1 /* 2 * Translation Block Maintaince 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "exec/cputlb.h" 24 #include "exec/log.h" 25 #include "exec/exec-all.h" 26 #include "exec/tb-flush.h" 27 #include "exec/translate-all.h" 28 #include "sysemu/tcg.h" 29 #include "tcg/tcg.h" 30 #include "tb-hash.h" 31 #include "tb-context.h" 32 #include "internal.h" 33 34 35 /* List iterators for lists of tagged pointers in TranslationBlock. */ 36 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 37 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 38 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 39 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 40 41 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 42 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 43 44 static bool tb_cmp(const void *ap, const void *bp) 45 { 46 const TranslationBlock *a = ap; 47 const TranslationBlock *b = bp; 48 49 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 50 a->cs_base == b->cs_base && 51 a->flags == b->flags && 52 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 53 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 54 tb_page_addr0(a) == tb_page_addr0(b) && 55 tb_page_addr1(a) == tb_page_addr1(b)); 56 } 57 58 void tb_htable_init(void) 59 { 60 unsigned int mode = QHT_MODE_AUTO_RESIZE; 61 62 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 63 } 64 65 typedef struct PageDesc PageDesc; 66 67 #ifdef CONFIG_USER_ONLY 68 69 /* 70 * In user-mode page locks aren't used; mmap_lock is enough. 71 */ 72 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 73 74 static inline void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 75 PageDesc **ret_p2, tb_page_addr_t phys2, 76 bool alloc) 77 { 78 *ret_p1 = NULL; 79 *ret_p2 = NULL; 80 } 81 82 static inline void page_unlock(PageDesc *pd) { } 83 static inline void page_lock_tb(const TranslationBlock *tb) { } 84 static inline void page_unlock_tb(const TranslationBlock *tb) { } 85 86 /* 87 * For user-only, since we are protecting all of memory with a single lock, 88 * and because the two pages of a TranslationBlock are always contiguous, 89 * use a single data structure to record all TranslationBlocks. 90 */ 91 static IntervalTreeRoot tb_root; 92 93 static void tb_remove_all(void) 94 { 95 assert_memory_lock(); 96 memset(&tb_root, 0, sizeof(tb_root)); 97 } 98 99 /* Call with mmap_lock held. */ 100 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2) 101 { 102 target_ulong addr; 103 int flags; 104 105 assert_memory_lock(); 106 tb->itree.last = tb->itree.start + tb->size - 1; 107 108 /* translator_loop() must have made all TB pages non-writable */ 109 addr = tb_page_addr0(tb); 110 flags = page_get_flags(addr); 111 assert(!(flags & PAGE_WRITE)); 112 113 addr = tb_page_addr1(tb); 114 if (addr != -1) { 115 flags = page_get_flags(addr); 116 assert(!(flags & PAGE_WRITE)); 117 } 118 119 interval_tree_insert(&tb->itree, &tb_root); 120 } 121 122 /* Call with mmap_lock held. */ 123 static void tb_remove(TranslationBlock *tb) 124 { 125 assert_memory_lock(); 126 interval_tree_remove(&tb->itree, &tb_root); 127 } 128 129 /* TODO: For now, still shared with translate-all.c for system mode. */ 130 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 131 for (T = foreach_tb_first(start, last), \ 132 N = foreach_tb_next(T, start, last); \ 133 T != NULL; \ 134 T = N, N = foreach_tb_next(N, start, last)) 135 136 typedef TranslationBlock *PageForEachNext; 137 138 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 139 tb_page_addr_t last) 140 { 141 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 142 return n ? container_of(n, TranslationBlock, itree) : NULL; 143 } 144 145 static PageForEachNext foreach_tb_next(PageForEachNext tb, 146 tb_page_addr_t start, 147 tb_page_addr_t last) 148 { 149 IntervalTreeNode *n; 150 151 if (tb) { 152 n = interval_tree_iter_next(&tb->itree, start, last); 153 if (n) { 154 return container_of(n, TranslationBlock, itree); 155 } 156 } 157 return NULL; 158 } 159 160 #else 161 /* 162 * In system mode we want L1_MAP to be based on ram offsets. 163 */ 164 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 165 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 166 #else 167 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 168 #endif 169 170 /* Size of the L2 (and L3, etc) page tables. */ 171 #define V_L2_BITS 10 172 #define V_L2_SIZE (1 << V_L2_BITS) 173 174 /* 175 * L1 Mapping properties 176 */ 177 static int v_l1_size; 178 static int v_l1_shift; 179 static int v_l2_levels; 180 181 /* 182 * The bottom level has pointers to PageDesc, and is indexed by 183 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 184 */ 185 #define V_L1_MIN_BITS 4 186 #define V_L1_MAX_BITS (V_L2_BITS + 3) 187 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 188 189 static void *l1_map[V_L1_MAX_SIZE]; 190 191 struct PageDesc { 192 QemuSpin lock; 193 /* list of TBs intersecting this ram page */ 194 uintptr_t first_tb; 195 }; 196 197 void page_table_config_init(void) 198 { 199 uint32_t v_l1_bits; 200 201 assert(TARGET_PAGE_BITS); 202 /* The bits remaining after N lower levels of page tables. */ 203 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 204 if (v_l1_bits < V_L1_MIN_BITS) { 205 v_l1_bits += V_L2_BITS; 206 } 207 208 v_l1_size = 1 << v_l1_bits; 209 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 210 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 211 212 assert(v_l1_bits <= V_L1_MAX_BITS); 213 assert(v_l1_shift % V_L2_BITS == 0); 214 assert(v_l2_levels >= 0); 215 } 216 217 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 218 { 219 PageDesc *pd; 220 void **lp; 221 int i; 222 223 /* Level 1. Always allocated. */ 224 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 225 226 /* Level 2..N-1. */ 227 for (i = v_l2_levels; i > 0; i--) { 228 void **p = qatomic_rcu_read(lp); 229 230 if (p == NULL) { 231 void *existing; 232 233 if (!alloc) { 234 return NULL; 235 } 236 p = g_new0(void *, V_L2_SIZE); 237 existing = qatomic_cmpxchg(lp, NULL, p); 238 if (unlikely(existing)) { 239 g_free(p); 240 p = existing; 241 } 242 } 243 244 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 245 } 246 247 pd = qatomic_rcu_read(lp); 248 if (pd == NULL) { 249 void *existing; 250 251 if (!alloc) { 252 return NULL; 253 } 254 255 pd = g_new0(PageDesc, V_L2_SIZE); 256 for (int i = 0; i < V_L2_SIZE; i++) { 257 qemu_spin_init(&pd[i].lock); 258 } 259 260 existing = qatomic_cmpxchg(lp, NULL, pd); 261 if (unlikely(existing)) { 262 for (int i = 0; i < V_L2_SIZE; i++) { 263 qemu_spin_destroy(&pd[i].lock); 264 } 265 g_free(pd); 266 pd = existing; 267 } 268 } 269 270 return pd + (index & (V_L2_SIZE - 1)); 271 } 272 273 static inline PageDesc *page_find(tb_page_addr_t index) 274 { 275 return page_find_alloc(index, false); 276 } 277 278 /** 279 * struct page_entry - page descriptor entry 280 * @pd: pointer to the &struct PageDesc of the page this entry represents 281 * @index: page index of the page 282 * @locked: whether the page is locked 283 * 284 * This struct helps us keep track of the locked state of a page, without 285 * bloating &struct PageDesc. 286 * 287 * A page lock protects accesses to all fields of &struct PageDesc. 288 * 289 * See also: &struct page_collection. 290 */ 291 struct page_entry { 292 PageDesc *pd; 293 tb_page_addr_t index; 294 bool locked; 295 }; 296 297 /** 298 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 299 * @tree: Binary search tree (BST) of the pages, with key == page index 300 * @max: Pointer to the page in @tree with the highest page index 301 * 302 * To avoid deadlock we lock pages in ascending order of page index. 303 * When operating on a set of pages, we need to keep track of them so that 304 * we can lock them in order and also unlock them later. For this we collect 305 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 306 * @tree implementation we use does not provide an O(1) operation to obtain the 307 * highest-ranked element, we use @max to keep track of the inserted page 308 * with the highest index. This is valuable because if a page is not in 309 * the tree and its index is higher than @max's, then we can lock it 310 * without breaking the locking order rule. 311 * 312 * Note on naming: 'struct page_set' would be shorter, but we already have a few 313 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 314 * 315 * See also: page_collection_lock(). 316 */ 317 struct page_collection { 318 QTree *tree; 319 struct page_entry *max; 320 }; 321 322 typedef int PageForEachNext; 323 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 324 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 325 326 #ifdef CONFIG_DEBUG_TCG 327 328 static __thread GHashTable *ht_pages_locked_debug; 329 330 static void ht_pages_locked_debug_init(void) 331 { 332 if (ht_pages_locked_debug) { 333 return; 334 } 335 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 336 } 337 338 static bool page_is_locked(const PageDesc *pd) 339 { 340 PageDesc *found; 341 342 ht_pages_locked_debug_init(); 343 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 344 return !!found; 345 } 346 347 static void page_lock__debug(PageDesc *pd) 348 { 349 ht_pages_locked_debug_init(); 350 g_assert(!page_is_locked(pd)); 351 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 352 } 353 354 static void page_unlock__debug(const PageDesc *pd) 355 { 356 bool removed; 357 358 ht_pages_locked_debug_init(); 359 g_assert(page_is_locked(pd)); 360 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 361 g_assert(removed); 362 } 363 364 static void do_assert_page_locked(const PageDesc *pd, 365 const char *file, int line) 366 { 367 if (unlikely(!page_is_locked(pd))) { 368 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 369 pd, file, line); 370 abort(); 371 } 372 } 373 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 374 375 void assert_no_pages_locked(void) 376 { 377 ht_pages_locked_debug_init(); 378 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 379 } 380 381 #else /* !CONFIG_DEBUG_TCG */ 382 383 static inline void page_lock__debug(const PageDesc *pd) { } 384 static inline void page_unlock__debug(const PageDesc *pd) { } 385 static inline void assert_page_locked(const PageDesc *pd) { } 386 387 #endif /* CONFIG_DEBUG_TCG */ 388 389 static void page_lock(PageDesc *pd) 390 { 391 page_lock__debug(pd); 392 qemu_spin_lock(&pd->lock); 393 } 394 395 static void page_unlock(PageDesc *pd) 396 { 397 qemu_spin_unlock(&pd->lock); 398 page_unlock__debug(pd); 399 } 400 401 static inline struct page_entry * 402 page_entry_new(PageDesc *pd, tb_page_addr_t index) 403 { 404 struct page_entry *pe = g_malloc(sizeof(*pe)); 405 406 pe->index = index; 407 pe->pd = pd; 408 pe->locked = false; 409 return pe; 410 } 411 412 static void page_entry_destroy(gpointer p) 413 { 414 struct page_entry *pe = p; 415 416 g_assert(pe->locked); 417 page_unlock(pe->pd); 418 g_free(pe); 419 } 420 421 /* returns false on success */ 422 static bool page_entry_trylock(struct page_entry *pe) 423 { 424 bool busy; 425 426 busy = qemu_spin_trylock(&pe->pd->lock); 427 if (!busy) { 428 g_assert(!pe->locked); 429 pe->locked = true; 430 page_lock__debug(pe->pd); 431 } 432 return busy; 433 } 434 435 static void do_page_entry_lock(struct page_entry *pe) 436 { 437 page_lock(pe->pd); 438 g_assert(!pe->locked); 439 pe->locked = true; 440 } 441 442 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 443 { 444 struct page_entry *pe = value; 445 446 do_page_entry_lock(pe); 447 return FALSE; 448 } 449 450 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 451 { 452 struct page_entry *pe = value; 453 454 if (pe->locked) { 455 pe->locked = false; 456 page_unlock(pe->pd); 457 } 458 return FALSE; 459 } 460 461 /* 462 * Trylock a page, and if successful, add the page to a collection. 463 * Returns true ("busy") if the page could not be locked; false otherwise. 464 */ 465 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 466 { 467 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 468 struct page_entry *pe; 469 PageDesc *pd; 470 471 pe = q_tree_lookup(set->tree, &index); 472 if (pe) { 473 return false; 474 } 475 476 pd = page_find(index); 477 if (pd == NULL) { 478 return false; 479 } 480 481 pe = page_entry_new(pd, index); 482 q_tree_insert(set->tree, &pe->index, pe); 483 484 /* 485 * If this is either (1) the first insertion or (2) a page whose index 486 * is higher than any other so far, just lock the page and move on. 487 */ 488 if (set->max == NULL || pe->index > set->max->index) { 489 set->max = pe; 490 do_page_entry_lock(pe); 491 return false; 492 } 493 /* 494 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 495 * locks in order. 496 */ 497 return page_entry_trylock(pe); 498 } 499 500 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 501 { 502 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 503 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 504 505 if (a == b) { 506 return 0; 507 } else if (a < b) { 508 return -1; 509 } 510 return 1; 511 } 512 513 /* 514 * Lock a range of pages ([@start,@last]) as well as the pages of all 515 * intersecting TBs. 516 * Locking order: acquire locks in ascending order of page index. 517 */ 518 static struct page_collection *page_collection_lock(tb_page_addr_t start, 519 tb_page_addr_t last) 520 { 521 struct page_collection *set = g_malloc(sizeof(*set)); 522 tb_page_addr_t index; 523 PageDesc *pd; 524 525 start >>= TARGET_PAGE_BITS; 526 last >>= TARGET_PAGE_BITS; 527 g_assert(start <= last); 528 529 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 530 page_entry_destroy); 531 set->max = NULL; 532 assert_no_pages_locked(); 533 534 retry: 535 q_tree_foreach(set->tree, page_entry_lock, NULL); 536 537 for (index = start; index <= last; index++) { 538 TranslationBlock *tb; 539 PageForEachNext n; 540 541 pd = page_find(index); 542 if (pd == NULL) { 543 continue; 544 } 545 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 546 q_tree_foreach(set->tree, page_entry_unlock, NULL); 547 goto retry; 548 } 549 assert_page_locked(pd); 550 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 551 if (page_trylock_add(set, tb_page_addr0(tb)) || 552 (tb_page_addr1(tb) != -1 && 553 page_trylock_add(set, tb_page_addr1(tb)))) { 554 /* drop all locks, and reacquire in order */ 555 q_tree_foreach(set->tree, page_entry_unlock, NULL); 556 goto retry; 557 } 558 } 559 } 560 return set; 561 } 562 563 static void page_collection_unlock(struct page_collection *set) 564 { 565 /* entries are unlocked and freed via page_entry_destroy */ 566 q_tree_destroy(set->tree); 567 g_free(set); 568 } 569 570 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 571 static void tb_remove_all_1(int level, void **lp) 572 { 573 int i; 574 575 if (*lp == NULL) { 576 return; 577 } 578 if (level == 0) { 579 PageDesc *pd = *lp; 580 581 for (i = 0; i < V_L2_SIZE; ++i) { 582 page_lock(&pd[i]); 583 pd[i].first_tb = (uintptr_t)NULL; 584 page_unlock(&pd[i]); 585 } 586 } else { 587 void **pp = *lp; 588 589 for (i = 0; i < V_L2_SIZE; ++i) { 590 tb_remove_all_1(level - 1, pp + i); 591 } 592 } 593 } 594 595 static void tb_remove_all(void) 596 { 597 int i, l1_sz = v_l1_size; 598 599 for (i = 0; i < l1_sz; i++) { 600 tb_remove_all_1(v_l2_levels, l1_map + i); 601 } 602 } 603 604 /* 605 * Add the tb in the target page and protect it if necessary. 606 * Called with @p->lock held. 607 */ 608 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 609 unsigned int n) 610 { 611 bool page_already_protected; 612 613 assert_page_locked(p); 614 615 tb->page_next[n] = p->first_tb; 616 page_already_protected = p->first_tb != 0; 617 p->first_tb = (uintptr_t)tb | n; 618 619 /* 620 * If some code is already present, then the pages are already 621 * protected. So we handle the case where only the first TB is 622 * allocated in a physical page. 623 */ 624 if (!page_already_protected) { 625 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 626 } 627 } 628 629 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2) 630 { 631 tb_page_add(p1, tb, 0); 632 if (unlikely(p2)) { 633 tb_page_add(p2, tb, 1); 634 } 635 } 636 637 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 638 { 639 TranslationBlock *tb1; 640 uintptr_t *pprev; 641 PageForEachNext n1; 642 643 assert_page_locked(pd); 644 pprev = &pd->first_tb; 645 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 646 if (tb1 == tb) { 647 *pprev = tb1->page_next[n1]; 648 return; 649 } 650 pprev = &tb1->page_next[n1]; 651 } 652 g_assert_not_reached(); 653 } 654 655 static void tb_remove(TranslationBlock *tb) 656 { 657 PageDesc *pd; 658 659 pd = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 660 tb_page_remove(pd, tb); 661 if (unlikely(tb->page_addr[1] != -1)) { 662 pd = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 663 tb_page_remove(pd, tb); 664 } 665 } 666 667 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 668 PageDesc **ret_p2, tb_page_addr_t phys2, bool alloc) 669 { 670 PageDesc *p1, *p2; 671 tb_page_addr_t page1; 672 tb_page_addr_t page2; 673 674 assert_memory_lock(); 675 g_assert(phys1 != -1); 676 677 page1 = phys1 >> TARGET_PAGE_BITS; 678 page2 = phys2 >> TARGET_PAGE_BITS; 679 680 p1 = page_find_alloc(page1, alloc); 681 if (ret_p1) { 682 *ret_p1 = p1; 683 } 684 if (likely(phys2 == -1)) { 685 page_lock(p1); 686 return; 687 } else if (page1 == page2) { 688 page_lock(p1); 689 if (ret_p2) { 690 *ret_p2 = p1; 691 } 692 return; 693 } 694 p2 = page_find_alloc(page2, alloc); 695 if (ret_p2) { 696 *ret_p2 = p2; 697 } 698 if (page1 < page2) { 699 page_lock(p1); 700 page_lock(p2); 701 } else { 702 page_lock(p2); 703 page_lock(p1); 704 } 705 } 706 707 /* lock the page(s) of a TB in the correct acquisition order */ 708 static void page_lock_tb(const TranslationBlock *tb) 709 { 710 page_lock_pair(NULL, tb_page_addr0(tb), NULL, tb_page_addr1(tb), false); 711 } 712 713 static void page_unlock_tb(const TranslationBlock *tb) 714 { 715 PageDesc *p1 = page_find(tb_page_addr0(tb) >> TARGET_PAGE_BITS); 716 717 page_unlock(p1); 718 if (unlikely(tb_page_addr1(tb) != -1)) { 719 PageDesc *p2 = page_find(tb_page_addr1(tb) >> TARGET_PAGE_BITS); 720 721 if (p2 != p1) { 722 page_unlock(p2); 723 } 724 } 725 } 726 #endif /* CONFIG_USER_ONLY */ 727 728 /* flush all the translation blocks */ 729 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 730 { 731 bool did_flush = false; 732 733 mmap_lock(); 734 /* If it is already been done on request of another CPU, just retry. */ 735 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 736 goto done; 737 } 738 did_flush = true; 739 740 CPU_FOREACH(cpu) { 741 tcg_flush_jmp_cache(cpu); 742 } 743 744 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 745 tb_remove_all(); 746 747 tcg_region_reset_all(); 748 /* XXX: flush processor icache at this point if cache flush is expensive */ 749 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 750 751 done: 752 mmap_unlock(); 753 if (did_flush) { 754 qemu_plugin_flush_cb(); 755 } 756 } 757 758 void tb_flush(CPUState *cpu) 759 { 760 if (tcg_enabled()) { 761 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count); 762 763 if (cpu_in_exclusive_context(cpu)) { 764 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 765 } else { 766 async_safe_run_on_cpu(cpu, do_tb_flush, 767 RUN_ON_CPU_HOST_INT(tb_flush_count)); 768 } 769 } 770 } 771 772 /* remove @orig from its @n_orig-th jump list */ 773 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 774 { 775 uintptr_t ptr, ptr_locked; 776 TranslationBlock *dest; 777 TranslationBlock *tb; 778 uintptr_t *pprev; 779 int n; 780 781 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 782 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 783 dest = (TranslationBlock *)(ptr & ~1); 784 if (dest == NULL) { 785 return; 786 } 787 788 qemu_spin_lock(&dest->jmp_lock); 789 /* 790 * While acquiring the lock, the jump might have been removed if the 791 * destination TB was invalidated; check again. 792 */ 793 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 794 if (ptr_locked != ptr) { 795 qemu_spin_unlock(&dest->jmp_lock); 796 /* 797 * The only possibility is that the jump was unlinked via 798 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 799 * because we set the LSB above. 800 */ 801 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 802 return; 803 } 804 /* 805 * We first acquired the lock, and since the destination pointer matches, 806 * we know for sure that @orig is in the jmp list. 807 */ 808 pprev = &dest->jmp_list_head; 809 TB_FOR_EACH_JMP(dest, tb, n) { 810 if (tb == orig && n == n_orig) { 811 *pprev = tb->jmp_list_next[n]; 812 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 813 qemu_spin_unlock(&dest->jmp_lock); 814 return; 815 } 816 pprev = &tb->jmp_list_next[n]; 817 } 818 g_assert_not_reached(); 819 } 820 821 /* 822 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 823 */ 824 void tb_reset_jump(TranslationBlock *tb, int n) 825 { 826 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 827 tb_set_jmp_target(tb, n, addr); 828 } 829 830 /* remove any jumps to the TB */ 831 static inline void tb_jmp_unlink(TranslationBlock *dest) 832 { 833 TranslationBlock *tb; 834 int n; 835 836 qemu_spin_lock(&dest->jmp_lock); 837 838 TB_FOR_EACH_JMP(dest, tb, n) { 839 tb_reset_jump(tb, n); 840 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 841 /* No need to clear the list entry; setting the dest ptr is enough */ 842 } 843 dest->jmp_list_head = (uintptr_t)NULL; 844 845 qemu_spin_unlock(&dest->jmp_lock); 846 } 847 848 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 849 { 850 CPUState *cpu; 851 852 if (tb_cflags(tb) & CF_PCREL) { 853 /* A TB may be at any virtual address */ 854 CPU_FOREACH(cpu) { 855 tcg_flush_jmp_cache(cpu); 856 } 857 } else { 858 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 859 860 CPU_FOREACH(cpu) { 861 CPUJumpCache *jc = cpu->tb_jmp_cache; 862 863 if (qatomic_read(&jc->array[h].tb) == tb) { 864 qatomic_set(&jc->array[h].tb, NULL); 865 } 866 } 867 } 868 } 869 870 /* 871 * In user-mode, call with mmap_lock held. 872 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 873 * locks held. 874 */ 875 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 876 { 877 uint32_t h; 878 tb_page_addr_t phys_pc; 879 uint32_t orig_cflags = tb_cflags(tb); 880 881 assert_memory_lock(); 882 883 /* make sure no further incoming jumps will be chained to this TB */ 884 qemu_spin_lock(&tb->jmp_lock); 885 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 886 qemu_spin_unlock(&tb->jmp_lock); 887 888 /* remove the TB from the hash list */ 889 phys_pc = tb_page_addr0(tb); 890 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 891 tb->flags, orig_cflags, tb->trace_vcpu_dstate); 892 if (!qht_remove(&tb_ctx.htable, tb, h)) { 893 return; 894 } 895 896 /* remove the TB from the page list */ 897 if (rm_from_page_list) { 898 tb_remove(tb); 899 } 900 901 /* remove the TB from the hash list */ 902 tb_jmp_cache_inval_tb(tb); 903 904 /* suppress this TB from the two jump lists */ 905 tb_remove_from_jmp_list(tb, 0); 906 tb_remove_from_jmp_list(tb, 1); 907 908 /* suppress any remaining jumps to this TB */ 909 tb_jmp_unlink(tb); 910 911 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 912 tb_ctx.tb_phys_invalidate_count + 1); 913 } 914 915 static void tb_phys_invalidate__locked(TranslationBlock *tb) 916 { 917 qemu_thread_jit_write(); 918 do_tb_phys_invalidate(tb, true); 919 qemu_thread_jit_execute(); 920 } 921 922 /* 923 * Invalidate one TB. 924 * Called with mmap_lock held in user-mode. 925 */ 926 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 927 { 928 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 929 page_lock_tb(tb); 930 do_tb_phys_invalidate(tb, true); 931 page_unlock_tb(tb); 932 } else { 933 do_tb_phys_invalidate(tb, false); 934 } 935 } 936 937 /* 938 * Add a new TB and link it to the physical page tables. phys_page2 is 939 * (-1) to indicate that only one page contains the TB. 940 * 941 * Called with mmap_lock held for user-mode emulation. 942 * 943 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 944 * Note that in !user-mode, another thread might have already added a TB 945 * for the same block of guest code that @tb corresponds to. In that case, 946 * the caller should discard the original @tb, and use instead the returned TB. 947 */ 948 TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 949 tb_page_addr_t phys_page2) 950 { 951 PageDesc *p; 952 PageDesc *p2 = NULL; 953 void *existing_tb = NULL; 954 uint32_t h; 955 956 assert_memory_lock(); 957 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 958 959 /* 960 * Add the TB to the page list, acquiring first the pages's locks. 961 * We keep the locks held until after inserting the TB in the hash table, 962 * so that if the insertion fails we know for sure that the TBs are still 963 * in the page descriptors. 964 * Note that inserting into the hash table first isn't an option, since 965 * we can only insert TBs that are fully initialized. 966 */ 967 page_lock_pair(&p, phys_pc, &p2, phys_page2, true); 968 tb_record(tb, p, p2); 969 970 /* add in the hash table */ 971 h = tb_hash_func(phys_pc, (tb->cflags & CF_PCREL ? 0 : tb->pc), 972 tb->flags, tb->cflags, tb->trace_vcpu_dstate); 973 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 974 975 /* remove TB from the page(s) if we couldn't insert it */ 976 if (unlikely(existing_tb)) { 977 tb_remove(tb); 978 tb = existing_tb; 979 } 980 981 if (p2 && p2 != p) { 982 page_unlock(p2); 983 } 984 page_unlock(p); 985 return tb; 986 } 987 988 #ifdef CONFIG_USER_ONLY 989 /* 990 * Invalidate all TBs which intersect with the target address range. 991 * Called with mmap_lock held for user-mode emulation. 992 * NOTE: this function must not be called while a TB is running. 993 */ 994 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 995 { 996 TranslationBlock *tb; 997 PageForEachNext n; 998 999 assert_memory_lock(); 1000 1001 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1002 tb_phys_invalidate__locked(tb); 1003 } 1004 } 1005 1006 /* 1007 * Invalidate all TBs which intersect with the target address page @addr. 1008 * Called with mmap_lock held for user-mode emulation 1009 * NOTE: this function must not be called while a TB is running. 1010 */ 1011 void tb_invalidate_phys_page(tb_page_addr_t addr) 1012 { 1013 tb_page_addr_t start, last; 1014 1015 start = addr & TARGET_PAGE_MASK; 1016 last = addr | ~TARGET_PAGE_MASK; 1017 tb_invalidate_phys_range(start, last); 1018 } 1019 1020 /* 1021 * Called with mmap_lock held. If pc is not 0 then it indicates the 1022 * host PC of the faulting store instruction that caused this invalidate. 1023 * Returns true if the caller needs to abort execution of the current 1024 * TB (because it was modified by this store and the guest CPU has 1025 * precise-SMC semantics). 1026 */ 1027 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1028 { 1029 TranslationBlock *current_tb; 1030 bool current_tb_modified; 1031 TranslationBlock *tb; 1032 PageForEachNext n; 1033 tb_page_addr_t last; 1034 1035 /* 1036 * Without precise smc semantics, or when outside of a TB, 1037 * we can skip to invalidate. 1038 */ 1039 #ifndef TARGET_HAS_PRECISE_SMC 1040 pc = 0; 1041 #endif 1042 if (!pc) { 1043 tb_invalidate_phys_page(addr); 1044 return false; 1045 } 1046 1047 assert_memory_lock(); 1048 current_tb = tcg_tb_lookup(pc); 1049 1050 last = addr | ~TARGET_PAGE_MASK; 1051 addr &= TARGET_PAGE_MASK; 1052 current_tb_modified = false; 1053 1054 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1055 if (current_tb == tb && 1056 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1057 /* 1058 * If we are modifying the current TB, we must stop its 1059 * execution. We could be more precise by checking that 1060 * the modification is after the current PC, but it would 1061 * require a specialized function to partially restore 1062 * the CPU state. 1063 */ 1064 current_tb_modified = true; 1065 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1066 } 1067 tb_phys_invalidate__locked(tb); 1068 } 1069 1070 if (current_tb_modified) { 1071 /* Force execution of one insn next time. */ 1072 CPUState *cpu = current_cpu; 1073 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1074 return true; 1075 } 1076 return false; 1077 } 1078 #else 1079 /* 1080 * @p must be non-NULL. 1081 * Call with all @pages locked. 1082 */ 1083 static void 1084 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1085 PageDesc *p, tb_page_addr_t start, 1086 tb_page_addr_t last, 1087 uintptr_t retaddr) 1088 { 1089 TranslationBlock *tb; 1090 PageForEachNext n; 1091 #ifdef TARGET_HAS_PRECISE_SMC 1092 bool current_tb_modified = false; 1093 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1094 #endif /* TARGET_HAS_PRECISE_SMC */ 1095 1096 /* 1097 * We remove all the TBs in the range [start, last]. 1098 * XXX: see if in some cases it could be faster to invalidate all the code 1099 */ 1100 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1101 tb_page_addr_t tb_start, tb_last; 1102 1103 /* NOTE: this is subtle as a TB may span two physical pages */ 1104 tb_start = tb_page_addr0(tb); 1105 tb_last = tb_start + tb->size - 1; 1106 if (n == 0) { 1107 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1108 } else { 1109 tb_start = tb_page_addr1(tb); 1110 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1111 } 1112 if (!(tb_last < start || tb_start > last)) { 1113 #ifdef TARGET_HAS_PRECISE_SMC 1114 if (current_tb == tb && 1115 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1116 /* 1117 * If we are modifying the current TB, we must stop 1118 * its execution. We could be more precise by checking 1119 * that the modification is after the current PC, but it 1120 * would require a specialized function to partially 1121 * restore the CPU state. 1122 */ 1123 current_tb_modified = true; 1124 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1125 } 1126 #endif /* TARGET_HAS_PRECISE_SMC */ 1127 tb_phys_invalidate__locked(tb); 1128 } 1129 } 1130 1131 /* if no code remaining, no need to continue to use slow writes */ 1132 if (!p->first_tb) { 1133 tlb_unprotect_code(start); 1134 } 1135 1136 #ifdef TARGET_HAS_PRECISE_SMC 1137 if (current_tb_modified) { 1138 page_collection_unlock(pages); 1139 /* Force execution of one insn next time. */ 1140 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1141 mmap_unlock(); 1142 cpu_loop_exit_noexc(current_cpu); 1143 } 1144 #endif 1145 } 1146 1147 /* 1148 * Invalidate all TBs which intersect with the target physical 1149 * address page @addr. 1150 */ 1151 void tb_invalidate_phys_page(tb_page_addr_t addr) 1152 { 1153 struct page_collection *pages; 1154 tb_page_addr_t start, last; 1155 PageDesc *p; 1156 1157 p = page_find(addr >> TARGET_PAGE_BITS); 1158 if (p == NULL) { 1159 return; 1160 } 1161 1162 start = addr & TARGET_PAGE_MASK; 1163 last = addr | ~TARGET_PAGE_MASK; 1164 pages = page_collection_lock(start, last); 1165 tb_invalidate_phys_page_range__locked(pages, p, start, last, 0); 1166 page_collection_unlock(pages); 1167 } 1168 1169 /* 1170 * Invalidate all TBs which intersect with the target physical address range 1171 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1172 * 'is_cpu_write_access' should be true if called from a real cpu write 1173 * access: the virtual CPU will exit the current TB if code is modified inside 1174 * this TB. 1175 */ 1176 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1177 { 1178 struct page_collection *pages; 1179 tb_page_addr_t index, index_last; 1180 1181 pages = page_collection_lock(start, last); 1182 1183 index_last = last >> TARGET_PAGE_BITS; 1184 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1185 PageDesc *pd = page_find(index); 1186 tb_page_addr_t bound; 1187 1188 if (pd == NULL) { 1189 continue; 1190 } 1191 assert_page_locked(pd); 1192 bound = (index << TARGET_PAGE_BITS) | ~TARGET_PAGE_MASK; 1193 bound = MIN(bound, last); 1194 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 1195 } 1196 page_collection_unlock(pages); 1197 } 1198 1199 /* 1200 * Call with all @pages in the range [@start, @start + len[ locked. 1201 */ 1202 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1203 tb_page_addr_t start, 1204 unsigned len, uintptr_t ra) 1205 { 1206 PageDesc *p; 1207 1208 p = page_find(start >> TARGET_PAGE_BITS); 1209 if (!p) { 1210 return; 1211 } 1212 1213 assert_page_locked(p); 1214 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1215 } 1216 1217 /* 1218 * len must be <= 8 and start must be a multiple of len. 1219 * Called via softmmu_template.h when code areas are written to with 1220 * iothread mutex not held. 1221 */ 1222 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1223 unsigned size, 1224 uintptr_t retaddr) 1225 { 1226 struct page_collection *pages; 1227 1228 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1229 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1230 page_collection_unlock(pages); 1231 } 1232 1233 #endif /* CONFIG_USER_ONLY */ 1234