xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 2a196de1)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #define NO_CPU_IO_DEFS
23 #include "trace.h"
24 #include "disas/disas.h"
25 #include "exec/exec-all.h"
26 #include "tcg/tcg.h"
27 #if defined(CONFIG_USER_ONLY)
28 #include "qemu.h"
29 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
30 #include <sys/param.h>
31 #if __FreeBSD_version >= 700104
32 #define HAVE_KINFO_GETVMMAP
33 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
34 #include <sys/proc.h>
35 #include <machine/profile.h>
36 #define _KERNEL
37 #include <sys/user.h>
38 #undef _KERNEL
39 #undef sigqueue
40 #include <libutil.h>
41 #endif
42 #endif
43 #else
44 #include "exec/ram_addr.h"
45 #endif
46 
47 #include "exec/cputlb.h"
48 #include "exec/translate-all.h"
49 #include "exec/translator.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/qemu-print.h"
52 #include "qemu/main-loop.h"
53 #include "qemu/cacheinfo.h"
54 #include "qemu/timer.h"
55 #include "exec/log.h"
56 #include "sysemu/cpus.h"
57 #include "sysemu/cpu-timers.h"
58 #include "sysemu/tcg.h"
59 #include "qapi/error.h"
60 #include "hw/core/tcg-cpu-ops.h"
61 #include "tb-jmp-cache.h"
62 #include "tb-hash.h"
63 #include "tb-context.h"
64 #include "internal.h"
65 #include "perf.h"
66 
67 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
68 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
69                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
70                   * BITS_PER_BYTE);
71 
72 TBContext tb_ctx;
73 
74 /* Encode VAL as a signed leb128 sequence at P.
75    Return P incremented past the encoded value.  */
76 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
77 {
78     int more, byte;
79 
80     do {
81         byte = val & 0x7f;
82         val >>= 7;
83         more = !((val == 0 && (byte & 0x40) == 0)
84                  || (val == -1 && (byte & 0x40) != 0));
85         if (more) {
86             byte |= 0x80;
87         }
88         *p++ = byte;
89     } while (more);
90 
91     return p;
92 }
93 
94 /* Decode a signed leb128 sequence at *PP; increment *PP past the
95    decoded value.  Return the decoded value.  */
96 static target_long decode_sleb128(const uint8_t **pp)
97 {
98     const uint8_t *p = *pp;
99     target_long val = 0;
100     int byte, shift = 0;
101 
102     do {
103         byte = *p++;
104         val |= (target_ulong)(byte & 0x7f) << shift;
105         shift += 7;
106     } while (byte & 0x80);
107     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
108         val |= -(target_ulong)1 << shift;
109     }
110 
111     *pp = p;
112     return val;
113 }
114 
115 /* Encode the data collected about the instructions while compiling TB.
116    Place the data at BLOCK, and return the number of bytes consumed.
117 
118    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
119    which come from the target's insn_start data, followed by a uintptr_t
120    which comes from the host pc of the end of the code implementing the insn.
121 
122    Each line of the table is encoded as sleb128 deltas from the previous
123    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
124    That is, the first column is seeded with the guest pc, the last column
125    with the host pc, and the middle columns with zeros.  */
126 
127 static int encode_search(TranslationBlock *tb, uint8_t *block)
128 {
129     uint8_t *highwater = tcg_ctx->code_gen_highwater;
130     uint8_t *p = block;
131     int i, j, n;
132 
133     for (i = 0, n = tb->icount; i < n; ++i) {
134         target_ulong prev;
135 
136         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
137             if (i == 0) {
138                 prev = (!(tb_cflags(tb) & CF_PCREL) && j == 0 ? tb->pc : 0);
139             } else {
140                 prev = tcg_ctx->gen_insn_data[i - 1][j];
141             }
142             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
143         }
144         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
145         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
146 
147         /* Test for (pending) buffer overflow.  The assumption is that any
148            one row beginning below the high water mark cannot overrun
149            the buffer completely.  Thus we can test for overflow after
150            encoding a row without having to check during encoding.  */
151         if (unlikely(p > highwater)) {
152             return -1;
153         }
154     }
155 
156     return p - block;
157 }
158 
159 static int cpu_unwind_data_from_tb(TranslationBlock *tb, uintptr_t host_pc,
160                                    uint64_t *data)
161 {
162     uintptr_t iter_pc = (uintptr_t)tb->tc.ptr;
163     const uint8_t *p = tb->tc.ptr + tb->tc.size;
164     int i, j, num_insns = tb->icount;
165 
166     host_pc -= GETPC_ADJ;
167 
168     if (host_pc < iter_pc) {
169         return -1;
170     }
171 
172     memset(data, 0, sizeof(uint64_t) * TARGET_INSN_START_WORDS);
173     if (!(tb_cflags(tb) & CF_PCREL)) {
174         data[0] = tb->pc;
175     }
176 
177     /*
178      * Reconstruct the stored insn data while looking for the point
179      * at which the end of the insn exceeds host_pc.
180      */
181     for (i = 0; i < num_insns; ++i) {
182         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
183             data[j] += decode_sleb128(&p);
184         }
185         iter_pc += decode_sleb128(&p);
186         if (iter_pc > host_pc) {
187             return num_insns - i;
188         }
189     }
190     return -1;
191 }
192 
193 /*
194  * The cpu state corresponding to 'host_pc' is restored in
195  * preparation for exiting the TB.
196  */
197 void cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
198                                uintptr_t host_pc)
199 {
200     uint64_t data[TARGET_INSN_START_WORDS];
201 #ifdef CONFIG_PROFILER
202     TCGProfile *prof = &tcg_ctx->prof;
203     int64_t ti = profile_getclock();
204 #endif
205     int insns_left = cpu_unwind_data_from_tb(tb, host_pc, data);
206 
207     if (insns_left < 0) {
208         return;
209     }
210 
211     if (tb_cflags(tb) & CF_USE_ICOUNT) {
212         assert(icount_enabled());
213         /*
214          * Reset the cycle counter to the start of the block and
215          * shift if to the number of actually executed instructions.
216          */
217         cpu_neg(cpu)->icount_decr.u16.low += insns_left;
218     }
219 
220     cpu->cc->tcg_ops->restore_state_to_opc(cpu, tb, data);
221 
222 #ifdef CONFIG_PROFILER
223     qatomic_set(&prof->restore_time,
224                 prof->restore_time + profile_getclock() - ti);
225     qatomic_set(&prof->restore_count, prof->restore_count + 1);
226 #endif
227 }
228 
229 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc)
230 {
231     /*
232      * The host_pc has to be in the rx region of the code buffer.
233      * If it is not we will not be able to resolve it here.
234      * The two cases where host_pc will not be correct are:
235      *
236      *  - fault during translation (instruction fetch)
237      *  - fault from helper (not using GETPC() macro)
238      *
239      * Either way we need return early as we can't resolve it here.
240      */
241     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
242         TranslationBlock *tb = tcg_tb_lookup(host_pc);
243         if (tb) {
244             cpu_restore_state_from_tb(cpu, tb, host_pc);
245             return true;
246         }
247     }
248     return false;
249 }
250 
251 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data)
252 {
253     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
254         TranslationBlock *tb = tcg_tb_lookup(host_pc);
255         if (tb) {
256             return cpu_unwind_data_from_tb(tb, host_pc, data) >= 0;
257         }
258     }
259     return false;
260 }
261 
262 void page_init(void)
263 {
264     page_size_init();
265     page_table_config_init();
266 }
267 
268 /*
269  * Isolate the portion of code gen which can setjmp/longjmp.
270  * Return the size of the generated code, or negative on error.
271  */
272 static int setjmp_gen_code(CPUArchState *env, TranslationBlock *tb,
273                            target_ulong pc, void *host_pc,
274                            int *max_insns, int64_t *ti)
275 {
276     int ret = sigsetjmp(tcg_ctx->jmp_trans, 0);
277     if (unlikely(ret != 0)) {
278         return ret;
279     }
280 
281     tcg_func_start(tcg_ctx);
282 
283     tcg_ctx->cpu = env_cpu(env);
284     gen_intermediate_code(env_cpu(env), tb, max_insns, pc, host_pc);
285     assert(tb->size != 0);
286     tcg_ctx->cpu = NULL;
287     *max_insns = tb->icount;
288 
289 #ifdef CONFIG_PROFILER
290     qatomic_set(&tcg_ctx->prof.tb_count, tcg_ctx->prof.tb_count + 1);
291     qatomic_set(&tcg_ctx->prof.interm_time,
292                 tcg_ctx->prof.interm_time + profile_getclock() - *ti);
293     *ti = profile_getclock();
294 #endif
295 
296     return tcg_gen_code(tcg_ctx, tb, pc);
297 }
298 
299 /* Called with mmap_lock held for user mode emulation.  */
300 TranslationBlock *tb_gen_code(CPUState *cpu,
301                               target_ulong pc, target_ulong cs_base,
302                               uint32_t flags, int cflags)
303 {
304     CPUArchState *env = cpu->env_ptr;
305     TranslationBlock *tb, *existing_tb;
306     tb_page_addr_t phys_pc;
307     tcg_insn_unit *gen_code_buf;
308     int gen_code_size, search_size, max_insns;
309 #ifdef CONFIG_PROFILER
310     TCGProfile *prof = &tcg_ctx->prof;
311 #endif
312     int64_t ti;
313     void *host_pc;
314 
315     assert_memory_lock();
316     qemu_thread_jit_write();
317 
318     phys_pc = get_page_addr_code_hostp(env, pc, &host_pc);
319 
320     if (phys_pc == -1) {
321         /* Generate a one-shot TB with 1 insn in it */
322         cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
323     }
324 
325     max_insns = cflags & CF_COUNT_MASK;
326     if (max_insns == 0) {
327         max_insns = TCG_MAX_INSNS;
328     }
329     QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS);
330 
331  buffer_overflow:
332     tb = tcg_tb_alloc(tcg_ctx);
333     if (unlikely(!tb)) {
334         /* flush must be done */
335         tb_flush(cpu);
336         mmap_unlock();
337         /* Make the execution loop process the flush as soon as possible.  */
338         cpu->exception_index = EXCP_INTERRUPT;
339         cpu_loop_exit(cpu);
340     }
341 
342     gen_code_buf = tcg_ctx->code_gen_ptr;
343     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
344     if (!(cflags & CF_PCREL)) {
345         tb->pc = pc;
346     }
347     tb->cs_base = cs_base;
348     tb->flags = flags;
349     tb->cflags = cflags;
350     tb->trace_vcpu_dstate = *cpu->trace_dstate;
351     tb_set_page_addr0(tb, phys_pc);
352     tb_set_page_addr1(tb, -1);
353     tcg_ctx->gen_tb = tb;
354  tb_overflow:
355 
356 #ifdef CONFIG_PROFILER
357     /* includes aborted translations because of exceptions */
358     qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
359     ti = profile_getclock();
360 #endif
361 
362     trace_translate_block(tb, pc, tb->tc.ptr);
363 
364     gen_code_size = setjmp_gen_code(env, tb, pc, host_pc, &max_insns, &ti);
365     if (unlikely(gen_code_size < 0)) {
366         switch (gen_code_size) {
367         case -1:
368             /*
369              * Overflow of code_gen_buffer, or the current slice of it.
370              *
371              * TODO: We don't need to re-do gen_intermediate_code, nor
372              * should we re-do the tcg optimization currently hidden
373              * inside tcg_gen_code.  All that should be required is to
374              * flush the TBs, allocate a new TB, re-initialize it per
375              * above, and re-do the actual code generation.
376              */
377             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
378                           "Restarting code generation for "
379                           "code_gen_buffer overflow\n");
380             goto buffer_overflow;
381 
382         case -2:
383             /*
384              * The code generated for the TranslationBlock is too large.
385              * The maximum size allowed by the unwind info is 64k.
386              * There may be stricter constraints from relocations
387              * in the tcg backend.
388              *
389              * Try again with half as many insns as we attempted this time.
390              * If a single insn overflows, there's a bug somewhere...
391              */
392             assert(max_insns > 1);
393             max_insns /= 2;
394             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
395                           "Restarting code generation with "
396                           "smaller translation block (max %d insns)\n",
397                           max_insns);
398             goto tb_overflow;
399 
400         default:
401             g_assert_not_reached();
402         }
403     }
404     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
405     if (unlikely(search_size < 0)) {
406         goto buffer_overflow;
407     }
408     tb->tc.size = gen_code_size;
409 
410     /*
411      * For CF_PCREL, attribute all executions of the generated code
412      * to its first mapping.
413      */
414     perf_report_code(pc, tb, tcg_splitwx_to_rx(gen_code_buf));
415 
416 #ifdef CONFIG_PROFILER
417     qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
418     qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
419     qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
420     qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
421 #endif
422 
423 #ifdef DEBUG_DISAS
424     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
425         qemu_log_in_addr_range(pc)) {
426         FILE *logfile = qemu_log_trylock();
427         if (logfile) {
428             int code_size, data_size;
429             const tcg_target_ulong *rx_data_gen_ptr;
430             size_t chunk_start;
431             int insn = 0;
432 
433             if (tcg_ctx->data_gen_ptr) {
434                 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
435                 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
436                 data_size = gen_code_size - code_size;
437             } else {
438                 rx_data_gen_ptr = 0;
439                 code_size = gen_code_size;
440                 data_size = 0;
441             }
442 
443             /* Dump header and the first instruction */
444             fprintf(logfile, "OUT: [size=%d]\n", gen_code_size);
445             fprintf(logfile,
446                     "  -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
447                     tcg_ctx->gen_insn_data[insn][0]);
448             chunk_start = tcg_ctx->gen_insn_end_off[insn];
449             disas(logfile, tb->tc.ptr, chunk_start);
450 
451             /*
452              * Dump each instruction chunk, wrapping up empty chunks into
453              * the next instruction. The whole array is offset so the
454              * first entry is the beginning of the 2nd instruction.
455              */
456             while (insn < tb->icount) {
457                 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
458                 if (chunk_end > chunk_start) {
459                     fprintf(logfile, "  -- guest addr 0x" TARGET_FMT_lx "\n",
460                             tcg_ctx->gen_insn_data[insn][0]);
461                     disas(logfile, tb->tc.ptr + chunk_start,
462                           chunk_end - chunk_start);
463                     chunk_start = chunk_end;
464                 }
465                 insn++;
466             }
467 
468             if (chunk_start < code_size) {
469                 fprintf(logfile, "  -- tb slow paths + alignment\n");
470                 disas(logfile, tb->tc.ptr + chunk_start,
471                       code_size - chunk_start);
472             }
473 
474             /* Finally dump any data we may have after the block */
475             if (data_size) {
476                 int i;
477                 fprintf(logfile, "  data: [size=%d]\n", data_size);
478                 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
479                     if (sizeof(tcg_target_ulong) == 8) {
480                         fprintf(logfile,
481                                 "0x%08" PRIxPTR ":  .quad  0x%016" TCG_PRIlx "\n",
482                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
483                     } else if (sizeof(tcg_target_ulong) == 4) {
484                         fprintf(logfile,
485                                 "0x%08" PRIxPTR ":  .long  0x%08" TCG_PRIlx "\n",
486                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
487                     } else {
488                         qemu_build_not_reached();
489                     }
490                 }
491             }
492             fprintf(logfile, "\n");
493             qemu_log_unlock(logfile);
494         }
495     }
496 #endif
497 
498     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
499         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
500                  CODE_GEN_ALIGN));
501 
502     /* init jump list */
503     qemu_spin_init(&tb->jmp_lock);
504     tb->jmp_list_head = (uintptr_t)NULL;
505     tb->jmp_list_next[0] = (uintptr_t)NULL;
506     tb->jmp_list_next[1] = (uintptr_t)NULL;
507     tb->jmp_dest[0] = (uintptr_t)NULL;
508     tb->jmp_dest[1] = (uintptr_t)NULL;
509 
510     /* init original jump addresses which have been set during tcg_gen_code() */
511     if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) {
512         tb_reset_jump(tb, 0);
513     }
514     if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) {
515         tb_reset_jump(tb, 1);
516     }
517 
518     /*
519      * If the TB is not associated with a physical RAM page then it must be
520      * a temporary one-insn TB, and we have nothing left to do. Return early
521      * before attempting to link to other TBs or add to the lookup table.
522      */
523     if (tb_page_addr0(tb) == -1) {
524         return tb;
525     }
526 
527     /*
528      * Insert TB into the corresponding region tree before publishing it
529      * through QHT. Otherwise rewinding happened in the TB might fail to
530      * lookup itself using host PC.
531      */
532     tcg_tb_insert(tb);
533 
534     /*
535      * No explicit memory barrier is required -- tb_link_page() makes the
536      * TB visible in a consistent state.
537      */
538     existing_tb = tb_link_page(tb, tb_page_addr0(tb), tb_page_addr1(tb));
539     /* if the TB already exists, discard what we just translated */
540     if (unlikely(existing_tb != tb)) {
541         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
542 
543         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
544         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
545         tcg_tb_remove(tb);
546         return existing_tb;
547     }
548     return tb;
549 }
550 
551 /* user-mode: call with mmap_lock held */
552 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
553 {
554     TranslationBlock *tb;
555 
556     assert_memory_lock();
557 
558     tb = tcg_tb_lookup(retaddr);
559     if (tb) {
560         /* We can use retranslation to find the PC.  */
561         cpu_restore_state_from_tb(cpu, tb, retaddr);
562         tb_phys_invalidate(tb, -1);
563     } else {
564         /* The exception probably happened in a helper.  The CPU state should
565            have been saved before calling it. Fetch the PC from there.  */
566         CPUArchState *env = cpu->env_ptr;
567         target_ulong pc, cs_base;
568         tb_page_addr_t addr;
569         uint32_t flags;
570 
571         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
572         addr = get_page_addr_code(env, pc);
573         if (addr != -1) {
574             tb_invalidate_phys_range(addr, addr + 1);
575         }
576     }
577 }
578 
579 #ifndef CONFIG_USER_ONLY
580 /*
581  * In deterministic execution mode, instructions doing device I/Os
582  * must be at the end of the TB.
583  *
584  * Called by softmmu_template.h, with iothread mutex not held.
585  */
586 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
587 {
588     TranslationBlock *tb;
589     CPUClass *cc;
590     uint32_t n;
591 
592     tb = tcg_tb_lookup(retaddr);
593     if (!tb) {
594         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
595                   (void *)retaddr);
596     }
597     cpu_restore_state_from_tb(cpu, tb, retaddr);
598 
599     /*
600      * Some guests must re-execute the branch when re-executing a delay
601      * slot instruction.  When this is the case, adjust icount and N
602      * to account for the re-execution of the branch.
603      */
604     n = 1;
605     cc = CPU_GET_CLASS(cpu);
606     if (cc->tcg_ops->io_recompile_replay_branch &&
607         cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
608         cpu_neg(cpu)->icount_decr.u16.low++;
609         n = 2;
610     }
611 
612     /*
613      * Exit the loop and potentially generate a new TB executing the
614      * just the I/O insns. We also limit instrumentation to memory
615      * operations only (which execute after completion) so we don't
616      * double instrument the instruction.
617      */
618     cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;
619 
620     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
621         target_ulong pc = log_pc(cpu, tb);
622         if (qemu_log_in_addr_range(pc)) {
623             qemu_log("cpu_io_recompile: rewound execution of TB to "
624                      TARGET_FMT_lx "\n", pc);
625         }
626     }
627 
628     cpu_loop_exit_noexc(cpu);
629 }
630 
631 static void print_qht_statistics(struct qht_stats hst, GString *buf)
632 {
633     uint32_t hgram_opts;
634     size_t hgram_bins;
635     char *hgram;
636 
637     if (!hst.head_buckets) {
638         return;
639     }
640     g_string_append_printf(buf, "TB hash buckets     %zu/%zu "
641                            "(%0.2f%% head buckets used)\n",
642                            hst.used_head_buckets, hst.head_buckets,
643                            (double)hst.used_head_buckets /
644                            hst.head_buckets * 100);
645 
646     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
647     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
648     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
649         hgram_opts |= QDIST_PR_NODECIMAL;
650     }
651     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
652     g_string_append_printf(buf, "TB hash occupancy   %0.2f%% avg chain occ. "
653                            "Histogram: %s\n",
654                            qdist_avg(&hst.occupancy) * 100, hgram);
655     g_free(hgram);
656 
657     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
658     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
659     if (hgram_bins > 10) {
660         hgram_bins = 10;
661     } else {
662         hgram_bins = 0;
663         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
664     }
665     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
666     g_string_append_printf(buf, "TB hash avg chain   %0.3f buckets. "
667                            "Histogram: %s\n",
668                            qdist_avg(&hst.chain), hgram);
669     g_free(hgram);
670 }
671 
672 struct tb_tree_stats {
673     size_t nb_tbs;
674     size_t host_size;
675     size_t target_size;
676     size_t max_target_size;
677     size_t direct_jmp_count;
678     size_t direct_jmp2_count;
679     size_t cross_page;
680 };
681 
682 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
683 {
684     const TranslationBlock *tb = value;
685     struct tb_tree_stats *tst = data;
686 
687     tst->nb_tbs++;
688     tst->host_size += tb->tc.size;
689     tst->target_size += tb->size;
690     if (tb->size > tst->max_target_size) {
691         tst->max_target_size = tb->size;
692     }
693     if (tb_page_addr1(tb) != -1) {
694         tst->cross_page++;
695     }
696     if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) {
697         tst->direct_jmp_count++;
698         if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) {
699             tst->direct_jmp2_count++;
700         }
701     }
702     return false;
703 }
704 
705 void dump_exec_info(GString *buf)
706 {
707     struct tb_tree_stats tst = {};
708     struct qht_stats hst;
709     size_t nb_tbs, flush_full, flush_part, flush_elide;
710 
711     tcg_tb_foreach(tb_tree_stats_iter, &tst);
712     nb_tbs = tst.nb_tbs;
713     /* XXX: avoid using doubles ? */
714     g_string_append_printf(buf, "Translation buffer state:\n");
715     /*
716      * Report total code size including the padding and TB structs;
717      * otherwise users might think "-accel tcg,tb-size" is not honoured.
718      * For avg host size we use the precise numbers from tb_tree_stats though.
719      */
720     g_string_append_printf(buf, "gen code size       %zu/%zu\n",
721                            tcg_code_size(), tcg_code_capacity());
722     g_string_append_printf(buf, "TB count            %zu\n", nb_tbs);
723     g_string_append_printf(buf, "TB avg target size  %zu max=%zu bytes\n",
724                            nb_tbs ? tst.target_size / nb_tbs : 0,
725                            tst.max_target_size);
726     g_string_append_printf(buf, "TB avg host size    %zu bytes "
727                            "(expansion ratio: %0.1f)\n",
728                            nb_tbs ? tst.host_size / nb_tbs : 0,
729                            tst.target_size ?
730                            (double)tst.host_size / tst.target_size : 0);
731     g_string_append_printf(buf, "cross page TB count %zu (%zu%%)\n",
732                            tst.cross_page,
733                            nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
734     g_string_append_printf(buf, "direct jump count   %zu (%zu%%) "
735                            "(2 jumps=%zu %zu%%)\n",
736                            tst.direct_jmp_count,
737                            nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
738                            tst.direct_jmp2_count,
739                            nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
740 
741     qht_statistics_init(&tb_ctx.htable, &hst);
742     print_qht_statistics(hst, buf);
743     qht_statistics_destroy(&hst);
744 
745     g_string_append_printf(buf, "\nStatistics:\n");
746     g_string_append_printf(buf, "TB flush count      %u\n",
747                            qatomic_read(&tb_ctx.tb_flush_count));
748     g_string_append_printf(buf, "TB invalidate count %u\n",
749                            qatomic_read(&tb_ctx.tb_phys_invalidate_count));
750 
751     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
752     g_string_append_printf(buf, "TLB full flushes    %zu\n", flush_full);
753     g_string_append_printf(buf, "TLB partial flushes %zu\n", flush_part);
754     g_string_append_printf(buf, "TLB elided flushes  %zu\n", flush_elide);
755     tcg_dump_info(buf);
756 }
757 
758 #else /* CONFIG_USER_ONLY */
759 
760 void cpu_interrupt(CPUState *cpu, int mask)
761 {
762     g_assert(qemu_mutex_iothread_locked());
763     cpu->interrupt_request |= mask;
764     qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
765 }
766 
767 #endif /* CONFIG_USER_ONLY */
768 
769 /*
770  * Called by generic code at e.g. cpu reset after cpu creation,
771  * therefore we must be prepared to allocate the jump cache.
772  */
773 void tcg_flush_jmp_cache(CPUState *cpu)
774 {
775     CPUJumpCache *jc = cpu->tb_jmp_cache;
776 
777     /* During early initialization, the cache may not yet be allocated. */
778     if (unlikely(jc == NULL)) {
779         return;
780     }
781 
782     for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) {
783         qatomic_set(&jc->array[i].tb, NULL);
784     }
785 }
786 
787 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
788 void tcg_flush_softmmu_tlb(CPUState *cs)
789 {
790 #ifdef CONFIG_SOFTMMU
791     tlb_flush(cs);
792 #endif
793 }
794