1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 23 #define NO_CPU_IO_DEFS 24 #include "cpu.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg.h" 29 #if defined(CONFIG_USER_ONLY) 30 #include "qemu.h" 31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 32 #include <sys/param.h> 33 #if __FreeBSD_version >= 700104 34 #define HAVE_KINFO_GETVMMAP 35 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 36 #include <sys/proc.h> 37 #include <machine/profile.h> 38 #define _KERNEL 39 #include <sys/user.h> 40 #undef _KERNEL 41 #undef sigqueue 42 #include <libutil.h> 43 #endif 44 #endif 45 #else 46 #include "exec/ram_addr.h" 47 #endif 48 49 #include "exec/cputlb.h" 50 #include "exec/tb-hash.h" 51 #include "translate-all.h" 52 #include "qemu/bitmap.h" 53 #include "qemu/error-report.h" 54 #include "qemu/qemu-print.h" 55 #include "qemu/timer.h" 56 #include "qemu/main-loop.h" 57 #include "exec/log.h" 58 #include "sysemu/cpus.h" 59 #include "sysemu/tcg.h" 60 61 /* #define DEBUG_TB_INVALIDATE */ 62 /* #define DEBUG_TB_FLUSH */ 63 /* make various TB consistency checks */ 64 /* #define DEBUG_TB_CHECK */ 65 66 #ifdef DEBUG_TB_INVALIDATE 67 #define DEBUG_TB_INVALIDATE_GATE 1 68 #else 69 #define DEBUG_TB_INVALIDATE_GATE 0 70 #endif 71 72 #ifdef DEBUG_TB_FLUSH 73 #define DEBUG_TB_FLUSH_GATE 1 74 #else 75 #define DEBUG_TB_FLUSH_GATE 0 76 #endif 77 78 #if !defined(CONFIG_USER_ONLY) 79 /* TB consistency checks only implemented for usermode emulation. */ 80 #undef DEBUG_TB_CHECK 81 #endif 82 83 #ifdef DEBUG_TB_CHECK 84 #define DEBUG_TB_CHECK_GATE 1 85 #else 86 #define DEBUG_TB_CHECK_GATE 0 87 #endif 88 89 /* Access to the various translations structures need to be serialised via locks 90 * for consistency. 91 * In user-mode emulation access to the memory related structures are protected 92 * with mmap_lock. 93 * In !user-mode we use per-page locks. 94 */ 95 #ifdef CONFIG_SOFTMMU 96 #define assert_memory_lock() 97 #else 98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 99 #endif 100 101 #define SMC_BITMAP_USE_THRESHOLD 10 102 103 typedef struct PageDesc { 104 /* list of TBs intersecting this ram page */ 105 uintptr_t first_tb; 106 #ifdef CONFIG_SOFTMMU 107 /* in order to optimize self modifying code, we count the number 108 of lookups we do to a given page to use a bitmap */ 109 unsigned long *code_bitmap; 110 unsigned int code_write_count; 111 #else 112 unsigned long flags; 113 #endif 114 #ifndef CONFIG_USER_ONLY 115 QemuSpin lock; 116 #endif 117 } PageDesc; 118 119 /** 120 * struct page_entry - page descriptor entry 121 * @pd: pointer to the &struct PageDesc of the page this entry represents 122 * @index: page index of the page 123 * @locked: whether the page is locked 124 * 125 * This struct helps us keep track of the locked state of a page, without 126 * bloating &struct PageDesc. 127 * 128 * A page lock protects accesses to all fields of &struct PageDesc. 129 * 130 * See also: &struct page_collection. 131 */ 132 struct page_entry { 133 PageDesc *pd; 134 tb_page_addr_t index; 135 bool locked; 136 }; 137 138 /** 139 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 140 * @tree: Binary search tree (BST) of the pages, with key == page index 141 * @max: Pointer to the page in @tree with the highest page index 142 * 143 * To avoid deadlock we lock pages in ascending order of page index. 144 * When operating on a set of pages, we need to keep track of them so that 145 * we can lock them in order and also unlock them later. For this we collect 146 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 147 * @tree implementation we use does not provide an O(1) operation to obtain the 148 * highest-ranked element, we use @max to keep track of the inserted page 149 * with the highest index. This is valuable because if a page is not in 150 * the tree and its index is higher than @max's, then we can lock it 151 * without breaking the locking order rule. 152 * 153 * Note on naming: 'struct page_set' would be shorter, but we already have a few 154 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 155 * 156 * See also: page_collection_lock(). 157 */ 158 struct page_collection { 159 GTree *tree; 160 struct page_entry *max; 161 }; 162 163 /* list iterators for lists of tagged pointers in TranslationBlock */ 164 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 165 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 166 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 167 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 168 169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 170 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 171 172 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 173 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 174 175 /* In system mode we want L1_MAP to be based on ram offsets, 176 while in user mode we want it to be based on virtual addresses. */ 177 #if !defined(CONFIG_USER_ONLY) 178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 179 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 180 #else 181 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 182 #endif 183 #else 184 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 185 #endif 186 187 /* Size of the L2 (and L3, etc) page tables. */ 188 #define V_L2_BITS 10 189 #define V_L2_SIZE (1 << V_L2_BITS) 190 191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 193 sizeof_field(TranslationBlock, trace_vcpu_dstate) 194 * BITS_PER_BYTE); 195 196 /* 197 * L1 Mapping properties 198 */ 199 static int v_l1_size; 200 static int v_l1_shift; 201 static int v_l2_levels; 202 203 /* The bottom level has pointers to PageDesc, and is indexed by 204 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 205 */ 206 #define V_L1_MIN_BITS 4 207 #define V_L1_MAX_BITS (V_L2_BITS + 3) 208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 209 210 static void *l1_map[V_L1_MAX_SIZE]; 211 212 /* code generation context */ 213 TCGContext tcg_init_ctx; 214 __thread TCGContext *tcg_ctx; 215 TBContext tb_ctx; 216 bool parallel_cpus; 217 218 static void page_table_config_init(void) 219 { 220 uint32_t v_l1_bits; 221 222 assert(TARGET_PAGE_BITS); 223 /* The bits remaining after N lower levels of page tables. */ 224 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 225 if (v_l1_bits < V_L1_MIN_BITS) { 226 v_l1_bits += V_L2_BITS; 227 } 228 229 v_l1_size = 1 << v_l1_bits; 230 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 231 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 232 233 assert(v_l1_bits <= V_L1_MAX_BITS); 234 assert(v_l1_shift % V_L2_BITS == 0); 235 assert(v_l2_levels >= 0); 236 } 237 238 void cpu_gen_init(void) 239 { 240 tcg_context_init(&tcg_init_ctx); 241 } 242 243 /* Encode VAL as a signed leb128 sequence at P. 244 Return P incremented past the encoded value. */ 245 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 246 { 247 int more, byte; 248 249 do { 250 byte = val & 0x7f; 251 val >>= 7; 252 more = !((val == 0 && (byte & 0x40) == 0) 253 || (val == -1 && (byte & 0x40) != 0)); 254 if (more) { 255 byte |= 0x80; 256 } 257 *p++ = byte; 258 } while (more); 259 260 return p; 261 } 262 263 /* Decode a signed leb128 sequence at *PP; increment *PP past the 264 decoded value. Return the decoded value. */ 265 static target_long decode_sleb128(uint8_t **pp) 266 { 267 uint8_t *p = *pp; 268 target_long val = 0; 269 int byte, shift = 0; 270 271 do { 272 byte = *p++; 273 val |= (target_ulong)(byte & 0x7f) << shift; 274 shift += 7; 275 } while (byte & 0x80); 276 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 277 val |= -(target_ulong)1 << shift; 278 } 279 280 *pp = p; 281 return val; 282 } 283 284 /* Encode the data collected about the instructions while compiling TB. 285 Place the data at BLOCK, and return the number of bytes consumed. 286 287 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 288 which come from the target's insn_start data, followed by a uintptr_t 289 which comes from the host pc of the end of the code implementing the insn. 290 291 Each line of the table is encoded as sleb128 deltas from the previous 292 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 293 That is, the first column is seeded with the guest pc, the last column 294 with the host pc, and the middle columns with zeros. */ 295 296 static int encode_search(TranslationBlock *tb, uint8_t *block) 297 { 298 uint8_t *highwater = tcg_ctx->code_gen_highwater; 299 uint8_t *p = block; 300 int i, j, n; 301 302 for (i = 0, n = tb->icount; i < n; ++i) { 303 target_ulong prev; 304 305 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 306 if (i == 0) { 307 prev = (j == 0 ? tb->pc : 0); 308 } else { 309 prev = tcg_ctx->gen_insn_data[i - 1][j]; 310 } 311 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 312 } 313 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 314 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 315 316 /* Test for (pending) buffer overflow. The assumption is that any 317 one row beginning below the high water mark cannot overrun 318 the buffer completely. Thus we can test for overflow after 319 encoding a row without having to check during encoding. */ 320 if (unlikely(p > highwater)) { 321 return -1; 322 } 323 } 324 325 return p - block; 326 } 327 328 /* The cpu state corresponding to 'searched_pc' is restored. 329 * When reset_icount is true, current TB will be interrupted and 330 * icount should be recalculated. 331 */ 332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 333 uintptr_t searched_pc, bool reset_icount) 334 { 335 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 336 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 337 CPUArchState *env = cpu->env_ptr; 338 uint8_t *p = tb->tc.ptr + tb->tc.size; 339 int i, j, num_insns = tb->icount; 340 #ifdef CONFIG_PROFILER 341 TCGProfile *prof = &tcg_ctx->prof; 342 int64_t ti = profile_getclock(); 343 #endif 344 345 searched_pc -= GETPC_ADJ; 346 347 if (searched_pc < host_pc) { 348 return -1; 349 } 350 351 /* Reconstruct the stored insn data while looking for the point at 352 which the end of the insn exceeds the searched_pc. */ 353 for (i = 0; i < num_insns; ++i) { 354 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 355 data[j] += decode_sleb128(&p); 356 } 357 host_pc += decode_sleb128(&p); 358 if (host_pc > searched_pc) { 359 goto found; 360 } 361 } 362 return -1; 363 364 found: 365 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 366 assert(use_icount); 367 /* Reset the cycle counter to the start of the block 368 and shift if to the number of actually executed instructions */ 369 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 370 } 371 restore_state_to_opc(env, tb, data); 372 373 #ifdef CONFIG_PROFILER 374 atomic_set(&prof->restore_time, 375 prof->restore_time + profile_getclock() - ti); 376 atomic_set(&prof->restore_count, prof->restore_count + 1); 377 #endif 378 return 0; 379 } 380 381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 382 { 383 TranslationBlock *tb; 384 bool r = false; 385 uintptr_t check_offset; 386 387 /* The host_pc has to be in the region of current code buffer. If 388 * it is not we will not be able to resolve it here. The two cases 389 * where host_pc will not be correct are: 390 * 391 * - fault during translation (instruction fetch) 392 * - fault from helper (not using GETPC() macro) 393 * 394 * Either way we need return early as we can't resolve it here. 395 * 396 * We are using unsigned arithmetic so if host_pc < 397 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 398 * above the code_gen_buffer_size 399 */ 400 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 401 402 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 403 tb = tcg_tb_lookup(host_pc); 404 if (tb) { 405 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 406 if (tb_cflags(tb) & CF_NOCACHE) { 407 /* one-shot translation, invalidate it immediately */ 408 tb_phys_invalidate(tb, -1); 409 tcg_tb_remove(tb); 410 } 411 r = true; 412 } 413 } 414 415 return r; 416 } 417 418 static void page_init(void) 419 { 420 page_size_init(); 421 page_table_config_init(); 422 423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 424 { 425 #ifdef HAVE_KINFO_GETVMMAP 426 struct kinfo_vmentry *freep; 427 int i, cnt; 428 429 freep = kinfo_getvmmap(getpid(), &cnt); 430 if (freep) { 431 mmap_lock(); 432 for (i = 0; i < cnt; i++) { 433 unsigned long startaddr, endaddr; 434 435 startaddr = freep[i].kve_start; 436 endaddr = freep[i].kve_end; 437 if (h2g_valid(startaddr)) { 438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 439 440 if (h2g_valid(endaddr)) { 441 endaddr = h2g(endaddr); 442 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 443 } else { 444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 445 endaddr = ~0ul; 446 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 447 #endif 448 } 449 } 450 } 451 free(freep); 452 mmap_unlock(); 453 } 454 #else 455 FILE *f; 456 457 last_brk = (unsigned long)sbrk(0); 458 459 f = fopen("/compat/linux/proc/self/maps", "r"); 460 if (f) { 461 mmap_lock(); 462 463 do { 464 unsigned long startaddr, endaddr; 465 int n; 466 467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 468 469 if (n == 2 && h2g_valid(startaddr)) { 470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 471 472 if (h2g_valid(endaddr)) { 473 endaddr = h2g(endaddr); 474 } else { 475 endaddr = ~0ul; 476 } 477 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 478 } 479 } while (!feof(f)); 480 481 fclose(f); 482 mmap_unlock(); 483 } 484 #endif 485 } 486 #endif 487 } 488 489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 490 { 491 PageDesc *pd; 492 void **lp; 493 int i; 494 495 /* Level 1. Always allocated. */ 496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 497 498 /* Level 2..N-1. */ 499 for (i = v_l2_levels; i > 0; i--) { 500 void **p = atomic_rcu_read(lp); 501 502 if (p == NULL) { 503 void *existing; 504 505 if (!alloc) { 506 return NULL; 507 } 508 p = g_new0(void *, V_L2_SIZE); 509 existing = atomic_cmpxchg(lp, NULL, p); 510 if (unlikely(existing)) { 511 g_free(p); 512 p = existing; 513 } 514 } 515 516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 517 } 518 519 pd = atomic_rcu_read(lp); 520 if (pd == NULL) { 521 void *existing; 522 523 if (!alloc) { 524 return NULL; 525 } 526 pd = g_new0(PageDesc, V_L2_SIZE); 527 #ifndef CONFIG_USER_ONLY 528 { 529 int i; 530 531 for (i = 0; i < V_L2_SIZE; i++) { 532 qemu_spin_init(&pd[i].lock); 533 } 534 } 535 #endif 536 existing = atomic_cmpxchg(lp, NULL, pd); 537 if (unlikely(existing)) { 538 g_free(pd); 539 pd = existing; 540 } 541 } 542 543 return pd + (index & (V_L2_SIZE - 1)); 544 } 545 546 static inline PageDesc *page_find(tb_page_addr_t index) 547 { 548 return page_find_alloc(index, 0); 549 } 550 551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 552 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 553 554 /* In user-mode page locks aren't used; mmap_lock is enough */ 555 #ifdef CONFIG_USER_ONLY 556 557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 558 559 static inline void page_lock(PageDesc *pd) 560 { } 561 562 static inline void page_unlock(PageDesc *pd) 563 { } 564 565 static inline void page_lock_tb(const TranslationBlock *tb) 566 { } 567 568 static inline void page_unlock_tb(const TranslationBlock *tb) 569 { } 570 571 struct page_collection * 572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 573 { 574 return NULL; 575 } 576 577 void page_collection_unlock(struct page_collection *set) 578 { } 579 #else /* !CONFIG_USER_ONLY */ 580 581 #ifdef CONFIG_DEBUG_TCG 582 583 static __thread GHashTable *ht_pages_locked_debug; 584 585 static void ht_pages_locked_debug_init(void) 586 { 587 if (ht_pages_locked_debug) { 588 return; 589 } 590 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 591 } 592 593 static bool page_is_locked(const PageDesc *pd) 594 { 595 PageDesc *found; 596 597 ht_pages_locked_debug_init(); 598 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 599 return !!found; 600 } 601 602 static void page_lock__debug(PageDesc *pd) 603 { 604 ht_pages_locked_debug_init(); 605 g_assert(!page_is_locked(pd)); 606 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 607 } 608 609 static void page_unlock__debug(const PageDesc *pd) 610 { 611 bool removed; 612 613 ht_pages_locked_debug_init(); 614 g_assert(page_is_locked(pd)); 615 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 616 g_assert(removed); 617 } 618 619 static void 620 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 621 { 622 if (unlikely(!page_is_locked(pd))) { 623 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 624 pd, file, line); 625 abort(); 626 } 627 } 628 629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 630 631 void assert_no_pages_locked(void) 632 { 633 ht_pages_locked_debug_init(); 634 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 635 } 636 637 #else /* !CONFIG_DEBUG_TCG */ 638 639 #define assert_page_locked(pd) 640 641 static inline void page_lock__debug(const PageDesc *pd) 642 { 643 } 644 645 static inline void page_unlock__debug(const PageDesc *pd) 646 { 647 } 648 649 #endif /* CONFIG_DEBUG_TCG */ 650 651 static inline void page_lock(PageDesc *pd) 652 { 653 page_lock__debug(pd); 654 qemu_spin_lock(&pd->lock); 655 } 656 657 static inline void page_unlock(PageDesc *pd) 658 { 659 qemu_spin_unlock(&pd->lock); 660 page_unlock__debug(pd); 661 } 662 663 /* lock the page(s) of a TB in the correct acquisition order */ 664 static inline void page_lock_tb(const TranslationBlock *tb) 665 { 666 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 667 } 668 669 static inline void page_unlock_tb(const TranslationBlock *tb) 670 { 671 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 672 673 page_unlock(p1); 674 if (unlikely(tb->page_addr[1] != -1)) { 675 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 676 677 if (p2 != p1) { 678 page_unlock(p2); 679 } 680 } 681 } 682 683 static inline struct page_entry * 684 page_entry_new(PageDesc *pd, tb_page_addr_t index) 685 { 686 struct page_entry *pe = g_malloc(sizeof(*pe)); 687 688 pe->index = index; 689 pe->pd = pd; 690 pe->locked = false; 691 return pe; 692 } 693 694 static void page_entry_destroy(gpointer p) 695 { 696 struct page_entry *pe = p; 697 698 g_assert(pe->locked); 699 page_unlock(pe->pd); 700 g_free(pe); 701 } 702 703 /* returns false on success */ 704 static bool page_entry_trylock(struct page_entry *pe) 705 { 706 bool busy; 707 708 busy = qemu_spin_trylock(&pe->pd->lock); 709 if (!busy) { 710 g_assert(!pe->locked); 711 pe->locked = true; 712 page_lock__debug(pe->pd); 713 } 714 return busy; 715 } 716 717 static void do_page_entry_lock(struct page_entry *pe) 718 { 719 page_lock(pe->pd); 720 g_assert(!pe->locked); 721 pe->locked = true; 722 } 723 724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 725 { 726 struct page_entry *pe = value; 727 728 do_page_entry_lock(pe); 729 return FALSE; 730 } 731 732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 733 { 734 struct page_entry *pe = value; 735 736 if (pe->locked) { 737 pe->locked = false; 738 page_unlock(pe->pd); 739 } 740 return FALSE; 741 } 742 743 /* 744 * Trylock a page, and if successful, add the page to a collection. 745 * Returns true ("busy") if the page could not be locked; false otherwise. 746 */ 747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 748 { 749 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 750 struct page_entry *pe; 751 PageDesc *pd; 752 753 pe = g_tree_lookup(set->tree, &index); 754 if (pe) { 755 return false; 756 } 757 758 pd = page_find(index); 759 if (pd == NULL) { 760 return false; 761 } 762 763 pe = page_entry_new(pd, index); 764 g_tree_insert(set->tree, &pe->index, pe); 765 766 /* 767 * If this is either (1) the first insertion or (2) a page whose index 768 * is higher than any other so far, just lock the page and move on. 769 */ 770 if (set->max == NULL || pe->index > set->max->index) { 771 set->max = pe; 772 do_page_entry_lock(pe); 773 return false; 774 } 775 /* 776 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 777 * locks in order. 778 */ 779 return page_entry_trylock(pe); 780 } 781 782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 783 { 784 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 785 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 786 787 if (a == b) { 788 return 0; 789 } else if (a < b) { 790 return -1; 791 } 792 return 1; 793 } 794 795 /* 796 * Lock a range of pages ([@start,@end[) as well as the pages of all 797 * intersecting TBs. 798 * Locking order: acquire locks in ascending order of page index. 799 */ 800 struct page_collection * 801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 802 { 803 struct page_collection *set = g_malloc(sizeof(*set)); 804 tb_page_addr_t index; 805 PageDesc *pd; 806 807 start >>= TARGET_PAGE_BITS; 808 end >>= TARGET_PAGE_BITS; 809 g_assert(start <= end); 810 811 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 812 page_entry_destroy); 813 set->max = NULL; 814 assert_no_pages_locked(); 815 816 retry: 817 g_tree_foreach(set->tree, page_entry_lock, NULL); 818 819 for (index = start; index <= end; index++) { 820 TranslationBlock *tb; 821 int n; 822 823 pd = page_find(index); 824 if (pd == NULL) { 825 continue; 826 } 827 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 828 g_tree_foreach(set->tree, page_entry_unlock, NULL); 829 goto retry; 830 } 831 assert_page_locked(pd); 832 PAGE_FOR_EACH_TB(pd, tb, n) { 833 if (page_trylock_add(set, tb->page_addr[0]) || 834 (tb->page_addr[1] != -1 && 835 page_trylock_add(set, tb->page_addr[1]))) { 836 /* drop all locks, and reacquire in order */ 837 g_tree_foreach(set->tree, page_entry_unlock, NULL); 838 goto retry; 839 } 840 } 841 } 842 return set; 843 } 844 845 void page_collection_unlock(struct page_collection *set) 846 { 847 /* entries are unlocked and freed via page_entry_destroy */ 848 g_tree_destroy(set->tree); 849 g_free(set); 850 } 851 852 #endif /* !CONFIG_USER_ONLY */ 853 854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 855 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 856 { 857 PageDesc *p1, *p2; 858 tb_page_addr_t page1; 859 tb_page_addr_t page2; 860 861 assert_memory_lock(); 862 g_assert(phys1 != -1); 863 864 page1 = phys1 >> TARGET_PAGE_BITS; 865 page2 = phys2 >> TARGET_PAGE_BITS; 866 867 p1 = page_find_alloc(page1, alloc); 868 if (ret_p1) { 869 *ret_p1 = p1; 870 } 871 if (likely(phys2 == -1)) { 872 page_lock(p1); 873 return; 874 } else if (page1 == page2) { 875 page_lock(p1); 876 if (ret_p2) { 877 *ret_p2 = p1; 878 } 879 return; 880 } 881 p2 = page_find_alloc(page2, alloc); 882 if (ret_p2) { 883 *ret_p2 = p2; 884 } 885 if (page1 < page2) { 886 page_lock(p1); 887 page_lock(p2); 888 } else { 889 page_lock(p2); 890 page_lock(p1); 891 } 892 } 893 894 #if defined(CONFIG_USER_ONLY) 895 /* Currently it is not recommended to allocate big chunks of data in 896 user mode. It will change when a dedicated libc will be used. */ 897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 898 region in which the guest needs to run. Revisit this. */ 899 #define USE_STATIC_CODE_GEN_BUFFER 900 #endif 901 902 /* Minimum size of the code gen buffer. This number is randomly chosen, 903 but not so small that we can't have a fair number of TB's live. */ 904 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) 905 906 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 907 indicated, this is constrained by the range of direct branches on the 908 host cpu, as used by the TCG implementation of goto_tb. */ 909 #if defined(__x86_64__) 910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 911 #elif defined(__sparc__) 912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 913 #elif defined(__powerpc64__) 914 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 915 #elif defined(__powerpc__) 916 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) 917 #elif defined(__aarch64__) 918 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 919 #elif defined(__s390x__) 920 /* We have a +- 4GB range on the branches; leave some slop. */ 921 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) 922 #elif defined(__mips__) 923 /* We have a 256MB branch region, but leave room to make sure the 924 main executable is also within that region. */ 925 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) 926 #else 927 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 928 #endif 929 930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) 931 932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 933 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 934 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 935 936 static inline size_t size_code_gen_buffer(size_t tb_size) 937 { 938 /* Size the buffer. */ 939 if (tb_size == 0) { 940 #ifdef USE_STATIC_CODE_GEN_BUFFER 941 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 942 #else 943 /* ??? Needs adjustments. */ 944 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 945 static buffer, we could size this on RESERVED_VA, on the text 946 segment size of the executable, or continue to use the default. */ 947 tb_size = (unsigned long)(ram_size / 4); 948 #endif 949 } 950 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 951 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 952 } 953 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 954 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 955 } 956 return tb_size; 957 } 958 959 #ifdef __mips__ 960 /* In order to use J and JAL within the code_gen_buffer, we require 961 that the buffer not cross a 256MB boundary. */ 962 static inline bool cross_256mb(void *addr, size_t size) 963 { 964 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 965 } 966 967 /* We weren't able to allocate a buffer without crossing that boundary, 968 so make do with the larger portion of the buffer that doesn't cross. 969 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 970 static inline void *split_cross_256mb(void *buf1, size_t size1) 971 { 972 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 973 size_t size2 = buf1 + size1 - buf2; 974 975 size1 = buf2 - buf1; 976 if (size1 < size2) { 977 size1 = size2; 978 buf1 = buf2; 979 } 980 981 tcg_ctx->code_gen_buffer_size = size1; 982 return buf1; 983 } 984 #endif 985 986 #ifdef USE_STATIC_CODE_GEN_BUFFER 987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 988 __attribute__((aligned(CODE_GEN_ALIGN))); 989 990 static inline void *alloc_code_gen_buffer(void) 991 { 992 void *buf = static_code_gen_buffer; 993 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 994 size_t size; 995 996 /* page-align the beginning and end of the buffer */ 997 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 998 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 999 1000 size = end - buf; 1001 1002 /* Honor a command-line option limiting the size of the buffer. */ 1003 if (size > tcg_ctx->code_gen_buffer_size) { 1004 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1005 qemu_real_host_page_size); 1006 } 1007 tcg_ctx->code_gen_buffer_size = size; 1008 1009 #ifdef __mips__ 1010 if (cross_256mb(buf, size)) { 1011 buf = split_cross_256mb(buf, size); 1012 size = tcg_ctx->code_gen_buffer_size; 1013 } 1014 #endif 1015 1016 if (qemu_mprotect_rwx(buf, size)) { 1017 abort(); 1018 } 1019 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1020 1021 return buf; 1022 } 1023 #elif defined(_WIN32) 1024 static inline void *alloc_code_gen_buffer(void) 1025 { 1026 size_t size = tcg_ctx->code_gen_buffer_size; 1027 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1028 PAGE_EXECUTE_READWRITE); 1029 } 1030 #else 1031 static inline void *alloc_code_gen_buffer(void) 1032 { 1033 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1034 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1035 uintptr_t start = 0; 1036 size_t size = tcg_ctx->code_gen_buffer_size; 1037 void *buf; 1038 1039 /* Constrain the position of the buffer based on the host cpu. 1040 Note that these addresses are chosen in concert with the 1041 addresses assigned in the relevant linker script file. */ 1042 # if defined(__PIE__) || defined(__PIC__) 1043 /* Don't bother setting a preferred location if we're building 1044 a position-independent executable. We're more likely to get 1045 an address near the main executable if we let the kernel 1046 choose the address. */ 1047 # elif defined(__x86_64__) && defined(MAP_32BIT) 1048 /* Force the memory down into low memory with the executable. 1049 Leave the choice of exact location with the kernel. */ 1050 flags |= MAP_32BIT; 1051 /* Cannot expect to map more than 800MB in low memory. */ 1052 if (size > 800u * 1024 * 1024) { 1053 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1054 } 1055 # elif defined(__sparc__) 1056 start = 0x40000000ul; 1057 # elif defined(__s390x__) 1058 start = 0x90000000ul; 1059 # elif defined(__mips__) 1060 # if _MIPS_SIM == _ABI64 1061 start = 0x128000000ul; 1062 # else 1063 start = 0x08000000ul; 1064 # endif 1065 # endif 1066 1067 buf = mmap((void *)start, size, prot, flags, -1, 0); 1068 if (buf == MAP_FAILED) { 1069 return NULL; 1070 } 1071 1072 #ifdef __mips__ 1073 if (cross_256mb(buf, size)) { 1074 /* Try again, with the original still mapped, to avoid re-acquiring 1075 that 256mb crossing. This time don't specify an address. */ 1076 size_t size2; 1077 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1078 switch ((int)(buf2 != MAP_FAILED)) { 1079 case 1: 1080 if (!cross_256mb(buf2, size)) { 1081 /* Success! Use the new buffer. */ 1082 munmap(buf, size); 1083 break; 1084 } 1085 /* Failure. Work with what we had. */ 1086 munmap(buf2, size); 1087 /* fallthru */ 1088 default: 1089 /* Split the original buffer. Free the smaller half. */ 1090 buf2 = split_cross_256mb(buf, size); 1091 size2 = tcg_ctx->code_gen_buffer_size; 1092 if (buf == buf2) { 1093 munmap(buf + size2, size - size2); 1094 } else { 1095 munmap(buf, size - size2); 1096 } 1097 size = size2; 1098 break; 1099 } 1100 buf = buf2; 1101 } 1102 #endif 1103 1104 /* Request large pages for the buffer. */ 1105 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1106 1107 return buf; 1108 } 1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1110 1111 static inline void code_gen_alloc(size_t tb_size) 1112 { 1113 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1114 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1115 if (tcg_ctx->code_gen_buffer == NULL) { 1116 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1117 exit(1); 1118 } 1119 } 1120 1121 static bool tb_cmp(const void *ap, const void *bp) 1122 { 1123 const TranslationBlock *a = ap; 1124 const TranslationBlock *b = bp; 1125 1126 return a->pc == b->pc && 1127 a->cs_base == b->cs_base && 1128 a->flags == b->flags && 1129 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1130 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1131 a->page_addr[0] == b->page_addr[0] && 1132 a->page_addr[1] == b->page_addr[1]; 1133 } 1134 1135 static void tb_htable_init(void) 1136 { 1137 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1138 1139 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1140 } 1141 1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1143 (in bytes) allocated to the translation buffer. Zero means default 1144 size. */ 1145 void tcg_exec_init(unsigned long tb_size) 1146 { 1147 tcg_allowed = true; 1148 cpu_gen_init(); 1149 page_init(); 1150 tb_htable_init(); 1151 code_gen_alloc(tb_size); 1152 #if defined(CONFIG_SOFTMMU) 1153 /* There's no guest base to take into account, so go ahead and 1154 initialize the prologue now. */ 1155 tcg_prologue_init(tcg_ctx); 1156 #endif 1157 } 1158 1159 /* 1160 * Allocate a new translation block. Flush the translation buffer if 1161 * too many translation blocks or too much generated code. 1162 */ 1163 static TranslationBlock *tb_alloc(target_ulong pc) 1164 { 1165 TranslationBlock *tb; 1166 1167 assert_memory_lock(); 1168 1169 tb = tcg_tb_alloc(tcg_ctx); 1170 if (unlikely(tb == NULL)) { 1171 return NULL; 1172 } 1173 return tb; 1174 } 1175 1176 /* call with @p->lock held */ 1177 static inline void invalidate_page_bitmap(PageDesc *p) 1178 { 1179 assert_page_locked(p); 1180 #ifdef CONFIG_SOFTMMU 1181 g_free(p->code_bitmap); 1182 p->code_bitmap = NULL; 1183 p->code_write_count = 0; 1184 #endif 1185 } 1186 1187 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1188 static void page_flush_tb_1(int level, void **lp) 1189 { 1190 int i; 1191 1192 if (*lp == NULL) { 1193 return; 1194 } 1195 if (level == 0) { 1196 PageDesc *pd = *lp; 1197 1198 for (i = 0; i < V_L2_SIZE; ++i) { 1199 page_lock(&pd[i]); 1200 pd[i].first_tb = (uintptr_t)NULL; 1201 invalidate_page_bitmap(pd + i); 1202 page_unlock(&pd[i]); 1203 } 1204 } else { 1205 void **pp = *lp; 1206 1207 for (i = 0; i < V_L2_SIZE; ++i) { 1208 page_flush_tb_1(level - 1, pp + i); 1209 } 1210 } 1211 } 1212 1213 static void page_flush_tb(void) 1214 { 1215 int i, l1_sz = v_l1_size; 1216 1217 for (i = 0; i < l1_sz; i++) { 1218 page_flush_tb_1(v_l2_levels, l1_map + i); 1219 } 1220 } 1221 1222 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1223 { 1224 const TranslationBlock *tb = value; 1225 size_t *size = data; 1226 1227 *size += tb->tc.size; 1228 return false; 1229 } 1230 1231 /* flush all the translation blocks */ 1232 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1233 { 1234 bool did_flush = false; 1235 1236 mmap_lock(); 1237 /* If it is already been done on request of another CPU, 1238 * just retry. 1239 */ 1240 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1241 goto done; 1242 } 1243 did_flush = true; 1244 1245 if (DEBUG_TB_FLUSH_GATE) { 1246 size_t nb_tbs = tcg_nb_tbs(); 1247 size_t host_size = 0; 1248 1249 tcg_tb_foreach(tb_host_size_iter, &host_size); 1250 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1251 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1252 } 1253 1254 CPU_FOREACH(cpu) { 1255 cpu_tb_jmp_cache_clear(cpu); 1256 } 1257 1258 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1259 page_flush_tb(); 1260 1261 tcg_region_reset_all(); 1262 /* XXX: flush processor icache at this point if cache flush is 1263 expensive */ 1264 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1265 1266 done: 1267 mmap_unlock(); 1268 if (did_flush) { 1269 qemu_plugin_flush_cb(); 1270 } 1271 } 1272 1273 void tb_flush(CPUState *cpu) 1274 { 1275 if (tcg_enabled()) { 1276 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1277 1278 if (cpu_in_exclusive_context(cpu)) { 1279 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1280 } else { 1281 async_safe_run_on_cpu(cpu, do_tb_flush, 1282 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1283 } 1284 } 1285 } 1286 1287 /* 1288 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1289 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1290 * and let the optimizer get rid of them by wrapping their user-only callers 1291 * with if (DEBUG_TB_CHECK_GATE). 1292 */ 1293 #ifdef CONFIG_USER_ONLY 1294 1295 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1296 { 1297 TranslationBlock *tb = p; 1298 target_ulong addr = *(target_ulong *)userp; 1299 1300 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1301 printf("ERROR invalidate: address=" TARGET_FMT_lx 1302 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1303 } 1304 } 1305 1306 /* verify that all the pages have correct rights for code 1307 * 1308 * Called with mmap_lock held. 1309 */ 1310 static void tb_invalidate_check(target_ulong address) 1311 { 1312 address &= TARGET_PAGE_MASK; 1313 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1314 } 1315 1316 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1317 { 1318 TranslationBlock *tb = p; 1319 int flags1, flags2; 1320 1321 flags1 = page_get_flags(tb->pc); 1322 flags2 = page_get_flags(tb->pc + tb->size - 1); 1323 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1324 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1325 (long)tb->pc, tb->size, flags1, flags2); 1326 } 1327 } 1328 1329 /* verify that all the pages have correct rights for code */ 1330 static void tb_page_check(void) 1331 { 1332 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1333 } 1334 1335 #endif /* CONFIG_USER_ONLY */ 1336 1337 /* 1338 * user-mode: call with mmap_lock held 1339 * !user-mode: call with @pd->lock held 1340 */ 1341 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1342 { 1343 TranslationBlock *tb1; 1344 uintptr_t *pprev; 1345 unsigned int n1; 1346 1347 assert_page_locked(pd); 1348 pprev = &pd->first_tb; 1349 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1350 if (tb1 == tb) { 1351 *pprev = tb1->page_next[n1]; 1352 return; 1353 } 1354 pprev = &tb1->page_next[n1]; 1355 } 1356 g_assert_not_reached(); 1357 } 1358 1359 /* remove @orig from its @n_orig-th jump list */ 1360 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1361 { 1362 uintptr_t ptr, ptr_locked; 1363 TranslationBlock *dest; 1364 TranslationBlock *tb; 1365 uintptr_t *pprev; 1366 int n; 1367 1368 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1369 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1370 dest = (TranslationBlock *)(ptr & ~1); 1371 if (dest == NULL) { 1372 return; 1373 } 1374 1375 qemu_spin_lock(&dest->jmp_lock); 1376 /* 1377 * While acquiring the lock, the jump might have been removed if the 1378 * destination TB was invalidated; check again. 1379 */ 1380 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1381 if (ptr_locked != ptr) { 1382 qemu_spin_unlock(&dest->jmp_lock); 1383 /* 1384 * The only possibility is that the jump was unlinked via 1385 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1386 * because we set the LSB above. 1387 */ 1388 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1389 return; 1390 } 1391 /* 1392 * We first acquired the lock, and since the destination pointer matches, 1393 * we know for sure that @orig is in the jmp list. 1394 */ 1395 pprev = &dest->jmp_list_head; 1396 TB_FOR_EACH_JMP(dest, tb, n) { 1397 if (tb == orig && n == n_orig) { 1398 *pprev = tb->jmp_list_next[n]; 1399 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1400 qemu_spin_unlock(&dest->jmp_lock); 1401 return; 1402 } 1403 pprev = &tb->jmp_list_next[n]; 1404 } 1405 g_assert_not_reached(); 1406 } 1407 1408 /* reset the jump entry 'n' of a TB so that it is not chained to 1409 another TB */ 1410 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1411 { 1412 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1413 tb_set_jmp_target(tb, n, addr); 1414 } 1415 1416 /* remove any jumps to the TB */ 1417 static inline void tb_jmp_unlink(TranslationBlock *dest) 1418 { 1419 TranslationBlock *tb; 1420 int n; 1421 1422 qemu_spin_lock(&dest->jmp_lock); 1423 1424 TB_FOR_EACH_JMP(dest, tb, n) { 1425 tb_reset_jump(tb, n); 1426 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1427 /* No need to clear the list entry; setting the dest ptr is enough */ 1428 } 1429 dest->jmp_list_head = (uintptr_t)NULL; 1430 1431 qemu_spin_unlock(&dest->jmp_lock); 1432 } 1433 1434 /* 1435 * In user-mode, call with mmap_lock held. 1436 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1437 * locks held. 1438 */ 1439 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1440 { 1441 CPUState *cpu; 1442 PageDesc *p; 1443 uint32_t h; 1444 tb_page_addr_t phys_pc; 1445 1446 assert_memory_lock(); 1447 1448 /* make sure no further incoming jumps will be chained to this TB */ 1449 qemu_spin_lock(&tb->jmp_lock); 1450 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1451 qemu_spin_unlock(&tb->jmp_lock); 1452 1453 /* remove the TB from the hash list */ 1454 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1455 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1456 tb->trace_vcpu_dstate); 1457 if (!(tb->cflags & CF_NOCACHE) && 1458 !qht_remove(&tb_ctx.htable, tb, h)) { 1459 return; 1460 } 1461 1462 /* remove the TB from the page list */ 1463 if (rm_from_page_list) { 1464 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1465 tb_page_remove(p, tb); 1466 invalidate_page_bitmap(p); 1467 if (tb->page_addr[1] != -1) { 1468 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1469 tb_page_remove(p, tb); 1470 invalidate_page_bitmap(p); 1471 } 1472 } 1473 1474 /* remove the TB from the hash list */ 1475 h = tb_jmp_cache_hash_func(tb->pc); 1476 CPU_FOREACH(cpu) { 1477 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1478 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1479 } 1480 } 1481 1482 /* suppress this TB from the two jump lists */ 1483 tb_remove_from_jmp_list(tb, 0); 1484 tb_remove_from_jmp_list(tb, 1); 1485 1486 /* suppress any remaining jumps to this TB */ 1487 tb_jmp_unlink(tb); 1488 1489 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1490 tcg_ctx->tb_phys_invalidate_count + 1); 1491 } 1492 1493 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1494 { 1495 do_tb_phys_invalidate(tb, true); 1496 } 1497 1498 /* invalidate one TB 1499 * 1500 * Called with mmap_lock held in user-mode. 1501 */ 1502 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1503 { 1504 if (page_addr == -1 && tb->page_addr[0] != -1) { 1505 page_lock_tb(tb); 1506 do_tb_phys_invalidate(tb, true); 1507 page_unlock_tb(tb); 1508 } else { 1509 do_tb_phys_invalidate(tb, false); 1510 } 1511 } 1512 1513 #ifdef CONFIG_SOFTMMU 1514 /* call with @p->lock held */ 1515 static void build_page_bitmap(PageDesc *p) 1516 { 1517 int n, tb_start, tb_end; 1518 TranslationBlock *tb; 1519 1520 assert_page_locked(p); 1521 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1522 1523 PAGE_FOR_EACH_TB(p, tb, n) { 1524 /* NOTE: this is subtle as a TB may span two physical pages */ 1525 if (n == 0) { 1526 /* NOTE: tb_end may be after the end of the page, but 1527 it is not a problem */ 1528 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1529 tb_end = tb_start + tb->size; 1530 if (tb_end > TARGET_PAGE_SIZE) { 1531 tb_end = TARGET_PAGE_SIZE; 1532 } 1533 } else { 1534 tb_start = 0; 1535 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1536 } 1537 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1538 } 1539 } 1540 #endif 1541 1542 /* add the tb in the target page and protect it if necessary 1543 * 1544 * Called with mmap_lock held for user-mode emulation. 1545 * Called with @p->lock held in !user-mode. 1546 */ 1547 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1548 unsigned int n, tb_page_addr_t page_addr) 1549 { 1550 #ifndef CONFIG_USER_ONLY 1551 bool page_already_protected; 1552 #endif 1553 1554 assert_page_locked(p); 1555 1556 tb->page_addr[n] = page_addr; 1557 tb->page_next[n] = p->first_tb; 1558 #ifndef CONFIG_USER_ONLY 1559 page_already_protected = p->first_tb != (uintptr_t)NULL; 1560 #endif 1561 p->first_tb = (uintptr_t)tb | n; 1562 invalidate_page_bitmap(p); 1563 1564 #if defined(CONFIG_USER_ONLY) 1565 if (p->flags & PAGE_WRITE) { 1566 target_ulong addr; 1567 PageDesc *p2; 1568 int prot; 1569 1570 /* force the host page as non writable (writes will have a 1571 page fault + mprotect overhead) */ 1572 page_addr &= qemu_host_page_mask; 1573 prot = 0; 1574 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1575 addr += TARGET_PAGE_SIZE) { 1576 1577 p2 = page_find(addr >> TARGET_PAGE_BITS); 1578 if (!p2) { 1579 continue; 1580 } 1581 prot |= p2->flags; 1582 p2->flags &= ~PAGE_WRITE; 1583 } 1584 mprotect(g2h(page_addr), qemu_host_page_size, 1585 (prot & PAGE_BITS) & ~PAGE_WRITE); 1586 if (DEBUG_TB_INVALIDATE_GATE) { 1587 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1588 } 1589 } 1590 #else 1591 /* if some code is already present, then the pages are already 1592 protected. So we handle the case where only the first TB is 1593 allocated in a physical page */ 1594 if (!page_already_protected) { 1595 tlb_protect_code(page_addr); 1596 } 1597 #endif 1598 } 1599 1600 /* add a new TB and link it to the physical page tables. phys_page2 is 1601 * (-1) to indicate that only one page contains the TB. 1602 * 1603 * Called with mmap_lock held for user-mode emulation. 1604 * 1605 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1606 * Note that in !user-mode, another thread might have already added a TB 1607 * for the same block of guest code that @tb corresponds to. In that case, 1608 * the caller should discard the original @tb, and use instead the returned TB. 1609 */ 1610 static TranslationBlock * 1611 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1612 tb_page_addr_t phys_page2) 1613 { 1614 PageDesc *p; 1615 PageDesc *p2 = NULL; 1616 1617 assert_memory_lock(); 1618 1619 if (phys_pc == -1) { 1620 /* 1621 * If the TB is not associated with a physical RAM page then 1622 * it must be a temporary one-insn TB, and we have nothing to do 1623 * except fill in the page_addr[] fields. 1624 */ 1625 assert(tb->cflags & CF_NOCACHE); 1626 tb->page_addr[0] = tb->page_addr[1] = -1; 1627 return tb; 1628 } 1629 1630 /* 1631 * Add the TB to the page list, acquiring first the pages's locks. 1632 * We keep the locks held until after inserting the TB in the hash table, 1633 * so that if the insertion fails we know for sure that the TBs are still 1634 * in the page descriptors. 1635 * Note that inserting into the hash table first isn't an option, since 1636 * we can only insert TBs that are fully initialized. 1637 */ 1638 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1639 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1640 if (p2) { 1641 tb_page_add(p2, tb, 1, phys_page2); 1642 } else { 1643 tb->page_addr[1] = -1; 1644 } 1645 1646 if (!(tb->cflags & CF_NOCACHE)) { 1647 void *existing_tb = NULL; 1648 uint32_t h; 1649 1650 /* add in the hash table */ 1651 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1652 tb->trace_vcpu_dstate); 1653 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1654 1655 /* remove TB from the page(s) if we couldn't insert it */ 1656 if (unlikely(existing_tb)) { 1657 tb_page_remove(p, tb); 1658 invalidate_page_bitmap(p); 1659 if (p2) { 1660 tb_page_remove(p2, tb); 1661 invalidate_page_bitmap(p2); 1662 } 1663 tb = existing_tb; 1664 } 1665 } 1666 1667 if (p2 && p2 != p) { 1668 page_unlock(p2); 1669 } 1670 page_unlock(p); 1671 1672 #ifdef CONFIG_USER_ONLY 1673 if (DEBUG_TB_CHECK_GATE) { 1674 tb_page_check(); 1675 } 1676 #endif 1677 return tb; 1678 } 1679 1680 /* Called with mmap_lock held for user mode emulation. */ 1681 TranslationBlock *tb_gen_code(CPUState *cpu, 1682 target_ulong pc, target_ulong cs_base, 1683 uint32_t flags, int cflags) 1684 { 1685 CPUArchState *env = cpu->env_ptr; 1686 TranslationBlock *tb, *existing_tb; 1687 tb_page_addr_t phys_pc, phys_page2; 1688 target_ulong virt_page2; 1689 tcg_insn_unit *gen_code_buf; 1690 int gen_code_size, search_size, max_insns; 1691 #ifdef CONFIG_PROFILER 1692 TCGProfile *prof = &tcg_ctx->prof; 1693 int64_t ti; 1694 #endif 1695 assert_memory_lock(); 1696 1697 phys_pc = get_page_addr_code(env, pc); 1698 1699 if (phys_pc == -1) { 1700 /* Generate a temporary TB with 1 insn in it */ 1701 cflags &= ~CF_COUNT_MASK; 1702 cflags |= CF_NOCACHE | 1; 1703 } 1704 1705 cflags &= ~CF_CLUSTER_MASK; 1706 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1707 1708 max_insns = cflags & CF_COUNT_MASK; 1709 if (max_insns == 0) { 1710 max_insns = CF_COUNT_MASK; 1711 } 1712 if (max_insns > TCG_MAX_INSNS) { 1713 max_insns = TCG_MAX_INSNS; 1714 } 1715 if (cpu->singlestep_enabled || singlestep) { 1716 max_insns = 1; 1717 } 1718 1719 buffer_overflow: 1720 tb = tb_alloc(pc); 1721 if (unlikely(!tb)) { 1722 /* flush must be done */ 1723 tb_flush(cpu); 1724 mmap_unlock(); 1725 /* Make the execution loop process the flush as soon as possible. */ 1726 cpu->exception_index = EXCP_INTERRUPT; 1727 cpu_loop_exit(cpu); 1728 } 1729 1730 gen_code_buf = tcg_ctx->code_gen_ptr; 1731 tb->tc.ptr = gen_code_buf; 1732 tb->pc = pc; 1733 tb->cs_base = cs_base; 1734 tb->flags = flags; 1735 tb->cflags = cflags; 1736 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1737 tcg_ctx->tb_cflags = cflags; 1738 tb_overflow: 1739 1740 #ifdef CONFIG_PROFILER 1741 /* includes aborted translations because of exceptions */ 1742 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1743 ti = profile_getclock(); 1744 #endif 1745 1746 tcg_func_start(tcg_ctx); 1747 1748 tcg_ctx->cpu = env_cpu(env); 1749 gen_intermediate_code(cpu, tb, max_insns); 1750 tcg_ctx->cpu = NULL; 1751 1752 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1753 1754 /* generate machine code */ 1755 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1756 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1757 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1758 if (TCG_TARGET_HAS_direct_jump) { 1759 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1760 tcg_ctx->tb_jmp_target_addr = NULL; 1761 } else { 1762 tcg_ctx->tb_jmp_insn_offset = NULL; 1763 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1764 } 1765 1766 #ifdef CONFIG_PROFILER 1767 atomic_set(&prof->tb_count, prof->tb_count + 1); 1768 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1769 ti = profile_getclock(); 1770 #endif 1771 1772 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1773 if (unlikely(gen_code_size < 0)) { 1774 switch (gen_code_size) { 1775 case -1: 1776 /* 1777 * Overflow of code_gen_buffer, or the current slice of it. 1778 * 1779 * TODO: We don't need to re-do gen_intermediate_code, nor 1780 * should we re-do the tcg optimization currently hidden 1781 * inside tcg_gen_code. All that should be required is to 1782 * flush the TBs, allocate a new TB, re-initialize it per 1783 * above, and re-do the actual code generation. 1784 */ 1785 goto buffer_overflow; 1786 1787 case -2: 1788 /* 1789 * The code generated for the TranslationBlock is too large. 1790 * The maximum size allowed by the unwind info is 64k. 1791 * There may be stricter constraints from relocations 1792 * in the tcg backend. 1793 * 1794 * Try again with half as many insns as we attempted this time. 1795 * If a single insn overflows, there's a bug somewhere... 1796 */ 1797 max_insns = tb->icount; 1798 assert(max_insns > 1); 1799 max_insns /= 2; 1800 goto tb_overflow; 1801 1802 default: 1803 g_assert_not_reached(); 1804 } 1805 } 1806 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1807 if (unlikely(search_size < 0)) { 1808 goto buffer_overflow; 1809 } 1810 tb->tc.size = gen_code_size; 1811 1812 #ifdef CONFIG_PROFILER 1813 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1814 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1815 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1816 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1817 #endif 1818 1819 #ifdef DEBUG_DISAS 1820 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1821 qemu_log_in_addr_range(tb->pc)) { 1822 qemu_log_lock(); 1823 qemu_log("OUT: [size=%d]\n", gen_code_size); 1824 if (tcg_ctx->data_gen_ptr) { 1825 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1826 size_t data_size = gen_code_size - code_size; 1827 size_t i; 1828 1829 log_disas(tb->tc.ptr, code_size); 1830 1831 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1832 if (sizeof(tcg_target_ulong) == 8) { 1833 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1834 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1835 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1836 } else { 1837 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1838 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1839 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1840 } 1841 } 1842 } else { 1843 log_disas(tb->tc.ptr, gen_code_size); 1844 } 1845 qemu_log("\n"); 1846 qemu_log_flush(); 1847 qemu_log_unlock(); 1848 } 1849 #endif 1850 1851 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1852 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1853 CODE_GEN_ALIGN)); 1854 1855 /* init jump list */ 1856 qemu_spin_init(&tb->jmp_lock); 1857 tb->jmp_list_head = (uintptr_t)NULL; 1858 tb->jmp_list_next[0] = (uintptr_t)NULL; 1859 tb->jmp_list_next[1] = (uintptr_t)NULL; 1860 tb->jmp_dest[0] = (uintptr_t)NULL; 1861 tb->jmp_dest[1] = (uintptr_t)NULL; 1862 1863 /* init original jump addresses which have been set during tcg_gen_code() */ 1864 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1865 tb_reset_jump(tb, 0); 1866 } 1867 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1868 tb_reset_jump(tb, 1); 1869 } 1870 1871 /* check next page if needed */ 1872 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1873 phys_page2 = -1; 1874 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1875 phys_page2 = get_page_addr_code(env, virt_page2); 1876 } 1877 /* 1878 * No explicit memory barrier is required -- tb_link_page() makes the 1879 * TB visible in a consistent state. 1880 */ 1881 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1882 /* if the TB already exists, discard what we just translated */ 1883 if (unlikely(existing_tb != tb)) { 1884 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1885 1886 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1887 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1888 return existing_tb; 1889 } 1890 tcg_tb_insert(tb); 1891 return tb; 1892 } 1893 1894 /* 1895 * @p must be non-NULL. 1896 * user-mode: call with mmap_lock held. 1897 * !user-mode: call with all @pages locked. 1898 */ 1899 static void 1900 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1901 PageDesc *p, tb_page_addr_t start, 1902 tb_page_addr_t end, 1903 uintptr_t retaddr) 1904 { 1905 TranslationBlock *tb; 1906 tb_page_addr_t tb_start, tb_end; 1907 int n; 1908 #ifdef TARGET_HAS_PRECISE_SMC 1909 CPUState *cpu = current_cpu; 1910 CPUArchState *env = NULL; 1911 bool current_tb_not_found = retaddr != 0; 1912 bool current_tb_modified = false; 1913 TranslationBlock *current_tb = NULL; 1914 target_ulong current_pc = 0; 1915 target_ulong current_cs_base = 0; 1916 uint32_t current_flags = 0; 1917 #endif /* TARGET_HAS_PRECISE_SMC */ 1918 1919 assert_page_locked(p); 1920 1921 #if defined(TARGET_HAS_PRECISE_SMC) 1922 if (cpu != NULL) { 1923 env = cpu->env_ptr; 1924 } 1925 #endif 1926 1927 /* we remove all the TBs in the range [start, end[ */ 1928 /* XXX: see if in some cases it could be faster to invalidate all 1929 the code */ 1930 PAGE_FOR_EACH_TB(p, tb, n) { 1931 assert_page_locked(p); 1932 /* NOTE: this is subtle as a TB may span two physical pages */ 1933 if (n == 0) { 1934 /* NOTE: tb_end may be after the end of the page, but 1935 it is not a problem */ 1936 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1937 tb_end = tb_start + tb->size; 1938 } else { 1939 tb_start = tb->page_addr[1]; 1940 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1941 } 1942 if (!(tb_end <= start || tb_start >= end)) { 1943 #ifdef TARGET_HAS_PRECISE_SMC 1944 if (current_tb_not_found) { 1945 current_tb_not_found = false; 1946 /* now we have a real cpu fault */ 1947 current_tb = tcg_tb_lookup(retaddr); 1948 } 1949 if (current_tb == tb && 1950 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1951 /* 1952 * If we are modifying the current TB, we must stop 1953 * its execution. We could be more precise by checking 1954 * that the modification is after the current PC, but it 1955 * would require a specialized function to partially 1956 * restore the CPU state. 1957 */ 1958 current_tb_modified = true; 1959 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1960 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1961 ¤t_flags); 1962 } 1963 #endif /* TARGET_HAS_PRECISE_SMC */ 1964 tb_phys_invalidate__locked(tb); 1965 } 1966 } 1967 #if !defined(CONFIG_USER_ONLY) 1968 /* if no code remaining, no need to continue to use slow writes */ 1969 if (!p->first_tb) { 1970 invalidate_page_bitmap(p); 1971 tlb_unprotect_code(start); 1972 } 1973 #endif 1974 #ifdef TARGET_HAS_PRECISE_SMC 1975 if (current_tb_modified) { 1976 page_collection_unlock(pages); 1977 /* Force execution of one insn next time. */ 1978 cpu->cflags_next_tb = 1 | curr_cflags(); 1979 mmap_unlock(); 1980 cpu_loop_exit_noexc(cpu); 1981 } 1982 #endif 1983 } 1984 1985 /* 1986 * Invalidate all TBs which intersect with the target physical address range 1987 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1988 * 'is_cpu_write_access' should be true if called from a real cpu write 1989 * access: the virtual CPU will exit the current TB if code is modified inside 1990 * this TB. 1991 * 1992 * Called with mmap_lock held for user-mode emulation 1993 */ 1994 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 1995 { 1996 struct page_collection *pages; 1997 PageDesc *p; 1998 1999 assert_memory_lock(); 2000 2001 p = page_find(start >> TARGET_PAGE_BITS); 2002 if (p == NULL) { 2003 return; 2004 } 2005 pages = page_collection_lock(start, end); 2006 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 2007 page_collection_unlock(pages); 2008 } 2009 2010 /* 2011 * Invalidate all TBs which intersect with the target physical address range 2012 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2013 * 'is_cpu_write_access' should be true if called from a real cpu write 2014 * access: the virtual CPU will exit the current TB if code is modified inside 2015 * this TB. 2016 * 2017 * Called with mmap_lock held for user-mode emulation. 2018 */ 2019 #ifdef CONFIG_SOFTMMU 2020 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2021 #else 2022 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2023 #endif 2024 { 2025 struct page_collection *pages; 2026 tb_page_addr_t next; 2027 2028 assert_memory_lock(); 2029 2030 pages = page_collection_lock(start, end); 2031 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2032 start < end; 2033 start = next, next += TARGET_PAGE_SIZE) { 2034 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2035 tb_page_addr_t bound = MIN(next, end); 2036 2037 if (pd == NULL) { 2038 continue; 2039 } 2040 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2041 } 2042 page_collection_unlock(pages); 2043 } 2044 2045 #ifdef CONFIG_SOFTMMU 2046 /* len must be <= 8 and start must be a multiple of len. 2047 * Called via softmmu_template.h when code areas are written to with 2048 * iothread mutex not held. 2049 * 2050 * Call with all @pages in the range [@start, @start + len[ locked. 2051 */ 2052 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2053 tb_page_addr_t start, int len, 2054 uintptr_t retaddr) 2055 { 2056 PageDesc *p; 2057 2058 assert_memory_lock(); 2059 2060 p = page_find(start >> TARGET_PAGE_BITS); 2061 if (!p) { 2062 return; 2063 } 2064 2065 assert_page_locked(p); 2066 if (!p->code_bitmap && 2067 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2068 build_page_bitmap(p); 2069 } 2070 if (p->code_bitmap) { 2071 unsigned int nr; 2072 unsigned long b; 2073 2074 nr = start & ~TARGET_PAGE_MASK; 2075 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2076 if (b & ((1 << len) - 1)) { 2077 goto do_invalidate; 2078 } 2079 } else { 2080 do_invalidate: 2081 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2082 retaddr); 2083 } 2084 } 2085 #else 2086 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2087 * host PC of the faulting store instruction that caused this invalidate. 2088 * Returns true if the caller needs to abort execution of the current 2089 * TB (because it was modified by this store and the guest CPU has 2090 * precise-SMC semantics). 2091 */ 2092 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2093 { 2094 TranslationBlock *tb; 2095 PageDesc *p; 2096 int n; 2097 #ifdef TARGET_HAS_PRECISE_SMC 2098 TranslationBlock *current_tb = NULL; 2099 CPUState *cpu = current_cpu; 2100 CPUArchState *env = NULL; 2101 int current_tb_modified = 0; 2102 target_ulong current_pc = 0; 2103 target_ulong current_cs_base = 0; 2104 uint32_t current_flags = 0; 2105 #endif 2106 2107 assert_memory_lock(); 2108 2109 addr &= TARGET_PAGE_MASK; 2110 p = page_find(addr >> TARGET_PAGE_BITS); 2111 if (!p) { 2112 return false; 2113 } 2114 2115 #ifdef TARGET_HAS_PRECISE_SMC 2116 if (p->first_tb && pc != 0) { 2117 current_tb = tcg_tb_lookup(pc); 2118 } 2119 if (cpu != NULL) { 2120 env = cpu->env_ptr; 2121 } 2122 #endif 2123 assert_page_locked(p); 2124 PAGE_FOR_EACH_TB(p, tb, n) { 2125 #ifdef TARGET_HAS_PRECISE_SMC 2126 if (current_tb == tb && 2127 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2128 /* If we are modifying the current TB, we must stop 2129 its execution. We could be more precise by checking 2130 that the modification is after the current PC, but it 2131 would require a specialized function to partially 2132 restore the CPU state */ 2133 2134 current_tb_modified = 1; 2135 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2136 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2137 ¤t_flags); 2138 } 2139 #endif /* TARGET_HAS_PRECISE_SMC */ 2140 tb_phys_invalidate(tb, addr); 2141 } 2142 p->first_tb = (uintptr_t)NULL; 2143 #ifdef TARGET_HAS_PRECISE_SMC 2144 if (current_tb_modified) { 2145 /* Force execution of one insn next time. */ 2146 cpu->cflags_next_tb = 1 | curr_cflags(); 2147 return true; 2148 } 2149 #endif 2150 2151 return false; 2152 } 2153 #endif 2154 2155 /* user-mode: call with mmap_lock held */ 2156 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2157 { 2158 TranslationBlock *tb; 2159 2160 assert_memory_lock(); 2161 2162 tb = tcg_tb_lookup(retaddr); 2163 if (tb) { 2164 /* We can use retranslation to find the PC. */ 2165 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2166 tb_phys_invalidate(tb, -1); 2167 } else { 2168 /* The exception probably happened in a helper. The CPU state should 2169 have been saved before calling it. Fetch the PC from there. */ 2170 CPUArchState *env = cpu->env_ptr; 2171 target_ulong pc, cs_base; 2172 tb_page_addr_t addr; 2173 uint32_t flags; 2174 2175 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2176 addr = get_page_addr_code(env, pc); 2177 if (addr != -1) { 2178 tb_invalidate_phys_range(addr, addr + 1); 2179 } 2180 } 2181 } 2182 2183 #ifndef CONFIG_USER_ONLY 2184 /* in deterministic execution mode, instructions doing device I/Os 2185 * must be at the end of the TB. 2186 * 2187 * Called by softmmu_template.h, with iothread mutex not held. 2188 */ 2189 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2190 { 2191 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2192 CPUArchState *env = cpu->env_ptr; 2193 #endif 2194 TranslationBlock *tb; 2195 uint32_t n; 2196 2197 tb = tcg_tb_lookup(retaddr); 2198 if (!tb) { 2199 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2200 (void *)retaddr); 2201 } 2202 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2203 2204 /* On MIPS and SH, delay slot instructions can only be restarted if 2205 they were already the first instruction in the TB. If this is not 2206 the first instruction in a TB then re-execute the preceding 2207 branch. */ 2208 n = 1; 2209 #if defined(TARGET_MIPS) 2210 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2211 && env->active_tc.PC != tb->pc) { 2212 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2213 cpu_neg(cpu)->icount_decr.u16.low++; 2214 env->hflags &= ~MIPS_HFLAG_BMASK; 2215 n = 2; 2216 } 2217 #elif defined(TARGET_SH4) 2218 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2219 && env->pc != tb->pc) { 2220 env->pc -= 2; 2221 cpu_neg(cpu)->icount_decr.u16.low++; 2222 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2223 n = 2; 2224 } 2225 #endif 2226 2227 /* Generate a new TB executing the I/O insn. */ 2228 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2229 2230 if (tb_cflags(tb) & CF_NOCACHE) { 2231 if (tb->orig_tb) { 2232 /* Invalidate original TB if this TB was generated in 2233 * cpu_exec_nocache() */ 2234 tb_phys_invalidate(tb->orig_tb, -1); 2235 } 2236 tcg_tb_remove(tb); 2237 } 2238 2239 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2240 * the first in the TB) then we end up generating a whole new TB and 2241 * repeating the fault, which is horribly inefficient. 2242 * Better would be to execute just this insn uncached, or generate a 2243 * second new TB. 2244 */ 2245 cpu_loop_exit_noexc(cpu); 2246 } 2247 2248 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2249 { 2250 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2251 2252 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2253 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2254 } 2255 } 2256 2257 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2258 { 2259 /* Discard jump cache entries for any tb which might potentially 2260 overlap the flushed page. */ 2261 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2262 tb_jmp_cache_clear_page(cpu, addr); 2263 } 2264 2265 static void print_qht_statistics(struct qht_stats hst) 2266 { 2267 uint32_t hgram_opts; 2268 size_t hgram_bins; 2269 char *hgram; 2270 2271 if (!hst.head_buckets) { 2272 return; 2273 } 2274 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2275 hst.used_head_buckets, hst.head_buckets, 2276 (double)hst.used_head_buckets / hst.head_buckets * 100); 2277 2278 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2279 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2280 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2281 hgram_opts |= QDIST_PR_NODECIMAL; 2282 } 2283 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2284 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2285 qdist_avg(&hst.occupancy) * 100, hgram); 2286 g_free(hgram); 2287 2288 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2289 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2290 if (hgram_bins > 10) { 2291 hgram_bins = 10; 2292 } else { 2293 hgram_bins = 0; 2294 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2295 } 2296 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2297 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2298 qdist_avg(&hst.chain), hgram); 2299 g_free(hgram); 2300 } 2301 2302 struct tb_tree_stats { 2303 size_t nb_tbs; 2304 size_t host_size; 2305 size_t target_size; 2306 size_t max_target_size; 2307 size_t direct_jmp_count; 2308 size_t direct_jmp2_count; 2309 size_t cross_page; 2310 }; 2311 2312 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2313 { 2314 const TranslationBlock *tb = value; 2315 struct tb_tree_stats *tst = data; 2316 2317 tst->nb_tbs++; 2318 tst->host_size += tb->tc.size; 2319 tst->target_size += tb->size; 2320 if (tb->size > tst->max_target_size) { 2321 tst->max_target_size = tb->size; 2322 } 2323 if (tb->page_addr[1] != -1) { 2324 tst->cross_page++; 2325 } 2326 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2327 tst->direct_jmp_count++; 2328 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2329 tst->direct_jmp2_count++; 2330 } 2331 } 2332 return false; 2333 } 2334 2335 void dump_exec_info(void) 2336 { 2337 struct tb_tree_stats tst = {}; 2338 struct qht_stats hst; 2339 size_t nb_tbs, flush_full, flush_part, flush_elide; 2340 2341 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2342 nb_tbs = tst.nb_tbs; 2343 /* XXX: avoid using doubles ? */ 2344 qemu_printf("Translation buffer state:\n"); 2345 /* 2346 * Report total code size including the padding and TB structs; 2347 * otherwise users might think "-tb-size" is not honoured. 2348 * For avg host size we use the precise numbers from tb_tree_stats though. 2349 */ 2350 qemu_printf("gen code size %zu/%zu\n", 2351 tcg_code_size(), tcg_code_capacity()); 2352 qemu_printf("TB count %zu\n", nb_tbs); 2353 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2354 nb_tbs ? tst.target_size / nb_tbs : 0, 2355 tst.max_target_size); 2356 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2357 nb_tbs ? tst.host_size / nb_tbs : 0, 2358 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2359 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2360 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2361 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2362 tst.direct_jmp_count, 2363 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2364 tst.direct_jmp2_count, 2365 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2366 2367 qht_statistics_init(&tb_ctx.htable, &hst); 2368 print_qht_statistics(hst); 2369 qht_statistics_destroy(&hst); 2370 2371 qemu_printf("\nStatistics:\n"); 2372 qemu_printf("TB flush count %u\n", 2373 atomic_read(&tb_ctx.tb_flush_count)); 2374 qemu_printf("TB invalidate count %zu\n", 2375 tcg_tb_phys_invalidate_count()); 2376 2377 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2378 qemu_printf("TLB full flushes %zu\n", flush_full); 2379 qemu_printf("TLB partial flushes %zu\n", flush_part); 2380 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2381 tcg_dump_info(); 2382 } 2383 2384 void dump_opcount_info(void) 2385 { 2386 tcg_dump_op_count(); 2387 } 2388 2389 #else /* CONFIG_USER_ONLY */ 2390 2391 void cpu_interrupt(CPUState *cpu, int mask) 2392 { 2393 g_assert(qemu_mutex_iothread_locked()); 2394 cpu->interrupt_request |= mask; 2395 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2396 } 2397 2398 /* 2399 * Walks guest process memory "regions" one by one 2400 * and calls callback function 'fn' for each region. 2401 */ 2402 struct walk_memory_regions_data { 2403 walk_memory_regions_fn fn; 2404 void *priv; 2405 target_ulong start; 2406 int prot; 2407 }; 2408 2409 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2410 target_ulong end, int new_prot) 2411 { 2412 if (data->start != -1u) { 2413 int rc = data->fn(data->priv, data->start, end, data->prot); 2414 if (rc != 0) { 2415 return rc; 2416 } 2417 } 2418 2419 data->start = (new_prot ? end : -1u); 2420 data->prot = new_prot; 2421 2422 return 0; 2423 } 2424 2425 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2426 target_ulong base, int level, void **lp) 2427 { 2428 target_ulong pa; 2429 int i, rc; 2430 2431 if (*lp == NULL) { 2432 return walk_memory_regions_end(data, base, 0); 2433 } 2434 2435 if (level == 0) { 2436 PageDesc *pd = *lp; 2437 2438 for (i = 0; i < V_L2_SIZE; ++i) { 2439 int prot = pd[i].flags; 2440 2441 pa = base | (i << TARGET_PAGE_BITS); 2442 if (prot != data->prot) { 2443 rc = walk_memory_regions_end(data, pa, prot); 2444 if (rc != 0) { 2445 return rc; 2446 } 2447 } 2448 } 2449 } else { 2450 void **pp = *lp; 2451 2452 for (i = 0; i < V_L2_SIZE; ++i) { 2453 pa = base | ((target_ulong)i << 2454 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2455 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2456 if (rc != 0) { 2457 return rc; 2458 } 2459 } 2460 } 2461 2462 return 0; 2463 } 2464 2465 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2466 { 2467 struct walk_memory_regions_data data; 2468 uintptr_t i, l1_sz = v_l1_size; 2469 2470 data.fn = fn; 2471 data.priv = priv; 2472 data.start = -1u; 2473 data.prot = 0; 2474 2475 for (i = 0; i < l1_sz; i++) { 2476 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2477 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2478 if (rc != 0) { 2479 return rc; 2480 } 2481 } 2482 2483 return walk_memory_regions_end(&data, 0, 0); 2484 } 2485 2486 static int dump_region(void *priv, target_ulong start, 2487 target_ulong end, unsigned long prot) 2488 { 2489 FILE *f = (FILE *)priv; 2490 2491 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2492 " "TARGET_FMT_lx" %c%c%c\n", 2493 start, end, end - start, 2494 ((prot & PAGE_READ) ? 'r' : '-'), 2495 ((prot & PAGE_WRITE) ? 'w' : '-'), 2496 ((prot & PAGE_EXEC) ? 'x' : '-')); 2497 2498 return 0; 2499 } 2500 2501 /* dump memory mappings */ 2502 void page_dump(FILE *f) 2503 { 2504 const int length = sizeof(target_ulong) * 2; 2505 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2506 length, "start", length, "end", length, "size", "prot"); 2507 walk_memory_regions(f, dump_region); 2508 } 2509 2510 int page_get_flags(target_ulong address) 2511 { 2512 PageDesc *p; 2513 2514 p = page_find(address >> TARGET_PAGE_BITS); 2515 if (!p) { 2516 return 0; 2517 } 2518 return p->flags; 2519 } 2520 2521 /* Modify the flags of a page and invalidate the code if necessary. 2522 The flag PAGE_WRITE_ORG is positioned automatically depending 2523 on PAGE_WRITE. The mmap_lock should already be held. */ 2524 void page_set_flags(target_ulong start, target_ulong end, int flags) 2525 { 2526 target_ulong addr, len; 2527 2528 /* This function should never be called with addresses outside the 2529 guest address space. If this assert fires, it probably indicates 2530 a missing call to h2g_valid. */ 2531 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2532 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2533 #endif 2534 assert(start < end); 2535 assert_memory_lock(); 2536 2537 start = start & TARGET_PAGE_MASK; 2538 end = TARGET_PAGE_ALIGN(end); 2539 2540 if (flags & PAGE_WRITE) { 2541 flags |= PAGE_WRITE_ORG; 2542 } 2543 2544 for (addr = start, len = end - start; 2545 len != 0; 2546 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2547 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2548 2549 /* If the write protection bit is set, then we invalidate 2550 the code inside. */ 2551 if (!(p->flags & PAGE_WRITE) && 2552 (flags & PAGE_WRITE) && 2553 p->first_tb) { 2554 tb_invalidate_phys_page(addr, 0); 2555 } 2556 p->flags = flags; 2557 } 2558 } 2559 2560 int page_check_range(target_ulong start, target_ulong len, int flags) 2561 { 2562 PageDesc *p; 2563 target_ulong end; 2564 target_ulong addr; 2565 2566 /* This function should never be called with addresses outside the 2567 guest address space. If this assert fires, it probably indicates 2568 a missing call to h2g_valid. */ 2569 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2570 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2571 #endif 2572 2573 if (len == 0) { 2574 return 0; 2575 } 2576 if (start + len - 1 < start) { 2577 /* We've wrapped around. */ 2578 return -1; 2579 } 2580 2581 /* must do before we loose bits in the next step */ 2582 end = TARGET_PAGE_ALIGN(start + len); 2583 start = start & TARGET_PAGE_MASK; 2584 2585 for (addr = start, len = end - start; 2586 len != 0; 2587 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2588 p = page_find(addr >> TARGET_PAGE_BITS); 2589 if (!p) { 2590 return -1; 2591 } 2592 if (!(p->flags & PAGE_VALID)) { 2593 return -1; 2594 } 2595 2596 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2597 return -1; 2598 } 2599 if (flags & PAGE_WRITE) { 2600 if (!(p->flags & PAGE_WRITE_ORG)) { 2601 return -1; 2602 } 2603 /* unprotect the page if it was put read-only because it 2604 contains translated code */ 2605 if (!(p->flags & PAGE_WRITE)) { 2606 if (!page_unprotect(addr, 0)) { 2607 return -1; 2608 } 2609 } 2610 } 2611 } 2612 return 0; 2613 } 2614 2615 /* called from signal handler: invalidate the code and unprotect the 2616 * page. Return 0 if the fault was not handled, 1 if it was handled, 2617 * and 2 if it was handled but the caller must cause the TB to be 2618 * immediately exited. (We can only return 2 if the 'pc' argument is 2619 * non-zero.) 2620 */ 2621 int page_unprotect(target_ulong address, uintptr_t pc) 2622 { 2623 unsigned int prot; 2624 bool current_tb_invalidated; 2625 PageDesc *p; 2626 target_ulong host_start, host_end, addr; 2627 2628 /* Technically this isn't safe inside a signal handler. However we 2629 know this only ever happens in a synchronous SEGV handler, so in 2630 practice it seems to be ok. */ 2631 mmap_lock(); 2632 2633 p = page_find(address >> TARGET_PAGE_BITS); 2634 if (!p) { 2635 mmap_unlock(); 2636 return 0; 2637 } 2638 2639 /* if the page was really writable, then we change its 2640 protection back to writable */ 2641 if (p->flags & PAGE_WRITE_ORG) { 2642 current_tb_invalidated = false; 2643 if (p->flags & PAGE_WRITE) { 2644 /* If the page is actually marked WRITE then assume this is because 2645 * this thread raced with another one which got here first and 2646 * set the page to PAGE_WRITE and did the TB invalidate for us. 2647 */ 2648 #ifdef TARGET_HAS_PRECISE_SMC 2649 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2650 if (current_tb) { 2651 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2652 } 2653 #endif 2654 } else { 2655 host_start = address & qemu_host_page_mask; 2656 host_end = host_start + qemu_host_page_size; 2657 2658 prot = 0; 2659 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2660 p = page_find(addr >> TARGET_PAGE_BITS); 2661 p->flags |= PAGE_WRITE; 2662 prot |= p->flags; 2663 2664 /* and since the content will be modified, we must invalidate 2665 the corresponding translated code. */ 2666 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2667 #ifdef CONFIG_USER_ONLY 2668 if (DEBUG_TB_CHECK_GATE) { 2669 tb_invalidate_check(addr); 2670 } 2671 #endif 2672 } 2673 mprotect((void *)g2h(host_start), qemu_host_page_size, 2674 prot & PAGE_BITS); 2675 } 2676 mmap_unlock(); 2677 /* If current TB was invalidated return to main loop */ 2678 return current_tb_invalidated ? 2 : 1; 2679 } 2680 mmap_unlock(); 2681 return 0; 2682 } 2683 #endif /* CONFIG_USER_ONLY */ 2684 2685 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2686 void tcg_flush_softmmu_tlb(CPUState *cs) 2687 { 2688 #ifdef CONFIG_SOFTMMU 2689 tlb_flush(cs); 2690 #endif 2691 } 2692