMMU
1181     g_free(p->code_bitmap);
1182     p->code_bitmap = NULL;
1183     p->code_write_count = 0;
1184 #endif
1185 }
1186 
1187 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1188 static void page_flush_tb_1(int level, void **lp)
1189 {
1190     int i;
1191 
1192     if (*lp == NULL) {
1193         return;
1194     }
1195     if (level == 0) {
1196         PageDesc *pd = *lp;
1197 
1198         for (i = 0; i < V_L2_SIZE; ++i) {
1199             page_lock(&pd[i]);
1200             pd[i].first_tb = (uintptr_t)NULL;
1201             invalidate_page_bitmap(pd + i);
1202             page_unlock(&pd[i]);
1203         }
1204     } else {
1205         void **pp = *lp;
1206 
1207         for (i = 0; i < V_L2_SIZE; ++i) {
1208             page_flush_tb_1(level - 1, pp + i);
1209         }
1210     }
1211 }
1212 
1213 static void page_flush_tb(void)
1214 {
1215     int i, l1_sz = v_l1_size;
1216 
1217     for (i = 0; i < l1_sz; i++) {
1218         page_flush_tb_1(v_l2_levels, l1_map + i);
1219     }
1220 }
1221 
1222 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1223 {
1224     const TranslationBlock *tb = value;
1225     size_t *size = data;
1226 
1227     *size += tb->tc.size;
1228     return false;
1229 }
1230 
1231 /* flush all the translation blocks */
1232 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1233 {
1234     mmap_lock();
1235     /* If it is already been done on request of another CPU,
1236      * just retry.
1237      */
1238     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1239         goto done;
1240     }
1241 
1242     if (DEBUG_TB_FLUSH_GATE) {
1243         size_t nb_tbs = tcg_nb_tbs();
1244         size_t host_size = 0;
1245 
1246         tcg_tb_foreach(tb_host_size_iter, &host_size);
1247         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1248                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1249     }
1250 
1251     CPU_FOREACH(cpu) {
1252         cpu_tb_jmp_cache_clear(cpu);
1253     }
1254 
1255     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1256     page_flush_tb();
1257 
1258     tcg_region_reset_all();
1259     /* XXX: flush processor icache at this point if cache flush is
1260        expensive */
1261     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1262 
1263 done:
1264     mmap_unlock();
1265 }
1266 
1267 void tb_flush(CPUState *cpu)
1268 {
1269     if (tcg_enabled()) {
1270         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1271         async_safe_run_on_cpu(cpu, do_tb_flush,
1272                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1273     }
1274 }
1275 
1276 /*
1277  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1278  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1279  * and let the optimizer get rid of them by wrapping their user-only callers
1280  * with if (DEBUG_TB_CHECK_GATE).
1281  */
1282 #ifdef CONFIG_USER_ONLY
1283 
1284 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1285 {
1286     TranslationBlock *tb = p;
1287     target_ulong addr = *(target_ulong *)userp;
1288 
1289     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1290         printf("ERROR invalidate: address=" TARGET_FMT_lx
1291                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1292     }
1293 }
1294 
1295 /* verify that all the pages have correct rights for code
1296  *
1297  * Called with mmap_lock held.
1298  */
1299 static void tb_invalidate_check(target_ulong address)
1300 {
1301     address &= TARGET_PAGE_MASK;
1302     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1303 }
1304 
1305 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1306 {
1307     TranslationBlock *tb = p;
1308     int flags1, flags2;
1309 
1310     flags1 = page_get_flags(tb->pc);
1311     flags2 = page_get_flags(tb->pc + tb->size - 1);
1312     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1313         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1314                (long)tb->pc, tb->size, flags1, flags2);
1315     }
1316 }
1317 
1318 /* verify that all the pages have correct rights for code */
1319 static void tb_page_check(void)
1320 {
1321     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1322 }
1323 
1324 #endif /* CONFIG_USER_ONLY */
1325 
1326 /*
1327  * user-mode: call with mmap_lock held
1328  * !user-mode: call with @pd->lock held
1329  */
1330 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1331 {
1332     TranslationBlock *tb1;
1333     uintptr_t *pprev;
1334     unsigned int n1;
1335 
1336     assert_page_locked(pd);
1337     pprev = &pd->first_tb;
1338     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1339         if (tb1 == tb) {
1340             *pprev = tb1->page_next[n1];
1341             return;
1342         }
1343         pprev = &tb1->page_next[n1];
1344     }
1345     g_assert_not_reached();
1346 }
1347 
1348 /* remove @orig from its @n_orig-th jump list */
1349 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1350 {
1351     uintptr_t ptr, ptr_locked;
1352     TranslationBlock *dest;
1353     TranslationBlock *tb;
1354     uintptr_t *pprev;
1355     int n;
1356 
1357     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1358     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1359     dest = (TranslationBlock *)(ptr & ~1);
1360     if (dest == NULL) {
1361         return;
1362     }
1363 
1364     qemu_spin_lock(&dest->jmp_lock);
1365     /*
1366      * While acquiring the lock, the jump might have been removed if the
1367      * destination TB was invalidated; check again.
1368      */
1369     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1370     if (ptr_locked != ptr) {
1371         qemu_spin_unlock(&dest->jmp_lock);
1372         /*
1373          * The only possibility is that the jump was unlinked via
1374          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1375          * because we set the LSB above.
1376          */
1377         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1378         return;
1379     }
1380     /*
1381      * We first acquired the lock, and since the destination pointer matches,
1382      * we know for sure that @orig is in the jmp list.
1383      */
1384     pprev = &dest->jmp_list_head;
1385     TB_FOR_EACH_JMP(dest, tb, n) {
1386         if (tb == orig && n == n_orig) {
1387             *pprev = tb->jmp_list_next[n];
1388             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1389             qemu_spin_unlock(&dest->jmp_lock);
1390             return;
1391         }
1392         pprev = &tb->jmp_list_next[n];
1393     }
1394     g_assert_not_reached();
1395 }
1396 
1397 /* reset the jump entry 'n' of a TB so that it is not chained to
1398    another TB */
1399 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1400 {
1401     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1402     tb_set_jmp_target(tb, n, addr);
1403 }
1404 
1405 /* remove any jumps to the TB */
1406 static inline void tb_jmp_unlink(TranslationBlock *dest)
1407 {
1408     TranslationBlock *tb;
1409     int n;
1410 
1411     qemu_spin_lock(&dest->jmp_lock);
1412 
1413     TB_FOR_EACH_JMP(dest, tb, n) {
1414         tb_reset_jump(tb, n);
1415         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1416         /* No need to clear the list entry; setting the dest ptr is enough */
1417     }
1418     dest->jmp_list_head = (uintptr_t)NULL;
1419 
1420     qemu_spin_unlock(&dest->jmp_lock);
1421 }
1422 
1423 /*
1424  * In user-mode, call with mmap_lock held.
1425  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1426  * locks held.
1427  */
1428 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1429 {
1430     CPUState *cpu;
1431     PageDesc *p;
1432     uint32_t h;
1433     tb_page_addr_t phys_pc;
1434 
1435     assert_memory_lock();
1436 
1437     /* make sure no further incoming jumps will be chained to this TB */
1438     qemu_spin_lock(&tb->jmp_lock);
1439     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1440     qemu_spin_unlock(&tb->jmp_lock);
1441 
1442     /* remove the TB from the hash list */
1443     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1444     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1445                      tb->trace_vcpu_dstate);
1446     if (!(tb->cflags & CF_NOCACHE) &&
1447         !qht_remove(&tb_ctx.htable, tb, h)) {
1448         return;
1449     }
1450 
1451     /* remove the TB from the page list */
1452     if (rm_from_page_list) {
1453         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1454         tb_page_remove(p, tb);
1455         invalidate_page_bitmap(p);
1456         if (tb->page_addr[1] != -1) {
1457             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1458             tb_page_remove(p, tb);
1459             invalidate_page_bitmap(p);
1460         }
1461     }
1462 
1463     /* remove the TB from the hash list */
1464     h = tb_jmp_cache_hash_func(tb->pc);
1465     CPU_FOREACH(cpu) {
1466         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1467             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1468         }
1469     }
1470 
1471     /* suppress this TB from the two jump lists */
1472     tb_remove_from_jmp_list(tb, 0);
1473     tb_remove_from_jmp_list(tb, 1);
1474 
1475     /* suppress any remaining jumps to this TB */
1476     tb_jmp_unlink(tb);
1477 
1478     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1479                tcg_ctx->tb_phys_invalidate_count + 1);
1480 }
1481 
1482 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1483 {
1484     do_tb_phys_invalidate(tb, true);
1485 }
1486 
1487 /* invalidate one TB
1488  *
1489  * Called with mmap_lock held in user-mode.
1490  */
1491 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1492 {
1493     if (page_addr == -1 && tb->page_addr[0] != -1) {
1494         page_lock_tb(tb);
1495         do_tb_phys_invalidate(tb, true);
1496         page_unlock_tb(tb);
1497     } else {
1498         do_tb_phys_invalidate(tb, false);
1499     }
1500 }
1501 
1502 #ifdef CONFIG_SOFTMMU
1503 /* call with @p->lock held */
1504 static void build_page_bitmap(PageDesc *p)
1505 {
1506     int n, tb_start, tb_end;
1507     TranslationBlock *tb;
1508 
1509     assert_page_locked(p);
1510     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1511 
1512     PAGE_FOR_EACH_TB(p, tb, n) {
1513         /* NOTE: this is subtle as a TB may span two physical pages */
1514         if (n == 0) {
1515             /* NOTE: tb_end may be after the end of the page, but
1516                it is not a problem */
1517             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1518             tb_end = tb_start + tb->size;
1519             if (tb_end > TARGET_PAGE_SIZE) {
1520                 tb_end = TARGET_PAGE_SIZE;
1521              }
1522         } else {
1523             tb_start = 0;
1524             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1525         }
1526         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1527     }
1528 }
1529 #endif
1530 
1531 /* add the tb in the target page and protect it if necessary
1532  *
1533  * Called with mmap_lock held for user-mode emulation.
1534  * Called with @p->lock held in !user-mode.
1535  */
1536 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1537                                unsigned int n, tb_page_addr_t page_addr)
1538 {
1539 #ifndef CONFIG_USER_ONLY
1540     bool page_already_protected;
1541 #endif
1542 
1543     assert_page_locked(p);
1544 
1545     tb->page_addr[n] = page_addr;
1546     tb->page_next[n] = p->first_tb;
1547 #ifndef CONFIG_USER_ONLY
1548     page_already_protected = p->first_tb != (uintptr_t)NULL;
1549 #endif
1550     p->first_tb = (uintptr_t)tb | n;
1551     invalidate_page_bitmap(p);
1552 
1553 #if defined(CONFIG_USER_ONLY)
1554     if (p->flags & PAGE_WRITE) {
1555         target_ulong addr;
1556         PageDesc *p2;
1557         int prot;
1558 
1559         /* force the host page as non writable (writes will have a
1560            page fault + mprotect overhead) */
1561         page_addr &= qemu_host_page_mask;
1562         prot = 0;
1563         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1564             addr += TARGET_PAGE_SIZE) {
1565 
1566             p2 = page_find(addr >> TARGET_PAGE_BITS);
1567             if (!p2) {
1568                 continue;
1569             }
1570             prot |= p2->flags;
1571             p2->flags &= ~PAGE_WRITE;
1572           }
1573         mprotect(g2h(page_addr), qemu_host_page_size,
1574                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1575         if (DEBUG_TB_INVALIDATE_GATE) {
1576             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1577         }
1578     }
1579 #else
1580     /* if some code is already present, then the pages are already
1581        protected. So we handle the case where only the first TB is
1582        allocated in a physical page */
1583     if (!page_already_protected) {
1584         tlb_protect_code(page_addr);
1585     }
1586 #endif
1587 }
1588 
1589 /* add a new TB and link it to the physical page tables. phys_page2 is
1590  * (-1) to indicate that only one page contains the TB.
1591  *
1592  * Called with mmap_lock held for user-mode emulation.
1593  *
1594  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1595  * Note that in !user-mode, another thread might have already added a TB
1596  * for the same block of guest code that @tb corresponds to. In that case,
1597  * the caller should discard the original @tb, and use instead the returned TB.
1598  */
1599 static TranslationBlock *
1600 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1601              tb_page_addr_t phys_page2)
1602 {
1603     PageDesc *p;
1604     PageDesc *p2 = NULL;
1605 
1606     assert_memory_lock();
1607 
1608     if (phys_pc == -1) {
1609         /*
1610          * If the TB is not associated with a physical RAM page then
1611          * it must be a temporary one-insn TB, and we have nothing to do
1612          * except fill in the page_addr[] fields.
1613          */
1614         assert(tb->cflags & CF_NOCACHE);
1615         tb->page_addr[0] = tb->page_addr[1] = -1;
1616         return tb;
1617     }
1618 
1619     /*
1620      * Add the TB to the page list, acquiring first the pages's locks.
1621      * We keep the locks held until after inserting the TB in the hash table,
1622      * so that if the insertion fails we know for sure that the TBs are still
1623      * in the page descriptors.
1624      * Note that inserting into the hash table first isn't an option, since
1625      * we can only insert TBs that are fully initialized.
1626      */
1627     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1628     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1629     if (p2) {
1630         tb_page_add(p2, tb, 1, phys_page2);
1631     } else {
1632         tb->page_addr[1] = -1;
1633     }
1634 
1635     if (!(tb->cflags & CF_NOCACHE)) {
1636         void *existing_tb = NULL;
1637         uint32_t h;
1638 
1639         /* add in the hash table */
1640         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1641                          tb->trace_vcpu_dstate);
1642         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1643 
1644         /* remove TB from the page(s) if we couldn't insert it */
1645         if (unlikely(existing_tb)) {
1646             tb_page_remove(p, tb);
1647             invalidate_page_bitmap(p);
1648             if (p2) {
1649                 tb_page_remove(p2, tb);
1650                 invalidate_page_bitmap(p2);
1651             }
1652             tb = existing_tb;
1653         }
1654     }
1655 
1656     if (p2 && p2 != p) {
1657         page_unlock(p2);
1658     }
1659     page_unlock(p);
1660 
1661 #ifdef CONFIG_USER_ONLY
1662     if (DEBUG_TB_CHECK_GATE) {
1663         tb_page_check();
1664     }
1665 #endif
1666     return tb;
1667 }
1668 
1669 /* Called with mmap_lock held for user mode emulation.  */
1670 TranslationBlock *tb_gen_code(CPUState *cpu,
1671                               target_ulong pc, target_ulong cs_base,
1672                               uint32_t flags, int cflags)
1673 {
1674     CPUArchState *env = cpu->env_ptr;
1675     TranslationBlock *tb, *existing_tb;
1676     tb_page_addr_t phys_pc, phys_page2;
1677     target_ulong virt_page2;
1678     tcg_insn_unit *gen_code_buf;
1679     int gen_code_size, search_size, max_insns;
1680 #ifdef CONFIG_PROFILER
1681     TCGProfile *prof = &tcg_ctx->prof;
1682     int64_t ti;
1683 #endif
1684     assert_memory_lock();
1685 
1686     phys_pc = get_page_addr_code(env, pc);
1687 
1688     if (phys_pc == -1) {
1689         /* Generate a temporary TB with 1 insn in it */
1690         cflags &= ~CF_COUNT_MASK;
1691         cflags |= CF_NOCACHE | 1;
1692     }
1693 
1694     cflags &= ~CF_CLUSTER_MASK;
1695     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1696 
1697     max_insns = cflags & CF_COUNT_MASK;
1698     if (max_insns == 0) {
1699         max_insns = CF_COUNT_MASK;
1700     }
1701     if (max_insns > TCG_MAX_INSNS) {
1702         max_insns = TCG_MAX_INSNS;
1703     }
1704     if (cpu->singlestep_enabled || singlestep) {
1705         max_insns = 1;
1706     }
1707 
1708  buffer_overflow:
1709     tb = tb_alloc(pc);
1710     if (unlikely(!tb)) {
1711         /* flush must be done */
1712         tb_flush(cpu);
1713         mmap_unlock();
1714         /* Make the execution loop process the flush as soon as possible.  */
1715         cpu->exception_index = EXCP_INTERRUPT;
1716         cpu_loop_exit(cpu);
1717     }
1718 
1719     gen_code_buf = tcg_ctx->code_gen_ptr;
1720     tb->tc.ptr = gen_code_buf;
1721     tb->pc = pc;
1722     tb->cs_base = cs_base;
1723     tb->flags = flags;
1724     tb->cflags = cflags;
1725     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1726     tcg_ctx->tb_cflags = cflags;
1727  tb_overflow:
1728 
1729 #ifdef CONFIG_PROFILER
1730     /* includes aborted translations because of exceptions */
1731     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1732     ti = profile_getclock();
1733 #endif
1734 
1735     tcg_func_start(tcg_ctx);
1736 
1737     tcg_ctx->cpu = env_cpu(env);
1738     gen_intermediate_code(cpu, tb, max_insns);
1739     tcg_ctx->cpu = NULL;
1740 
1741     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1742 
1743     /* generate machine code */
1744     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1745     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1746     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1747     if (TCG_TARGET_HAS_direct_jump) {
1748         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1749         tcg_ctx->tb_jmp_target_addr = NULL;
1750     } else {
1751         tcg_ctx->tb_jmp_insn_offset = NULL;
1752         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1753     }
1754 
1755 #ifdef CONFIG_PROFILER
1756     atomic_set(&prof->tb_count, prof->tb_count + 1);
1757     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1758     ti = profile_getclock();
1759 #endif
1760 
1761     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1762     if (unlikely(gen_code_size < 0)) {
1763         switch (gen_code_size) {
1764         case -1:
1765             /*
1766              * Overflow of code_gen_buffer, or the current slice of it.
1767              *
1768              * TODO: We don't need to re-do gen_intermediate_code, nor
1769              * should we re-do the tcg optimization currently hidden
1770              * inside tcg_gen_code.  All that should be required is to
1771              * flush the TBs, allocate a new TB, re-initialize it per
1772              * above, and re-do the actual code generation.
1773              */
1774             goto buffer_overflow;
1775 
1776         case -2:
1777             /*
1778              * The code generated for the TranslationBlock is too large.
1779              * The maximum size allowed by the unwind info is 64k.
1780              * There may be stricter constraints from relocations
1781              * in the tcg backend.
1782              *
1783              * Try again with half as many insns as we attempted this time.
1784              * If a single insn overflows, there's a bug somewhere...
1785              */
1786             max_insns = tb->icount;
1787             assert(max_insns > 1);
1788             max_insns /= 2;
1789             goto tb_overflow;
1790 
1791         default:
1792             g_assert_not_reached();
1793         }
1794     }
1795     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1796     if (unlikely(search_size < 0)) {
1797         goto buffer_overflow;
1798     }
1799     tb->tc.size = gen_code_size;
1800 
1801 #ifdef CONFIG_PROFILER
1802     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1803     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1804     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1805     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1806 #endif
1807 
1808 #ifdef DEBUG_DISAS
1809     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1810         qemu_log_in_addr_range(tb->pc)) {
1811         qemu_log_lock();
1812         qemu_log("OUT: [size=%d]\n", gen_code_size);
1813         if (tcg_ctx->data_gen_ptr) {
1814             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1815             size_t data_size = gen_code_size - code_size;
1816             size_t i;
1817 
1818             log_disas(tb->tc.ptr, code_size);
1819 
1820             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1821                 if (sizeof(tcg_target_ulong) == 8) {
1822                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1823                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1824                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1825                 } else {
1826                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1827                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1828                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1829                 }
1830             }
1831         } else {
1832             log_disas(tb->tc.ptr, gen_code_size);
1833         }
1834         qemu_log("\n");
1835         qemu_log_flush();
1836         qemu_log_unlock();
1837     }
1838 #endif
1839 
1840     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1841         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1842                  CODE_GEN_ALIGN));
1843 
1844     /* init jump list */
1845     qemu_spin_init(&tb->jmp_lock);
1846     tb->jmp_list_head = (uintptr_t)NULL;
1847     tb->jmp_list_next[0] = (uintptr_t)NULL;
1848     tb->jmp_list_next[1] = (uintptr_t)NULL;
1849     tb->jmp_dest[0] = (uintptr_t)NULL;
1850     tb->jmp_dest[1] = (uintptr_t)NULL;
1851 
1852     /* init original jump addresses which have been set during tcg_gen_code() */
1853     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1854         tb_reset_jump(tb, 0);
1855     }
1856     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1857         tb_reset_jump(tb, 1);
1858     }
1859 
1860     /* check next page if needed */
1861     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1862     phys_page2 = -1;
1863     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1864         phys_page2 = get_page_addr_code(env, virt_page2);
1865     }
1866     /*
1867      * No explicit memory barrier is required -- tb_link_page() makes the
1868      * TB visible in a consistent state.
1869      */
1870     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1871     /* if the TB already exists, discard what we just translated */
1872     if (unlikely(existing_tb != tb)) {
1873         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1874 
1875         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1876         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1877         return existing_tb;
1878     }
1879     tcg_tb_insert(tb);
1880     return tb;
1881 }
1882 
1883 /*
1884  * @p must be non-NULL.
1885  * user-mode: call with mmap_lock held.
1886  * !user-mode: call with all @pages locked.
1887  */
1888 static void
1889 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1890                                       PageDesc *p, tb_page_addr_t start,
1891                                       tb_page_addr_t end,
1892                                       int is_cpu_write_access)
1893 {
1894     TranslationBlock *tb;
1895     tb_page_addr_t tb_start, tb_end;
1896     int n;
1897 #ifdef TARGET_HAS_PRECISE_SMC
1898     CPUState *cpu = current_cpu;
1899     CPUArchState *env = NULL;
1900     int current_tb_not_found = is_cpu_write_access;
1901     TranslationBlock *current_tb = NULL;
1902     int current_tb_modified = 0;
1903     target_ulong current_pc = 0;
1904     target_ulong current_cs_base = 0;
1905     uint32_t current_flags = 0;
1906 #endif /* TARGET_HAS_PRECISE_SMC */
1907 
1908     assert_page_locked(p);
1909 
1910 #if defined(TARGET_HAS_PRECISE_SMC)
1911     if (cpu != NULL) {
1912         env = cpu->env_ptr;
1913     }
1914 #endif
1915 
1916     /* we remove all the TBs in the range [start, end[ */
1917     /* XXX: see if in some cases it could be faster to invalidate all
1918        the code */
1919     PAGE_FOR_EACH_TB(p, tb, n) {
1920         assert_page_locked(p);
1921         /* NOTE: this is subtle as a TB may span two physical pages */
1922         if (n == 0) {
1923             /* NOTE: tb_end may be after the end of the page, but
1924                it is not a problem */
1925             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1926             tb_end = tb_start + tb->size;
1927         } else {
1928             tb_start = tb->page_addr[1];
1929             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1930         }
1931         if (!(tb_end <= start || tb_start >= end)) {
1932 #ifdef TARGET_HAS_PRECISE_SMC
1933             if (current_tb_not_found) {
1934                 current_tb_not_found = 0;
1935                 current_tb = NULL;
1936                 if (cpu->mem_io_pc) {
1937                     /* now we have a real cpu fault */
1938                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1939                 }
1940             }
1941             if (current_tb == tb &&
1942                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1943                 /* If we are modifying the current TB, we must stop
1944                 its execution. We could be more precise by checking
1945                 that the modification is after the current PC, but it
1946                 would require a specialized function to partially
1947                 restore the CPU state */
1948 
1949                 current_tb_modified = 1;
1950                 cpu_restore_state_from_tb(cpu, current_tb,
1951                                           cpu->mem_io_pc, true);
1952                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1953                                      &current_flags);
1954             }
1955 #endif /* TARGET_HAS_PRECISE_SMC */
1956             tb_phys_invalidate__locked(tb);
1957         }
1958     }
1959 #if !defined(CONFIG_USER_ONLY)
1960     /* if no code remaining, no need to continue to use slow writes */
1961     if (!p->first_tb) {
1962         invalidate_page_bitmap(p);
1963         tlb_unprotect_code(start);
1964     }
1965 #endif
1966 #ifdef TARGET_HAS_PRECISE_SMC
1967     if (current_tb_modified) {
1968         page_collection_unlock(pages);
1969         /* Force execution of one insn next time.  */
1970         cpu->cflags_next_tb = 1 | curr_cflags();
1971         mmap_unlock();
1972         cpu_loop_exit_noexc(cpu);
1973     }
1974 #endif
1975 }
1976 
1977 /*
1978  * Invalidate all TBs which intersect with the target physical address range
1979  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1980  * 'is_cpu_write_access' should be true if called from a real cpu write
1981  * access: the virtual CPU will exit the current TB if code is modified inside
1982  * this TB.
1983  *
1984  * Called with mmap_lock held for user-mode emulation
1985  */
1986 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1987                                    int is_cpu_write_access)
1988 {
1989     struct page_collection *pages;
1990     PageDesc *p;
1991 
1992     assert_memory_lock();
1993 
1994     p = page_find(start >> TARGET_PAGE_BITS);
1995     if (p == NULL) {
1996         return;
1997     }
1998     pages = page_collection_lock(start, end);
1999     tb_invalidate_phys_page_range__locked(pages, p, start, end,
2000                                           is_cpu_write_access);
2001     page_collection_unlock(pages);
2002 }
2003 
2004 /*
2005  * Invalidate all TBs which intersect with the target physical address range
2006  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2007  * 'is_cpu_write_access' should be true if called from a real cpu write
2008  * access: the virtual CPU will exit the current TB if code is modified inside
2009  * this TB.
2010  *
2011  * Called with mmap_lock held for user-mode emulation.
2012  */
2013 #ifdef CONFIG_SOFTMMU
2014 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2015 #else
2016 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2017 #endif
2018 {
2019     struct page_collection *pages;
2020     tb_page_addr_t next;
2021 
2022     assert_memory_lock();
2023 
2024     pages = page_collection_lock(start, end);
2025     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2026          start < end;
2027          start = next, next += TARGET_PAGE_SIZE) {
2028         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2029         tb_page_addr_t bound = MIN(next, end);
2030 
2031         if (pd == NULL) {
2032             continue;
2033         }
2034         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2035     }
2036     page_collection_unlock(pages);
2037 }
2038 
2039 #ifdef CONFIG_SOFTMMU
2040 /* len must be <= 8 and start must be a multiple of len.
2041  * Called via softmmu_template.h when code areas are written to with
2042  * iothread mutex not held.
2043  *
2044  * Call with all @pages in the range [@start, @start + len[ locked.
2045  */
2046 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2047                                   tb_page_addr_t start, int len)
2048 {
2049     PageDesc *p;
2050 
2051     assert_memory_lock();
2052 
2053     p = page_find(start >> TARGET_PAGE_BITS);
2054     if (!p) {
2055         return;
2056     }
2057 
2058     assert_page_locked(p);
2059     if (!p->code_bitmap &&
2060         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2061         build_page_bitmap(p);
2062     }
2063     if (p->code_bitmap) {
2064         unsigned int nr;
2065         unsigned long b;
2066 
2067         nr = start & ~TARGET_PAGE_MASK;
2068         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2069         if (b & ((1 << len) - 1)) {
2070             goto do_invalidate;
2071         }
2072     } else {
2073     do_invalidate:
2074         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2075     }
2076 }
2077 #else
2078 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2079  * host PC of the faulting store instruction that caused this invalidate.
2080  * Returns true if the caller needs to abort execution of the current
2081  * TB (because it was modified by this store and the guest CPU has
2082  * precise-SMC semantics).
2083  */
2084 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2085 {
2086     TranslationBlock *tb;
2087     PageDesc *p;
2088     int n;
2089 #ifdef TARGET_HAS_PRECISE_SMC
2090     TranslationBlock *current_tb = NULL;
2091     CPUState *cpu = current_cpu;
2092     CPUArchState *env = NULL;
2093     int current_tb_modified = 0;
2094     target_ulong current_pc = 0;
2095     target_ulong current_cs_base = 0;
2096     uint32_t current_flags = 0;
2097 #endif
2098 
2099     assert_memory_lock();
2100 
2101     addr &= TARGET_PAGE_MASK;
2102     p = page_find(addr >> TARGET_PAGE_BITS);
2103     if (!p) {
2104         return false;
2105     }
2106 
2107 #ifdef TARGET_HAS_PRECISE_SMC
2108     if (p->first_tb && pc != 0) {
2109         current_tb = tcg_tb_lookup(pc);
2110     }
2111     if (cpu != NULL) {
2112         env = cpu->env_ptr;
2113     }
2114 #endif
2115     assert_page_locked(p);
2116     PAGE_FOR_EACH_TB(p, tb, n) {
2117 #ifdef TARGET_HAS_PRECISE_SMC
2118         if (current_tb == tb &&
2119             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2120                 /* If we are modifying the current TB, we must stop
2121                    its execution. We could be more precise by checking
2122                    that the modification is after the current PC, but it
2123                    would require a specialized function to partially
2124                    restore the CPU state */
2125 
2126             current_tb_modified = 1;
2127             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2128             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2129                                  &current_flags);
2130         }
2131 #endif /* TARGET_HAS_PRECISE_SMC */
2132         tb_phys_invalidate(tb, addr);
2133     }
2134     p->first_tb = (uintptr_t)NULL;
2135 #ifdef TARGET_HAS_PRECISE_SMC
2136     if (current_tb_modified) {
2137         /* Force execution of one insn next time.  */
2138         cpu->cflags_next_tb = 1 | curr_cflags();
2139         return true;
2140     }
2141 #endif
2142 
2143     return false;
2144 }
2145 #endif
2146 
2147 /* user-mode: call with mmap_lock held */
2148 void tb_check_watchpoint(CPUState *cpu)
2149 {
2150     TranslationBlock *tb;
2151 
2152     assert_memory_lock();
2153 
2154     tb = tcg_tb_lookup(cpu->mem_io_pc);
2155     if (tb) {
2156         /* We can use retranslation to find the PC.  */
2157         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2158         tb_phys_invalidate(tb, -1);
2159     } else {
2160         /* The exception probably happened in a helper.  The CPU state should
2161            have been saved before calling it. Fetch the PC from there.  */
2162         CPUArchState *env = cpu->env_ptr;
2163         target_ulong pc, cs_base;
2164         tb_page_addr_t addr;
2165         uint32_t flags;
2166 
2167         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2168         addr = get_page_addr_code(env, pc);
2169         if (addr != -1) {
2170             tb_invalidate_phys_range(addr, addr + 1);
2171         }
2172     }
2173 }
2174 
2175 #ifndef CONFIG_USER_ONLY
2176 /* in deterministic execution mode, instructions doing device I/Os
2177  * must be at the end of the TB.
2178  *
2179  * Called by softmmu_template.h, with iothread mutex not held.
2180  */
2181 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2182 {
2183 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2184     CPUArchState *env = cpu->env_ptr;
2185 #endif
2186     TranslationBlock *tb;
2187     uint32_t n;
2188 
2189     tb = tcg_tb_lookup(retaddr);
2190     if (!tb) {
2191         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2192                   (void *)retaddr);
2193     }
2194     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2195 
2196     /* On MIPS and SH, delay slot instructions can only be restarted if
2197        they were already the first instruction in the TB.  If this is not
2198        the first instruction in a TB then re-execute the preceding
2199        branch.  */
2200     n = 1;
2201 #if defined(TARGET_MIPS)
2202     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2203         && env->active_tc.PC != tb->pc) {
2204         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2205         cpu_neg(cpu)->icount_decr.u16.low++;
2206         env->hflags &= ~MIPS_HFLAG_BMASK;
2207         n = 2;
2208     }
2209 #elif defined(TARGET_SH4)
2210     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2211         && env->pc != tb->pc) {
2212         env->pc -= 2;
2213         cpu_neg(cpu)->icount_decr.u16.low++;
2214         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2215         n = 2;
2216     }
2217 #endif
2218 
2219     /* Generate a new TB executing the I/O insn.  */
2220     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2221 
2222     if (tb_cflags(tb) & CF_NOCACHE) {
2223         if (tb->orig_tb) {
2224             /* Invalidate original TB if this TB was generated in
2225              * cpu_exec_nocache() */
2226             tb_phys_invalidate(tb->orig_tb, -1);
2227         }
2228         tcg_tb_remove(tb);
2229     }
2230 
2231     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2232      * the first in the TB) then we end up generating a whole new TB and
2233      *  repeating the fault, which is horribly inefficient.
2234      *  Better would be to execute just this insn uncached, or generate a
2235      *  second new TB.
2236      */
2237     cpu_loop_exit_noexc(cpu);
2238 }
2239 
2240 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2241 {
2242     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2243 
2244     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2245         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2246     }
2247 }
2248 
2249 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2250 {
2251     /* Discard jump cache entries for any tb which might potentially
2252        overlap the flushed page.  */
2253     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2254     tb_jmp_cache_clear_page(cpu, addr);
2255 }
2256 
2257 static void print_qht_statistics(struct qht_stats hst)
2258 {
2259     uint32_t hgram_opts;
2260     size_t hgram_bins;
2261     char *hgram;
2262 
2263     if (!hst.head_buckets) {
2264         return;
2265     }
2266     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2267                 hst.used_head_buckets, hst.head_buckets,
2268                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2269 
2270     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2271     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2272     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2273         hgram_opts |= QDIST_PR_NODECIMAL;
2274     }
2275     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2276     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2277                 qdist_avg(&hst.occupancy) * 100, hgram);
2278     g_free(hgram);
2279 
2280     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2281     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2282     if (hgram_bins > 10) {
2283         hgram_bins = 10;
2284     } else {
2285         hgram_bins = 0;
2286         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2287     }
2288     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2289     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2290                 qdist_avg(&hst.chain), hgram);
2291     g_free(hgram);
2292 }
2293 
2294 struct tb_tree_stats {
2295     size_t nb_tbs;
2296     size_t host_size;
2297     size_t target_size;
2298     size_t max_target_size;
2299     size_t direct_jmp_count;
2300     size_t direct_jmp2_count;
2301     size_t cross_page;
2302 };
2303 
2304 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2305 {
2306     const TranslationBlock *tb = value;
2307     struct tb_tree_stats *tst = data;
2308 
2309     tst->nb_tbs++;
2310     tst->host_size += tb->tc.size;
2311     tst->target_size += tb->size;
2312     if (tb->size > tst->max_target_size) {
2313         tst->max_target_size = tb->size;
2314     }
2315     if (tb->page_addr[1] != -1) {
2316         tst->cross_page++;
2317     }
2318     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2319         tst->direct_jmp_count++;
2320         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2321             tst->direct_jmp2_count++;
2322         }
2323     }
2324     return false;
2325 }
2326 
2327 void dump_exec_info(void)
2328 {
2329     struct tb_tree_stats tst = {};
2330     struct qht_stats hst;
2331     size_t nb_tbs, flush_full, flush_part, flush_elide;
2332 
2333     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2334     nb_tbs = tst.nb_tbs;
2335     /* XXX: avoid using doubles ? */
2336     qemu_printf("Translation buffer state:\n");
2337     /*
2338      * Report total code size including the padding and TB structs;
2339      * otherwise users might think "-tb-size" is not honoured.
2340      * For avg host size we use the precise numbers from tb_tree_stats though.
2341      */
2342     qemu_printf("gen code size       %zu/%zu\n",
2343                 tcg_code_size(), tcg_code_capacity());
2344     qemu_printf("TB count            %zu\n", nb_tbs);
2345     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2346                 nb_tbs ? tst.target_size / nb_tbs : 0,
2347                 tst.max_target_size);
2348     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2349                 nb_tbs ? tst.host_size / nb_tbs : 0,
2350                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2351     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2352                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2353     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2354                 tst.direct_jmp_count,
2355                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2356                 tst.direct_jmp2_count,
2357                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2358 
2359     qht_statistics_init(&tb_ctx.htable, &hst);
2360     print_qht_statistics(hst);
2361     qht_statistics_destroy(&hst);
2362 
2363     qemu_printf("\nStatistics:\n");
2364     qemu_printf("TB flush count      %u\n",
2365                 atomic_read(&tb_ctx.tb_flush_count));
2366     qemu_printf("TB invalidate count %zu\n",
2367                 tcg_tb_phys_invalidate_count());
2368 
2369     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2370     qemu_printf("TLB full flushes    %zu\n", flush_full);
2371     qemu_printf("TLB partial flushes %zu\n", flush_part);
2372     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2373     tcg_dump_info();
2374 }
2375 
2376 void dump_opcount_info(void)
2377 {
2378     tcg_dump_op_count();
2379 }
2380 
2381 #else /* CONFIG_USER_ONLY */
2382 
2383 void cpu_interrupt(CPUState *cpu, int mask)
2384 {
2385     g_assert(qemu_mutex_iothread_locked());
2386     cpu->interrupt_request |= mask;
2387     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2388 }
2389 
2390 /*
2391  * Walks guest process memory "regions" one by one
2392  * and calls callback function 'fn' for each region.
2393  */
2394 struct walk_memory_regions_data {
2395     walk_memory_regions_fn fn;
2396     void *priv;
2397     target_ulong start;
2398     int prot;
2399 };
2400 
2401 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2402                                    target_ulong end, int new_prot)
2403 {
2404     if (data->start != -1u) {
2405         int rc = data->fn(data->priv, data->start, end, data->prot);
2406         if (rc != 0) {
2407             return rc;
2408         }
2409     }
2410 
2411     data->start = (new_prot ? end : -1u);
2412     data->prot = new_prot;
2413 
2414     return 0;
2415 }
2416 
2417 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2418                                  target_ulong base, int level, void **lp)
2419 {
2420     target_ulong pa;
2421     int i, rc;
2422 
2423     if (*lp == NULL) {
2424         return walk_memory_regions_end(data, base, 0);
2425     }
2426 
2427     if (level == 0) {
2428         PageDesc *pd = *lp;
2429 
2430         for (i = 0; i < V_L2_SIZE; ++i) {
2431             int prot = pd[i].flags;
2432 
2433             pa = base | (i << TARGET_PAGE_BITS);
2434             if (prot != data->prot) {
2435                 rc = walk_memory_regions_end(data, pa, prot);
2436                 if (rc != 0) {
2437                     return rc;
2438                 }
2439             }
2440         }
2441     } else {
2442         void **pp = *lp;
2443 
2444         for (i = 0; i < V_L2_SIZE; ++i) {
2445             pa = base | ((target_ulong)i <<
2446                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2447             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2448             if (rc != 0) {
2449                 return rc;
2450             }
2451         }
2452     }
2453 
2454     return 0;
2455 }
2456 
2457 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2458 {
2459     struct walk_memory_regions_data data;
2460     uintptr_t i, l1_sz = v_l1_size;
2461 
2462     data.fn = fn;
2463     data.priv = priv;
2464     data.start = -1u;
2465     data.prot = 0;
2466 
2467     for (i = 0; i < l1_sz; i++) {
2468         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2469         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2470         if (rc != 0) {
2471             return rc;
2472         }
2473     }
2474 
2475     return walk_memory_regions_end(&data, 0, 0);
2476 }
2477 
2478 static int dump_region(void *priv, target_ulong start,
2479     target_ulong end, unsigned long prot)
2480 {
2481     FILE *f = (FILE *)priv;
2482 
2483     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2484         " "TARGET_FMT_lx" %c%c%c\n",
2485         start, end, end - start,
2486         ((prot & PAGE_READ) ? 'r' : '-'),
2487         ((prot & PAGE_WRITE) ? 'w' : '-'),
2488         ((prot & PAGE_EXEC) ? 'x' : '-'));
2489 
2490     return 0;
2491 }
2492 
2493 /* dump memory mappings */
2494 void page_dump(FILE *f)
2495 {
2496     const int length = sizeof(target_ulong) * 2;
2497     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2498             length, "start", length, "end", length, "size", "prot");
2499     walk_memory_regions(f, dump_region);
2500 }
2501 
2502 int page_get_flags(target_ulong address)
2503 {
2504     PageDesc *p;
2505 
2506     p = page_find(address >> TARGET_PAGE_BITS);
2507     if (!p) {
2508         return 0;
2509     }
2510     return p->flags;
2511 }
2512 
2513 /* Modify the flags of a page and invalidate the code if necessary.
2514    The flag PAGE_WRITE_ORG is positioned automatically depending
2515    on PAGE_WRITE.  The mmap_lock should already be held.  */
2516 void page_set_flags(target_ulong start, target_ulong end, int flags)
2517 {
2518     target_ulong addr, len;
2519 
2520     /* This function should never be called with addresses outside the
2521        guest address space.  If this assert fires, it probably indicates
2522        a missing call to h2g_valid.  */
2523 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2524     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2525 #endif
2526     assert(start < end);
2527     assert_memory_lock();
2528 
2529     start = start & TARGET_PAGE_MASK;
2530     end = TARGET_PAGE_ALIGN(end);
2531 
2532     if (flags & PAGE_WRITE) {
2533         flags |= PAGE_WRITE_ORG;
2534     }
2535 
2536     for (addr = start, len = end - start;
2537          len != 0;
2538          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2539         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2540 
2541         /* If the write protection bit is set, then we invalidate
2542            the code inside.  */
2543         if (!(p->flags & PAGE_WRITE) &&
2544             (flags & PAGE_WRITE) &&
2545             p->first_tb) {
2546             tb_invalidate_phys_page(addr, 0);
2547         }
2548         p->flags = flags;
2549     }
2550 }
2551 
2552 int page_check_range(target_ulong start, target_ulong len, int flags)
2553 {
2554     PageDesc *p;
2555     target_ulong end;
2556     target_ulong addr;
2557 
2558     /* This function should never be called with addresses outside the
2559        guest address space.  If this assert fires, it probably indicates
2560        a missing call to h2g_valid.  */
2561 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2562     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2563 #endif
2564 
2565     if (len == 0) {
2566         return 0;
2567     }
2568     if (start + len - 1 < start) {
2569         /* We've wrapped around.  */
2570         return -1;
2571     }
2572 
2573     /* must do before we loose bits in the next step */
2574     end = TARGET_PAGE_ALIGN(start + len);
2575     start = start & TARGET_PAGE_MASK;
2576 
2577     for (addr = start, len = end - start;
2578          len != 0;
2579          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2580         p = page_find(addr >> TARGET_PAGE_BITS);
2581         if (!p) {
2582             return -1;
2583         }
2584         if (!(p->flags & PAGE_VALID)) {
2585             return -1;
2586         }
2587 
2588         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2589             return -1;
2590         }
2591         if (flags & PAGE_WRITE) {
2592             if (!(p->flags & PAGE_WRITE_ORG)) {
2593                 return -1;
2594             }
2595             /* unprotect the page if it was put read-only because it
2596                contains translated code */
2597             if (!(p->flags & PAGE_WRITE)) {
2598                 if (!page_unprotect(addr, 0)) {
2599                     return -1;
2600                 }
2601             }
2602         }
2603     }
2604     return 0;
2605 }
2606 
2607 /* called from signal handler: invalidate the code and unprotect the
2608  * page. Return 0 if the fault was not handled, 1 if it was handled,
2609  * and 2 if it was handled but the caller must cause the TB to be
2610  * immediately exited. (We can only return 2 if the 'pc' argument is
2611  * non-zero.)
2612  */
2613 int page_unprotect(target_ulong address, uintptr_t pc)
2614 {
2615     unsigned int prot;
2616     bool current_tb_invalidated;
2617     PageDesc *p;
2618     target_ulong host_start, host_end, addr;
2619 
2620     /* Technically this isn't safe inside a signal handler.  However we
2621        know this only ever happens in a synchronous SEGV handler, so in
2622        practice it seems to be ok.  */
2623     mmap_lock();
2624 
2625     p = page_find(address >> TARGET_PAGE_BITS);
2626     if (!p) {
2627         mmap_unlock();
2628         return 0;
2629     }
2630 
2631     /* if the page was really writable, then we change its
2632        protection back to writable */
2633     if (p->flags & PAGE_WRITE_ORG) {
2634         current_tb_invalidated = false;
2635         if (p->flags & PAGE_WRITE) {
2636             /* If the page is actually marked WRITE then assume this is because
2637              * this thread raced with another one which got here first and
2638              * set the page to PAGE_WRITE and did the TB invalidate for us.
2639              */
2640 #ifdef TARGET_HAS_PRECISE_SMC
2641             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2642             if (current_tb) {
2643                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2644             }
2645 #endif
2646         } else {
2647             host_start = address & qemu_host_page_mask;
2648             host_end = host_start + qemu_host_page_size;
2649 
2650             prot = 0;
2651             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2652                 p = page_find(addr >> TARGET_PAGE_BITS);
2653                 p->flags |= PAGE_WRITE;
2654                 prot |= p->flags;
2655 
2656                 /* and since the content will be modified, we must invalidate
2657                    the corresponding translated code. */
2658                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2659 #ifdef CONFIG_USER_ONLY
2660                 if (DEBUG_TB_CHECK_GATE) {
2661                     tb_invalidate_check(addr);
2662                 }
2663 #endif
2664             }
2665             mprotect((void *)g2h(host_start), qemu_host_page_size,
2666                      prot & PAGE_BITS);
2667         }
2668         mmap_unlock();
2669         /* If current TB was invalidated return to main loop */
2670         return current_tb_invalidated ? 2 : 1;
2671     }
2672     mmap_unlock();
2673     return 0;
2674 }
2675 #endif /* CONFIG_USER_ONLY */
2676 
2677 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2678 void tcg_flush_softmmu_tlb(CPUState *cs)
2679 {
2680 #ifdef CONFIG_SOFTMMU
2681     tlb_flush(cs);
2682 #endif
2683 }
2684