xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 2df9f571)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49 
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/tcg.h"
61 
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66 
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72 
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78 
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation.  */
81 #undef DEBUG_TB_CHECK
82 #endif
83 
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89 
90 /* Access to the various translations structures need to be serialised via locks
91  * for consistency.
92  * In user-mode emulation access to the memory related structures are protected
93  * with mmap_lock.
94  * In !user-mode we use per-page locks.
95  */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101 
102 #define SMC_BITMAP_USE_THRESHOLD 10
103 
104 typedef struct PageDesc {
105     /* list of TBs intersecting this ram page */
106     uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108     /* in order to optimize self modifying code, we count the number
109        of lookups we do to a given page to use a bitmap */
110     unsigned long *code_bitmap;
111     unsigned int code_write_count;
112 #else
113     unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116     QemuSpin lock;
117 #endif
118 } PageDesc;
119 
120 /**
121  * struct page_entry - page descriptor entry
122  * @pd:     pointer to the &struct PageDesc of the page this entry represents
123  * @index:  page index of the page
124  * @locked: whether the page is locked
125  *
126  * This struct helps us keep track of the locked state of a page, without
127  * bloating &struct PageDesc.
128  *
129  * A page lock protects accesses to all fields of &struct PageDesc.
130  *
131  * See also: &struct page_collection.
132  */
133 struct page_entry {
134     PageDesc *pd;
135     tb_page_addr_t index;
136     bool locked;
137 };
138 
139 /**
140  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141  * @tree:   Binary search tree (BST) of the pages, with key == page index
142  * @max:    Pointer to the page in @tree with the highest page index
143  *
144  * To avoid deadlock we lock pages in ascending order of page index.
145  * When operating on a set of pages, we need to keep track of them so that
146  * we can lock them in order and also unlock them later. For this we collect
147  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148  * @tree implementation we use does not provide an O(1) operation to obtain the
149  * highest-ranked element, we use @max to keep track of the inserted page
150  * with the highest index. This is valuable because if a page is not in
151  * the tree and its index is higher than @max's, then we can lock it
152  * without breaking the locking order rule.
153  *
154  * Note on naming: 'struct page_set' would be shorter, but we already have a few
155  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156  *
157  * See also: page_collection_lock().
158  */
159 struct page_collection {
160     GTree *tree;
161     struct page_entry *max;
162 };
163 
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
166     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
167          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
171     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 
173 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
174     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 
176 /*
177  * In system mode we want L1_MAP to be based on ram offsets,
178  * while in user mode we want it to be based on virtual addresses.
179  *
180  * TODO: For user mode, see the caveat re host vs guest virtual
181  * address spaces near GUEST_ADDR_MAX.
182  */
183 #if !defined(CONFIG_USER_ONLY)
184 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
185 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
186 #else
187 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
188 #endif
189 #else
190 # define L1_MAP_ADDR_SPACE_BITS  MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
191 #endif
192 
193 /* Size of the L2 (and L3, etc) page tables.  */
194 #define V_L2_BITS 10
195 #define V_L2_SIZE (1 << V_L2_BITS)
196 
197 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
198 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
199                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
200                   * BITS_PER_BYTE);
201 
202 /*
203  * L1 Mapping properties
204  */
205 static int v_l1_size;
206 static int v_l1_shift;
207 static int v_l2_levels;
208 
209 /* The bottom level has pointers to PageDesc, and is indexed by
210  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
211  */
212 #define V_L1_MIN_BITS 4
213 #define V_L1_MAX_BITS (V_L2_BITS + 3)
214 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
215 
216 static void *l1_map[V_L1_MAX_SIZE];
217 
218 /* code generation context */
219 TCGContext tcg_init_ctx;
220 __thread TCGContext *tcg_ctx;
221 TBContext tb_ctx;
222 bool parallel_cpus;
223 
224 static void page_table_config_init(void)
225 {
226     uint32_t v_l1_bits;
227 
228     assert(TARGET_PAGE_BITS);
229     /* The bits remaining after N lower levels of page tables.  */
230     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
231     if (v_l1_bits < V_L1_MIN_BITS) {
232         v_l1_bits += V_L2_BITS;
233     }
234 
235     v_l1_size = 1 << v_l1_bits;
236     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
237     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
238 
239     assert(v_l1_bits <= V_L1_MAX_BITS);
240     assert(v_l1_shift % V_L2_BITS == 0);
241     assert(v_l2_levels >= 0);
242 }
243 
244 void cpu_gen_init(void)
245 {
246     tcg_context_init(&tcg_init_ctx);
247 }
248 
249 /* Encode VAL as a signed leb128 sequence at P.
250    Return P incremented past the encoded value.  */
251 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
252 {
253     int more, byte;
254 
255     do {
256         byte = val & 0x7f;
257         val >>= 7;
258         more = !((val == 0 && (byte & 0x40) == 0)
259                  || (val == -1 && (byte & 0x40) != 0));
260         if (more) {
261             byte |= 0x80;
262         }
263         *p++ = byte;
264     } while (more);
265 
266     return p;
267 }
268 
269 /* Decode a signed leb128 sequence at *PP; increment *PP past the
270    decoded value.  Return the decoded value.  */
271 static target_long decode_sleb128(uint8_t **pp)
272 {
273     uint8_t *p = *pp;
274     target_long val = 0;
275     int byte, shift = 0;
276 
277     do {
278         byte = *p++;
279         val |= (target_ulong)(byte & 0x7f) << shift;
280         shift += 7;
281     } while (byte & 0x80);
282     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
283         val |= -(target_ulong)1 << shift;
284     }
285 
286     *pp = p;
287     return val;
288 }
289 
290 /* Encode the data collected about the instructions while compiling TB.
291    Place the data at BLOCK, and return the number of bytes consumed.
292 
293    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
294    which come from the target's insn_start data, followed by a uintptr_t
295    which comes from the host pc of the end of the code implementing the insn.
296 
297    Each line of the table is encoded as sleb128 deltas from the previous
298    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
299    That is, the first column is seeded with the guest pc, the last column
300    with the host pc, and the middle columns with zeros.  */
301 
302 static int encode_search(TranslationBlock *tb, uint8_t *block)
303 {
304     uint8_t *highwater = tcg_ctx->code_gen_highwater;
305     uint8_t *p = block;
306     int i, j, n;
307 
308     for (i = 0, n = tb->icount; i < n; ++i) {
309         target_ulong prev;
310 
311         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
312             if (i == 0) {
313                 prev = (j == 0 ? tb->pc : 0);
314             } else {
315                 prev = tcg_ctx->gen_insn_data[i - 1][j];
316             }
317             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
318         }
319         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
320         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
321 
322         /* Test for (pending) buffer overflow.  The assumption is that any
323            one row beginning below the high water mark cannot overrun
324            the buffer completely.  Thus we can test for overflow after
325            encoding a row without having to check during encoding.  */
326         if (unlikely(p > highwater)) {
327             return -1;
328         }
329     }
330 
331     return p - block;
332 }
333 
334 /* The cpu state corresponding to 'searched_pc' is restored.
335  * When reset_icount is true, current TB will be interrupted and
336  * icount should be recalculated.
337  */
338 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
339                                      uintptr_t searched_pc, bool reset_icount)
340 {
341     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
342     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
343     CPUArchState *env = cpu->env_ptr;
344     uint8_t *p = tb->tc.ptr + tb->tc.size;
345     int i, j, num_insns = tb->icount;
346 #ifdef CONFIG_PROFILER
347     TCGProfile *prof = &tcg_ctx->prof;
348     int64_t ti = profile_getclock();
349 #endif
350 
351     searched_pc -= GETPC_ADJ;
352 
353     if (searched_pc < host_pc) {
354         return -1;
355     }
356 
357     /* Reconstruct the stored insn data while looking for the point at
358        which the end of the insn exceeds the searched_pc.  */
359     for (i = 0; i < num_insns; ++i) {
360         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
361             data[j] += decode_sleb128(&p);
362         }
363         host_pc += decode_sleb128(&p);
364         if (host_pc > searched_pc) {
365             goto found;
366         }
367     }
368     return -1;
369 
370  found:
371     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
372         assert(use_icount);
373         /* Reset the cycle counter to the start of the block
374            and shift if to the number of actually executed instructions */
375         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
376     }
377     restore_state_to_opc(env, tb, data);
378 
379 #ifdef CONFIG_PROFILER
380     atomic_set(&prof->restore_time,
381                 prof->restore_time + profile_getclock() - ti);
382     atomic_set(&prof->restore_count, prof->restore_count + 1);
383 #endif
384     return 0;
385 }
386 
387 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
388 {
389     TranslationBlock *tb;
390     bool r = false;
391     uintptr_t check_offset;
392 
393     /* The host_pc has to be in the region of current code buffer. If
394      * it is not we will not be able to resolve it here. The two cases
395      * where host_pc will not be correct are:
396      *
397      *  - fault during translation (instruction fetch)
398      *  - fault from helper (not using GETPC() macro)
399      *
400      * Either way we need return early as we can't resolve it here.
401      *
402      * We are using unsigned arithmetic so if host_pc <
403      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
404      * above the code_gen_buffer_size
405      */
406     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
407 
408     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
409         tb = tcg_tb_lookup(host_pc);
410         if (tb) {
411             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
412             if (tb_cflags(tb) & CF_NOCACHE) {
413                 /* one-shot translation, invalidate it immediately */
414                 tb_phys_invalidate(tb, -1);
415                 tcg_tb_remove(tb);
416             }
417             r = true;
418         }
419     }
420 
421     return r;
422 }
423 
424 static void page_init(void)
425 {
426     page_size_init();
427     page_table_config_init();
428 
429 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
430     {
431 #ifdef HAVE_KINFO_GETVMMAP
432         struct kinfo_vmentry *freep;
433         int i, cnt;
434 
435         freep = kinfo_getvmmap(getpid(), &cnt);
436         if (freep) {
437             mmap_lock();
438             for (i = 0; i < cnt; i++) {
439                 unsigned long startaddr, endaddr;
440 
441                 startaddr = freep[i].kve_start;
442                 endaddr = freep[i].kve_end;
443                 if (h2g_valid(startaddr)) {
444                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
445 
446                     if (h2g_valid(endaddr)) {
447                         endaddr = h2g(endaddr);
448                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
449                     } else {
450 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
451                         endaddr = ~0ul;
452                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
453 #endif
454                     }
455                 }
456             }
457             free(freep);
458             mmap_unlock();
459         }
460 #else
461         FILE *f;
462 
463         last_brk = (unsigned long)sbrk(0);
464 
465         f = fopen("/compat/linux/proc/self/maps", "r");
466         if (f) {
467             mmap_lock();
468 
469             do {
470                 unsigned long startaddr, endaddr;
471                 int n;
472 
473                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
474 
475                 if (n == 2 && h2g_valid(startaddr)) {
476                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
477 
478                     if (h2g_valid(endaddr)) {
479                         endaddr = h2g(endaddr);
480                     } else {
481                         endaddr = ~0ul;
482                     }
483                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
484                 }
485             } while (!feof(f));
486 
487             fclose(f);
488             mmap_unlock();
489         }
490 #endif
491     }
492 #endif
493 }
494 
495 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
496 {
497     PageDesc *pd;
498     void **lp;
499     int i;
500 
501     /* Level 1.  Always allocated.  */
502     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
503 
504     /* Level 2..N-1.  */
505     for (i = v_l2_levels; i > 0; i--) {
506         void **p = atomic_rcu_read(lp);
507 
508         if (p == NULL) {
509             void *existing;
510 
511             if (!alloc) {
512                 return NULL;
513             }
514             p = g_new0(void *, V_L2_SIZE);
515             existing = atomic_cmpxchg(lp, NULL, p);
516             if (unlikely(existing)) {
517                 g_free(p);
518                 p = existing;
519             }
520         }
521 
522         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
523     }
524 
525     pd = atomic_rcu_read(lp);
526     if (pd == NULL) {
527         void *existing;
528 
529         if (!alloc) {
530             return NULL;
531         }
532         pd = g_new0(PageDesc, V_L2_SIZE);
533 #ifndef CONFIG_USER_ONLY
534         {
535             int i;
536 
537             for (i = 0; i < V_L2_SIZE; i++) {
538                 qemu_spin_init(&pd[i].lock);
539             }
540         }
541 #endif
542         existing = atomic_cmpxchg(lp, NULL, pd);
543         if (unlikely(existing)) {
544             g_free(pd);
545             pd = existing;
546         }
547     }
548 
549     return pd + (index & (V_L2_SIZE - 1));
550 }
551 
552 static inline PageDesc *page_find(tb_page_addr_t index)
553 {
554     return page_find_alloc(index, 0);
555 }
556 
557 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
558                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
559 
560 /* In user-mode page locks aren't used; mmap_lock is enough */
561 #ifdef CONFIG_USER_ONLY
562 
563 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
564 
565 static inline void page_lock(PageDesc *pd)
566 { }
567 
568 static inline void page_unlock(PageDesc *pd)
569 { }
570 
571 static inline void page_lock_tb(const TranslationBlock *tb)
572 { }
573 
574 static inline void page_unlock_tb(const TranslationBlock *tb)
575 { }
576 
577 struct page_collection *
578 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
579 {
580     return NULL;
581 }
582 
583 void page_collection_unlock(struct page_collection *set)
584 { }
585 #else /* !CONFIG_USER_ONLY */
586 
587 #ifdef CONFIG_DEBUG_TCG
588 
589 static __thread GHashTable *ht_pages_locked_debug;
590 
591 static void ht_pages_locked_debug_init(void)
592 {
593     if (ht_pages_locked_debug) {
594         return;
595     }
596     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
597 }
598 
599 static bool page_is_locked(const PageDesc *pd)
600 {
601     PageDesc *found;
602 
603     ht_pages_locked_debug_init();
604     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
605     return !!found;
606 }
607 
608 static void page_lock__debug(PageDesc *pd)
609 {
610     ht_pages_locked_debug_init();
611     g_assert(!page_is_locked(pd));
612     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
613 }
614 
615 static void page_unlock__debug(const PageDesc *pd)
616 {
617     bool removed;
618 
619     ht_pages_locked_debug_init();
620     g_assert(page_is_locked(pd));
621     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
622     g_assert(removed);
623 }
624 
625 static void
626 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
627 {
628     if (unlikely(!page_is_locked(pd))) {
629         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
630                      pd, file, line);
631         abort();
632     }
633 }
634 
635 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
636 
637 void assert_no_pages_locked(void)
638 {
639     ht_pages_locked_debug_init();
640     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
641 }
642 
643 #else /* !CONFIG_DEBUG_TCG */
644 
645 #define assert_page_locked(pd)
646 
647 static inline void page_lock__debug(const PageDesc *pd)
648 {
649 }
650 
651 static inline void page_unlock__debug(const PageDesc *pd)
652 {
653 }
654 
655 #endif /* CONFIG_DEBUG_TCG */
656 
657 static inline void page_lock(PageDesc *pd)
658 {
659     page_lock__debug(pd);
660     qemu_spin_lock(&pd->lock);
661 }
662 
663 static inline void page_unlock(PageDesc *pd)
664 {
665     qemu_spin_unlock(&pd->lock);
666     page_unlock__debug(pd);
667 }
668 
669 /* lock the page(s) of a TB in the correct acquisition order */
670 static inline void page_lock_tb(const TranslationBlock *tb)
671 {
672     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
673 }
674 
675 static inline void page_unlock_tb(const TranslationBlock *tb)
676 {
677     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
678 
679     page_unlock(p1);
680     if (unlikely(tb->page_addr[1] != -1)) {
681         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
682 
683         if (p2 != p1) {
684             page_unlock(p2);
685         }
686     }
687 }
688 
689 static inline struct page_entry *
690 page_entry_new(PageDesc *pd, tb_page_addr_t index)
691 {
692     struct page_entry *pe = g_malloc(sizeof(*pe));
693 
694     pe->index = index;
695     pe->pd = pd;
696     pe->locked = false;
697     return pe;
698 }
699 
700 static void page_entry_destroy(gpointer p)
701 {
702     struct page_entry *pe = p;
703 
704     g_assert(pe->locked);
705     page_unlock(pe->pd);
706     g_free(pe);
707 }
708 
709 /* returns false on success */
710 static bool page_entry_trylock(struct page_entry *pe)
711 {
712     bool busy;
713 
714     busy = qemu_spin_trylock(&pe->pd->lock);
715     if (!busy) {
716         g_assert(!pe->locked);
717         pe->locked = true;
718         page_lock__debug(pe->pd);
719     }
720     return busy;
721 }
722 
723 static void do_page_entry_lock(struct page_entry *pe)
724 {
725     page_lock(pe->pd);
726     g_assert(!pe->locked);
727     pe->locked = true;
728 }
729 
730 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
731 {
732     struct page_entry *pe = value;
733 
734     do_page_entry_lock(pe);
735     return FALSE;
736 }
737 
738 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
739 {
740     struct page_entry *pe = value;
741 
742     if (pe->locked) {
743         pe->locked = false;
744         page_unlock(pe->pd);
745     }
746     return FALSE;
747 }
748 
749 /*
750  * Trylock a page, and if successful, add the page to a collection.
751  * Returns true ("busy") if the page could not be locked; false otherwise.
752  */
753 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
754 {
755     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
756     struct page_entry *pe;
757     PageDesc *pd;
758 
759     pe = g_tree_lookup(set->tree, &index);
760     if (pe) {
761         return false;
762     }
763 
764     pd = page_find(index);
765     if (pd == NULL) {
766         return false;
767     }
768 
769     pe = page_entry_new(pd, index);
770     g_tree_insert(set->tree, &pe->index, pe);
771 
772     /*
773      * If this is either (1) the first insertion or (2) a page whose index
774      * is higher than any other so far, just lock the page and move on.
775      */
776     if (set->max == NULL || pe->index > set->max->index) {
777         set->max = pe;
778         do_page_entry_lock(pe);
779         return false;
780     }
781     /*
782      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
783      * locks in order.
784      */
785     return page_entry_trylock(pe);
786 }
787 
788 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
789 {
790     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
791     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
792 
793     if (a == b) {
794         return 0;
795     } else if (a < b) {
796         return -1;
797     }
798     return 1;
799 }
800 
801 /*
802  * Lock a range of pages ([@start,@end[) as well as the pages of all
803  * intersecting TBs.
804  * Locking order: acquire locks in ascending order of page index.
805  */
806 struct page_collection *
807 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
808 {
809     struct page_collection *set = g_malloc(sizeof(*set));
810     tb_page_addr_t index;
811     PageDesc *pd;
812 
813     start >>= TARGET_PAGE_BITS;
814     end   >>= TARGET_PAGE_BITS;
815     g_assert(start <= end);
816 
817     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
818                                 page_entry_destroy);
819     set->max = NULL;
820     assert_no_pages_locked();
821 
822  retry:
823     g_tree_foreach(set->tree, page_entry_lock, NULL);
824 
825     for (index = start; index <= end; index++) {
826         TranslationBlock *tb;
827         int n;
828 
829         pd = page_find(index);
830         if (pd == NULL) {
831             continue;
832         }
833         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
834             g_tree_foreach(set->tree, page_entry_unlock, NULL);
835             goto retry;
836         }
837         assert_page_locked(pd);
838         PAGE_FOR_EACH_TB(pd, tb, n) {
839             if (page_trylock_add(set, tb->page_addr[0]) ||
840                 (tb->page_addr[1] != -1 &&
841                  page_trylock_add(set, tb->page_addr[1]))) {
842                 /* drop all locks, and reacquire in order */
843                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
844                 goto retry;
845             }
846         }
847     }
848     return set;
849 }
850 
851 void page_collection_unlock(struct page_collection *set)
852 {
853     /* entries are unlocked and freed via page_entry_destroy */
854     g_tree_destroy(set->tree);
855     g_free(set);
856 }
857 
858 #endif /* !CONFIG_USER_ONLY */
859 
860 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
861                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
862 {
863     PageDesc *p1, *p2;
864     tb_page_addr_t page1;
865     tb_page_addr_t page2;
866 
867     assert_memory_lock();
868     g_assert(phys1 != -1);
869 
870     page1 = phys1 >> TARGET_PAGE_BITS;
871     page2 = phys2 >> TARGET_PAGE_BITS;
872 
873     p1 = page_find_alloc(page1, alloc);
874     if (ret_p1) {
875         *ret_p1 = p1;
876     }
877     if (likely(phys2 == -1)) {
878         page_lock(p1);
879         return;
880     } else if (page1 == page2) {
881         page_lock(p1);
882         if (ret_p2) {
883             *ret_p2 = p1;
884         }
885         return;
886     }
887     p2 = page_find_alloc(page2, alloc);
888     if (ret_p2) {
889         *ret_p2 = p2;
890     }
891     if (page1 < page2) {
892         page_lock(p1);
893         page_lock(p2);
894     } else {
895         page_lock(p2);
896         page_lock(p1);
897     }
898 }
899 
900 /* Minimum size of the code gen buffer.  This number is randomly chosen,
901    but not so small that we can't have a fair number of TB's live.  */
902 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
903 
904 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
905    indicated, this is constrained by the range of direct branches on the
906    host cpu, as used by the TCG implementation of goto_tb.  */
907 #if defined(__x86_64__)
908 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
909 #elif defined(__sparc__)
910 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
911 #elif defined(__powerpc64__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
913 #elif defined(__powerpc__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
915 #elif defined(__aarch64__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
917 #elif defined(__s390x__)
918   /* We have a +- 4GB range on the branches; leave some slop.  */
919 # define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
920 #elif defined(__mips__)
921   /* We have a 256MB branch region, but leave room to make sure the
922      main executable is also within that region.  */
923 # define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
924 #else
925 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
926 #endif
927 
928 #if TCG_TARGET_REG_BITS == 32
929 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
930 #ifdef CONFIG_USER_ONLY
931 /*
932  * For user mode on smaller 32 bit systems we may run into trouble
933  * allocating big chunks of data in the right place. On these systems
934  * we utilise a static code generation buffer directly in the binary.
935  */
936 #define USE_STATIC_CODE_GEN_BUFFER
937 #endif
938 #else /* TCG_TARGET_REG_BITS == 64 */
939 #ifdef CONFIG_USER_ONLY
940 /*
941  * As user-mode emulation typically means running multiple instances
942  * of the translator don't go too nuts with our default code gen
943  * buffer lest we make things too hard for the OS.
944  */
945 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
946 #else
947 /*
948  * We expect most system emulation to run one or two guests per host.
949  * Users running large scale system emulation may want to tweak their
950  * runtime setup via the tb-size control on the command line.
951  */
952 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
953 #endif
954 #endif
955 
956 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
957   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
958    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
959 
960 static inline size_t size_code_gen_buffer(size_t tb_size)
961 {
962     /* Size the buffer.  */
963     if (tb_size == 0) {
964         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
965     }
966     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
967         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
968     }
969     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
970         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
971     }
972     return tb_size;
973 }
974 
975 #ifdef __mips__
976 /* In order to use J and JAL within the code_gen_buffer, we require
977    that the buffer not cross a 256MB boundary.  */
978 static inline bool cross_256mb(void *addr, size_t size)
979 {
980     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
981 }
982 
983 /* We weren't able to allocate a buffer without crossing that boundary,
984    so make do with the larger portion of the buffer that doesn't cross.
985    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
986 static inline void *split_cross_256mb(void *buf1, size_t size1)
987 {
988     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
989     size_t size2 = buf1 + size1 - buf2;
990 
991     size1 = buf2 - buf1;
992     if (size1 < size2) {
993         size1 = size2;
994         buf1 = buf2;
995     }
996 
997     tcg_ctx->code_gen_buffer_size = size1;
998     return buf1;
999 }
1000 #endif
1001 
1002 #ifdef USE_STATIC_CODE_GEN_BUFFER
1003 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1004     __attribute__((aligned(CODE_GEN_ALIGN)));
1005 
1006 static inline void *alloc_code_gen_buffer(void)
1007 {
1008     void *buf = static_code_gen_buffer;
1009     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1010     size_t size;
1011 
1012     /* page-align the beginning and end of the buffer */
1013     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1014     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1015 
1016     size = end - buf;
1017 
1018     /* Honor a command-line option limiting the size of the buffer.  */
1019     if (size > tcg_ctx->code_gen_buffer_size) {
1020         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1021                                qemu_real_host_page_size);
1022     }
1023     tcg_ctx->code_gen_buffer_size = size;
1024 
1025 #ifdef __mips__
1026     if (cross_256mb(buf, size)) {
1027         buf = split_cross_256mb(buf, size);
1028         size = tcg_ctx->code_gen_buffer_size;
1029     }
1030 #endif
1031 
1032     if (qemu_mprotect_rwx(buf, size)) {
1033         abort();
1034     }
1035     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1036 
1037     return buf;
1038 }
1039 #elif defined(_WIN32)
1040 static inline void *alloc_code_gen_buffer(void)
1041 {
1042     size_t size = tcg_ctx->code_gen_buffer_size;
1043     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1044                         PAGE_EXECUTE_READWRITE);
1045 }
1046 #else
1047 static inline void *alloc_code_gen_buffer(void)
1048 {
1049     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1050     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1051     size_t size = tcg_ctx->code_gen_buffer_size;
1052     void *buf;
1053 
1054     buf = mmap(NULL, size, prot, flags, -1, 0);
1055     if (buf == MAP_FAILED) {
1056         return NULL;
1057     }
1058 
1059 #ifdef __mips__
1060     if (cross_256mb(buf, size)) {
1061         /*
1062          * Try again, with the original still mapped, to avoid re-acquiring
1063          * the same 256mb crossing.
1064          */
1065         size_t size2;
1066         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1067         switch ((int)(buf2 != MAP_FAILED)) {
1068         case 1:
1069             if (!cross_256mb(buf2, size)) {
1070                 /* Success!  Use the new buffer.  */
1071                 munmap(buf, size);
1072                 break;
1073             }
1074             /* Failure.  Work with what we had.  */
1075             munmap(buf2, size);
1076             /* fallthru */
1077         default:
1078             /* Split the original buffer.  Free the smaller half.  */
1079             buf2 = split_cross_256mb(buf, size);
1080             size2 = tcg_ctx->code_gen_buffer_size;
1081             if (buf == buf2) {
1082                 munmap(buf + size2, size - size2);
1083             } else {
1084                 munmap(buf, size - size2);
1085             }
1086             size = size2;
1087             break;
1088         }
1089         buf = buf2;
1090     }
1091 #endif
1092 
1093     /* Request large pages for the buffer.  */
1094     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1095 
1096     return buf;
1097 }
1098 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1099 
1100 static inline void code_gen_alloc(size_t tb_size)
1101 {
1102     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1103     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1104     if (tcg_ctx->code_gen_buffer == NULL) {
1105         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1106         exit(1);
1107     }
1108 }
1109 
1110 static bool tb_cmp(const void *ap, const void *bp)
1111 {
1112     const TranslationBlock *a = ap;
1113     const TranslationBlock *b = bp;
1114 
1115     return a->pc == b->pc &&
1116         a->cs_base == b->cs_base &&
1117         a->flags == b->flags &&
1118         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1119         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1120         a->page_addr[0] == b->page_addr[0] &&
1121         a->page_addr[1] == b->page_addr[1];
1122 }
1123 
1124 static void tb_htable_init(void)
1125 {
1126     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1127 
1128     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1129 }
1130 
1131 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1132    (in bytes) allocated to the translation buffer. Zero means default
1133    size. */
1134 void tcg_exec_init(unsigned long tb_size)
1135 {
1136     tcg_allowed = true;
1137     cpu_gen_init();
1138     page_init();
1139     tb_htable_init();
1140     code_gen_alloc(tb_size);
1141 #if defined(CONFIG_SOFTMMU)
1142     /* There's no guest base to take into account, so go ahead and
1143        initialize the prologue now.  */
1144     tcg_prologue_init(tcg_ctx);
1145 #endif
1146 }
1147 
1148 /* call with @p->lock held */
1149 static inline void invalidate_page_bitmap(PageDesc *p)
1150 {
1151     assert_page_locked(p);
1152 #ifdef CONFIG_SOFTMMU
1153     g_free(p->code_bitmap);
1154     p->code_bitmap = NULL;
1155     p->code_write_count = 0;
1156 #endif
1157 }
1158 
1159 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1160 static void page_flush_tb_1(int level, void **lp)
1161 {
1162     int i;
1163 
1164     if (*lp == NULL) {
1165         return;
1166     }
1167     if (level == 0) {
1168         PageDesc *pd = *lp;
1169 
1170         for (i = 0; i < V_L2_SIZE; ++i) {
1171             page_lock(&pd[i]);
1172             pd[i].first_tb = (uintptr_t)NULL;
1173             invalidate_page_bitmap(pd + i);
1174             page_unlock(&pd[i]);
1175         }
1176     } else {
1177         void **pp = *lp;
1178 
1179         for (i = 0; i < V_L2_SIZE; ++i) {
1180             page_flush_tb_1(level - 1, pp + i);
1181         }
1182     }
1183 }
1184 
1185 static void page_flush_tb(void)
1186 {
1187     int i, l1_sz = v_l1_size;
1188 
1189     for (i = 0; i < l1_sz; i++) {
1190         page_flush_tb_1(v_l2_levels, l1_map + i);
1191     }
1192 }
1193 
1194 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1195 {
1196     const TranslationBlock *tb = value;
1197     size_t *size = data;
1198 
1199     *size += tb->tc.size;
1200     return false;
1201 }
1202 
1203 /* flush all the translation blocks */
1204 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1205 {
1206     bool did_flush = false;
1207 
1208     mmap_lock();
1209     /* If it is already been done on request of another CPU,
1210      * just retry.
1211      */
1212     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1213         goto done;
1214     }
1215     did_flush = true;
1216 
1217     if (DEBUG_TB_FLUSH_GATE) {
1218         size_t nb_tbs = tcg_nb_tbs();
1219         size_t host_size = 0;
1220 
1221         tcg_tb_foreach(tb_host_size_iter, &host_size);
1222         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1223                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1224     }
1225 
1226     CPU_FOREACH(cpu) {
1227         cpu_tb_jmp_cache_clear(cpu);
1228     }
1229 
1230     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1231     page_flush_tb();
1232 
1233     tcg_region_reset_all();
1234     /* XXX: flush processor icache at this point if cache flush is
1235        expensive */
1236     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1237 
1238 done:
1239     mmap_unlock();
1240     if (did_flush) {
1241         qemu_plugin_flush_cb();
1242     }
1243 }
1244 
1245 void tb_flush(CPUState *cpu)
1246 {
1247     if (tcg_enabled()) {
1248         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1249 
1250         if (cpu_in_exclusive_context(cpu)) {
1251             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1252         } else {
1253             async_safe_run_on_cpu(cpu, do_tb_flush,
1254                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1255         }
1256     }
1257 }
1258 
1259 /*
1260  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1261  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1262  * and let the optimizer get rid of them by wrapping their user-only callers
1263  * with if (DEBUG_TB_CHECK_GATE).
1264  */
1265 #ifdef CONFIG_USER_ONLY
1266 
1267 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1268 {
1269     TranslationBlock *tb = p;
1270     target_ulong addr = *(target_ulong *)userp;
1271 
1272     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1273         printf("ERROR invalidate: address=" TARGET_FMT_lx
1274                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1275     }
1276 }
1277 
1278 /* verify that all the pages have correct rights for code
1279  *
1280  * Called with mmap_lock held.
1281  */
1282 static void tb_invalidate_check(target_ulong address)
1283 {
1284     address &= TARGET_PAGE_MASK;
1285     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1286 }
1287 
1288 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1289 {
1290     TranslationBlock *tb = p;
1291     int flags1, flags2;
1292 
1293     flags1 = page_get_flags(tb->pc);
1294     flags2 = page_get_flags(tb->pc + tb->size - 1);
1295     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1296         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1297                (long)tb->pc, tb->size, flags1, flags2);
1298     }
1299 }
1300 
1301 /* verify that all the pages have correct rights for code */
1302 static void tb_page_check(void)
1303 {
1304     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1305 }
1306 
1307 #endif /* CONFIG_USER_ONLY */
1308 
1309 /*
1310  * user-mode: call with mmap_lock held
1311  * !user-mode: call with @pd->lock held
1312  */
1313 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1314 {
1315     TranslationBlock *tb1;
1316     uintptr_t *pprev;
1317     unsigned int n1;
1318 
1319     assert_page_locked(pd);
1320     pprev = &pd->first_tb;
1321     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1322         if (tb1 == tb) {
1323             *pprev = tb1->page_next[n1];
1324             return;
1325         }
1326         pprev = &tb1->page_next[n1];
1327     }
1328     g_assert_not_reached();
1329 }
1330 
1331 /* remove @orig from its @n_orig-th jump list */
1332 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1333 {
1334     uintptr_t ptr, ptr_locked;
1335     TranslationBlock *dest;
1336     TranslationBlock *tb;
1337     uintptr_t *pprev;
1338     int n;
1339 
1340     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1341     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1342     dest = (TranslationBlock *)(ptr & ~1);
1343     if (dest == NULL) {
1344         return;
1345     }
1346 
1347     qemu_spin_lock(&dest->jmp_lock);
1348     /*
1349      * While acquiring the lock, the jump might have been removed if the
1350      * destination TB was invalidated; check again.
1351      */
1352     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1353     if (ptr_locked != ptr) {
1354         qemu_spin_unlock(&dest->jmp_lock);
1355         /*
1356          * The only possibility is that the jump was unlinked via
1357          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1358          * because we set the LSB above.
1359          */
1360         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1361         return;
1362     }
1363     /*
1364      * We first acquired the lock, and since the destination pointer matches,
1365      * we know for sure that @orig is in the jmp list.
1366      */
1367     pprev = &dest->jmp_list_head;
1368     TB_FOR_EACH_JMP(dest, tb, n) {
1369         if (tb == orig && n == n_orig) {
1370             *pprev = tb->jmp_list_next[n];
1371             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1372             qemu_spin_unlock(&dest->jmp_lock);
1373             return;
1374         }
1375         pprev = &tb->jmp_list_next[n];
1376     }
1377     g_assert_not_reached();
1378 }
1379 
1380 /* reset the jump entry 'n' of a TB so that it is not chained to
1381    another TB */
1382 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1383 {
1384     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1385     tb_set_jmp_target(tb, n, addr);
1386 }
1387 
1388 /* remove any jumps to the TB */
1389 static inline void tb_jmp_unlink(TranslationBlock *dest)
1390 {
1391     TranslationBlock *tb;
1392     int n;
1393 
1394     qemu_spin_lock(&dest->jmp_lock);
1395 
1396     TB_FOR_EACH_JMP(dest, tb, n) {
1397         tb_reset_jump(tb, n);
1398         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1399         /* No need to clear the list entry; setting the dest ptr is enough */
1400     }
1401     dest->jmp_list_head = (uintptr_t)NULL;
1402 
1403     qemu_spin_unlock(&dest->jmp_lock);
1404 }
1405 
1406 /*
1407  * In user-mode, call with mmap_lock held.
1408  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1409  * locks held.
1410  */
1411 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1412 {
1413     CPUState *cpu;
1414     PageDesc *p;
1415     uint32_t h;
1416     tb_page_addr_t phys_pc;
1417 
1418     assert_memory_lock();
1419 
1420     /* make sure no further incoming jumps will be chained to this TB */
1421     qemu_spin_lock(&tb->jmp_lock);
1422     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1423     qemu_spin_unlock(&tb->jmp_lock);
1424 
1425     /* remove the TB from the hash list */
1426     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1427     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1428                      tb->trace_vcpu_dstate);
1429     if (!(tb->cflags & CF_NOCACHE) &&
1430         !qht_remove(&tb_ctx.htable, tb, h)) {
1431         return;
1432     }
1433 
1434     /* remove the TB from the page list */
1435     if (rm_from_page_list) {
1436         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1437         tb_page_remove(p, tb);
1438         invalidate_page_bitmap(p);
1439         if (tb->page_addr[1] != -1) {
1440             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1441             tb_page_remove(p, tb);
1442             invalidate_page_bitmap(p);
1443         }
1444     }
1445 
1446     /* remove the TB from the hash list */
1447     h = tb_jmp_cache_hash_func(tb->pc);
1448     CPU_FOREACH(cpu) {
1449         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1450             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1451         }
1452     }
1453 
1454     /* suppress this TB from the two jump lists */
1455     tb_remove_from_jmp_list(tb, 0);
1456     tb_remove_from_jmp_list(tb, 1);
1457 
1458     /* suppress any remaining jumps to this TB */
1459     tb_jmp_unlink(tb);
1460 
1461     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1462                tcg_ctx->tb_phys_invalidate_count + 1);
1463 }
1464 
1465 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1466 {
1467     do_tb_phys_invalidate(tb, true);
1468 }
1469 
1470 /* invalidate one TB
1471  *
1472  * Called with mmap_lock held in user-mode.
1473  */
1474 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1475 {
1476     if (page_addr == -1 && tb->page_addr[0] != -1) {
1477         page_lock_tb(tb);
1478         do_tb_phys_invalidate(tb, true);
1479         page_unlock_tb(tb);
1480     } else {
1481         do_tb_phys_invalidate(tb, false);
1482     }
1483 }
1484 
1485 #ifdef CONFIG_SOFTMMU
1486 /* call with @p->lock held */
1487 static void build_page_bitmap(PageDesc *p)
1488 {
1489     int n, tb_start, tb_end;
1490     TranslationBlock *tb;
1491 
1492     assert_page_locked(p);
1493     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1494 
1495     PAGE_FOR_EACH_TB(p, tb, n) {
1496         /* NOTE: this is subtle as a TB may span two physical pages */
1497         if (n == 0) {
1498             /* NOTE: tb_end may be after the end of the page, but
1499                it is not a problem */
1500             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1501             tb_end = tb_start + tb->size;
1502             if (tb_end > TARGET_PAGE_SIZE) {
1503                 tb_end = TARGET_PAGE_SIZE;
1504              }
1505         } else {
1506             tb_start = 0;
1507             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1508         }
1509         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1510     }
1511 }
1512 #endif
1513 
1514 /* add the tb in the target page and protect it if necessary
1515  *
1516  * Called with mmap_lock held for user-mode emulation.
1517  * Called with @p->lock held in !user-mode.
1518  */
1519 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1520                                unsigned int n, tb_page_addr_t page_addr)
1521 {
1522 #ifndef CONFIG_USER_ONLY
1523     bool page_already_protected;
1524 #endif
1525 
1526     assert_page_locked(p);
1527 
1528     tb->page_addr[n] = page_addr;
1529     tb->page_next[n] = p->first_tb;
1530 #ifndef CONFIG_USER_ONLY
1531     page_already_protected = p->first_tb != (uintptr_t)NULL;
1532 #endif
1533     p->first_tb = (uintptr_t)tb | n;
1534     invalidate_page_bitmap(p);
1535 
1536 #if defined(CONFIG_USER_ONLY)
1537     if (p->flags & PAGE_WRITE) {
1538         target_ulong addr;
1539         PageDesc *p2;
1540         int prot;
1541 
1542         /* force the host page as non writable (writes will have a
1543            page fault + mprotect overhead) */
1544         page_addr &= qemu_host_page_mask;
1545         prot = 0;
1546         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1547             addr += TARGET_PAGE_SIZE) {
1548 
1549             p2 = page_find(addr >> TARGET_PAGE_BITS);
1550             if (!p2) {
1551                 continue;
1552             }
1553             prot |= p2->flags;
1554             p2->flags &= ~PAGE_WRITE;
1555           }
1556         mprotect(g2h(page_addr), qemu_host_page_size,
1557                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1558         if (DEBUG_TB_INVALIDATE_GATE) {
1559             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1560         }
1561     }
1562 #else
1563     /* if some code is already present, then the pages are already
1564        protected. So we handle the case where only the first TB is
1565        allocated in a physical page */
1566     if (!page_already_protected) {
1567         tlb_protect_code(page_addr);
1568     }
1569 #endif
1570 }
1571 
1572 /* add a new TB and link it to the physical page tables. phys_page2 is
1573  * (-1) to indicate that only one page contains the TB.
1574  *
1575  * Called with mmap_lock held for user-mode emulation.
1576  *
1577  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1578  * Note that in !user-mode, another thread might have already added a TB
1579  * for the same block of guest code that @tb corresponds to. In that case,
1580  * the caller should discard the original @tb, and use instead the returned TB.
1581  */
1582 static TranslationBlock *
1583 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1584              tb_page_addr_t phys_page2)
1585 {
1586     PageDesc *p;
1587     PageDesc *p2 = NULL;
1588 
1589     assert_memory_lock();
1590 
1591     if (phys_pc == -1) {
1592         /*
1593          * If the TB is not associated with a physical RAM page then
1594          * it must be a temporary one-insn TB, and we have nothing to do
1595          * except fill in the page_addr[] fields.
1596          */
1597         assert(tb->cflags & CF_NOCACHE);
1598         tb->page_addr[0] = tb->page_addr[1] = -1;
1599         return tb;
1600     }
1601 
1602     /*
1603      * Add the TB to the page list, acquiring first the pages's locks.
1604      * We keep the locks held until after inserting the TB in the hash table,
1605      * so that if the insertion fails we know for sure that the TBs are still
1606      * in the page descriptors.
1607      * Note that inserting into the hash table first isn't an option, since
1608      * we can only insert TBs that are fully initialized.
1609      */
1610     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1611     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1612     if (p2) {
1613         tb_page_add(p2, tb, 1, phys_page2);
1614     } else {
1615         tb->page_addr[1] = -1;
1616     }
1617 
1618     if (!(tb->cflags & CF_NOCACHE)) {
1619         void *existing_tb = NULL;
1620         uint32_t h;
1621 
1622         /* add in the hash table */
1623         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1624                          tb->trace_vcpu_dstate);
1625         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1626 
1627         /* remove TB from the page(s) if we couldn't insert it */
1628         if (unlikely(existing_tb)) {
1629             tb_page_remove(p, tb);
1630             invalidate_page_bitmap(p);
1631             if (p2) {
1632                 tb_page_remove(p2, tb);
1633                 invalidate_page_bitmap(p2);
1634             }
1635             tb = existing_tb;
1636         }
1637     }
1638 
1639     if (p2 && p2 != p) {
1640         page_unlock(p2);
1641     }
1642     page_unlock(p);
1643 
1644 #ifdef CONFIG_USER_ONLY
1645     if (DEBUG_TB_CHECK_GATE) {
1646         tb_page_check();
1647     }
1648 #endif
1649     return tb;
1650 }
1651 
1652 /* Called with mmap_lock held for user mode emulation.  */
1653 TranslationBlock *tb_gen_code(CPUState *cpu,
1654                               target_ulong pc, target_ulong cs_base,
1655                               uint32_t flags, int cflags)
1656 {
1657     CPUArchState *env = cpu->env_ptr;
1658     TranslationBlock *tb, *existing_tb;
1659     tb_page_addr_t phys_pc, phys_page2;
1660     target_ulong virt_page2;
1661     tcg_insn_unit *gen_code_buf;
1662     int gen_code_size, search_size, max_insns;
1663 #ifdef CONFIG_PROFILER
1664     TCGProfile *prof = &tcg_ctx->prof;
1665     int64_t ti;
1666 #endif
1667 
1668     assert_memory_lock();
1669 
1670     phys_pc = get_page_addr_code(env, pc);
1671 
1672     if (phys_pc == -1) {
1673         /* Generate a temporary TB with 1 insn in it */
1674         cflags &= ~CF_COUNT_MASK;
1675         cflags |= CF_NOCACHE | 1;
1676     }
1677 
1678     cflags &= ~CF_CLUSTER_MASK;
1679     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1680 
1681     max_insns = cflags & CF_COUNT_MASK;
1682     if (max_insns == 0) {
1683         max_insns = CF_COUNT_MASK;
1684     }
1685     if (max_insns > TCG_MAX_INSNS) {
1686         max_insns = TCG_MAX_INSNS;
1687     }
1688     if (cpu->singlestep_enabled || singlestep) {
1689         max_insns = 1;
1690     }
1691 
1692  buffer_overflow:
1693     tb = tcg_tb_alloc(tcg_ctx);
1694     if (unlikely(!tb)) {
1695         /* flush must be done */
1696         tb_flush(cpu);
1697         mmap_unlock();
1698         /* Make the execution loop process the flush as soon as possible.  */
1699         cpu->exception_index = EXCP_INTERRUPT;
1700         cpu_loop_exit(cpu);
1701     }
1702 
1703     gen_code_buf = tcg_ctx->code_gen_ptr;
1704     tb->tc.ptr = gen_code_buf;
1705     tb->pc = pc;
1706     tb->cs_base = cs_base;
1707     tb->flags = flags;
1708     tb->cflags = cflags;
1709     tb->orig_tb = NULL;
1710     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1711     tcg_ctx->tb_cflags = cflags;
1712  tb_overflow:
1713 
1714 #ifdef CONFIG_PROFILER
1715     /* includes aborted translations because of exceptions */
1716     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1717     ti = profile_getclock();
1718 #endif
1719 
1720     tcg_func_start(tcg_ctx);
1721 
1722     tcg_ctx->cpu = env_cpu(env);
1723     gen_intermediate_code(cpu, tb, max_insns);
1724     tcg_ctx->cpu = NULL;
1725 
1726     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1727 
1728     /* generate machine code */
1729     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1730     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1731     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1732     if (TCG_TARGET_HAS_direct_jump) {
1733         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1734         tcg_ctx->tb_jmp_target_addr = NULL;
1735     } else {
1736         tcg_ctx->tb_jmp_insn_offset = NULL;
1737         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1738     }
1739 
1740 #ifdef CONFIG_PROFILER
1741     atomic_set(&prof->tb_count, prof->tb_count + 1);
1742     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1743     ti = profile_getclock();
1744 #endif
1745 
1746     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1747     if (unlikely(gen_code_size < 0)) {
1748         switch (gen_code_size) {
1749         case -1:
1750             /*
1751              * Overflow of code_gen_buffer, or the current slice of it.
1752              *
1753              * TODO: We don't need to re-do gen_intermediate_code, nor
1754              * should we re-do the tcg optimization currently hidden
1755              * inside tcg_gen_code.  All that should be required is to
1756              * flush the TBs, allocate a new TB, re-initialize it per
1757              * above, and re-do the actual code generation.
1758              */
1759             goto buffer_overflow;
1760 
1761         case -2:
1762             /*
1763              * The code generated for the TranslationBlock is too large.
1764              * The maximum size allowed by the unwind info is 64k.
1765              * There may be stricter constraints from relocations
1766              * in the tcg backend.
1767              *
1768              * Try again with half as many insns as we attempted this time.
1769              * If a single insn overflows, there's a bug somewhere...
1770              */
1771             max_insns = tb->icount;
1772             assert(max_insns > 1);
1773             max_insns /= 2;
1774             goto tb_overflow;
1775 
1776         default:
1777             g_assert_not_reached();
1778         }
1779     }
1780     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1781     if (unlikely(search_size < 0)) {
1782         goto buffer_overflow;
1783     }
1784     tb->tc.size = gen_code_size;
1785 
1786 #ifdef CONFIG_PROFILER
1787     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1788     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1789     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1790     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1791 #endif
1792 
1793 #ifdef DEBUG_DISAS
1794     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1795         qemu_log_in_addr_range(tb->pc)) {
1796         FILE *logfile = qemu_log_lock();
1797         int code_size, data_size = 0;
1798         g_autoptr(GString) note = g_string_new("[tb header & initial instruction]");
1799         size_t chunk_start = 0;
1800         int insn = 0;
1801         qemu_log("OUT: [size=%d]\n", gen_code_size);
1802         if (tcg_ctx->data_gen_ptr) {
1803             code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1804             data_size = gen_code_size - code_size;
1805         } else {
1806             code_size = gen_code_size;
1807         }
1808 
1809         /* Dump header and the first instruction */
1810         chunk_start = tcg_ctx->gen_insn_end_off[insn];
1811         log_disas(tb->tc.ptr, chunk_start, note->str);
1812 
1813         /*
1814          * Dump each instruction chunk, wrapping up empty chunks into
1815          * the next instruction. The whole array is offset so the
1816          * first entry is the beginning of the 2nd instruction.
1817          */
1818         while (insn <= tb->icount && chunk_start < code_size) {
1819             size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
1820             if (chunk_end > chunk_start) {
1821                 g_string_printf(note, "[guest addr: " TARGET_FMT_lx "]",
1822                                 tcg_ctx->gen_insn_data[insn][0]);
1823                 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start,
1824                           note->str);
1825                 chunk_start = chunk_end;
1826             }
1827             insn++;
1828         }
1829 
1830         /* Finally dump any data we may have after the block */
1831         if (data_size) {
1832             int i;
1833             qemu_log("  data: [size=%d]\n", data_size);
1834             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1835                 if (sizeof(tcg_target_ulong) == 8) {
1836                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1837                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1838                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1839                 } else {
1840                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1841                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1842                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1843                 }
1844             }
1845         }
1846         qemu_log("\n");
1847         qemu_log_flush();
1848         qemu_log_unlock(logfile);
1849     }
1850 #endif
1851 
1852     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1853         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1854                  CODE_GEN_ALIGN));
1855 
1856     /* init jump list */
1857     qemu_spin_init(&tb->jmp_lock);
1858     tb->jmp_list_head = (uintptr_t)NULL;
1859     tb->jmp_list_next[0] = (uintptr_t)NULL;
1860     tb->jmp_list_next[1] = (uintptr_t)NULL;
1861     tb->jmp_dest[0] = (uintptr_t)NULL;
1862     tb->jmp_dest[1] = (uintptr_t)NULL;
1863 
1864     /* init original jump addresses which have been set during tcg_gen_code() */
1865     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1866         tb_reset_jump(tb, 0);
1867     }
1868     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1869         tb_reset_jump(tb, 1);
1870     }
1871 
1872     /* check next page if needed */
1873     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1874     phys_page2 = -1;
1875     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1876         phys_page2 = get_page_addr_code(env, virt_page2);
1877     }
1878     /*
1879      * No explicit memory barrier is required -- tb_link_page() makes the
1880      * TB visible in a consistent state.
1881      */
1882     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1883     /* if the TB already exists, discard what we just translated */
1884     if (unlikely(existing_tb != tb)) {
1885         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1886 
1887         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1888         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1889         return existing_tb;
1890     }
1891     tcg_tb_insert(tb);
1892     return tb;
1893 }
1894 
1895 /*
1896  * @p must be non-NULL.
1897  * user-mode: call with mmap_lock held.
1898  * !user-mode: call with all @pages locked.
1899  */
1900 static void
1901 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1902                                       PageDesc *p, tb_page_addr_t start,
1903                                       tb_page_addr_t end,
1904                                       uintptr_t retaddr)
1905 {
1906     TranslationBlock *tb;
1907     tb_page_addr_t tb_start, tb_end;
1908     int n;
1909 #ifdef TARGET_HAS_PRECISE_SMC
1910     CPUState *cpu = current_cpu;
1911     CPUArchState *env = NULL;
1912     bool current_tb_not_found = retaddr != 0;
1913     bool current_tb_modified = false;
1914     TranslationBlock *current_tb = NULL;
1915     target_ulong current_pc = 0;
1916     target_ulong current_cs_base = 0;
1917     uint32_t current_flags = 0;
1918 #endif /* TARGET_HAS_PRECISE_SMC */
1919 
1920     assert_page_locked(p);
1921 
1922 #if defined(TARGET_HAS_PRECISE_SMC)
1923     if (cpu != NULL) {
1924         env = cpu->env_ptr;
1925     }
1926 #endif
1927 
1928     /* we remove all the TBs in the range [start, end[ */
1929     /* XXX: see if in some cases it could be faster to invalidate all
1930        the code */
1931     PAGE_FOR_EACH_TB(p, tb, n) {
1932         assert_page_locked(p);
1933         /* NOTE: this is subtle as a TB may span two physical pages */
1934         if (n == 0) {
1935             /* NOTE: tb_end may be after the end of the page, but
1936                it is not a problem */
1937             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1938             tb_end = tb_start + tb->size;
1939         } else {
1940             tb_start = tb->page_addr[1];
1941             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1942         }
1943         if (!(tb_end <= start || tb_start >= end)) {
1944 #ifdef TARGET_HAS_PRECISE_SMC
1945             if (current_tb_not_found) {
1946                 current_tb_not_found = false;
1947                 /* now we have a real cpu fault */
1948                 current_tb = tcg_tb_lookup(retaddr);
1949             }
1950             if (current_tb == tb &&
1951                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1952                 /*
1953                  * If we are modifying the current TB, we must stop
1954                  * its execution. We could be more precise by checking
1955                  * that the modification is after the current PC, but it
1956                  * would require a specialized function to partially
1957                  * restore the CPU state.
1958                  */
1959                 current_tb_modified = true;
1960                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1961                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1962                                      &current_flags);
1963             }
1964 #endif /* TARGET_HAS_PRECISE_SMC */
1965             tb_phys_invalidate__locked(tb);
1966         }
1967     }
1968 #if !defined(CONFIG_USER_ONLY)
1969     /* if no code remaining, no need to continue to use slow writes */
1970     if (!p->first_tb) {
1971         invalidate_page_bitmap(p);
1972         tlb_unprotect_code(start);
1973     }
1974 #endif
1975 #ifdef TARGET_HAS_PRECISE_SMC
1976     if (current_tb_modified) {
1977         page_collection_unlock(pages);
1978         /* Force execution of one insn next time.  */
1979         cpu->cflags_next_tb = 1 | curr_cflags();
1980         mmap_unlock();
1981         cpu_loop_exit_noexc(cpu);
1982     }
1983 #endif
1984 }
1985 
1986 /*
1987  * Invalidate all TBs which intersect with the target physical address range
1988  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1989  * 'is_cpu_write_access' should be true if called from a real cpu write
1990  * access: the virtual CPU will exit the current TB if code is modified inside
1991  * this TB.
1992  *
1993  * Called with mmap_lock held for user-mode emulation
1994  */
1995 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1996 {
1997     struct page_collection *pages;
1998     PageDesc *p;
1999 
2000     assert_memory_lock();
2001 
2002     p = page_find(start >> TARGET_PAGE_BITS);
2003     if (p == NULL) {
2004         return;
2005     }
2006     pages = page_collection_lock(start, end);
2007     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2008     page_collection_unlock(pages);
2009 }
2010 
2011 /*
2012  * Invalidate all TBs which intersect with the target physical address range
2013  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2014  * 'is_cpu_write_access' should be true if called from a real cpu write
2015  * access: the virtual CPU will exit the current TB if code is modified inside
2016  * this TB.
2017  *
2018  * Called with mmap_lock held for user-mode emulation.
2019  */
2020 #ifdef CONFIG_SOFTMMU
2021 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2022 #else
2023 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2024 #endif
2025 {
2026     struct page_collection *pages;
2027     tb_page_addr_t next;
2028 
2029     assert_memory_lock();
2030 
2031     pages = page_collection_lock(start, end);
2032     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2033          start < end;
2034          start = next, next += TARGET_PAGE_SIZE) {
2035         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2036         tb_page_addr_t bound = MIN(next, end);
2037 
2038         if (pd == NULL) {
2039             continue;
2040         }
2041         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2042     }
2043     page_collection_unlock(pages);
2044 }
2045 
2046 #ifdef CONFIG_SOFTMMU
2047 /* len must be <= 8 and start must be a multiple of len.
2048  * Called via softmmu_template.h when code areas are written to with
2049  * iothread mutex not held.
2050  *
2051  * Call with all @pages in the range [@start, @start + len[ locked.
2052  */
2053 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2054                                   tb_page_addr_t start, int len,
2055                                   uintptr_t retaddr)
2056 {
2057     PageDesc *p;
2058 
2059     assert_memory_lock();
2060 
2061     p = page_find(start >> TARGET_PAGE_BITS);
2062     if (!p) {
2063         return;
2064     }
2065 
2066     assert_page_locked(p);
2067     if (!p->code_bitmap &&
2068         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2069         build_page_bitmap(p);
2070     }
2071     if (p->code_bitmap) {
2072         unsigned int nr;
2073         unsigned long b;
2074 
2075         nr = start & ~TARGET_PAGE_MASK;
2076         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2077         if (b & ((1 << len) - 1)) {
2078             goto do_invalidate;
2079         }
2080     } else {
2081     do_invalidate:
2082         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2083                                               retaddr);
2084     }
2085 }
2086 #else
2087 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2088  * host PC of the faulting store instruction that caused this invalidate.
2089  * Returns true if the caller needs to abort execution of the current
2090  * TB (because it was modified by this store and the guest CPU has
2091  * precise-SMC semantics).
2092  */
2093 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2094 {
2095     TranslationBlock *tb;
2096     PageDesc *p;
2097     int n;
2098 #ifdef TARGET_HAS_PRECISE_SMC
2099     TranslationBlock *current_tb = NULL;
2100     CPUState *cpu = current_cpu;
2101     CPUArchState *env = NULL;
2102     int current_tb_modified = 0;
2103     target_ulong current_pc = 0;
2104     target_ulong current_cs_base = 0;
2105     uint32_t current_flags = 0;
2106 #endif
2107 
2108     assert_memory_lock();
2109 
2110     addr &= TARGET_PAGE_MASK;
2111     p = page_find(addr >> TARGET_PAGE_BITS);
2112     if (!p) {
2113         return false;
2114     }
2115 
2116 #ifdef TARGET_HAS_PRECISE_SMC
2117     if (p->first_tb && pc != 0) {
2118         current_tb = tcg_tb_lookup(pc);
2119     }
2120     if (cpu != NULL) {
2121         env = cpu->env_ptr;
2122     }
2123 #endif
2124     assert_page_locked(p);
2125     PAGE_FOR_EACH_TB(p, tb, n) {
2126 #ifdef TARGET_HAS_PRECISE_SMC
2127         if (current_tb == tb &&
2128             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2129                 /* If we are modifying the current TB, we must stop
2130                    its execution. We could be more precise by checking
2131                    that the modification is after the current PC, but it
2132                    would require a specialized function to partially
2133                    restore the CPU state */
2134 
2135             current_tb_modified = 1;
2136             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2137             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2138                                  &current_flags);
2139         }
2140 #endif /* TARGET_HAS_PRECISE_SMC */
2141         tb_phys_invalidate(tb, addr);
2142     }
2143     p->first_tb = (uintptr_t)NULL;
2144 #ifdef TARGET_HAS_PRECISE_SMC
2145     if (current_tb_modified) {
2146         /* Force execution of one insn next time.  */
2147         cpu->cflags_next_tb = 1 | curr_cflags();
2148         return true;
2149     }
2150 #endif
2151 
2152     return false;
2153 }
2154 #endif
2155 
2156 /* user-mode: call with mmap_lock held */
2157 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2158 {
2159     TranslationBlock *tb;
2160 
2161     assert_memory_lock();
2162 
2163     tb = tcg_tb_lookup(retaddr);
2164     if (tb) {
2165         /* We can use retranslation to find the PC.  */
2166         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2167         tb_phys_invalidate(tb, -1);
2168     } else {
2169         /* The exception probably happened in a helper.  The CPU state should
2170            have been saved before calling it. Fetch the PC from there.  */
2171         CPUArchState *env = cpu->env_ptr;
2172         target_ulong pc, cs_base;
2173         tb_page_addr_t addr;
2174         uint32_t flags;
2175 
2176         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2177         addr = get_page_addr_code(env, pc);
2178         if (addr != -1) {
2179             tb_invalidate_phys_range(addr, addr + 1);
2180         }
2181     }
2182 }
2183 
2184 #ifndef CONFIG_USER_ONLY
2185 /* in deterministic execution mode, instructions doing device I/Os
2186  * must be at the end of the TB.
2187  *
2188  * Called by softmmu_template.h, with iothread mutex not held.
2189  */
2190 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2191 {
2192 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2193     CPUArchState *env = cpu->env_ptr;
2194 #endif
2195     TranslationBlock *tb;
2196     uint32_t n;
2197 
2198     tb = tcg_tb_lookup(retaddr);
2199     if (!tb) {
2200         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2201                   (void *)retaddr);
2202     }
2203     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2204 
2205     /* On MIPS and SH, delay slot instructions can only be restarted if
2206        they were already the first instruction in the TB.  If this is not
2207        the first instruction in a TB then re-execute the preceding
2208        branch.  */
2209     n = 1;
2210 #if defined(TARGET_MIPS)
2211     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2212         && env->active_tc.PC != tb->pc) {
2213         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2214         cpu_neg(cpu)->icount_decr.u16.low++;
2215         env->hflags &= ~MIPS_HFLAG_BMASK;
2216         n = 2;
2217     }
2218 #elif defined(TARGET_SH4)
2219     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2220         && env->pc != tb->pc) {
2221         env->pc -= 2;
2222         cpu_neg(cpu)->icount_decr.u16.low++;
2223         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2224         n = 2;
2225     }
2226 #endif
2227 
2228     /* Generate a new TB executing the I/O insn.  */
2229     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2230 
2231     if (tb_cflags(tb) & CF_NOCACHE) {
2232         if (tb->orig_tb) {
2233             /* Invalidate original TB if this TB was generated in
2234              * cpu_exec_nocache() */
2235             tb_phys_invalidate(tb->orig_tb, -1);
2236         }
2237         tcg_tb_remove(tb);
2238     }
2239 
2240     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2241      * the first in the TB) then we end up generating a whole new TB and
2242      *  repeating the fault, which is horribly inefficient.
2243      *  Better would be to execute just this insn uncached, or generate a
2244      *  second new TB.
2245      */
2246     cpu_loop_exit_noexc(cpu);
2247 }
2248 
2249 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2250 {
2251     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2252 
2253     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2254         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2255     }
2256 }
2257 
2258 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2259 {
2260     /* Discard jump cache entries for any tb which might potentially
2261        overlap the flushed page.  */
2262     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2263     tb_jmp_cache_clear_page(cpu, addr);
2264 }
2265 
2266 static void print_qht_statistics(struct qht_stats hst)
2267 {
2268     uint32_t hgram_opts;
2269     size_t hgram_bins;
2270     char *hgram;
2271 
2272     if (!hst.head_buckets) {
2273         return;
2274     }
2275     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2276                 hst.used_head_buckets, hst.head_buckets,
2277                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2278 
2279     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2280     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2281     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2282         hgram_opts |= QDIST_PR_NODECIMAL;
2283     }
2284     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2285     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2286                 qdist_avg(&hst.occupancy) * 100, hgram);
2287     g_free(hgram);
2288 
2289     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2290     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2291     if (hgram_bins > 10) {
2292         hgram_bins = 10;
2293     } else {
2294         hgram_bins = 0;
2295         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2296     }
2297     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2298     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2299                 qdist_avg(&hst.chain), hgram);
2300     g_free(hgram);
2301 }
2302 
2303 struct tb_tree_stats {
2304     size_t nb_tbs;
2305     size_t host_size;
2306     size_t target_size;
2307     size_t max_target_size;
2308     size_t direct_jmp_count;
2309     size_t direct_jmp2_count;
2310     size_t cross_page;
2311 };
2312 
2313 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2314 {
2315     const TranslationBlock *tb = value;
2316     struct tb_tree_stats *tst = data;
2317 
2318     tst->nb_tbs++;
2319     tst->host_size += tb->tc.size;
2320     tst->target_size += tb->size;
2321     if (tb->size > tst->max_target_size) {
2322         tst->max_target_size = tb->size;
2323     }
2324     if (tb->page_addr[1] != -1) {
2325         tst->cross_page++;
2326     }
2327     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2328         tst->direct_jmp_count++;
2329         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2330             tst->direct_jmp2_count++;
2331         }
2332     }
2333     return false;
2334 }
2335 
2336 void dump_exec_info(void)
2337 {
2338     struct tb_tree_stats tst = {};
2339     struct qht_stats hst;
2340     size_t nb_tbs, flush_full, flush_part, flush_elide;
2341 
2342     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2343     nb_tbs = tst.nb_tbs;
2344     /* XXX: avoid using doubles ? */
2345     qemu_printf("Translation buffer state:\n");
2346     /*
2347      * Report total code size including the padding and TB structs;
2348      * otherwise users might think "-tb-size" is not honoured.
2349      * For avg host size we use the precise numbers from tb_tree_stats though.
2350      */
2351     qemu_printf("gen code size       %zu/%zu\n",
2352                 tcg_code_size(), tcg_code_capacity());
2353     qemu_printf("TB count            %zu\n", nb_tbs);
2354     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2355                 nb_tbs ? tst.target_size / nb_tbs : 0,
2356                 tst.max_target_size);
2357     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2358                 nb_tbs ? tst.host_size / nb_tbs : 0,
2359                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2360     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2361                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2362     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2363                 tst.direct_jmp_count,
2364                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2365                 tst.direct_jmp2_count,
2366                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2367 
2368     qht_statistics_init(&tb_ctx.htable, &hst);
2369     print_qht_statistics(hst);
2370     qht_statistics_destroy(&hst);
2371 
2372     qemu_printf("\nStatistics:\n");
2373     qemu_printf("TB flush count      %u\n",
2374                 atomic_read(&tb_ctx.tb_flush_count));
2375     qemu_printf("TB invalidate count %zu\n",
2376                 tcg_tb_phys_invalidate_count());
2377 
2378     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2379     qemu_printf("TLB full flushes    %zu\n", flush_full);
2380     qemu_printf("TLB partial flushes %zu\n", flush_part);
2381     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2382     tcg_dump_info();
2383 }
2384 
2385 void dump_opcount_info(void)
2386 {
2387     tcg_dump_op_count();
2388 }
2389 
2390 #else /* CONFIG_USER_ONLY */
2391 
2392 void cpu_interrupt(CPUState *cpu, int mask)
2393 {
2394     g_assert(qemu_mutex_iothread_locked());
2395     cpu->interrupt_request |= mask;
2396     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2397 }
2398 
2399 /*
2400  * Walks guest process memory "regions" one by one
2401  * and calls callback function 'fn' for each region.
2402  */
2403 struct walk_memory_regions_data {
2404     walk_memory_regions_fn fn;
2405     void *priv;
2406     target_ulong start;
2407     int prot;
2408 };
2409 
2410 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2411                                    target_ulong end, int new_prot)
2412 {
2413     if (data->start != -1u) {
2414         int rc = data->fn(data->priv, data->start, end, data->prot);
2415         if (rc != 0) {
2416             return rc;
2417         }
2418     }
2419 
2420     data->start = (new_prot ? end : -1u);
2421     data->prot = new_prot;
2422 
2423     return 0;
2424 }
2425 
2426 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2427                                  target_ulong base, int level, void **lp)
2428 {
2429     target_ulong pa;
2430     int i, rc;
2431 
2432     if (*lp == NULL) {
2433         return walk_memory_regions_end(data, base, 0);
2434     }
2435 
2436     if (level == 0) {
2437         PageDesc *pd = *lp;
2438 
2439         for (i = 0; i < V_L2_SIZE; ++i) {
2440             int prot = pd[i].flags;
2441 
2442             pa = base | (i << TARGET_PAGE_BITS);
2443             if (prot != data->prot) {
2444                 rc = walk_memory_regions_end(data, pa, prot);
2445                 if (rc != 0) {
2446                     return rc;
2447                 }
2448             }
2449         }
2450     } else {
2451         void **pp = *lp;
2452 
2453         for (i = 0; i < V_L2_SIZE; ++i) {
2454             pa = base | ((target_ulong)i <<
2455                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2456             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2457             if (rc != 0) {
2458                 return rc;
2459             }
2460         }
2461     }
2462 
2463     return 0;
2464 }
2465 
2466 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2467 {
2468     struct walk_memory_regions_data data;
2469     uintptr_t i, l1_sz = v_l1_size;
2470 
2471     data.fn = fn;
2472     data.priv = priv;
2473     data.start = -1u;
2474     data.prot = 0;
2475 
2476     for (i = 0; i < l1_sz; i++) {
2477         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2478         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2479         if (rc != 0) {
2480             return rc;
2481         }
2482     }
2483 
2484     return walk_memory_regions_end(&data, 0, 0);
2485 }
2486 
2487 static int dump_region(void *priv, target_ulong start,
2488     target_ulong end, unsigned long prot)
2489 {
2490     FILE *f = (FILE *)priv;
2491 
2492     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2493         " "TARGET_FMT_lx" %c%c%c\n",
2494         start, end, end - start,
2495         ((prot & PAGE_READ) ? 'r' : '-'),
2496         ((prot & PAGE_WRITE) ? 'w' : '-'),
2497         ((prot & PAGE_EXEC) ? 'x' : '-'));
2498 
2499     return 0;
2500 }
2501 
2502 /* dump memory mappings */
2503 void page_dump(FILE *f)
2504 {
2505     const int length = sizeof(target_ulong) * 2;
2506     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2507             length, "start", length, "end", length, "size", "prot");
2508     walk_memory_regions(f, dump_region);
2509 }
2510 
2511 int page_get_flags(target_ulong address)
2512 {
2513     PageDesc *p;
2514 
2515     p = page_find(address >> TARGET_PAGE_BITS);
2516     if (!p) {
2517         return 0;
2518     }
2519     return p->flags;
2520 }
2521 
2522 /* Modify the flags of a page and invalidate the code if necessary.
2523    The flag PAGE_WRITE_ORG is positioned automatically depending
2524    on PAGE_WRITE.  The mmap_lock should already be held.  */
2525 void page_set_flags(target_ulong start, target_ulong end, int flags)
2526 {
2527     target_ulong addr, len;
2528 
2529     /* This function should never be called with addresses outside the
2530        guest address space.  If this assert fires, it probably indicates
2531        a missing call to h2g_valid.  */
2532     assert(end - 1 <= GUEST_ADDR_MAX);
2533     assert(start < end);
2534     assert_memory_lock();
2535 
2536     start = start & TARGET_PAGE_MASK;
2537     end = TARGET_PAGE_ALIGN(end);
2538 
2539     if (flags & PAGE_WRITE) {
2540         flags |= PAGE_WRITE_ORG;
2541     }
2542 
2543     for (addr = start, len = end - start;
2544          len != 0;
2545          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2546         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2547 
2548         /* If the write protection bit is set, then we invalidate
2549            the code inside.  */
2550         if (!(p->flags & PAGE_WRITE) &&
2551             (flags & PAGE_WRITE) &&
2552             p->first_tb) {
2553             tb_invalidate_phys_page(addr, 0);
2554         }
2555         p->flags = flags;
2556     }
2557 }
2558 
2559 int page_check_range(target_ulong start, target_ulong len, int flags)
2560 {
2561     PageDesc *p;
2562     target_ulong end;
2563     target_ulong addr;
2564 
2565     /* This function should never be called with addresses outside the
2566        guest address space.  If this assert fires, it probably indicates
2567        a missing call to h2g_valid.  */
2568 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2569     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2570 #endif
2571 
2572     if (len == 0) {
2573         return 0;
2574     }
2575     if (start + len - 1 < start) {
2576         /* We've wrapped around.  */
2577         return -1;
2578     }
2579 
2580     /* must do before we loose bits in the next step */
2581     end = TARGET_PAGE_ALIGN(start + len);
2582     start = start & TARGET_PAGE_MASK;
2583 
2584     for (addr = start, len = end - start;
2585          len != 0;
2586          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2587         p = page_find(addr >> TARGET_PAGE_BITS);
2588         if (!p) {
2589             return -1;
2590         }
2591         if (!(p->flags & PAGE_VALID)) {
2592             return -1;
2593         }
2594 
2595         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2596             return -1;
2597         }
2598         if (flags & PAGE_WRITE) {
2599             if (!(p->flags & PAGE_WRITE_ORG)) {
2600                 return -1;
2601             }
2602             /* unprotect the page if it was put read-only because it
2603                contains translated code */
2604             if (!(p->flags & PAGE_WRITE)) {
2605                 if (!page_unprotect(addr, 0)) {
2606                     return -1;
2607                 }
2608             }
2609         }
2610     }
2611     return 0;
2612 }
2613 
2614 /* called from signal handler: invalidate the code and unprotect the
2615  * page. Return 0 if the fault was not handled, 1 if it was handled,
2616  * and 2 if it was handled but the caller must cause the TB to be
2617  * immediately exited. (We can only return 2 if the 'pc' argument is
2618  * non-zero.)
2619  */
2620 int page_unprotect(target_ulong address, uintptr_t pc)
2621 {
2622     unsigned int prot;
2623     bool current_tb_invalidated;
2624     PageDesc *p;
2625     target_ulong host_start, host_end, addr;
2626 
2627     /* Technically this isn't safe inside a signal handler.  However we
2628        know this only ever happens in a synchronous SEGV handler, so in
2629        practice it seems to be ok.  */
2630     mmap_lock();
2631 
2632     p = page_find(address >> TARGET_PAGE_BITS);
2633     if (!p) {
2634         mmap_unlock();
2635         return 0;
2636     }
2637 
2638     /* if the page was really writable, then we change its
2639        protection back to writable */
2640     if (p->flags & PAGE_WRITE_ORG) {
2641         current_tb_invalidated = false;
2642         if (p->flags & PAGE_WRITE) {
2643             /* If the page is actually marked WRITE then assume this is because
2644              * this thread raced with another one which got here first and
2645              * set the page to PAGE_WRITE and did the TB invalidate for us.
2646              */
2647 #ifdef TARGET_HAS_PRECISE_SMC
2648             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2649             if (current_tb) {
2650                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2651             }
2652 #endif
2653         } else {
2654             host_start = address & qemu_host_page_mask;
2655             host_end = host_start + qemu_host_page_size;
2656 
2657             prot = 0;
2658             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2659                 p = page_find(addr >> TARGET_PAGE_BITS);
2660                 p->flags |= PAGE_WRITE;
2661                 prot |= p->flags;
2662 
2663                 /* and since the content will be modified, we must invalidate
2664                    the corresponding translated code. */
2665                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2666 #ifdef CONFIG_USER_ONLY
2667                 if (DEBUG_TB_CHECK_GATE) {
2668                     tb_invalidate_check(addr);
2669                 }
2670 #endif
2671             }
2672             mprotect((void *)g2h(host_start), qemu_host_page_size,
2673                      prot & PAGE_BITS);
2674         }
2675         mmap_unlock();
2676         /* If current TB was invalidated return to main loop */
2677         return current_tb_invalidated ? 2 : 1;
2678     }
2679     mmap_unlock();
2680     return 0;
2681 }
2682 #endif /* CONFIG_USER_ONLY */
2683 
2684 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2685 void tcg_flush_softmmu_tlb(CPUState *cs)
2686 {
2687 #ifdef CONFIG_SOFTMMU
2688     tlb_flush(cs);
2689 #endif
2690 }
2691