xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 454d1e7c)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49 
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "exec/translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/cpu-timers.h"
61 #include "sysemu/tcg.h"
62 #include "qapi/error.h"
63 #include "hw/core/tcg-cpu-ops.h"
64 #include "internal.h"
65 
66 /* #define DEBUG_TB_INVALIDATE */
67 /* #define DEBUG_TB_FLUSH */
68 /* make various TB consistency checks */
69 /* #define DEBUG_TB_CHECK */
70 
71 #ifdef DEBUG_TB_INVALIDATE
72 #define DEBUG_TB_INVALIDATE_GATE 1
73 #else
74 #define DEBUG_TB_INVALIDATE_GATE 0
75 #endif
76 
77 #ifdef DEBUG_TB_FLUSH
78 #define DEBUG_TB_FLUSH_GATE 1
79 #else
80 #define DEBUG_TB_FLUSH_GATE 0
81 #endif
82 
83 #if !defined(CONFIG_USER_ONLY)
84 /* TB consistency checks only implemented for usermode emulation.  */
85 #undef DEBUG_TB_CHECK
86 #endif
87 
88 #ifdef DEBUG_TB_CHECK
89 #define DEBUG_TB_CHECK_GATE 1
90 #else
91 #define DEBUG_TB_CHECK_GATE 0
92 #endif
93 
94 /* Access to the various translations structures need to be serialised via locks
95  * for consistency.
96  * In user-mode emulation access to the memory related structures are protected
97  * with mmap_lock.
98  * In !user-mode we use per-page locks.
99  */
100 #ifdef CONFIG_SOFTMMU
101 #define assert_memory_lock()
102 #else
103 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
104 #endif
105 
106 #define SMC_BITMAP_USE_THRESHOLD 10
107 
108 typedef struct PageDesc {
109     /* list of TBs intersecting this ram page */
110     uintptr_t first_tb;
111 #ifdef CONFIG_SOFTMMU
112     /* in order to optimize self modifying code, we count the number
113        of lookups we do to a given page to use a bitmap */
114     unsigned long *code_bitmap;
115     unsigned int code_write_count;
116 #else
117     unsigned long flags;
118     void *target_data;
119 #endif
120 #ifndef CONFIG_USER_ONLY
121     QemuSpin lock;
122 #endif
123 } PageDesc;
124 
125 /**
126  * struct page_entry - page descriptor entry
127  * @pd:     pointer to the &struct PageDesc of the page this entry represents
128  * @index:  page index of the page
129  * @locked: whether the page is locked
130  *
131  * This struct helps us keep track of the locked state of a page, without
132  * bloating &struct PageDesc.
133  *
134  * A page lock protects accesses to all fields of &struct PageDesc.
135  *
136  * See also: &struct page_collection.
137  */
138 struct page_entry {
139     PageDesc *pd;
140     tb_page_addr_t index;
141     bool locked;
142 };
143 
144 /**
145  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
146  * @tree:   Binary search tree (BST) of the pages, with key == page index
147  * @max:    Pointer to the page in @tree with the highest page index
148  *
149  * To avoid deadlock we lock pages in ascending order of page index.
150  * When operating on a set of pages, we need to keep track of them so that
151  * we can lock them in order and also unlock them later. For this we collect
152  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
153  * @tree implementation we use does not provide an O(1) operation to obtain the
154  * highest-ranked element, we use @max to keep track of the inserted page
155  * with the highest index. This is valuable because if a page is not in
156  * the tree and its index is higher than @max's, then we can lock it
157  * without breaking the locking order rule.
158  *
159  * Note on naming: 'struct page_set' would be shorter, but we already have a few
160  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
161  *
162  * See also: page_collection_lock().
163  */
164 struct page_collection {
165     GTree *tree;
166     struct page_entry *max;
167 };
168 
169 /* list iterators for lists of tagged pointers in TranslationBlock */
170 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
171     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
172          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
173              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
174 
175 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
176     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
177 
178 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
179     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
180 
181 /*
182  * In system mode we want L1_MAP to be based on ram offsets,
183  * while in user mode we want it to be based on virtual addresses.
184  *
185  * TODO: For user mode, see the caveat re host vs guest virtual
186  * address spaces near GUEST_ADDR_MAX.
187  */
188 #if !defined(CONFIG_USER_ONLY)
189 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
190 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
191 #else
192 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
193 #endif
194 #else
195 # define L1_MAP_ADDR_SPACE_BITS  MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
196 #endif
197 
198 /* Size of the L2 (and L3, etc) page tables.  */
199 #define V_L2_BITS 10
200 #define V_L2_SIZE (1 << V_L2_BITS)
201 
202 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
203 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
204                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
205                   * BITS_PER_BYTE);
206 
207 /*
208  * L1 Mapping properties
209  */
210 static int v_l1_size;
211 static int v_l1_shift;
212 static int v_l2_levels;
213 
214 /* The bottom level has pointers to PageDesc, and is indexed by
215  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
216  */
217 #define V_L1_MIN_BITS 4
218 #define V_L1_MAX_BITS (V_L2_BITS + 3)
219 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
220 
221 static void *l1_map[V_L1_MAX_SIZE];
222 
223 /* code generation context */
224 TCGContext tcg_init_ctx;
225 __thread TCGContext *tcg_ctx;
226 TBContext tb_ctx;
227 bool parallel_cpus;
228 
229 static void page_table_config_init(void)
230 {
231     uint32_t v_l1_bits;
232 
233     assert(TARGET_PAGE_BITS);
234     /* The bits remaining after N lower levels of page tables.  */
235     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
236     if (v_l1_bits < V_L1_MIN_BITS) {
237         v_l1_bits += V_L2_BITS;
238     }
239 
240     v_l1_size = 1 << v_l1_bits;
241     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
242     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
243 
244     assert(v_l1_bits <= V_L1_MAX_BITS);
245     assert(v_l1_shift % V_L2_BITS == 0);
246     assert(v_l2_levels >= 0);
247 }
248 
249 static void cpu_gen_init(void)
250 {
251     tcg_context_init(&tcg_init_ctx);
252 }
253 
254 /* Encode VAL as a signed leb128 sequence at P.
255    Return P incremented past the encoded value.  */
256 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
257 {
258     int more, byte;
259 
260     do {
261         byte = val & 0x7f;
262         val >>= 7;
263         more = !((val == 0 && (byte & 0x40) == 0)
264                  || (val == -1 && (byte & 0x40) != 0));
265         if (more) {
266             byte |= 0x80;
267         }
268         *p++ = byte;
269     } while (more);
270 
271     return p;
272 }
273 
274 /* Decode a signed leb128 sequence at *PP; increment *PP past the
275    decoded value.  Return the decoded value.  */
276 static target_long decode_sleb128(const uint8_t **pp)
277 {
278     const uint8_t *p = *pp;
279     target_long val = 0;
280     int byte, shift = 0;
281 
282     do {
283         byte = *p++;
284         val |= (target_ulong)(byte & 0x7f) << shift;
285         shift += 7;
286     } while (byte & 0x80);
287     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
288         val |= -(target_ulong)1 << shift;
289     }
290 
291     *pp = p;
292     return val;
293 }
294 
295 /* Encode the data collected about the instructions while compiling TB.
296    Place the data at BLOCK, and return the number of bytes consumed.
297 
298    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
299    which come from the target's insn_start data, followed by a uintptr_t
300    which comes from the host pc of the end of the code implementing the insn.
301 
302    Each line of the table is encoded as sleb128 deltas from the previous
303    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
304    That is, the first column is seeded with the guest pc, the last column
305    with the host pc, and the middle columns with zeros.  */
306 
307 static int encode_search(TranslationBlock *tb, uint8_t *block)
308 {
309     uint8_t *highwater = tcg_ctx->code_gen_highwater;
310     uint8_t *p = block;
311     int i, j, n;
312 
313     for (i = 0, n = tb->icount; i < n; ++i) {
314         target_ulong prev;
315 
316         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
317             if (i == 0) {
318                 prev = (j == 0 ? tb->pc : 0);
319             } else {
320                 prev = tcg_ctx->gen_insn_data[i - 1][j];
321             }
322             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
323         }
324         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
325         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
326 
327         /* Test for (pending) buffer overflow.  The assumption is that any
328            one row beginning below the high water mark cannot overrun
329            the buffer completely.  Thus we can test for overflow after
330            encoding a row without having to check during encoding.  */
331         if (unlikely(p > highwater)) {
332             return -1;
333         }
334     }
335 
336     return p - block;
337 }
338 
339 /* The cpu state corresponding to 'searched_pc' is restored.
340  * When reset_icount is true, current TB will be interrupted and
341  * icount should be recalculated.
342  */
343 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
344                                      uintptr_t searched_pc, bool reset_icount)
345 {
346     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
347     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
348     CPUArchState *env = cpu->env_ptr;
349     const uint8_t *p = tb->tc.ptr + tb->tc.size;
350     int i, j, num_insns = tb->icount;
351 #ifdef CONFIG_PROFILER
352     TCGProfile *prof = &tcg_ctx->prof;
353     int64_t ti = profile_getclock();
354 #endif
355 
356     searched_pc -= GETPC_ADJ;
357 
358     if (searched_pc < host_pc) {
359         return -1;
360     }
361 
362     /* Reconstruct the stored insn data while looking for the point at
363        which the end of the insn exceeds the searched_pc.  */
364     for (i = 0; i < num_insns; ++i) {
365         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
366             data[j] += decode_sleb128(&p);
367         }
368         host_pc += decode_sleb128(&p);
369         if (host_pc > searched_pc) {
370             goto found;
371         }
372     }
373     return -1;
374 
375  found:
376     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
377         assert(icount_enabled());
378         /* Reset the cycle counter to the start of the block
379            and shift if to the number of actually executed instructions */
380         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
381     }
382     restore_state_to_opc(env, tb, data);
383 
384 #ifdef CONFIG_PROFILER
385     qatomic_set(&prof->restore_time,
386                 prof->restore_time + profile_getclock() - ti);
387     qatomic_set(&prof->restore_count, prof->restore_count + 1);
388 #endif
389     return 0;
390 }
391 
392 void tb_destroy(TranslationBlock *tb)
393 {
394     qemu_spin_destroy(&tb->jmp_lock);
395 }
396 
397 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
398 {
399     /*
400      * The host_pc has to be in the rx region of the code buffer.
401      * If it is not we will not be able to resolve it here.
402      * The two cases where host_pc will not be correct are:
403      *
404      *  - fault during translation (instruction fetch)
405      *  - fault from helper (not using GETPC() macro)
406      *
407      * Either way we need return early as we can't resolve it here.
408      */
409     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
410         TranslationBlock *tb = tcg_tb_lookup(host_pc);
411         if (tb) {
412             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
413             return true;
414         }
415     }
416     return false;
417 }
418 
419 static void page_init(void)
420 {
421     page_size_init();
422     page_table_config_init();
423 
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425     {
426 #ifdef HAVE_KINFO_GETVMMAP
427         struct kinfo_vmentry *freep;
428         int i, cnt;
429 
430         freep = kinfo_getvmmap(getpid(), &cnt);
431         if (freep) {
432             mmap_lock();
433             for (i = 0; i < cnt; i++) {
434                 unsigned long startaddr, endaddr;
435 
436                 startaddr = freep[i].kve_start;
437                 endaddr = freep[i].kve_end;
438                 if (h2g_valid(startaddr)) {
439                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 
441                     if (h2g_valid(endaddr)) {
442                         endaddr = h2g(endaddr);
443                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444                     } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446                         endaddr = ~0ul;
447                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449                     }
450                 }
451             }
452             free(freep);
453             mmap_unlock();
454         }
455 #else
456         FILE *f;
457 
458         last_brk = (unsigned long)sbrk(0);
459 
460         f = fopen("/compat/linux/proc/self/maps", "r");
461         if (f) {
462             mmap_lock();
463 
464             do {
465                 unsigned long startaddr, endaddr;
466                 int n;
467 
468                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 
470                 if (n == 2 && h2g_valid(startaddr)) {
471                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 
473                     if (h2g_valid(endaddr)) {
474                         endaddr = h2g(endaddr);
475                     } else {
476                         endaddr = ~0ul;
477                     }
478                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479                 }
480             } while (!feof(f));
481 
482             fclose(f);
483             mmap_unlock();
484         }
485 #endif
486     }
487 #endif
488 }
489 
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492     PageDesc *pd;
493     void **lp;
494     int i;
495 
496     /* Level 1.  Always allocated.  */
497     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498 
499     /* Level 2..N-1.  */
500     for (i = v_l2_levels; i > 0; i--) {
501         void **p = qatomic_rcu_read(lp);
502 
503         if (p == NULL) {
504             void *existing;
505 
506             if (!alloc) {
507                 return NULL;
508             }
509             p = g_new0(void *, V_L2_SIZE);
510             existing = qatomic_cmpxchg(lp, NULL, p);
511             if (unlikely(existing)) {
512                 g_free(p);
513                 p = existing;
514             }
515         }
516 
517         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518     }
519 
520     pd = qatomic_rcu_read(lp);
521     if (pd == NULL) {
522         void *existing;
523 
524         if (!alloc) {
525             return NULL;
526         }
527         pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529         {
530             int i;
531 
532             for (i = 0; i < V_L2_SIZE; i++) {
533                 qemu_spin_init(&pd[i].lock);
534             }
535         }
536 #endif
537         existing = qatomic_cmpxchg(lp, NULL, pd);
538         if (unlikely(existing)) {
539 #ifndef CONFIG_USER_ONLY
540             {
541                 int i;
542 
543                 for (i = 0; i < V_L2_SIZE; i++) {
544                     qemu_spin_destroy(&pd[i].lock);
545                 }
546             }
547 #endif
548             g_free(pd);
549             pd = existing;
550         }
551     }
552 
553     return pd + (index & (V_L2_SIZE - 1));
554 }
555 
556 static inline PageDesc *page_find(tb_page_addr_t index)
557 {
558     return page_find_alloc(index, 0);
559 }
560 
561 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
562                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
563 
564 /* In user-mode page locks aren't used; mmap_lock is enough */
565 #ifdef CONFIG_USER_ONLY
566 
567 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
568 
569 static inline void page_lock(PageDesc *pd)
570 { }
571 
572 static inline void page_unlock(PageDesc *pd)
573 { }
574 
575 static inline void page_lock_tb(const TranslationBlock *tb)
576 { }
577 
578 static inline void page_unlock_tb(const TranslationBlock *tb)
579 { }
580 
581 struct page_collection *
582 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
583 {
584     return NULL;
585 }
586 
587 void page_collection_unlock(struct page_collection *set)
588 { }
589 #else /* !CONFIG_USER_ONLY */
590 
591 #ifdef CONFIG_DEBUG_TCG
592 
593 static __thread GHashTable *ht_pages_locked_debug;
594 
595 static void ht_pages_locked_debug_init(void)
596 {
597     if (ht_pages_locked_debug) {
598         return;
599     }
600     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
601 }
602 
603 static bool page_is_locked(const PageDesc *pd)
604 {
605     PageDesc *found;
606 
607     ht_pages_locked_debug_init();
608     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
609     return !!found;
610 }
611 
612 static void page_lock__debug(PageDesc *pd)
613 {
614     ht_pages_locked_debug_init();
615     g_assert(!page_is_locked(pd));
616     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
617 }
618 
619 static void page_unlock__debug(const PageDesc *pd)
620 {
621     bool removed;
622 
623     ht_pages_locked_debug_init();
624     g_assert(page_is_locked(pd));
625     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
626     g_assert(removed);
627 }
628 
629 static void
630 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
631 {
632     if (unlikely(!page_is_locked(pd))) {
633         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
634                      pd, file, line);
635         abort();
636     }
637 }
638 
639 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
640 
641 void assert_no_pages_locked(void)
642 {
643     ht_pages_locked_debug_init();
644     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
645 }
646 
647 #else /* !CONFIG_DEBUG_TCG */
648 
649 #define assert_page_locked(pd)
650 
651 static inline void page_lock__debug(const PageDesc *pd)
652 {
653 }
654 
655 static inline void page_unlock__debug(const PageDesc *pd)
656 {
657 }
658 
659 #endif /* CONFIG_DEBUG_TCG */
660 
661 static inline void page_lock(PageDesc *pd)
662 {
663     page_lock__debug(pd);
664     qemu_spin_lock(&pd->lock);
665 }
666 
667 static inline void page_unlock(PageDesc *pd)
668 {
669     qemu_spin_unlock(&pd->lock);
670     page_unlock__debug(pd);
671 }
672 
673 /* lock the page(s) of a TB in the correct acquisition order */
674 static inline void page_lock_tb(const TranslationBlock *tb)
675 {
676     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
677 }
678 
679 static inline void page_unlock_tb(const TranslationBlock *tb)
680 {
681     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
682 
683     page_unlock(p1);
684     if (unlikely(tb->page_addr[1] != -1)) {
685         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
686 
687         if (p2 != p1) {
688             page_unlock(p2);
689         }
690     }
691 }
692 
693 static inline struct page_entry *
694 page_entry_new(PageDesc *pd, tb_page_addr_t index)
695 {
696     struct page_entry *pe = g_malloc(sizeof(*pe));
697 
698     pe->index = index;
699     pe->pd = pd;
700     pe->locked = false;
701     return pe;
702 }
703 
704 static void page_entry_destroy(gpointer p)
705 {
706     struct page_entry *pe = p;
707 
708     g_assert(pe->locked);
709     page_unlock(pe->pd);
710     g_free(pe);
711 }
712 
713 /* returns false on success */
714 static bool page_entry_trylock(struct page_entry *pe)
715 {
716     bool busy;
717 
718     busy = qemu_spin_trylock(&pe->pd->lock);
719     if (!busy) {
720         g_assert(!pe->locked);
721         pe->locked = true;
722         page_lock__debug(pe->pd);
723     }
724     return busy;
725 }
726 
727 static void do_page_entry_lock(struct page_entry *pe)
728 {
729     page_lock(pe->pd);
730     g_assert(!pe->locked);
731     pe->locked = true;
732 }
733 
734 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
735 {
736     struct page_entry *pe = value;
737 
738     do_page_entry_lock(pe);
739     return FALSE;
740 }
741 
742 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
743 {
744     struct page_entry *pe = value;
745 
746     if (pe->locked) {
747         pe->locked = false;
748         page_unlock(pe->pd);
749     }
750     return FALSE;
751 }
752 
753 /*
754  * Trylock a page, and if successful, add the page to a collection.
755  * Returns true ("busy") if the page could not be locked; false otherwise.
756  */
757 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
758 {
759     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
760     struct page_entry *pe;
761     PageDesc *pd;
762 
763     pe = g_tree_lookup(set->tree, &index);
764     if (pe) {
765         return false;
766     }
767 
768     pd = page_find(index);
769     if (pd == NULL) {
770         return false;
771     }
772 
773     pe = page_entry_new(pd, index);
774     g_tree_insert(set->tree, &pe->index, pe);
775 
776     /*
777      * If this is either (1) the first insertion or (2) a page whose index
778      * is higher than any other so far, just lock the page and move on.
779      */
780     if (set->max == NULL || pe->index > set->max->index) {
781         set->max = pe;
782         do_page_entry_lock(pe);
783         return false;
784     }
785     /*
786      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
787      * locks in order.
788      */
789     return page_entry_trylock(pe);
790 }
791 
792 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
793 {
794     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
795     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
796 
797     if (a == b) {
798         return 0;
799     } else if (a < b) {
800         return -1;
801     }
802     return 1;
803 }
804 
805 /*
806  * Lock a range of pages ([@start,@end[) as well as the pages of all
807  * intersecting TBs.
808  * Locking order: acquire locks in ascending order of page index.
809  */
810 struct page_collection *
811 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
812 {
813     struct page_collection *set = g_malloc(sizeof(*set));
814     tb_page_addr_t index;
815     PageDesc *pd;
816 
817     start >>= TARGET_PAGE_BITS;
818     end   >>= TARGET_PAGE_BITS;
819     g_assert(start <= end);
820 
821     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
822                                 page_entry_destroy);
823     set->max = NULL;
824     assert_no_pages_locked();
825 
826  retry:
827     g_tree_foreach(set->tree, page_entry_lock, NULL);
828 
829     for (index = start; index <= end; index++) {
830         TranslationBlock *tb;
831         int n;
832 
833         pd = page_find(index);
834         if (pd == NULL) {
835             continue;
836         }
837         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
838             g_tree_foreach(set->tree, page_entry_unlock, NULL);
839             goto retry;
840         }
841         assert_page_locked(pd);
842         PAGE_FOR_EACH_TB(pd, tb, n) {
843             if (page_trylock_add(set, tb->page_addr[0]) ||
844                 (tb->page_addr[1] != -1 &&
845                  page_trylock_add(set, tb->page_addr[1]))) {
846                 /* drop all locks, and reacquire in order */
847                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
848                 goto retry;
849             }
850         }
851     }
852     return set;
853 }
854 
855 void page_collection_unlock(struct page_collection *set)
856 {
857     /* entries are unlocked and freed via page_entry_destroy */
858     g_tree_destroy(set->tree);
859     g_free(set);
860 }
861 
862 #endif /* !CONFIG_USER_ONLY */
863 
864 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
865                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
866 {
867     PageDesc *p1, *p2;
868     tb_page_addr_t page1;
869     tb_page_addr_t page2;
870 
871     assert_memory_lock();
872     g_assert(phys1 != -1);
873 
874     page1 = phys1 >> TARGET_PAGE_BITS;
875     page2 = phys2 >> TARGET_PAGE_BITS;
876 
877     p1 = page_find_alloc(page1, alloc);
878     if (ret_p1) {
879         *ret_p1 = p1;
880     }
881     if (likely(phys2 == -1)) {
882         page_lock(p1);
883         return;
884     } else if (page1 == page2) {
885         page_lock(p1);
886         if (ret_p2) {
887             *ret_p2 = p1;
888         }
889         return;
890     }
891     p2 = page_find_alloc(page2, alloc);
892     if (ret_p2) {
893         *ret_p2 = p2;
894     }
895     if (page1 < page2) {
896         page_lock(p1);
897         page_lock(p2);
898     } else {
899         page_lock(p2);
900         page_lock(p1);
901     }
902 }
903 
904 /* Minimum size of the code gen buffer.  This number is randomly chosen,
905    but not so small that we can't have a fair number of TB's live.  */
906 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
907 
908 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
909    indicated, this is constrained by the range of direct branches on the
910    host cpu, as used by the TCG implementation of goto_tb.  */
911 #if defined(__x86_64__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
913 #elif defined(__sparc__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
915 #elif defined(__powerpc64__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
917 #elif defined(__powerpc__)
918 # define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
919 #elif defined(__aarch64__)
920 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
921 #elif defined(__s390x__)
922   /* We have a +- 4GB range on the branches; leave some slop.  */
923 # define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
924 #elif defined(__mips__)
925   /* We have a 256MB branch region, but leave room to make sure the
926      main executable is also within that region.  */
927 # define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
928 #else
929 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
930 #endif
931 
932 #if TCG_TARGET_REG_BITS == 32
933 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
934 #ifdef CONFIG_USER_ONLY
935 /*
936  * For user mode on smaller 32 bit systems we may run into trouble
937  * allocating big chunks of data in the right place. On these systems
938  * we utilise a static code generation buffer directly in the binary.
939  */
940 #define USE_STATIC_CODE_GEN_BUFFER
941 #endif
942 #else /* TCG_TARGET_REG_BITS == 64 */
943 #ifdef CONFIG_USER_ONLY
944 /*
945  * As user-mode emulation typically means running multiple instances
946  * of the translator don't go too nuts with our default code gen
947  * buffer lest we make things too hard for the OS.
948  */
949 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
950 #else
951 /*
952  * We expect most system emulation to run one or two guests per host.
953  * Users running large scale system emulation may want to tweak their
954  * runtime setup via the tb-size control on the command line.
955  */
956 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
957 #endif
958 #endif
959 
960 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
961   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
962    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
963 
964 static size_t size_code_gen_buffer(size_t tb_size)
965 {
966     /* Size the buffer.  */
967     if (tb_size == 0) {
968         size_t phys_mem = qemu_get_host_physmem();
969         if (phys_mem == 0) {
970             tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
971         } else {
972             tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8);
973         }
974     }
975     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
976         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
977     }
978     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
979         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
980     }
981     return tb_size;
982 }
983 
984 #ifdef __mips__
985 /* In order to use J and JAL within the code_gen_buffer, we require
986    that the buffer not cross a 256MB boundary.  */
987 static inline bool cross_256mb(void *addr, size_t size)
988 {
989     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
990 }
991 
992 /* We weren't able to allocate a buffer without crossing that boundary,
993    so make do with the larger portion of the buffer that doesn't cross.
994    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
995 static inline void *split_cross_256mb(void *buf1, size_t size1)
996 {
997     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
998     size_t size2 = buf1 + size1 - buf2;
999 
1000     size1 = buf2 - buf1;
1001     if (size1 < size2) {
1002         size1 = size2;
1003         buf1 = buf2;
1004     }
1005 
1006     tcg_ctx->code_gen_buffer_size = size1;
1007     return buf1;
1008 }
1009 #endif
1010 
1011 #ifdef USE_STATIC_CODE_GEN_BUFFER
1012 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1013     __attribute__((aligned(CODE_GEN_ALIGN)));
1014 
1015 static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
1016 {
1017     void *buf, *end;
1018     size_t size;
1019 
1020     if (splitwx > 0) {
1021         error_setg(errp, "jit split-wx not supported");
1022         return false;
1023     }
1024 
1025     /* page-align the beginning and end of the buffer */
1026     buf = static_code_gen_buffer;
1027     end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1028     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1029     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1030 
1031     size = end - buf;
1032 
1033     /* Honor a command-line option limiting the size of the buffer.  */
1034     if (size > tb_size) {
1035         size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
1036     }
1037     tcg_ctx->code_gen_buffer_size = size;
1038 
1039 #ifdef __mips__
1040     if (cross_256mb(buf, size)) {
1041         buf = split_cross_256mb(buf, size);
1042         size = tcg_ctx->code_gen_buffer_size;
1043     }
1044 #endif
1045 
1046     if (qemu_mprotect_rwx(buf, size)) {
1047         error_setg_errno(errp, errno, "mprotect of jit buffer");
1048         return false;
1049     }
1050     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1051 
1052     tcg_ctx->code_gen_buffer = buf;
1053     return true;
1054 }
1055 #elif defined(_WIN32)
1056 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1057 {
1058     void *buf;
1059 
1060     if (splitwx > 0) {
1061         error_setg(errp, "jit split-wx not supported");
1062         return false;
1063     }
1064 
1065     buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1066                              PAGE_EXECUTE_READWRITE);
1067     if (buf == NULL) {
1068         error_setg_win32(errp, GetLastError(),
1069                          "allocate %zu bytes for jit buffer", size);
1070         return false;
1071     }
1072 
1073     tcg_ctx->code_gen_buffer = buf;
1074     tcg_ctx->code_gen_buffer_size = size;
1075     return true;
1076 }
1077 #else
1078 static bool alloc_code_gen_buffer_anon(size_t size, int prot,
1079                                        int flags, Error **errp)
1080 {
1081     void *buf;
1082 
1083     buf = mmap(NULL, size, prot, flags, -1, 0);
1084     if (buf == MAP_FAILED) {
1085         error_setg_errno(errp, errno,
1086                          "allocate %zu bytes for jit buffer", size);
1087         return false;
1088     }
1089     tcg_ctx->code_gen_buffer_size = size;
1090 
1091 #ifdef __mips__
1092     if (cross_256mb(buf, size)) {
1093         /*
1094          * Try again, with the original still mapped, to avoid re-acquiring
1095          * the same 256mb crossing.
1096          */
1097         size_t size2;
1098         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1099         switch ((int)(buf2 != MAP_FAILED)) {
1100         case 1:
1101             if (!cross_256mb(buf2, size)) {
1102                 /* Success!  Use the new buffer.  */
1103                 munmap(buf, size);
1104                 break;
1105             }
1106             /* Failure.  Work with what we had.  */
1107             munmap(buf2, size);
1108             /* fallthru */
1109         default:
1110             /* Split the original buffer.  Free the smaller half.  */
1111             buf2 = split_cross_256mb(buf, size);
1112             size2 = tcg_ctx->code_gen_buffer_size;
1113             if (buf == buf2) {
1114                 munmap(buf + size2, size - size2);
1115             } else {
1116                 munmap(buf, size - size2);
1117             }
1118             size = size2;
1119             break;
1120         }
1121         buf = buf2;
1122     }
1123 #endif
1124 
1125     /* Request large pages for the buffer.  */
1126     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1127 
1128     tcg_ctx->code_gen_buffer = buf;
1129     return true;
1130 }
1131 
1132 #ifndef CONFIG_TCG_INTERPRETER
1133 #ifdef CONFIG_POSIX
1134 #include "qemu/memfd.h"
1135 
1136 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
1137 {
1138     void *buf_rw = NULL, *buf_rx = MAP_FAILED;
1139     int fd = -1;
1140 
1141 #ifdef __mips__
1142     /* Find space for the RX mapping, vs the 256MiB regions. */
1143     if (!alloc_code_gen_buffer_anon(size, PROT_NONE,
1144                                     MAP_PRIVATE | MAP_ANONYMOUS |
1145                                     MAP_NORESERVE, errp)) {
1146         return false;
1147     }
1148     /* The size of the mapping may have been adjusted. */
1149     size = tcg_ctx->code_gen_buffer_size;
1150     buf_rx = tcg_ctx->code_gen_buffer;
1151 #endif
1152 
1153     buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
1154     if (buf_rw == NULL) {
1155         goto fail;
1156     }
1157 
1158 #ifdef __mips__
1159     void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
1160                      MAP_SHARED | MAP_FIXED, fd, 0);
1161     if (tmp != buf_rx) {
1162         goto fail_rx;
1163     }
1164 #else
1165     buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
1166     if (buf_rx == MAP_FAILED) {
1167         goto fail_rx;
1168     }
1169 #endif
1170 
1171     close(fd);
1172     tcg_ctx->code_gen_buffer = buf_rw;
1173     tcg_ctx->code_gen_buffer_size = size;
1174     tcg_splitwx_diff = buf_rx - buf_rw;
1175 
1176     /* Request large pages for the buffer and the splitwx.  */
1177     qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE);
1178     qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE);
1179     return true;
1180 
1181  fail_rx:
1182     error_setg_errno(errp, errno, "failed to map shared memory for execute");
1183  fail:
1184     if (buf_rx != MAP_FAILED) {
1185         munmap(buf_rx, size);
1186     }
1187     if (buf_rw) {
1188         munmap(buf_rw, size);
1189     }
1190     if (fd >= 0) {
1191         close(fd);
1192     }
1193     return false;
1194 }
1195 #endif /* CONFIG_POSIX */
1196 
1197 #ifdef CONFIG_DARWIN
1198 #include <mach/mach.h>
1199 
1200 extern kern_return_t mach_vm_remap(vm_map_t target_task,
1201                                    mach_vm_address_t *target_address,
1202                                    mach_vm_size_t size,
1203                                    mach_vm_offset_t mask,
1204                                    int flags,
1205                                    vm_map_t src_task,
1206                                    mach_vm_address_t src_address,
1207                                    boolean_t copy,
1208                                    vm_prot_t *cur_protection,
1209                                    vm_prot_t *max_protection,
1210                                    vm_inherit_t inheritance);
1211 
1212 static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
1213 {
1214     kern_return_t ret;
1215     mach_vm_address_t buf_rw, buf_rx;
1216     vm_prot_t cur_prot, max_prot;
1217 
1218     /* Map the read-write portion via normal anon memory. */
1219     if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
1220                                     MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
1221         return false;
1222     }
1223 
1224     buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer;
1225     buf_rx = 0;
1226     ret = mach_vm_remap(mach_task_self(),
1227                         &buf_rx,
1228                         size,
1229                         0,
1230                         VM_FLAGS_ANYWHERE,
1231                         mach_task_self(),
1232                         buf_rw,
1233                         false,
1234                         &cur_prot,
1235                         &max_prot,
1236                         VM_INHERIT_NONE);
1237     if (ret != KERN_SUCCESS) {
1238         /* TODO: Convert "ret" to a human readable error message. */
1239         error_setg(errp, "vm_remap for jit splitwx failed");
1240         munmap((void *)buf_rw, size);
1241         return false;
1242     }
1243 
1244     if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
1245         error_setg_errno(errp, errno, "mprotect for jit splitwx");
1246         munmap((void *)buf_rx, size);
1247         munmap((void *)buf_rw, size);
1248         return false;
1249     }
1250 
1251     tcg_splitwx_diff = buf_rx - buf_rw;
1252     return true;
1253 }
1254 #endif /* CONFIG_DARWIN */
1255 #endif /* CONFIG_TCG_INTERPRETER */
1256 
1257 static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
1258 {
1259 #ifndef CONFIG_TCG_INTERPRETER
1260 # ifdef CONFIG_DARWIN
1261     return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
1262 # endif
1263 # ifdef CONFIG_POSIX
1264     return alloc_code_gen_buffer_splitwx_memfd(size, errp);
1265 # endif
1266 #endif
1267     error_setg(errp, "jit split-wx not supported");
1268     return false;
1269 }
1270 
1271 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1272 {
1273     ERRP_GUARD();
1274     int prot, flags;
1275 
1276     if (splitwx) {
1277         if (alloc_code_gen_buffer_splitwx(size, errp)) {
1278             return true;
1279         }
1280         /*
1281          * If splitwx force-on (1), fail;
1282          * if splitwx default-on (-1), fall through to splitwx off.
1283          */
1284         if (splitwx > 0) {
1285             return false;
1286         }
1287         error_free_or_abort(errp);
1288     }
1289 
1290     prot = PROT_READ | PROT_WRITE | PROT_EXEC;
1291     flags = MAP_PRIVATE | MAP_ANONYMOUS;
1292 #ifdef CONFIG_TCG_INTERPRETER
1293     /* The tcg interpreter does not need execute permission. */
1294     prot = PROT_READ | PROT_WRITE;
1295 #elif defined(CONFIG_DARWIN)
1296     /* Applicable to both iOS and macOS (Apple Silicon). */
1297     if (!splitwx) {
1298         flags |= MAP_JIT;
1299     }
1300 #endif
1301 
1302     return alloc_code_gen_buffer_anon(size, prot, flags, errp);
1303 }
1304 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1305 
1306 static bool tb_cmp(const void *ap, const void *bp)
1307 {
1308     const TranslationBlock *a = ap;
1309     const TranslationBlock *b = bp;
1310 
1311     return a->pc == b->pc &&
1312         a->cs_base == b->cs_base &&
1313         a->flags == b->flags &&
1314         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1315         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1316         a->page_addr[0] == b->page_addr[0] &&
1317         a->page_addr[1] == b->page_addr[1];
1318 }
1319 
1320 static void tb_htable_init(void)
1321 {
1322     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1323 
1324     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1325 }
1326 
1327 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1328    (in bytes) allocated to the translation buffer. Zero means default
1329    size. */
1330 void tcg_exec_init(unsigned long tb_size, int splitwx)
1331 {
1332     bool ok;
1333 
1334     tcg_allowed = true;
1335     cpu_gen_init();
1336     page_init();
1337     tb_htable_init();
1338 
1339     ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size),
1340                                splitwx, &error_fatal);
1341     assert(ok);
1342 
1343 #if defined(CONFIG_SOFTMMU)
1344     /* There's no guest base to take into account, so go ahead and
1345        initialize the prologue now.  */
1346     tcg_prologue_init(tcg_ctx);
1347 #endif
1348 }
1349 
1350 /* call with @p->lock held */
1351 static inline void invalidate_page_bitmap(PageDesc *p)
1352 {
1353     assert_page_locked(p);
1354 #ifdef CONFIG_SOFTMMU
1355     g_free(p->code_bitmap);
1356     p->code_bitmap = NULL;
1357     p->code_write_count = 0;
1358 #endif
1359 }
1360 
1361 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1362 static void page_flush_tb_1(int level, void **lp)
1363 {
1364     int i;
1365 
1366     if (*lp == NULL) {
1367         return;
1368     }
1369     if (level == 0) {
1370         PageDesc *pd = *lp;
1371 
1372         for (i = 0; i < V_L2_SIZE; ++i) {
1373             page_lock(&pd[i]);
1374             pd[i].first_tb = (uintptr_t)NULL;
1375             invalidate_page_bitmap(pd + i);
1376             page_unlock(&pd[i]);
1377         }
1378     } else {
1379         void **pp = *lp;
1380 
1381         for (i = 0; i < V_L2_SIZE; ++i) {
1382             page_flush_tb_1(level - 1, pp + i);
1383         }
1384     }
1385 }
1386 
1387 static void page_flush_tb(void)
1388 {
1389     int i, l1_sz = v_l1_size;
1390 
1391     for (i = 0; i < l1_sz; i++) {
1392         page_flush_tb_1(v_l2_levels, l1_map + i);
1393     }
1394 }
1395 
1396 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1397 {
1398     const TranslationBlock *tb = value;
1399     size_t *size = data;
1400 
1401     *size += tb->tc.size;
1402     return false;
1403 }
1404 
1405 /* flush all the translation blocks */
1406 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1407 {
1408     bool did_flush = false;
1409 
1410     mmap_lock();
1411     /* If it is already been done on request of another CPU,
1412      * just retry.
1413      */
1414     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1415         goto done;
1416     }
1417     did_flush = true;
1418 
1419     if (DEBUG_TB_FLUSH_GATE) {
1420         size_t nb_tbs = tcg_nb_tbs();
1421         size_t host_size = 0;
1422 
1423         tcg_tb_foreach(tb_host_size_iter, &host_size);
1424         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1425                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1426     }
1427 
1428     CPU_FOREACH(cpu) {
1429         cpu_tb_jmp_cache_clear(cpu);
1430     }
1431 
1432     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1433     page_flush_tb();
1434 
1435     tcg_region_reset_all();
1436     /* XXX: flush processor icache at this point if cache flush is
1437        expensive */
1438     qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1439 
1440 done:
1441     mmap_unlock();
1442     if (did_flush) {
1443         qemu_plugin_flush_cb();
1444     }
1445 }
1446 
1447 void tb_flush(CPUState *cpu)
1448 {
1449     if (tcg_enabled()) {
1450         unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
1451 
1452         if (cpu_in_exclusive_context(cpu)) {
1453             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1454         } else {
1455             async_safe_run_on_cpu(cpu, do_tb_flush,
1456                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1457         }
1458     }
1459 }
1460 
1461 /*
1462  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1463  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1464  * and let the optimizer get rid of them by wrapping their user-only callers
1465  * with if (DEBUG_TB_CHECK_GATE).
1466  */
1467 #ifdef CONFIG_USER_ONLY
1468 
1469 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1470 {
1471     TranslationBlock *tb = p;
1472     target_ulong addr = *(target_ulong *)userp;
1473 
1474     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1475         printf("ERROR invalidate: address=" TARGET_FMT_lx
1476                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1477     }
1478 }
1479 
1480 /* verify that all the pages have correct rights for code
1481  *
1482  * Called with mmap_lock held.
1483  */
1484 static void tb_invalidate_check(target_ulong address)
1485 {
1486     address &= TARGET_PAGE_MASK;
1487     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1488 }
1489 
1490 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1491 {
1492     TranslationBlock *tb = p;
1493     int flags1, flags2;
1494 
1495     flags1 = page_get_flags(tb->pc);
1496     flags2 = page_get_flags(tb->pc + tb->size - 1);
1497     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1498         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1499                (long)tb->pc, tb->size, flags1, flags2);
1500     }
1501 }
1502 
1503 /* verify that all the pages have correct rights for code */
1504 static void tb_page_check(void)
1505 {
1506     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1507 }
1508 
1509 #endif /* CONFIG_USER_ONLY */
1510 
1511 /*
1512  * user-mode: call with mmap_lock held
1513  * !user-mode: call with @pd->lock held
1514  */
1515 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1516 {
1517     TranslationBlock *tb1;
1518     uintptr_t *pprev;
1519     unsigned int n1;
1520 
1521     assert_page_locked(pd);
1522     pprev = &pd->first_tb;
1523     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1524         if (tb1 == tb) {
1525             *pprev = tb1->page_next[n1];
1526             return;
1527         }
1528         pprev = &tb1->page_next[n1];
1529     }
1530     g_assert_not_reached();
1531 }
1532 
1533 /* remove @orig from its @n_orig-th jump list */
1534 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1535 {
1536     uintptr_t ptr, ptr_locked;
1537     TranslationBlock *dest;
1538     TranslationBlock *tb;
1539     uintptr_t *pprev;
1540     int n;
1541 
1542     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1543     ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1544     dest = (TranslationBlock *)(ptr & ~1);
1545     if (dest == NULL) {
1546         return;
1547     }
1548 
1549     qemu_spin_lock(&dest->jmp_lock);
1550     /*
1551      * While acquiring the lock, the jump might have been removed if the
1552      * destination TB was invalidated; check again.
1553      */
1554     ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
1555     if (ptr_locked != ptr) {
1556         qemu_spin_unlock(&dest->jmp_lock);
1557         /*
1558          * The only possibility is that the jump was unlinked via
1559          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1560          * because we set the LSB above.
1561          */
1562         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1563         return;
1564     }
1565     /*
1566      * We first acquired the lock, and since the destination pointer matches,
1567      * we know for sure that @orig is in the jmp list.
1568      */
1569     pprev = &dest->jmp_list_head;
1570     TB_FOR_EACH_JMP(dest, tb, n) {
1571         if (tb == orig && n == n_orig) {
1572             *pprev = tb->jmp_list_next[n];
1573             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1574             qemu_spin_unlock(&dest->jmp_lock);
1575             return;
1576         }
1577         pprev = &tb->jmp_list_next[n];
1578     }
1579     g_assert_not_reached();
1580 }
1581 
1582 /* reset the jump entry 'n' of a TB so that it is not chained to
1583    another TB */
1584 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1585 {
1586     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1587     tb_set_jmp_target(tb, n, addr);
1588 }
1589 
1590 /* remove any jumps to the TB */
1591 static inline void tb_jmp_unlink(TranslationBlock *dest)
1592 {
1593     TranslationBlock *tb;
1594     int n;
1595 
1596     qemu_spin_lock(&dest->jmp_lock);
1597 
1598     TB_FOR_EACH_JMP(dest, tb, n) {
1599         tb_reset_jump(tb, n);
1600         qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1601         /* No need to clear the list entry; setting the dest ptr is enough */
1602     }
1603     dest->jmp_list_head = (uintptr_t)NULL;
1604 
1605     qemu_spin_unlock(&dest->jmp_lock);
1606 }
1607 
1608 /*
1609  * In user-mode, call with mmap_lock held.
1610  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1611  * locks held.
1612  */
1613 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1614 {
1615     CPUState *cpu;
1616     PageDesc *p;
1617     uint32_t h;
1618     tb_page_addr_t phys_pc;
1619 
1620     assert_memory_lock();
1621 
1622     /* make sure no further incoming jumps will be chained to this TB */
1623     qemu_spin_lock(&tb->jmp_lock);
1624     qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1625     qemu_spin_unlock(&tb->jmp_lock);
1626 
1627     /* remove the TB from the hash list */
1628     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1629     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1630                      tb->trace_vcpu_dstate);
1631     if (!qht_remove(&tb_ctx.htable, tb, h)) {
1632         return;
1633     }
1634 
1635     /* remove the TB from the page list */
1636     if (rm_from_page_list) {
1637         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1638         tb_page_remove(p, tb);
1639         invalidate_page_bitmap(p);
1640         if (tb->page_addr[1] != -1) {
1641             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1642             tb_page_remove(p, tb);
1643             invalidate_page_bitmap(p);
1644         }
1645     }
1646 
1647     /* remove the TB from the hash list */
1648     h = tb_jmp_cache_hash_func(tb->pc);
1649     CPU_FOREACH(cpu) {
1650         if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1651             qatomic_set(&cpu->tb_jmp_cache[h], NULL);
1652         }
1653     }
1654 
1655     /* suppress this TB from the two jump lists */
1656     tb_remove_from_jmp_list(tb, 0);
1657     tb_remove_from_jmp_list(tb, 1);
1658 
1659     /* suppress any remaining jumps to this TB */
1660     tb_jmp_unlink(tb);
1661 
1662     qatomic_set(&tcg_ctx->tb_phys_invalidate_count,
1663                tcg_ctx->tb_phys_invalidate_count + 1);
1664 }
1665 
1666 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1667 {
1668     qemu_thread_jit_write();
1669     do_tb_phys_invalidate(tb, true);
1670     qemu_thread_jit_execute();
1671 }
1672 
1673 /* invalidate one TB
1674  *
1675  * Called with mmap_lock held in user-mode.
1676  */
1677 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1678 {
1679     if (page_addr == -1 && tb->page_addr[0] != -1) {
1680         page_lock_tb(tb);
1681         do_tb_phys_invalidate(tb, true);
1682         page_unlock_tb(tb);
1683     } else {
1684         do_tb_phys_invalidate(tb, false);
1685     }
1686 }
1687 
1688 #ifdef CONFIG_SOFTMMU
1689 /* call with @p->lock held */
1690 static void build_page_bitmap(PageDesc *p)
1691 {
1692     int n, tb_start, tb_end;
1693     TranslationBlock *tb;
1694 
1695     assert_page_locked(p);
1696     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1697 
1698     PAGE_FOR_EACH_TB(p, tb, n) {
1699         /* NOTE: this is subtle as a TB may span two physical pages */
1700         if (n == 0) {
1701             /* NOTE: tb_end may be after the end of the page, but
1702                it is not a problem */
1703             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1704             tb_end = tb_start + tb->size;
1705             if (tb_end > TARGET_PAGE_SIZE) {
1706                 tb_end = TARGET_PAGE_SIZE;
1707              }
1708         } else {
1709             tb_start = 0;
1710             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1711         }
1712         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1713     }
1714 }
1715 #endif
1716 
1717 /* add the tb in the target page and protect it if necessary
1718  *
1719  * Called with mmap_lock held for user-mode emulation.
1720  * Called with @p->lock held in !user-mode.
1721  */
1722 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1723                                unsigned int n, tb_page_addr_t page_addr)
1724 {
1725 #ifndef CONFIG_USER_ONLY
1726     bool page_already_protected;
1727 #endif
1728 
1729     assert_page_locked(p);
1730 
1731     tb->page_addr[n] = page_addr;
1732     tb->page_next[n] = p->first_tb;
1733 #ifndef CONFIG_USER_ONLY
1734     page_already_protected = p->first_tb != (uintptr_t)NULL;
1735 #endif
1736     p->first_tb = (uintptr_t)tb | n;
1737     invalidate_page_bitmap(p);
1738 
1739 #if defined(CONFIG_USER_ONLY)
1740     if (p->flags & PAGE_WRITE) {
1741         target_ulong addr;
1742         PageDesc *p2;
1743         int prot;
1744 
1745         /* force the host page as non writable (writes will have a
1746            page fault + mprotect overhead) */
1747         page_addr &= qemu_host_page_mask;
1748         prot = 0;
1749         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1750             addr += TARGET_PAGE_SIZE) {
1751 
1752             p2 = page_find(addr >> TARGET_PAGE_BITS);
1753             if (!p2) {
1754                 continue;
1755             }
1756             prot |= p2->flags;
1757             p2->flags &= ~PAGE_WRITE;
1758           }
1759         mprotect(g2h_untagged(page_addr), qemu_host_page_size,
1760                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1761         if (DEBUG_TB_INVALIDATE_GATE) {
1762             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1763         }
1764     }
1765 #else
1766     /* if some code is already present, then the pages are already
1767        protected. So we handle the case where only the first TB is
1768        allocated in a physical page */
1769     if (!page_already_protected) {
1770         tlb_protect_code(page_addr);
1771     }
1772 #endif
1773 }
1774 
1775 /*
1776  * Add a new TB and link it to the physical page tables. phys_page2 is
1777  * (-1) to indicate that only one page contains the TB.
1778  *
1779  * Called with mmap_lock held for user-mode emulation.
1780  *
1781  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1782  * Note that in !user-mode, another thread might have already added a TB
1783  * for the same block of guest code that @tb corresponds to. In that case,
1784  * the caller should discard the original @tb, and use instead the returned TB.
1785  */
1786 static TranslationBlock *
1787 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1788              tb_page_addr_t phys_page2)
1789 {
1790     PageDesc *p;
1791     PageDesc *p2 = NULL;
1792     void *existing_tb = NULL;
1793     uint32_t h;
1794 
1795     assert_memory_lock();
1796 
1797     /*
1798      * Add the TB to the page list, acquiring first the pages's locks.
1799      * We keep the locks held until after inserting the TB in the hash table,
1800      * so that if the insertion fails we know for sure that the TBs are still
1801      * in the page descriptors.
1802      * Note that inserting into the hash table first isn't an option, since
1803      * we can only insert TBs that are fully initialized.
1804      */
1805     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1806     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1807     if (p2) {
1808         tb_page_add(p2, tb, 1, phys_page2);
1809     } else {
1810         tb->page_addr[1] = -1;
1811     }
1812 
1813     /* add in the hash table */
1814     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1815                      tb->trace_vcpu_dstate);
1816     qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1817 
1818     /* remove TB from the page(s) if we couldn't insert it */
1819     if (unlikely(existing_tb)) {
1820         tb_page_remove(p, tb);
1821         invalidate_page_bitmap(p);
1822         if (p2) {
1823             tb_page_remove(p2, tb);
1824             invalidate_page_bitmap(p2);
1825         }
1826         tb = existing_tb;
1827     }
1828 
1829     if (p2 && p2 != p) {
1830         page_unlock(p2);
1831     }
1832     page_unlock(p);
1833 
1834 #ifdef CONFIG_USER_ONLY
1835     if (DEBUG_TB_CHECK_GATE) {
1836         tb_page_check();
1837     }
1838 #endif
1839     return tb;
1840 }
1841 
1842 /* Called with mmap_lock held for user mode emulation.  */
1843 TranslationBlock *tb_gen_code(CPUState *cpu,
1844                               target_ulong pc, target_ulong cs_base,
1845                               uint32_t flags, int cflags)
1846 {
1847     CPUArchState *env = cpu->env_ptr;
1848     TranslationBlock *tb, *existing_tb;
1849     tb_page_addr_t phys_pc, phys_page2;
1850     target_ulong virt_page2;
1851     tcg_insn_unit *gen_code_buf;
1852     int gen_code_size, search_size, max_insns;
1853 #ifdef CONFIG_PROFILER
1854     TCGProfile *prof = &tcg_ctx->prof;
1855     int64_t ti;
1856 #endif
1857 
1858     assert_memory_lock();
1859     qemu_thread_jit_write();
1860 
1861     phys_pc = get_page_addr_code(env, pc);
1862 
1863     if (phys_pc == -1) {
1864         /* Generate a one-shot TB with 1 insn in it */
1865         cflags = (cflags & ~CF_COUNT_MASK) | 1;
1866     }
1867 
1868     cflags &= ~CF_CLUSTER_MASK;
1869     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1870 
1871     max_insns = cflags & CF_COUNT_MASK;
1872     if (max_insns == 0) {
1873         max_insns = CF_COUNT_MASK;
1874     }
1875     if (max_insns > TCG_MAX_INSNS) {
1876         max_insns = TCG_MAX_INSNS;
1877     }
1878     if (cpu->singlestep_enabled || singlestep) {
1879         max_insns = 1;
1880     }
1881 
1882  buffer_overflow:
1883     tb = tcg_tb_alloc(tcg_ctx);
1884     if (unlikely(!tb)) {
1885         /* flush must be done */
1886         tb_flush(cpu);
1887         mmap_unlock();
1888         /* Make the execution loop process the flush as soon as possible.  */
1889         cpu->exception_index = EXCP_INTERRUPT;
1890         cpu_loop_exit(cpu);
1891     }
1892 
1893     gen_code_buf = tcg_ctx->code_gen_ptr;
1894     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
1895     tb->pc = pc;
1896     tb->cs_base = cs_base;
1897     tb->flags = flags;
1898     tb->cflags = cflags;
1899     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1900     tcg_ctx->tb_cflags = cflags;
1901  tb_overflow:
1902 
1903 #ifdef CONFIG_PROFILER
1904     /* includes aborted translations because of exceptions */
1905     qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1906     ti = profile_getclock();
1907 #endif
1908 
1909     gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
1910     if (unlikely(gen_code_size != 0)) {
1911         goto error_return;
1912     }
1913 
1914     tcg_func_start(tcg_ctx);
1915 
1916     tcg_ctx->cpu = env_cpu(env);
1917     gen_intermediate_code(cpu, tb, max_insns);
1918     tcg_ctx->cpu = NULL;
1919     max_insns = tb->icount;
1920 
1921     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1922 
1923     /* generate machine code */
1924     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1925     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1926     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1927     if (TCG_TARGET_HAS_direct_jump) {
1928         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1929         tcg_ctx->tb_jmp_target_addr = NULL;
1930     } else {
1931         tcg_ctx->tb_jmp_insn_offset = NULL;
1932         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1933     }
1934 
1935 #ifdef CONFIG_PROFILER
1936     qatomic_set(&prof->tb_count, prof->tb_count + 1);
1937     qatomic_set(&prof->interm_time,
1938                 prof->interm_time + profile_getclock() - ti);
1939     ti = profile_getclock();
1940 #endif
1941 
1942     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1943     if (unlikely(gen_code_size < 0)) {
1944  error_return:
1945         switch (gen_code_size) {
1946         case -1:
1947             /*
1948              * Overflow of code_gen_buffer, or the current slice of it.
1949              *
1950              * TODO: We don't need to re-do gen_intermediate_code, nor
1951              * should we re-do the tcg optimization currently hidden
1952              * inside tcg_gen_code.  All that should be required is to
1953              * flush the TBs, allocate a new TB, re-initialize it per
1954              * above, and re-do the actual code generation.
1955              */
1956             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1957                           "Restarting code generation for "
1958                           "code_gen_buffer overflow\n");
1959             goto buffer_overflow;
1960 
1961         case -2:
1962             /*
1963              * The code generated for the TranslationBlock is too large.
1964              * The maximum size allowed by the unwind info is 64k.
1965              * There may be stricter constraints from relocations
1966              * in the tcg backend.
1967              *
1968              * Try again with half as many insns as we attempted this time.
1969              * If a single insn overflows, there's a bug somewhere...
1970              */
1971             assert(max_insns > 1);
1972             max_insns /= 2;
1973             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1974                           "Restarting code generation with "
1975                           "smaller translation block (max %d insns)\n",
1976                           max_insns);
1977             goto tb_overflow;
1978 
1979         default:
1980             g_assert_not_reached();
1981         }
1982     }
1983     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1984     if (unlikely(search_size < 0)) {
1985         goto buffer_overflow;
1986     }
1987     tb->tc.size = gen_code_size;
1988 
1989 #ifdef CONFIG_PROFILER
1990     qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1991     qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1992     qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1993     qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1994 #endif
1995 
1996 #ifdef DEBUG_DISAS
1997     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1998         qemu_log_in_addr_range(tb->pc)) {
1999         FILE *logfile = qemu_log_lock();
2000         int code_size, data_size;
2001         const tcg_target_ulong *rx_data_gen_ptr;
2002         size_t chunk_start;
2003         int insn = 0;
2004 
2005         if (tcg_ctx->data_gen_ptr) {
2006             rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
2007             code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
2008             data_size = gen_code_size - code_size;
2009         } else {
2010             rx_data_gen_ptr = 0;
2011             code_size = gen_code_size;
2012             data_size = 0;
2013         }
2014 
2015         /* Dump header and the first instruction */
2016         qemu_log("OUT: [size=%d]\n", gen_code_size);
2017         qemu_log("  -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
2018                  tcg_ctx->gen_insn_data[insn][0]);
2019         chunk_start = tcg_ctx->gen_insn_end_off[insn];
2020         log_disas(tb->tc.ptr, chunk_start);
2021 
2022         /*
2023          * Dump each instruction chunk, wrapping up empty chunks into
2024          * the next instruction. The whole array is offset so the
2025          * first entry is the beginning of the 2nd instruction.
2026          */
2027         while (insn < tb->icount) {
2028             size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
2029             if (chunk_end > chunk_start) {
2030                 qemu_log("  -- guest addr 0x" TARGET_FMT_lx "\n",
2031                          tcg_ctx->gen_insn_data[insn][0]);
2032                 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start);
2033                 chunk_start = chunk_end;
2034             }
2035             insn++;
2036         }
2037 
2038         if (chunk_start < code_size) {
2039             qemu_log("  -- tb slow paths + alignment\n");
2040             log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start);
2041         }
2042 
2043         /* Finally dump any data we may have after the block */
2044         if (data_size) {
2045             int i;
2046             qemu_log("  data: [size=%d]\n", data_size);
2047             for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
2048                 qemu_log("0x%08" PRIxPTR ":  .quad  0x%" TCG_PRIlx "\n",
2049                          (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
2050             }
2051         }
2052         qemu_log("\n");
2053         qemu_log_flush();
2054         qemu_log_unlock(logfile);
2055     }
2056 #endif
2057 
2058     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
2059         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
2060                  CODE_GEN_ALIGN));
2061 
2062     /* init jump list */
2063     qemu_spin_init(&tb->jmp_lock);
2064     tb->jmp_list_head = (uintptr_t)NULL;
2065     tb->jmp_list_next[0] = (uintptr_t)NULL;
2066     tb->jmp_list_next[1] = (uintptr_t)NULL;
2067     tb->jmp_dest[0] = (uintptr_t)NULL;
2068     tb->jmp_dest[1] = (uintptr_t)NULL;
2069 
2070     /* init original jump addresses which have been set during tcg_gen_code() */
2071     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2072         tb_reset_jump(tb, 0);
2073     }
2074     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2075         tb_reset_jump(tb, 1);
2076     }
2077 
2078     /*
2079      * If the TB is not associated with a physical RAM page then
2080      * it must be a temporary one-insn TB, and we have nothing to do
2081      * except fill in the page_addr[] fields. Return early before
2082      * attempting to link to other TBs or add to the lookup table.
2083      */
2084     if (phys_pc == -1) {
2085         tb->page_addr[0] = tb->page_addr[1] = -1;
2086         return tb;
2087     }
2088 
2089     /* check next page if needed */
2090     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
2091     phys_page2 = -1;
2092     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
2093         phys_page2 = get_page_addr_code(env, virt_page2);
2094     }
2095     /*
2096      * No explicit memory barrier is required -- tb_link_page() makes the
2097      * TB visible in a consistent state.
2098      */
2099     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
2100     /* if the TB already exists, discard what we just translated */
2101     if (unlikely(existing_tb != tb)) {
2102         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
2103 
2104         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
2105         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
2106         tb_destroy(tb);
2107         return existing_tb;
2108     }
2109     tcg_tb_insert(tb);
2110     return tb;
2111 }
2112 
2113 /*
2114  * @p must be non-NULL.
2115  * user-mode: call with mmap_lock held.
2116  * !user-mode: call with all @pages locked.
2117  */
2118 static void
2119 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
2120                                       PageDesc *p, tb_page_addr_t start,
2121                                       tb_page_addr_t end,
2122                                       uintptr_t retaddr)
2123 {
2124     TranslationBlock *tb;
2125     tb_page_addr_t tb_start, tb_end;
2126     int n;
2127 #ifdef TARGET_HAS_PRECISE_SMC
2128     CPUState *cpu = current_cpu;
2129     CPUArchState *env = NULL;
2130     bool current_tb_not_found = retaddr != 0;
2131     bool current_tb_modified = false;
2132     TranslationBlock *current_tb = NULL;
2133     target_ulong current_pc = 0;
2134     target_ulong current_cs_base = 0;
2135     uint32_t current_flags = 0;
2136 #endif /* TARGET_HAS_PRECISE_SMC */
2137 
2138     assert_page_locked(p);
2139 
2140 #if defined(TARGET_HAS_PRECISE_SMC)
2141     if (cpu != NULL) {
2142         env = cpu->env_ptr;
2143     }
2144 #endif
2145 
2146     /* we remove all the TBs in the range [start, end[ */
2147     /* XXX: see if in some cases it could be faster to invalidate all
2148        the code */
2149     PAGE_FOR_EACH_TB(p, tb, n) {
2150         assert_page_locked(p);
2151         /* NOTE: this is subtle as a TB may span two physical pages */
2152         if (n == 0) {
2153             /* NOTE: tb_end may be after the end of the page, but
2154                it is not a problem */
2155             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
2156             tb_end = tb_start + tb->size;
2157         } else {
2158             tb_start = tb->page_addr[1];
2159             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
2160         }
2161         if (!(tb_end <= start || tb_start >= end)) {
2162 #ifdef TARGET_HAS_PRECISE_SMC
2163             if (current_tb_not_found) {
2164                 current_tb_not_found = false;
2165                 /* now we have a real cpu fault */
2166                 current_tb = tcg_tb_lookup(retaddr);
2167             }
2168             if (current_tb == tb &&
2169                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2170                 /*
2171                  * If we are modifying the current TB, we must stop
2172                  * its execution. We could be more precise by checking
2173                  * that the modification is after the current PC, but it
2174                  * would require a specialized function to partially
2175                  * restore the CPU state.
2176                  */
2177                 current_tb_modified = true;
2178                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
2179                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2180                                      &current_flags);
2181             }
2182 #endif /* TARGET_HAS_PRECISE_SMC */
2183             tb_phys_invalidate__locked(tb);
2184         }
2185     }
2186 #if !defined(CONFIG_USER_ONLY)
2187     /* if no code remaining, no need to continue to use slow writes */
2188     if (!p->first_tb) {
2189         invalidate_page_bitmap(p);
2190         tlb_unprotect_code(start);
2191     }
2192 #endif
2193 #ifdef TARGET_HAS_PRECISE_SMC
2194     if (current_tb_modified) {
2195         page_collection_unlock(pages);
2196         /* Force execution of one insn next time.  */
2197         cpu->cflags_next_tb = 1 | curr_cflags();
2198         mmap_unlock();
2199         cpu_loop_exit_noexc(cpu);
2200     }
2201 #endif
2202 }
2203 
2204 /*
2205  * Invalidate all TBs which intersect with the target physical address range
2206  * [start;end[. NOTE: start and end must refer to the *same* physical page.
2207  * 'is_cpu_write_access' should be true if called from a real cpu write
2208  * access: the virtual CPU will exit the current TB if code is modified inside
2209  * this TB.
2210  *
2211  * Called with mmap_lock held for user-mode emulation
2212  */
2213 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2214 {
2215     struct page_collection *pages;
2216     PageDesc *p;
2217 
2218     assert_memory_lock();
2219 
2220     p = page_find(start >> TARGET_PAGE_BITS);
2221     if (p == NULL) {
2222         return;
2223     }
2224     pages = page_collection_lock(start, end);
2225     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2226     page_collection_unlock(pages);
2227 }
2228 
2229 /*
2230  * Invalidate all TBs which intersect with the target physical address range
2231  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2232  * 'is_cpu_write_access' should be true if called from a real cpu write
2233  * access: the virtual CPU will exit the current TB if code is modified inside
2234  * this TB.
2235  *
2236  * Called with mmap_lock held for user-mode emulation.
2237  */
2238 #ifdef CONFIG_SOFTMMU
2239 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2240 #else
2241 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2242 #endif
2243 {
2244     struct page_collection *pages;
2245     tb_page_addr_t next;
2246 
2247     assert_memory_lock();
2248 
2249     pages = page_collection_lock(start, end);
2250     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2251          start < end;
2252          start = next, next += TARGET_PAGE_SIZE) {
2253         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2254         tb_page_addr_t bound = MIN(next, end);
2255 
2256         if (pd == NULL) {
2257             continue;
2258         }
2259         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2260     }
2261     page_collection_unlock(pages);
2262 }
2263 
2264 #ifdef CONFIG_SOFTMMU
2265 /* len must be <= 8 and start must be a multiple of len.
2266  * Called via softmmu_template.h when code areas are written to with
2267  * iothread mutex not held.
2268  *
2269  * Call with all @pages in the range [@start, @start + len[ locked.
2270  */
2271 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2272                                   tb_page_addr_t start, int len,
2273                                   uintptr_t retaddr)
2274 {
2275     PageDesc *p;
2276 
2277     assert_memory_lock();
2278 
2279     p = page_find(start >> TARGET_PAGE_BITS);
2280     if (!p) {
2281         return;
2282     }
2283 
2284     assert_page_locked(p);
2285     if (!p->code_bitmap &&
2286         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2287         build_page_bitmap(p);
2288     }
2289     if (p->code_bitmap) {
2290         unsigned int nr;
2291         unsigned long b;
2292 
2293         nr = start & ~TARGET_PAGE_MASK;
2294         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2295         if (b & ((1 << len) - 1)) {
2296             goto do_invalidate;
2297         }
2298     } else {
2299     do_invalidate:
2300         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2301                                               retaddr);
2302     }
2303 }
2304 #else
2305 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2306  * host PC of the faulting store instruction that caused this invalidate.
2307  * Returns true if the caller needs to abort execution of the current
2308  * TB (because it was modified by this store and the guest CPU has
2309  * precise-SMC semantics).
2310  */
2311 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2312 {
2313     TranslationBlock *tb;
2314     PageDesc *p;
2315     int n;
2316 #ifdef TARGET_HAS_PRECISE_SMC
2317     TranslationBlock *current_tb = NULL;
2318     CPUState *cpu = current_cpu;
2319     CPUArchState *env = NULL;
2320     int current_tb_modified = 0;
2321     target_ulong current_pc = 0;
2322     target_ulong current_cs_base = 0;
2323     uint32_t current_flags = 0;
2324 #endif
2325 
2326     assert_memory_lock();
2327 
2328     addr &= TARGET_PAGE_MASK;
2329     p = page_find(addr >> TARGET_PAGE_BITS);
2330     if (!p) {
2331         return false;
2332     }
2333 
2334 #ifdef TARGET_HAS_PRECISE_SMC
2335     if (p->first_tb && pc != 0) {
2336         current_tb = tcg_tb_lookup(pc);
2337     }
2338     if (cpu != NULL) {
2339         env = cpu->env_ptr;
2340     }
2341 #endif
2342     assert_page_locked(p);
2343     PAGE_FOR_EACH_TB(p, tb, n) {
2344 #ifdef TARGET_HAS_PRECISE_SMC
2345         if (current_tb == tb &&
2346             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2347                 /* If we are modifying the current TB, we must stop
2348                    its execution. We could be more precise by checking
2349                    that the modification is after the current PC, but it
2350                    would require a specialized function to partially
2351                    restore the CPU state */
2352 
2353             current_tb_modified = 1;
2354             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2355             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2356                                  &current_flags);
2357         }
2358 #endif /* TARGET_HAS_PRECISE_SMC */
2359         tb_phys_invalidate(tb, addr);
2360     }
2361     p->first_tb = (uintptr_t)NULL;
2362 #ifdef TARGET_HAS_PRECISE_SMC
2363     if (current_tb_modified) {
2364         /* Force execution of one insn next time.  */
2365         cpu->cflags_next_tb = 1 | curr_cflags();
2366         return true;
2367     }
2368 #endif
2369 
2370     return false;
2371 }
2372 #endif
2373 
2374 /* user-mode: call with mmap_lock held */
2375 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2376 {
2377     TranslationBlock *tb;
2378 
2379     assert_memory_lock();
2380 
2381     tb = tcg_tb_lookup(retaddr);
2382     if (tb) {
2383         /* We can use retranslation to find the PC.  */
2384         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2385         tb_phys_invalidate(tb, -1);
2386     } else {
2387         /* The exception probably happened in a helper.  The CPU state should
2388            have been saved before calling it. Fetch the PC from there.  */
2389         CPUArchState *env = cpu->env_ptr;
2390         target_ulong pc, cs_base;
2391         tb_page_addr_t addr;
2392         uint32_t flags;
2393 
2394         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2395         addr = get_page_addr_code(env, pc);
2396         if (addr != -1) {
2397             tb_invalidate_phys_range(addr, addr + 1);
2398         }
2399     }
2400 }
2401 
2402 #ifndef CONFIG_USER_ONLY
2403 /*
2404  * In deterministic execution mode, instructions doing device I/Os
2405  * must be at the end of the TB.
2406  *
2407  * Called by softmmu_template.h, with iothread mutex not held.
2408  */
2409 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2410 {
2411     TranslationBlock *tb;
2412     CPUClass *cc;
2413     uint32_t n;
2414 
2415     tb = tcg_tb_lookup(retaddr);
2416     if (!tb) {
2417         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2418                   (void *)retaddr);
2419     }
2420     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2421 
2422     /*
2423      * Some guests must re-execute the branch when re-executing a delay
2424      * slot instruction.  When this is the case, adjust icount and N
2425      * to account for the re-execution of the branch.
2426      */
2427     n = 1;
2428     cc = CPU_GET_CLASS(cpu);
2429     if (cc->tcg_ops->io_recompile_replay_branch &&
2430         cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
2431         cpu_neg(cpu)->icount_decr.u16.low++;
2432         n = 2;
2433     }
2434 
2435     /*
2436      * Exit the loop and potentially generate a new TB executing the
2437      * just the I/O insns. We also limit instrumentation to memory
2438      * operations only (which execute after completion) so we don't
2439      * double instrument the instruction.
2440      */
2441     cpu->cflags_next_tb = curr_cflags() | CF_MEMI_ONLY | CF_LAST_IO | n;
2442 
2443     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
2444                            "cpu_io_recompile: rewound execution of TB to "
2445                            TARGET_FMT_lx "\n", tb->pc);
2446 
2447     cpu_loop_exit_noexc(cpu);
2448 }
2449 
2450 static void print_qht_statistics(struct qht_stats hst)
2451 {
2452     uint32_t hgram_opts;
2453     size_t hgram_bins;
2454     char *hgram;
2455 
2456     if (!hst.head_buckets) {
2457         return;
2458     }
2459     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2460                 hst.used_head_buckets, hst.head_buckets,
2461                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2462 
2463     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2464     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2465     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2466         hgram_opts |= QDIST_PR_NODECIMAL;
2467     }
2468     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2469     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2470                 qdist_avg(&hst.occupancy) * 100, hgram);
2471     g_free(hgram);
2472 
2473     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2474     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2475     if (hgram_bins > 10) {
2476         hgram_bins = 10;
2477     } else {
2478         hgram_bins = 0;
2479         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2480     }
2481     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2482     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2483                 qdist_avg(&hst.chain), hgram);
2484     g_free(hgram);
2485 }
2486 
2487 struct tb_tree_stats {
2488     size_t nb_tbs;
2489     size_t host_size;
2490     size_t target_size;
2491     size_t max_target_size;
2492     size_t direct_jmp_count;
2493     size_t direct_jmp2_count;
2494     size_t cross_page;
2495 };
2496 
2497 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2498 {
2499     const TranslationBlock *tb = value;
2500     struct tb_tree_stats *tst = data;
2501 
2502     tst->nb_tbs++;
2503     tst->host_size += tb->tc.size;
2504     tst->target_size += tb->size;
2505     if (tb->size > tst->max_target_size) {
2506         tst->max_target_size = tb->size;
2507     }
2508     if (tb->page_addr[1] != -1) {
2509         tst->cross_page++;
2510     }
2511     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2512         tst->direct_jmp_count++;
2513         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2514             tst->direct_jmp2_count++;
2515         }
2516     }
2517     return false;
2518 }
2519 
2520 void dump_exec_info(void)
2521 {
2522     struct tb_tree_stats tst = {};
2523     struct qht_stats hst;
2524     size_t nb_tbs, flush_full, flush_part, flush_elide;
2525 
2526     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2527     nb_tbs = tst.nb_tbs;
2528     /* XXX: avoid using doubles ? */
2529     qemu_printf("Translation buffer state:\n");
2530     /*
2531      * Report total code size including the padding and TB structs;
2532      * otherwise users might think "-accel tcg,tb-size" is not honoured.
2533      * For avg host size we use the precise numbers from tb_tree_stats though.
2534      */
2535     qemu_printf("gen code size       %zu/%zu\n",
2536                 tcg_code_size(), tcg_code_capacity());
2537     qemu_printf("TB count            %zu\n", nb_tbs);
2538     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2539                 nb_tbs ? tst.target_size / nb_tbs : 0,
2540                 tst.max_target_size);
2541     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2542                 nb_tbs ? tst.host_size / nb_tbs : 0,
2543                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2544     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2545                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2546     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2547                 tst.direct_jmp_count,
2548                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2549                 tst.direct_jmp2_count,
2550                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2551 
2552     qht_statistics_init(&tb_ctx.htable, &hst);
2553     print_qht_statistics(hst);
2554     qht_statistics_destroy(&hst);
2555 
2556     qemu_printf("\nStatistics:\n");
2557     qemu_printf("TB flush count      %u\n",
2558                 qatomic_read(&tb_ctx.tb_flush_count));
2559     qemu_printf("TB invalidate count %zu\n",
2560                 tcg_tb_phys_invalidate_count());
2561 
2562     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2563     qemu_printf("TLB full flushes    %zu\n", flush_full);
2564     qemu_printf("TLB partial flushes %zu\n", flush_part);
2565     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2566     tcg_dump_info();
2567 }
2568 
2569 void dump_opcount_info(void)
2570 {
2571     tcg_dump_op_count();
2572 }
2573 
2574 #else /* CONFIG_USER_ONLY */
2575 
2576 void cpu_interrupt(CPUState *cpu, int mask)
2577 {
2578     g_assert(qemu_mutex_iothread_locked());
2579     cpu->interrupt_request |= mask;
2580     qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2581 }
2582 
2583 /*
2584  * Walks guest process memory "regions" one by one
2585  * and calls callback function 'fn' for each region.
2586  */
2587 struct walk_memory_regions_data {
2588     walk_memory_regions_fn fn;
2589     void *priv;
2590     target_ulong start;
2591     int prot;
2592 };
2593 
2594 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2595                                    target_ulong end, int new_prot)
2596 {
2597     if (data->start != -1u) {
2598         int rc = data->fn(data->priv, data->start, end, data->prot);
2599         if (rc != 0) {
2600             return rc;
2601         }
2602     }
2603 
2604     data->start = (new_prot ? end : -1u);
2605     data->prot = new_prot;
2606 
2607     return 0;
2608 }
2609 
2610 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2611                                  target_ulong base, int level, void **lp)
2612 {
2613     target_ulong pa;
2614     int i, rc;
2615 
2616     if (*lp == NULL) {
2617         return walk_memory_regions_end(data, base, 0);
2618     }
2619 
2620     if (level == 0) {
2621         PageDesc *pd = *lp;
2622 
2623         for (i = 0; i < V_L2_SIZE; ++i) {
2624             int prot = pd[i].flags;
2625 
2626             pa = base | (i << TARGET_PAGE_BITS);
2627             if (prot != data->prot) {
2628                 rc = walk_memory_regions_end(data, pa, prot);
2629                 if (rc != 0) {
2630                     return rc;
2631                 }
2632             }
2633         }
2634     } else {
2635         void **pp = *lp;
2636 
2637         for (i = 0; i < V_L2_SIZE; ++i) {
2638             pa = base | ((target_ulong)i <<
2639                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2640             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2641             if (rc != 0) {
2642                 return rc;
2643             }
2644         }
2645     }
2646 
2647     return 0;
2648 }
2649 
2650 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2651 {
2652     struct walk_memory_regions_data data;
2653     uintptr_t i, l1_sz = v_l1_size;
2654 
2655     data.fn = fn;
2656     data.priv = priv;
2657     data.start = -1u;
2658     data.prot = 0;
2659 
2660     for (i = 0; i < l1_sz; i++) {
2661         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2662         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2663         if (rc != 0) {
2664             return rc;
2665         }
2666     }
2667 
2668     return walk_memory_regions_end(&data, 0, 0);
2669 }
2670 
2671 static int dump_region(void *priv, target_ulong start,
2672     target_ulong end, unsigned long prot)
2673 {
2674     FILE *f = (FILE *)priv;
2675 
2676     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2677         " "TARGET_FMT_lx" %c%c%c\n",
2678         start, end, end - start,
2679         ((prot & PAGE_READ) ? 'r' : '-'),
2680         ((prot & PAGE_WRITE) ? 'w' : '-'),
2681         ((prot & PAGE_EXEC) ? 'x' : '-'));
2682 
2683     return 0;
2684 }
2685 
2686 /* dump memory mappings */
2687 void page_dump(FILE *f)
2688 {
2689     const int length = sizeof(target_ulong) * 2;
2690     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2691             length, "start", length, "end", length, "size", "prot");
2692     walk_memory_regions(f, dump_region);
2693 }
2694 
2695 int page_get_flags(target_ulong address)
2696 {
2697     PageDesc *p;
2698 
2699     p = page_find(address >> TARGET_PAGE_BITS);
2700     if (!p) {
2701         return 0;
2702     }
2703     return p->flags;
2704 }
2705 
2706 /* Modify the flags of a page and invalidate the code if necessary.
2707    The flag PAGE_WRITE_ORG is positioned automatically depending
2708    on PAGE_WRITE.  The mmap_lock should already be held.  */
2709 void page_set_flags(target_ulong start, target_ulong end, int flags)
2710 {
2711     target_ulong addr, len;
2712     bool reset_target_data;
2713 
2714     /* This function should never be called with addresses outside the
2715        guest address space.  If this assert fires, it probably indicates
2716        a missing call to h2g_valid.  */
2717     assert(end - 1 <= GUEST_ADDR_MAX);
2718     assert(start < end);
2719     assert_memory_lock();
2720 
2721     start = start & TARGET_PAGE_MASK;
2722     end = TARGET_PAGE_ALIGN(end);
2723 
2724     if (flags & PAGE_WRITE) {
2725         flags |= PAGE_WRITE_ORG;
2726     }
2727     reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET);
2728     flags &= ~PAGE_RESET;
2729 
2730     for (addr = start, len = end - start;
2731          len != 0;
2732          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2733         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2734 
2735         /* If the write protection bit is set, then we invalidate
2736            the code inside.  */
2737         if (!(p->flags & PAGE_WRITE) &&
2738             (flags & PAGE_WRITE) &&
2739             p->first_tb) {
2740             tb_invalidate_phys_page(addr, 0);
2741         }
2742         if (reset_target_data && p->target_data) {
2743             g_free(p->target_data);
2744             p->target_data = NULL;
2745         }
2746         p->flags = flags;
2747     }
2748 }
2749 
2750 void *page_get_target_data(target_ulong address)
2751 {
2752     PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2753     return p ? p->target_data : NULL;
2754 }
2755 
2756 void *page_alloc_target_data(target_ulong address, size_t size)
2757 {
2758     PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2759     void *ret = NULL;
2760 
2761     if (p->flags & PAGE_VALID) {
2762         ret = p->target_data;
2763         if (!ret) {
2764             p->target_data = ret = g_malloc0(size);
2765         }
2766     }
2767     return ret;
2768 }
2769 
2770 int page_check_range(target_ulong start, target_ulong len, int flags)
2771 {
2772     PageDesc *p;
2773     target_ulong end;
2774     target_ulong addr;
2775 
2776     /* This function should never be called with addresses outside the
2777        guest address space.  If this assert fires, it probably indicates
2778        a missing call to h2g_valid.  */
2779     if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
2780         assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2781     }
2782 
2783     if (len == 0) {
2784         return 0;
2785     }
2786     if (start + len - 1 < start) {
2787         /* We've wrapped around.  */
2788         return -1;
2789     }
2790 
2791     /* must do before we loose bits in the next step */
2792     end = TARGET_PAGE_ALIGN(start + len);
2793     start = start & TARGET_PAGE_MASK;
2794 
2795     for (addr = start, len = end - start;
2796          len != 0;
2797          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2798         p = page_find(addr >> TARGET_PAGE_BITS);
2799         if (!p) {
2800             return -1;
2801         }
2802         if (!(p->flags & PAGE_VALID)) {
2803             return -1;
2804         }
2805 
2806         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2807             return -1;
2808         }
2809         if (flags & PAGE_WRITE) {
2810             if (!(p->flags & PAGE_WRITE_ORG)) {
2811                 return -1;
2812             }
2813             /* unprotect the page if it was put read-only because it
2814                contains translated code */
2815             if (!(p->flags & PAGE_WRITE)) {
2816                 if (!page_unprotect(addr, 0)) {
2817                     return -1;
2818                 }
2819             }
2820         }
2821     }
2822     return 0;
2823 }
2824 
2825 /* called from signal handler: invalidate the code and unprotect the
2826  * page. Return 0 if the fault was not handled, 1 if it was handled,
2827  * and 2 if it was handled but the caller must cause the TB to be
2828  * immediately exited. (We can only return 2 if the 'pc' argument is
2829  * non-zero.)
2830  */
2831 int page_unprotect(target_ulong address, uintptr_t pc)
2832 {
2833     unsigned int prot;
2834     bool current_tb_invalidated;
2835     PageDesc *p;
2836     target_ulong host_start, host_end, addr;
2837 
2838     /* Technically this isn't safe inside a signal handler.  However we
2839        know this only ever happens in a synchronous SEGV handler, so in
2840        practice it seems to be ok.  */
2841     mmap_lock();
2842 
2843     p = page_find(address >> TARGET_PAGE_BITS);
2844     if (!p) {
2845         mmap_unlock();
2846         return 0;
2847     }
2848 
2849     /* if the page was really writable, then we change its
2850        protection back to writable */
2851     if (p->flags & PAGE_WRITE_ORG) {
2852         current_tb_invalidated = false;
2853         if (p->flags & PAGE_WRITE) {
2854             /* If the page is actually marked WRITE then assume this is because
2855              * this thread raced with another one which got here first and
2856              * set the page to PAGE_WRITE and did the TB invalidate for us.
2857              */
2858 #ifdef TARGET_HAS_PRECISE_SMC
2859             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2860             if (current_tb) {
2861                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2862             }
2863 #endif
2864         } else {
2865             host_start = address & qemu_host_page_mask;
2866             host_end = host_start + qemu_host_page_size;
2867 
2868             prot = 0;
2869             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2870                 p = page_find(addr >> TARGET_PAGE_BITS);
2871                 p->flags |= PAGE_WRITE;
2872                 prot |= p->flags;
2873 
2874                 /* and since the content will be modified, we must invalidate
2875                    the corresponding translated code. */
2876                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2877 #ifdef CONFIG_USER_ONLY
2878                 if (DEBUG_TB_CHECK_GATE) {
2879                     tb_invalidate_check(addr);
2880                 }
2881 #endif
2882             }
2883             mprotect((void *)g2h_untagged(host_start), qemu_host_page_size,
2884                      prot & PAGE_BITS);
2885         }
2886         mmap_unlock();
2887         /* If current TB was invalidated return to main loop */
2888         return current_tb_invalidated ? 2 : 1;
2889     }
2890     mmap_unlock();
2891     return 0;
2892 }
2893 #endif /* CONFIG_USER_ONLY */
2894 
2895 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2896 void tcg_flush_softmmu_tlb(CPUState *cs)
2897 {
2898 #ifdef CONFIG_SOFTMMU
2899     tlb_flush(cs);
2900 #endif
2901 }
2902