1 /* 2 * Translation Block Maintenance 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "exec/cputlb.h" 24 #include "exec/log.h" 25 #include "exec/exec-all.h" 26 #include "exec/page-protection.h" 27 #include "exec/tb-flush.h" 28 #include "exec/translate-all.h" 29 #include "sysemu/tcg.h" 30 #include "tcg/tcg.h" 31 #include "tb-hash.h" 32 #include "tb-context.h" 33 #include "internal-common.h" 34 #include "internal-target.h" 35 36 37 /* List iterators for lists of tagged pointers in TranslationBlock. */ 38 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 39 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 40 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 41 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 42 43 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 44 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 45 46 static bool tb_cmp(const void *ap, const void *bp) 47 { 48 const TranslationBlock *a = ap; 49 const TranslationBlock *b = bp; 50 51 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 52 a->cs_base == b->cs_base && 53 a->flags == b->flags && 54 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 55 tb_page_addr0(a) == tb_page_addr0(b) && 56 tb_page_addr1(a) == tb_page_addr1(b)); 57 } 58 59 void tb_htable_init(void) 60 { 61 unsigned int mode = QHT_MODE_AUTO_RESIZE; 62 63 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 64 } 65 66 typedef struct PageDesc PageDesc; 67 68 #ifdef CONFIG_USER_ONLY 69 70 /* 71 * In user-mode page locks aren't used; mmap_lock is enough. 72 */ 73 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 74 75 static inline void tb_lock_pages(const TranslationBlock *tb) { } 76 77 /* 78 * For user-only, since we are protecting all of memory with a single lock, 79 * and because the two pages of a TranslationBlock are always contiguous, 80 * use a single data structure to record all TranslationBlocks. 81 */ 82 static IntervalTreeRoot tb_root; 83 84 static void tb_remove_all(void) 85 { 86 assert_memory_lock(); 87 memset(&tb_root, 0, sizeof(tb_root)); 88 } 89 90 /* Call with mmap_lock held. */ 91 static void tb_record(TranslationBlock *tb) 92 { 93 vaddr addr; 94 int flags; 95 96 assert_memory_lock(); 97 tb->itree.last = tb->itree.start + tb->size - 1; 98 99 /* translator_loop() must have made all TB pages non-writable */ 100 addr = tb_page_addr0(tb); 101 flags = page_get_flags(addr); 102 assert(!(flags & PAGE_WRITE)); 103 104 addr = tb_page_addr1(tb); 105 if (addr != -1) { 106 flags = page_get_flags(addr); 107 assert(!(flags & PAGE_WRITE)); 108 } 109 110 interval_tree_insert(&tb->itree, &tb_root); 111 } 112 113 /* Call with mmap_lock held. */ 114 static void tb_remove(TranslationBlock *tb) 115 { 116 assert_memory_lock(); 117 interval_tree_remove(&tb->itree, &tb_root); 118 } 119 120 /* TODO: For now, still shared with translate-all.c for system mode. */ 121 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 122 for (T = foreach_tb_first(start, last), \ 123 N = foreach_tb_next(T, start, last); \ 124 T != NULL; \ 125 T = N, N = foreach_tb_next(N, start, last)) 126 127 typedef TranslationBlock *PageForEachNext; 128 129 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 130 tb_page_addr_t last) 131 { 132 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 133 return n ? container_of(n, TranslationBlock, itree) : NULL; 134 } 135 136 static PageForEachNext foreach_tb_next(PageForEachNext tb, 137 tb_page_addr_t start, 138 tb_page_addr_t last) 139 { 140 IntervalTreeNode *n; 141 142 if (tb) { 143 n = interval_tree_iter_next(&tb->itree, start, last); 144 if (n) { 145 return container_of(n, TranslationBlock, itree); 146 } 147 } 148 return NULL; 149 } 150 151 #else 152 /* 153 * In system mode we want L1_MAP to be based on ram offsets. 154 */ 155 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 156 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 157 #else 158 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 159 #endif 160 161 /* Size of the L2 (and L3, etc) page tables. */ 162 #define V_L2_BITS 10 163 #define V_L2_SIZE (1 << V_L2_BITS) 164 165 /* 166 * L1 Mapping properties 167 */ 168 static int v_l1_size; 169 static int v_l1_shift; 170 static int v_l2_levels; 171 172 /* 173 * The bottom level has pointers to PageDesc, and is indexed by 174 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 175 */ 176 #define V_L1_MIN_BITS 4 177 #define V_L1_MAX_BITS (V_L2_BITS + 3) 178 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 179 180 static void *l1_map[V_L1_MAX_SIZE]; 181 182 struct PageDesc { 183 QemuSpin lock; 184 /* list of TBs intersecting this ram page */ 185 uintptr_t first_tb; 186 }; 187 188 void page_table_config_init(void) 189 { 190 uint32_t v_l1_bits; 191 192 assert(TARGET_PAGE_BITS); 193 /* The bits remaining after N lower levels of page tables. */ 194 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 195 if (v_l1_bits < V_L1_MIN_BITS) { 196 v_l1_bits += V_L2_BITS; 197 } 198 199 v_l1_size = 1 << v_l1_bits; 200 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 201 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 202 203 assert(v_l1_bits <= V_L1_MAX_BITS); 204 assert(v_l1_shift % V_L2_BITS == 0); 205 assert(v_l2_levels >= 0); 206 } 207 208 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 209 { 210 PageDesc *pd; 211 void **lp; 212 213 /* Level 1. Always allocated. */ 214 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 215 216 /* Level 2..N-1. */ 217 for (int i = v_l2_levels; i > 0; i--) { 218 void **p = qatomic_rcu_read(lp); 219 220 if (p == NULL) { 221 void *existing; 222 223 if (!alloc) { 224 return NULL; 225 } 226 p = g_new0(void *, V_L2_SIZE); 227 existing = qatomic_cmpxchg(lp, NULL, p); 228 if (unlikely(existing)) { 229 g_free(p); 230 p = existing; 231 } 232 } 233 234 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 235 } 236 237 pd = qatomic_rcu_read(lp); 238 if (pd == NULL) { 239 void *existing; 240 241 if (!alloc) { 242 return NULL; 243 } 244 245 pd = g_new0(PageDesc, V_L2_SIZE); 246 for (int i = 0; i < V_L2_SIZE; i++) { 247 qemu_spin_init(&pd[i].lock); 248 } 249 250 existing = qatomic_cmpxchg(lp, NULL, pd); 251 if (unlikely(existing)) { 252 for (int i = 0; i < V_L2_SIZE; i++) { 253 qemu_spin_destroy(&pd[i].lock); 254 } 255 g_free(pd); 256 pd = existing; 257 } 258 } 259 260 return pd + (index & (V_L2_SIZE - 1)); 261 } 262 263 static inline PageDesc *page_find(tb_page_addr_t index) 264 { 265 return page_find_alloc(index, false); 266 } 267 268 /** 269 * struct page_entry - page descriptor entry 270 * @pd: pointer to the &struct PageDesc of the page this entry represents 271 * @index: page index of the page 272 * @locked: whether the page is locked 273 * 274 * This struct helps us keep track of the locked state of a page, without 275 * bloating &struct PageDesc. 276 * 277 * A page lock protects accesses to all fields of &struct PageDesc. 278 * 279 * See also: &struct page_collection. 280 */ 281 struct page_entry { 282 PageDesc *pd; 283 tb_page_addr_t index; 284 bool locked; 285 }; 286 287 /** 288 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 289 * @tree: Binary search tree (BST) of the pages, with key == page index 290 * @max: Pointer to the page in @tree with the highest page index 291 * 292 * To avoid deadlock we lock pages in ascending order of page index. 293 * When operating on a set of pages, we need to keep track of them so that 294 * we can lock them in order and also unlock them later. For this we collect 295 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 296 * @tree implementation we use does not provide an O(1) operation to obtain the 297 * highest-ranked element, we use @max to keep track of the inserted page 298 * with the highest index. This is valuable because if a page is not in 299 * the tree and its index is higher than @max's, then we can lock it 300 * without breaking the locking order rule. 301 * 302 * Note on naming: 'struct page_set' would be shorter, but we already have a few 303 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 304 * 305 * See also: page_collection_lock(). 306 */ 307 struct page_collection { 308 QTree *tree; 309 struct page_entry *max; 310 }; 311 312 typedef int PageForEachNext; 313 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 314 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 315 316 #ifdef CONFIG_DEBUG_TCG 317 318 static __thread GHashTable *ht_pages_locked_debug; 319 320 static void ht_pages_locked_debug_init(void) 321 { 322 if (ht_pages_locked_debug) { 323 return; 324 } 325 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 326 } 327 328 static bool page_is_locked(const PageDesc *pd) 329 { 330 PageDesc *found; 331 332 ht_pages_locked_debug_init(); 333 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 334 return !!found; 335 } 336 337 static void page_lock__debug(PageDesc *pd) 338 { 339 ht_pages_locked_debug_init(); 340 g_assert(!page_is_locked(pd)); 341 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 342 } 343 344 static void page_unlock__debug(const PageDesc *pd) 345 { 346 bool removed; 347 348 ht_pages_locked_debug_init(); 349 g_assert(page_is_locked(pd)); 350 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 351 g_assert(removed); 352 } 353 354 static void do_assert_page_locked(const PageDesc *pd, 355 const char *file, int line) 356 { 357 if (unlikely(!page_is_locked(pd))) { 358 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 359 pd, file, line); 360 abort(); 361 } 362 } 363 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 364 365 void assert_no_pages_locked(void) 366 { 367 ht_pages_locked_debug_init(); 368 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 369 } 370 371 #else /* !CONFIG_DEBUG_TCG */ 372 373 static inline void page_lock__debug(const PageDesc *pd) { } 374 static inline void page_unlock__debug(const PageDesc *pd) { } 375 static inline void assert_page_locked(const PageDesc *pd) { } 376 377 #endif /* CONFIG_DEBUG_TCG */ 378 379 static void page_lock(PageDesc *pd) 380 { 381 page_lock__debug(pd); 382 qemu_spin_lock(&pd->lock); 383 } 384 385 /* Like qemu_spin_trylock, returns false on success */ 386 static bool page_trylock(PageDesc *pd) 387 { 388 bool busy = qemu_spin_trylock(&pd->lock); 389 if (!busy) { 390 page_lock__debug(pd); 391 } 392 return busy; 393 } 394 395 static void page_unlock(PageDesc *pd) 396 { 397 qemu_spin_unlock(&pd->lock); 398 page_unlock__debug(pd); 399 } 400 401 void tb_lock_page0(tb_page_addr_t paddr) 402 { 403 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true)); 404 } 405 406 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 407 { 408 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 409 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 410 PageDesc *pd0, *pd1; 411 412 if (pindex0 == pindex1) { 413 /* Identical pages, and the first page is already locked. */ 414 return; 415 } 416 417 pd1 = page_find_alloc(pindex1, true); 418 if (pindex0 < pindex1) { 419 /* Correct locking order, we may block. */ 420 page_lock(pd1); 421 return; 422 } 423 424 /* Incorrect locking order, we cannot block lest we deadlock. */ 425 if (!page_trylock(pd1)) { 426 return; 427 } 428 429 /* 430 * Drop the lock on page0 and get both page locks in the right order. 431 * Restart translation via longjmp. 432 */ 433 pd0 = page_find_alloc(pindex0, false); 434 page_unlock(pd0); 435 page_lock(pd1); 436 page_lock(pd0); 437 siglongjmp(tcg_ctx->jmp_trans, -3); 438 } 439 440 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 441 { 442 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 443 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 444 445 if (pindex0 != pindex1) { 446 page_unlock(page_find_alloc(pindex1, false)); 447 } 448 } 449 450 static void tb_lock_pages(TranslationBlock *tb) 451 { 452 tb_page_addr_t paddr0 = tb_page_addr0(tb); 453 tb_page_addr_t paddr1 = tb_page_addr1(tb); 454 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 455 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 456 457 if (unlikely(paddr0 == -1)) { 458 return; 459 } 460 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 461 if (pindex0 < pindex1) { 462 page_lock(page_find_alloc(pindex0, true)); 463 page_lock(page_find_alloc(pindex1, true)); 464 return; 465 } 466 page_lock(page_find_alloc(pindex1, true)); 467 } 468 page_lock(page_find_alloc(pindex0, true)); 469 } 470 471 void tb_unlock_pages(TranslationBlock *tb) 472 { 473 tb_page_addr_t paddr0 = tb_page_addr0(tb); 474 tb_page_addr_t paddr1 = tb_page_addr1(tb); 475 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 476 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 477 478 if (unlikely(paddr0 == -1)) { 479 return; 480 } 481 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 482 page_unlock(page_find_alloc(pindex1, false)); 483 } 484 page_unlock(page_find_alloc(pindex0, false)); 485 } 486 487 static inline struct page_entry * 488 page_entry_new(PageDesc *pd, tb_page_addr_t index) 489 { 490 struct page_entry *pe = g_malloc(sizeof(*pe)); 491 492 pe->index = index; 493 pe->pd = pd; 494 pe->locked = false; 495 return pe; 496 } 497 498 static void page_entry_destroy(gpointer p) 499 { 500 struct page_entry *pe = p; 501 502 g_assert(pe->locked); 503 page_unlock(pe->pd); 504 g_free(pe); 505 } 506 507 /* returns false on success */ 508 static bool page_entry_trylock(struct page_entry *pe) 509 { 510 bool busy = page_trylock(pe->pd); 511 if (!busy) { 512 g_assert(!pe->locked); 513 pe->locked = true; 514 } 515 return busy; 516 } 517 518 static void do_page_entry_lock(struct page_entry *pe) 519 { 520 page_lock(pe->pd); 521 g_assert(!pe->locked); 522 pe->locked = true; 523 } 524 525 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 526 { 527 struct page_entry *pe = value; 528 529 do_page_entry_lock(pe); 530 return FALSE; 531 } 532 533 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 534 { 535 struct page_entry *pe = value; 536 537 if (pe->locked) { 538 pe->locked = false; 539 page_unlock(pe->pd); 540 } 541 return FALSE; 542 } 543 544 /* 545 * Trylock a page, and if successful, add the page to a collection. 546 * Returns true ("busy") if the page could not be locked; false otherwise. 547 */ 548 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 549 { 550 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 551 struct page_entry *pe; 552 PageDesc *pd; 553 554 pe = q_tree_lookup(set->tree, &index); 555 if (pe) { 556 return false; 557 } 558 559 pd = page_find(index); 560 if (pd == NULL) { 561 return false; 562 } 563 564 pe = page_entry_new(pd, index); 565 q_tree_insert(set->tree, &pe->index, pe); 566 567 /* 568 * If this is either (1) the first insertion or (2) a page whose index 569 * is higher than any other so far, just lock the page and move on. 570 */ 571 if (set->max == NULL || pe->index > set->max->index) { 572 set->max = pe; 573 do_page_entry_lock(pe); 574 return false; 575 } 576 /* 577 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 578 * locks in order. 579 */ 580 return page_entry_trylock(pe); 581 } 582 583 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 584 { 585 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 586 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 587 588 if (a == b) { 589 return 0; 590 } else if (a < b) { 591 return -1; 592 } 593 return 1; 594 } 595 596 /* 597 * Lock a range of pages ([@start,@last]) as well as the pages of all 598 * intersecting TBs. 599 * Locking order: acquire locks in ascending order of page index. 600 */ 601 static struct page_collection *page_collection_lock(tb_page_addr_t start, 602 tb_page_addr_t last) 603 { 604 struct page_collection *set = g_malloc(sizeof(*set)); 605 tb_page_addr_t index; 606 PageDesc *pd; 607 608 start >>= TARGET_PAGE_BITS; 609 last >>= TARGET_PAGE_BITS; 610 g_assert(start <= last); 611 612 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 613 page_entry_destroy); 614 set->max = NULL; 615 assert_no_pages_locked(); 616 617 retry: 618 q_tree_foreach(set->tree, page_entry_lock, NULL); 619 620 for (index = start; index <= last; index++) { 621 TranslationBlock *tb; 622 PageForEachNext n; 623 624 pd = page_find(index); 625 if (pd == NULL) { 626 continue; 627 } 628 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 629 q_tree_foreach(set->tree, page_entry_unlock, NULL); 630 goto retry; 631 } 632 assert_page_locked(pd); 633 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 634 if (page_trylock_add(set, tb_page_addr0(tb)) || 635 (tb_page_addr1(tb) != -1 && 636 page_trylock_add(set, tb_page_addr1(tb)))) { 637 /* drop all locks, and reacquire in order */ 638 q_tree_foreach(set->tree, page_entry_unlock, NULL); 639 goto retry; 640 } 641 } 642 } 643 return set; 644 } 645 646 static void page_collection_unlock(struct page_collection *set) 647 { 648 /* entries are unlocked and freed via page_entry_destroy */ 649 q_tree_destroy(set->tree); 650 g_free(set); 651 } 652 653 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 654 static void tb_remove_all_1(int level, void **lp) 655 { 656 int i; 657 658 if (*lp == NULL) { 659 return; 660 } 661 if (level == 0) { 662 PageDesc *pd = *lp; 663 664 for (i = 0; i < V_L2_SIZE; ++i) { 665 page_lock(&pd[i]); 666 pd[i].first_tb = (uintptr_t)NULL; 667 page_unlock(&pd[i]); 668 } 669 } else { 670 void **pp = *lp; 671 672 for (i = 0; i < V_L2_SIZE; ++i) { 673 tb_remove_all_1(level - 1, pp + i); 674 } 675 } 676 } 677 678 static void tb_remove_all(void) 679 { 680 int i, l1_sz = v_l1_size; 681 682 for (i = 0; i < l1_sz; i++) { 683 tb_remove_all_1(v_l2_levels, l1_map + i); 684 } 685 } 686 687 /* 688 * Add the tb in the target page and protect it if necessary. 689 * Called with @p->lock held. 690 */ 691 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n) 692 { 693 bool page_already_protected; 694 695 assert_page_locked(p); 696 697 tb->page_next[n] = p->first_tb; 698 page_already_protected = p->first_tb != 0; 699 p->first_tb = (uintptr_t)tb | n; 700 701 /* 702 * If some code is already present, then the pages are already 703 * protected. So we handle the case where only the first TB is 704 * allocated in a physical page. 705 */ 706 if (!page_already_protected) { 707 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 708 } 709 } 710 711 static void tb_record(TranslationBlock *tb) 712 { 713 tb_page_addr_t paddr0 = tb_page_addr0(tb); 714 tb_page_addr_t paddr1 = tb_page_addr1(tb); 715 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 716 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 717 718 assert(paddr0 != -1); 719 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 720 tb_page_add(page_find_alloc(pindex1, false), tb, 1); 721 } 722 tb_page_add(page_find_alloc(pindex0, false), tb, 0); 723 } 724 725 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 726 { 727 TranslationBlock *tb1; 728 uintptr_t *pprev; 729 PageForEachNext n1; 730 731 assert_page_locked(pd); 732 pprev = &pd->first_tb; 733 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 734 if (tb1 == tb) { 735 *pprev = tb1->page_next[n1]; 736 return; 737 } 738 pprev = &tb1->page_next[n1]; 739 } 740 g_assert_not_reached(); 741 } 742 743 static void tb_remove(TranslationBlock *tb) 744 { 745 tb_page_addr_t paddr0 = tb_page_addr0(tb); 746 tb_page_addr_t paddr1 = tb_page_addr1(tb); 747 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 748 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 749 750 assert(paddr0 != -1); 751 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 752 tb_page_remove(page_find_alloc(pindex1, false), tb); 753 } 754 tb_page_remove(page_find_alloc(pindex0, false), tb); 755 } 756 #endif /* CONFIG_USER_ONLY */ 757 758 /* flush all the translation blocks */ 759 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 760 { 761 bool did_flush = false; 762 763 mmap_lock(); 764 /* If it is already been done on request of another CPU, just retry. */ 765 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 766 goto done; 767 } 768 did_flush = true; 769 770 CPU_FOREACH(cpu) { 771 tcg_flush_jmp_cache(cpu); 772 } 773 774 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 775 tb_remove_all(); 776 777 tcg_region_reset_all(); 778 /* XXX: flush processor icache at this point if cache flush is expensive */ 779 qatomic_inc(&tb_ctx.tb_flush_count); 780 781 done: 782 mmap_unlock(); 783 if (did_flush) { 784 qemu_plugin_flush_cb(); 785 } 786 } 787 788 void tb_flush(CPUState *cpu) 789 { 790 if (tcg_enabled()) { 791 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); 792 793 if (cpu_in_serial_context(cpu)) { 794 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 795 } else { 796 async_safe_run_on_cpu(cpu, do_tb_flush, 797 RUN_ON_CPU_HOST_INT(tb_flush_count)); 798 } 799 } 800 } 801 802 /* remove @orig from its @n_orig-th jump list */ 803 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 804 { 805 uintptr_t ptr, ptr_locked; 806 TranslationBlock *dest; 807 TranslationBlock *tb; 808 uintptr_t *pprev; 809 int n; 810 811 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 812 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 813 dest = (TranslationBlock *)(ptr & ~1); 814 if (dest == NULL) { 815 return; 816 } 817 818 qemu_spin_lock(&dest->jmp_lock); 819 /* 820 * While acquiring the lock, the jump might have been removed if the 821 * destination TB was invalidated; check again. 822 */ 823 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 824 if (ptr_locked != ptr) { 825 qemu_spin_unlock(&dest->jmp_lock); 826 /* 827 * The only possibility is that the jump was unlinked via 828 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 829 * because we set the LSB above. 830 */ 831 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 832 return; 833 } 834 /* 835 * We first acquired the lock, and since the destination pointer matches, 836 * we know for sure that @orig is in the jmp list. 837 */ 838 pprev = &dest->jmp_list_head; 839 TB_FOR_EACH_JMP(dest, tb, n) { 840 if (tb == orig && n == n_orig) { 841 *pprev = tb->jmp_list_next[n]; 842 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 843 qemu_spin_unlock(&dest->jmp_lock); 844 return; 845 } 846 pprev = &tb->jmp_list_next[n]; 847 } 848 g_assert_not_reached(); 849 } 850 851 /* 852 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 853 */ 854 void tb_reset_jump(TranslationBlock *tb, int n) 855 { 856 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 857 tb_set_jmp_target(tb, n, addr); 858 } 859 860 /* remove any jumps to the TB */ 861 static inline void tb_jmp_unlink(TranslationBlock *dest) 862 { 863 TranslationBlock *tb; 864 int n; 865 866 qemu_spin_lock(&dest->jmp_lock); 867 868 TB_FOR_EACH_JMP(dest, tb, n) { 869 tb_reset_jump(tb, n); 870 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 871 /* No need to clear the list entry; setting the dest ptr is enough */ 872 } 873 dest->jmp_list_head = (uintptr_t)NULL; 874 875 qemu_spin_unlock(&dest->jmp_lock); 876 } 877 878 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 879 { 880 CPUState *cpu; 881 882 if (tb_cflags(tb) & CF_PCREL) { 883 /* A TB may be at any virtual address */ 884 CPU_FOREACH(cpu) { 885 tcg_flush_jmp_cache(cpu); 886 } 887 } else { 888 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 889 890 CPU_FOREACH(cpu) { 891 CPUJumpCache *jc = cpu->tb_jmp_cache; 892 893 if (qatomic_read(&jc->array[h].tb) == tb) { 894 qatomic_set(&jc->array[h].tb, NULL); 895 } 896 } 897 } 898 } 899 900 /* 901 * In user-mode, call with mmap_lock held. 902 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 903 * locks held. 904 */ 905 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 906 { 907 uint32_t h; 908 tb_page_addr_t phys_pc; 909 uint32_t orig_cflags = tb_cflags(tb); 910 911 assert_memory_lock(); 912 913 /* make sure no further incoming jumps will be chained to this TB */ 914 qemu_spin_lock(&tb->jmp_lock); 915 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 916 qemu_spin_unlock(&tb->jmp_lock); 917 918 /* remove the TB from the hash list */ 919 phys_pc = tb_page_addr0(tb); 920 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 921 tb->flags, tb->cs_base, orig_cflags); 922 if (!qht_remove(&tb_ctx.htable, tb, h)) { 923 return; 924 } 925 926 /* remove the TB from the page list */ 927 if (rm_from_page_list) { 928 tb_remove(tb); 929 } 930 931 /* remove the TB from the hash list */ 932 tb_jmp_cache_inval_tb(tb); 933 934 /* suppress this TB from the two jump lists */ 935 tb_remove_from_jmp_list(tb, 0); 936 tb_remove_from_jmp_list(tb, 1); 937 938 /* suppress any remaining jumps to this TB */ 939 tb_jmp_unlink(tb); 940 941 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 942 tb_ctx.tb_phys_invalidate_count + 1); 943 } 944 945 static void tb_phys_invalidate__locked(TranslationBlock *tb) 946 { 947 qemu_thread_jit_write(); 948 do_tb_phys_invalidate(tb, true); 949 qemu_thread_jit_execute(); 950 } 951 952 /* 953 * Invalidate one TB. 954 * Called with mmap_lock held in user-mode. 955 */ 956 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 957 { 958 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 959 tb_lock_pages(tb); 960 do_tb_phys_invalidate(tb, true); 961 tb_unlock_pages(tb); 962 } else { 963 do_tb_phys_invalidate(tb, false); 964 } 965 } 966 967 /* 968 * Add a new TB and link it to the physical page tables. 969 * Called with mmap_lock held for user-mode emulation. 970 * 971 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 972 * Note that in !user-mode, another thread might have already added a TB 973 * for the same block of guest code that @tb corresponds to. In that case, 974 * the caller should discard the original @tb, and use instead the returned TB. 975 */ 976 TranslationBlock *tb_link_page(TranslationBlock *tb) 977 { 978 void *existing_tb = NULL; 979 uint32_t h; 980 981 assert_memory_lock(); 982 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 983 984 tb_record(tb); 985 986 /* add in the hash table */ 987 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc), 988 tb->flags, tb->cs_base, tb->cflags); 989 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 990 991 /* remove TB from the page(s) if we couldn't insert it */ 992 if (unlikely(existing_tb)) { 993 tb_remove(tb); 994 tb_unlock_pages(tb); 995 return existing_tb; 996 } 997 998 tb_unlock_pages(tb); 999 return tb; 1000 } 1001 1002 #ifdef CONFIG_USER_ONLY 1003 /* 1004 * Invalidate all TBs which intersect with the target address range. 1005 * Called with mmap_lock held for user-mode emulation. 1006 * NOTE: this function must not be called while a TB is running. 1007 */ 1008 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1009 { 1010 TranslationBlock *tb; 1011 PageForEachNext n; 1012 1013 assert_memory_lock(); 1014 1015 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1016 tb_phys_invalidate__locked(tb); 1017 } 1018 } 1019 1020 /* 1021 * Invalidate all TBs which intersect with the target address page @addr. 1022 * Called with mmap_lock held for user-mode emulation 1023 * NOTE: this function must not be called while a TB is running. 1024 */ 1025 static void tb_invalidate_phys_page(tb_page_addr_t addr) 1026 { 1027 tb_page_addr_t start, last; 1028 1029 start = addr & TARGET_PAGE_MASK; 1030 last = addr | ~TARGET_PAGE_MASK; 1031 tb_invalidate_phys_range(start, last); 1032 } 1033 1034 /* 1035 * Called with mmap_lock held. If pc is not 0 then it indicates the 1036 * host PC of the faulting store instruction that caused this invalidate. 1037 * Returns true if the caller needs to abort execution of the current 1038 * TB (because it was modified by this store and the guest CPU has 1039 * precise-SMC semantics). 1040 */ 1041 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1042 { 1043 TranslationBlock *current_tb; 1044 bool current_tb_modified; 1045 TranslationBlock *tb; 1046 PageForEachNext n; 1047 tb_page_addr_t last; 1048 1049 /* 1050 * Without precise smc semantics, or when outside of a TB, 1051 * we can skip to invalidate. 1052 */ 1053 #ifndef TARGET_HAS_PRECISE_SMC 1054 pc = 0; 1055 #endif 1056 if (!pc) { 1057 tb_invalidate_phys_page(addr); 1058 return false; 1059 } 1060 1061 assert_memory_lock(); 1062 current_tb = tcg_tb_lookup(pc); 1063 1064 last = addr | ~TARGET_PAGE_MASK; 1065 addr &= TARGET_PAGE_MASK; 1066 current_tb_modified = false; 1067 1068 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1069 if (current_tb == tb && 1070 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1071 /* 1072 * If we are modifying the current TB, we must stop its 1073 * execution. We could be more precise by checking that 1074 * the modification is after the current PC, but it would 1075 * require a specialized function to partially restore 1076 * the CPU state. 1077 */ 1078 current_tb_modified = true; 1079 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1080 } 1081 tb_phys_invalidate__locked(tb); 1082 } 1083 1084 if (current_tb_modified) { 1085 /* Force execution of one insn next time. */ 1086 CPUState *cpu = current_cpu; 1087 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1088 return true; 1089 } 1090 return false; 1091 } 1092 #else 1093 /* 1094 * @p must be non-NULL. 1095 * Call with all @pages locked. 1096 */ 1097 static void 1098 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1099 PageDesc *p, tb_page_addr_t start, 1100 tb_page_addr_t last, 1101 uintptr_t retaddr) 1102 { 1103 TranslationBlock *tb; 1104 PageForEachNext n; 1105 #ifdef TARGET_HAS_PRECISE_SMC 1106 bool current_tb_modified = false; 1107 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1108 #endif /* TARGET_HAS_PRECISE_SMC */ 1109 1110 /* Range may not cross a page. */ 1111 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0); 1112 1113 /* 1114 * We remove all the TBs in the range [start, last]. 1115 * XXX: see if in some cases it could be faster to invalidate all the code 1116 */ 1117 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1118 tb_page_addr_t tb_start, tb_last; 1119 1120 /* NOTE: this is subtle as a TB may span two physical pages */ 1121 tb_start = tb_page_addr0(tb); 1122 tb_last = tb_start + tb->size - 1; 1123 if (n == 0) { 1124 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1125 } else { 1126 tb_start = tb_page_addr1(tb); 1127 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1128 } 1129 if (!(tb_last < start || tb_start > last)) { 1130 #ifdef TARGET_HAS_PRECISE_SMC 1131 if (current_tb == tb && 1132 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1133 /* 1134 * If we are modifying the current TB, we must stop 1135 * its execution. We could be more precise by checking 1136 * that the modification is after the current PC, but it 1137 * would require a specialized function to partially 1138 * restore the CPU state. 1139 */ 1140 current_tb_modified = true; 1141 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1142 } 1143 #endif /* TARGET_HAS_PRECISE_SMC */ 1144 tb_phys_invalidate__locked(tb); 1145 } 1146 } 1147 1148 /* if no code remaining, no need to continue to use slow writes */ 1149 if (!p->first_tb) { 1150 tlb_unprotect_code(start); 1151 } 1152 1153 #ifdef TARGET_HAS_PRECISE_SMC 1154 if (current_tb_modified) { 1155 page_collection_unlock(pages); 1156 /* Force execution of one insn next time. */ 1157 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1158 mmap_unlock(); 1159 cpu_loop_exit_noexc(current_cpu); 1160 } 1161 #endif 1162 } 1163 1164 /* 1165 * Invalidate all TBs which intersect with the target physical address range 1166 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1167 * 'is_cpu_write_access' should be true if called from a real cpu write 1168 * access: the virtual CPU will exit the current TB if code is modified inside 1169 * this TB. 1170 */ 1171 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1172 { 1173 struct page_collection *pages; 1174 tb_page_addr_t index, index_last; 1175 1176 pages = page_collection_lock(start, last); 1177 1178 index_last = last >> TARGET_PAGE_BITS; 1179 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1180 PageDesc *pd = page_find(index); 1181 tb_page_addr_t page_start, page_last; 1182 1183 if (pd == NULL) { 1184 continue; 1185 } 1186 assert_page_locked(pd); 1187 page_start = index << TARGET_PAGE_BITS; 1188 page_last = page_start | ~TARGET_PAGE_MASK; 1189 page_last = MIN(page_last, last); 1190 tb_invalidate_phys_page_range__locked(pages, pd, 1191 page_start, page_last, 0); 1192 } 1193 page_collection_unlock(pages); 1194 } 1195 1196 /* 1197 * Call with all @pages in the range [@start, @start + len[ locked. 1198 */ 1199 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1200 tb_page_addr_t start, 1201 unsigned len, uintptr_t ra) 1202 { 1203 PageDesc *p; 1204 1205 p = page_find(start >> TARGET_PAGE_BITS); 1206 if (!p) { 1207 return; 1208 } 1209 1210 assert_page_locked(p); 1211 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1212 } 1213 1214 /* 1215 * len must be <= 8 and start must be a multiple of len. 1216 * Called via softmmu_template.h when code areas are written to with 1217 * iothread mutex not held. 1218 */ 1219 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1220 unsigned size, 1221 uintptr_t retaddr) 1222 { 1223 struct page_collection *pages; 1224 1225 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1226 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1227 page_collection_unlock(pages); 1228 } 1229 1230 #endif /* CONFIG_USER_ONLY */ 1231