xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 3011c1dd)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "trace.h"
23 #include "disas/disas.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg.h"
26 #if defined(CONFIG_USER_ONLY)
27 #include "qemu.h"
28 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
29 #include <sys/param.h>
30 #if __FreeBSD_version >= 700104
31 #define HAVE_KINFO_GETVMMAP
32 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
33 #include <sys/proc.h>
34 #include <machine/profile.h>
35 #define _KERNEL
36 #include <sys/user.h>
37 #undef _KERNEL
38 #undef sigqueue
39 #include <libutil.h>
40 #endif
41 #endif
42 #else
43 #include "exec/ram_addr.h"
44 #endif
45 
46 #include "exec/cputlb.h"
47 #include "exec/translate-all.h"
48 #include "exec/translator.h"
49 #include "exec/tb-flush.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/qemu-print.h"
52 #include "qemu/main-loop.h"
53 #include "qemu/cacheinfo.h"
54 #include "qemu/timer.h"
55 #include "exec/log.h"
56 #include "sysemu/cpus.h"
57 #include "sysemu/cpu-timers.h"
58 #include "sysemu/tcg.h"
59 #include "qapi/error.h"
60 #include "hw/core/tcg-cpu-ops.h"
61 #include "tb-jmp-cache.h"
62 #include "tb-hash.h"
63 #include "tb-context.h"
64 #include "internal-common.h"
65 #include "internal-target.h"
66 #include "tcg/perf.h"
67 #include "tcg/insn-start-words.h"
68 
69 TBContext tb_ctx;
70 
71 /*
72  * Encode VAL as a signed leb128 sequence at P.
73  * Return P incremented past the encoded value.
74  */
75 static uint8_t *encode_sleb128(uint8_t *p, int64_t val)
76 {
77     int more, byte;
78 
79     do {
80         byte = val & 0x7f;
81         val >>= 7;
82         more = !((val == 0 && (byte & 0x40) == 0)
83                  || (val == -1 && (byte & 0x40) != 0));
84         if (more) {
85             byte |= 0x80;
86         }
87         *p++ = byte;
88     } while (more);
89 
90     return p;
91 }
92 
93 /*
94  * Decode a signed leb128 sequence at *PP; increment *PP past the
95  * decoded value.  Return the decoded value.
96  */
97 static int64_t decode_sleb128(const uint8_t **pp)
98 {
99     const uint8_t *p = *pp;
100     int64_t val = 0;
101     int byte, shift = 0;
102 
103     do {
104         byte = *p++;
105         val |= (int64_t)(byte & 0x7f) << shift;
106         shift += 7;
107     } while (byte & 0x80);
108     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
109         val |= -(int64_t)1 << shift;
110     }
111 
112     *pp = p;
113     return val;
114 }
115 
116 /* Encode the data collected about the instructions while compiling TB.
117    Place the data at BLOCK, and return the number of bytes consumed.
118 
119    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
120    which come from the target's insn_start data, followed by a uintptr_t
121    which comes from the host pc of the end of the code implementing the insn.
122 
123    Each line of the table is encoded as sleb128 deltas from the previous
124    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
125    That is, the first column is seeded with the guest pc, the last column
126    with the host pc, and the middle columns with zeros.  */
127 
128 static int encode_search(TranslationBlock *tb, uint8_t *block)
129 {
130     uint8_t *highwater = tcg_ctx->code_gen_highwater;
131     uint64_t *insn_data = tcg_ctx->gen_insn_data;
132     uint16_t *insn_end_off = tcg_ctx->gen_insn_end_off;
133     uint8_t *p = block;
134     int i, j, n;
135 
136     for (i = 0, n = tb->icount; i < n; ++i) {
137         uint64_t prev, curr;
138 
139         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
140             if (i == 0) {
141                 prev = (!(tb_cflags(tb) & CF_PCREL) && j == 0 ? tb->pc : 0);
142             } else {
143                 prev = insn_data[(i - 1) * TARGET_INSN_START_WORDS + j];
144             }
145             curr = insn_data[i * TARGET_INSN_START_WORDS + j];
146             p = encode_sleb128(p, curr - prev);
147         }
148         prev = (i == 0 ? 0 : insn_end_off[i - 1]);
149         curr = insn_end_off[i];
150         p = encode_sleb128(p, curr - prev);
151 
152         /* Test for (pending) buffer overflow.  The assumption is that any
153            one row beginning below the high water mark cannot overrun
154            the buffer completely.  Thus we can test for overflow after
155            encoding a row without having to check during encoding.  */
156         if (unlikely(p > highwater)) {
157             return -1;
158         }
159     }
160 
161     return p - block;
162 }
163 
164 static int cpu_unwind_data_from_tb(TranslationBlock *tb, uintptr_t host_pc,
165                                    uint64_t *data)
166 {
167     uintptr_t iter_pc = (uintptr_t)tb->tc.ptr;
168     const uint8_t *p = tb->tc.ptr + tb->tc.size;
169     int i, j, num_insns = tb->icount;
170 
171     host_pc -= GETPC_ADJ;
172 
173     if (host_pc < iter_pc) {
174         return -1;
175     }
176 
177     memset(data, 0, sizeof(uint64_t) * TARGET_INSN_START_WORDS);
178     if (!(tb_cflags(tb) & CF_PCREL)) {
179         data[0] = tb->pc;
180     }
181 
182     /*
183      * Reconstruct the stored insn data while looking for the point
184      * at which the end of the insn exceeds host_pc.
185      */
186     for (i = 0; i < num_insns; ++i) {
187         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
188             data[j] += decode_sleb128(&p);
189         }
190         iter_pc += decode_sleb128(&p);
191         if (iter_pc > host_pc) {
192             return num_insns - i;
193         }
194     }
195     return -1;
196 }
197 
198 /*
199  * The cpu state corresponding to 'host_pc' is restored in
200  * preparation for exiting the TB.
201  */
202 void cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
203                                uintptr_t host_pc)
204 {
205     uint64_t data[TARGET_INSN_START_WORDS];
206     int insns_left = cpu_unwind_data_from_tb(tb, host_pc, data);
207 
208     if (insns_left < 0) {
209         return;
210     }
211 
212     if (tb_cflags(tb) & CF_USE_ICOUNT) {
213         assert(icount_enabled());
214         /*
215          * Reset the cycle counter to the start of the block and
216          * shift if to the number of actually executed instructions.
217          */
218         cpu->neg.icount_decr.u16.low += insns_left;
219     }
220 
221     cpu->cc->tcg_ops->restore_state_to_opc(cpu, tb, data);
222 }
223 
224 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc)
225 {
226     /*
227      * The host_pc has to be in the rx region of the code buffer.
228      * If it is not we will not be able to resolve it here.
229      * The two cases where host_pc will not be correct are:
230      *
231      *  - fault during translation (instruction fetch)
232      *  - fault from helper (not using GETPC() macro)
233      *
234      * Either way we need return early as we can't resolve it here.
235      */
236     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
237         TranslationBlock *tb = tcg_tb_lookup(host_pc);
238         if (tb) {
239             cpu_restore_state_from_tb(cpu, tb, host_pc);
240             return true;
241         }
242     }
243     return false;
244 }
245 
246 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data)
247 {
248     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
249         TranslationBlock *tb = tcg_tb_lookup(host_pc);
250         if (tb) {
251             return cpu_unwind_data_from_tb(tb, host_pc, data) >= 0;
252         }
253     }
254     return false;
255 }
256 
257 void page_init(void)
258 {
259     page_table_config_init();
260 }
261 
262 /*
263  * Isolate the portion of code gen which can setjmp/longjmp.
264  * Return the size of the generated code, or negative on error.
265  */
266 static int setjmp_gen_code(CPUArchState *env, TranslationBlock *tb,
267                            vaddr pc, void *host_pc,
268                            int *max_insns, int64_t *ti)
269 {
270     int ret = sigsetjmp(tcg_ctx->jmp_trans, 0);
271     if (unlikely(ret != 0)) {
272         return ret;
273     }
274 
275     tcg_func_start(tcg_ctx);
276 
277     tcg_ctx->cpu = env_cpu(env);
278     gen_intermediate_code(env_cpu(env), tb, max_insns, pc, host_pc);
279     assert(tb->size != 0);
280     tcg_ctx->cpu = NULL;
281     *max_insns = tb->icount;
282 
283     return tcg_gen_code(tcg_ctx, tb, pc);
284 }
285 
286 /* Called with mmap_lock held for user mode emulation.  */
287 TranslationBlock *tb_gen_code(CPUState *cpu,
288                               vaddr pc, uint64_t cs_base,
289                               uint32_t flags, int cflags)
290 {
291     CPUArchState *env = cpu_env(cpu);
292     TranslationBlock *tb, *existing_tb;
293     tb_page_addr_t phys_pc, phys_p2;
294     tcg_insn_unit *gen_code_buf;
295     int gen_code_size, search_size, max_insns;
296     int64_t ti;
297     void *host_pc;
298 
299     assert_memory_lock();
300     qemu_thread_jit_write();
301 
302     phys_pc = get_page_addr_code_hostp(env, pc, &host_pc);
303 
304     if (phys_pc == -1) {
305         /* Generate a one-shot TB with 1 insn in it */
306         cflags = (cflags & ~CF_COUNT_MASK) | 1;
307     }
308 
309     max_insns = cflags & CF_COUNT_MASK;
310     if (max_insns == 0) {
311         max_insns = TCG_MAX_INSNS;
312     }
313     QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS);
314 
315  buffer_overflow:
316     assert_no_pages_locked();
317     tb = tcg_tb_alloc(tcg_ctx);
318     if (unlikely(!tb)) {
319         /* flush must be done */
320         tb_flush(cpu);
321         mmap_unlock();
322         /* Make the execution loop process the flush as soon as possible.  */
323         cpu->exception_index = EXCP_INTERRUPT;
324         cpu_loop_exit(cpu);
325     }
326 
327     gen_code_buf = tcg_ctx->code_gen_ptr;
328     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
329     if (!(cflags & CF_PCREL)) {
330         tb->pc = pc;
331     }
332     tb->cs_base = cs_base;
333     tb->flags = flags;
334     tb->cflags = cflags;
335     tb_set_page_addr0(tb, phys_pc);
336     tb_set_page_addr1(tb, -1);
337     if (phys_pc != -1) {
338         tb_lock_page0(phys_pc);
339     }
340 
341     tcg_ctx->gen_tb = tb;
342     tcg_ctx->addr_type = TARGET_LONG_BITS == 32 ? TCG_TYPE_I32 : TCG_TYPE_I64;
343 #ifdef CONFIG_SOFTMMU
344     tcg_ctx->page_bits = TARGET_PAGE_BITS;
345     tcg_ctx->page_mask = TARGET_PAGE_MASK;
346     tcg_ctx->tlb_dyn_max_bits = CPU_TLB_DYN_MAX_BITS;
347 #endif
348     tcg_ctx->insn_start_words = TARGET_INSN_START_WORDS;
349 #ifdef TCG_GUEST_DEFAULT_MO
350     tcg_ctx->guest_mo = TCG_GUEST_DEFAULT_MO;
351 #else
352     tcg_ctx->guest_mo = TCG_MO_ALL;
353 #endif
354 
355  restart_translate:
356     trace_translate_block(tb, pc, tb->tc.ptr);
357 
358     gen_code_size = setjmp_gen_code(env, tb, pc, host_pc, &max_insns, &ti);
359     if (unlikely(gen_code_size < 0)) {
360         switch (gen_code_size) {
361         case -1:
362             /*
363              * Overflow of code_gen_buffer, or the current slice of it.
364              *
365              * TODO: We don't need to re-do gen_intermediate_code, nor
366              * should we re-do the tcg optimization currently hidden
367              * inside tcg_gen_code.  All that should be required is to
368              * flush the TBs, allocate a new TB, re-initialize it per
369              * above, and re-do the actual code generation.
370              */
371             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
372                           "Restarting code generation for "
373                           "code_gen_buffer overflow\n");
374             tb_unlock_pages(tb);
375             tcg_ctx->gen_tb = NULL;
376             goto buffer_overflow;
377 
378         case -2:
379             /*
380              * The code generated for the TranslationBlock is too large.
381              * The maximum size allowed by the unwind info is 64k.
382              * There may be stricter constraints from relocations
383              * in the tcg backend.
384              *
385              * Try again with half as many insns as we attempted this time.
386              * If a single insn overflows, there's a bug somewhere...
387              */
388             assert(max_insns > 1);
389             max_insns /= 2;
390             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
391                           "Restarting code generation with "
392                           "smaller translation block (max %d insns)\n",
393                           max_insns);
394 
395             /*
396              * The half-sized TB may not cross pages.
397              * TODO: Fix all targets that cross pages except with
398              * the first insn, at which point this can't be reached.
399              */
400             phys_p2 = tb_page_addr1(tb);
401             if (unlikely(phys_p2 != -1)) {
402                 tb_unlock_page1(phys_pc, phys_p2);
403                 tb_set_page_addr1(tb, -1);
404             }
405             goto restart_translate;
406 
407         case -3:
408             /*
409              * We had a page lock ordering problem.  In order to avoid
410              * deadlock we had to drop the lock on page0, which means
411              * that everything we translated so far is compromised.
412              * Restart with locks held on both pages.
413              */
414             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
415                           "Restarting code generation with re-locked pages");
416             goto restart_translate;
417 
418         default:
419             g_assert_not_reached();
420         }
421     }
422     tcg_ctx->gen_tb = NULL;
423 
424     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
425     if (unlikely(search_size < 0)) {
426         tb_unlock_pages(tb);
427         goto buffer_overflow;
428     }
429     tb->tc.size = gen_code_size;
430 
431     /*
432      * For CF_PCREL, attribute all executions of the generated code
433      * to its first mapping.
434      */
435     perf_report_code(pc, tb, tcg_splitwx_to_rx(gen_code_buf));
436 
437     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
438         qemu_log_in_addr_range(pc)) {
439         FILE *logfile = qemu_log_trylock();
440         if (logfile) {
441             int code_size, data_size;
442             const tcg_target_ulong *rx_data_gen_ptr;
443             size_t chunk_start;
444             int insn = 0;
445 
446             if (tcg_ctx->data_gen_ptr) {
447                 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
448                 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
449                 data_size = gen_code_size - code_size;
450             } else {
451                 rx_data_gen_ptr = 0;
452                 code_size = gen_code_size;
453                 data_size = 0;
454             }
455 
456             /* Dump header and the first instruction */
457             fprintf(logfile, "OUT: [size=%d]\n", gen_code_size);
458             fprintf(logfile,
459                     "  -- guest addr 0x%016" PRIx64 " + tb prologue\n",
460                     tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]);
461             chunk_start = tcg_ctx->gen_insn_end_off[insn];
462             disas(logfile, tb->tc.ptr, chunk_start);
463 
464             /*
465              * Dump each instruction chunk, wrapping up empty chunks into
466              * the next instruction. The whole array is offset so the
467              * first entry is the beginning of the 2nd instruction.
468              */
469             while (insn < tb->icount) {
470                 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
471                 if (chunk_end > chunk_start) {
472                     fprintf(logfile, "  -- guest addr 0x%016" PRIx64 "\n",
473                             tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]);
474                     disas(logfile, tb->tc.ptr + chunk_start,
475                           chunk_end - chunk_start);
476                     chunk_start = chunk_end;
477                 }
478                 insn++;
479             }
480 
481             if (chunk_start < code_size) {
482                 fprintf(logfile, "  -- tb slow paths + alignment\n");
483                 disas(logfile, tb->tc.ptr + chunk_start,
484                       code_size - chunk_start);
485             }
486 
487             /* Finally dump any data we may have after the block */
488             if (data_size) {
489                 int i;
490                 fprintf(logfile, "  data: [size=%d]\n", data_size);
491                 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
492                     if (sizeof(tcg_target_ulong) == 8) {
493                         fprintf(logfile,
494                                 "0x%08" PRIxPTR ":  .quad  0x%016" TCG_PRIlx "\n",
495                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
496                     } else if (sizeof(tcg_target_ulong) == 4) {
497                         fprintf(logfile,
498                                 "0x%08" PRIxPTR ":  .long  0x%08" TCG_PRIlx "\n",
499                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
500                     } else {
501                         qemu_build_not_reached();
502                     }
503                 }
504             }
505             fprintf(logfile, "\n");
506             qemu_log_unlock(logfile);
507         }
508     }
509 
510     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
511         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
512                  CODE_GEN_ALIGN));
513 
514     /* init jump list */
515     qemu_spin_init(&tb->jmp_lock);
516     tb->jmp_list_head = (uintptr_t)NULL;
517     tb->jmp_list_next[0] = (uintptr_t)NULL;
518     tb->jmp_list_next[1] = (uintptr_t)NULL;
519     tb->jmp_dest[0] = (uintptr_t)NULL;
520     tb->jmp_dest[1] = (uintptr_t)NULL;
521 
522     /* init original jump addresses which have been set during tcg_gen_code() */
523     if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) {
524         tb_reset_jump(tb, 0);
525     }
526     if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) {
527         tb_reset_jump(tb, 1);
528     }
529 
530     /*
531      * If the TB is not associated with a physical RAM page then it must be
532      * a temporary one-insn TB, and we have nothing left to do. Return early
533      * before attempting to link to other TBs or add to the lookup table.
534      */
535     if (tb_page_addr0(tb) == -1) {
536         assert_no_pages_locked();
537         return tb;
538     }
539 
540     /*
541      * Insert TB into the corresponding region tree before publishing it
542      * through QHT. Otherwise rewinding happened in the TB might fail to
543      * lookup itself using host PC.
544      */
545     tcg_tb_insert(tb);
546 
547     /*
548      * No explicit memory barrier is required -- tb_link_page() makes the
549      * TB visible in a consistent state.
550      */
551     existing_tb = tb_link_page(tb);
552     assert_no_pages_locked();
553 
554     /* if the TB already exists, discard what we just translated */
555     if (unlikely(existing_tb != tb)) {
556         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
557 
558         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
559         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
560         tcg_tb_remove(tb);
561         return existing_tb;
562     }
563     return tb;
564 }
565 
566 /* user-mode: call with mmap_lock held */
567 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
568 {
569     TranslationBlock *tb;
570 
571     assert_memory_lock();
572 
573     tb = tcg_tb_lookup(retaddr);
574     if (tb) {
575         /* We can use retranslation to find the PC.  */
576         cpu_restore_state_from_tb(cpu, tb, retaddr);
577         tb_phys_invalidate(tb, -1);
578     } else {
579         /* The exception probably happened in a helper.  The CPU state should
580            have been saved before calling it. Fetch the PC from there.  */
581         CPUArchState *env = cpu_env(cpu);
582         vaddr pc;
583         uint64_t cs_base;
584         tb_page_addr_t addr;
585         uint32_t flags;
586 
587         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
588         addr = get_page_addr_code(env, pc);
589         if (addr != -1) {
590             tb_invalidate_phys_range(addr, addr);
591         }
592     }
593 }
594 
595 #ifndef CONFIG_USER_ONLY
596 /*
597  * In deterministic execution mode, instructions doing device I/Os
598  * must be at the end of the TB.
599  *
600  * Called by softmmu_template.h, with iothread mutex not held.
601  */
602 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
603 {
604     TranslationBlock *tb;
605     CPUClass *cc;
606     uint32_t n;
607 
608     tb = tcg_tb_lookup(retaddr);
609     if (!tb) {
610         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
611                   (void *)retaddr);
612     }
613     cpu_restore_state_from_tb(cpu, tb, retaddr);
614 
615     /*
616      * Some guests must re-execute the branch when re-executing a delay
617      * slot instruction.  When this is the case, adjust icount and N
618      * to account for the re-execution of the branch.
619      */
620     n = 1;
621     cc = CPU_GET_CLASS(cpu);
622     if (cc->tcg_ops->io_recompile_replay_branch &&
623         cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
624         cpu->neg.icount_decr.u16.low++;
625         n = 2;
626     }
627 
628     /*
629      * Exit the loop and potentially generate a new TB executing the
630      * just the I/O insns. We also limit instrumentation to memory
631      * operations only (which execute after completion) so we don't
632      * double instrument the instruction.
633      */
634     cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | n;
635 
636     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
637         vaddr pc = log_pc(cpu, tb);
638         if (qemu_log_in_addr_range(pc)) {
639             qemu_log("cpu_io_recompile: rewound execution of TB to %016"
640                      VADDR_PRIx "\n", pc);
641         }
642     }
643 
644     cpu_loop_exit_noexc(cpu);
645 }
646 
647 #else /* CONFIG_USER_ONLY */
648 
649 void cpu_interrupt(CPUState *cpu, int mask)
650 {
651     g_assert(bql_locked());
652     cpu->interrupt_request |= mask;
653     qatomic_set(&cpu->neg.icount_decr.u16.high, -1);
654 }
655 
656 #endif /* CONFIG_USER_ONLY */
657 
658 /*
659  * Called by generic code at e.g. cpu reset after cpu creation,
660  * therefore we must be prepared to allocate the jump cache.
661  */
662 void tcg_flush_jmp_cache(CPUState *cpu)
663 {
664     CPUJumpCache *jc = cpu->tb_jmp_cache;
665 
666     /* During early initialization, the cache may not yet be allocated. */
667     if (unlikely(jc == NULL)) {
668         return;
669     }
670 
671     for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) {
672         qatomic_set(&jc->array[i].tb, NULL);
673     }
674 }
675