1 /* 2 * Translation Block Maintenance 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "exec/cputlb.h" 24 #include "exec/log.h" 25 #include "exec/exec-all.h" 26 #include "exec/tb-flush.h" 27 #include "exec/translate-all.h" 28 #include "sysemu/tcg.h" 29 #include "tcg/tcg.h" 30 #include "tb-hash.h" 31 #include "tb-context.h" 32 #include "internal.h" 33 34 35 /* List iterators for lists of tagged pointers in TranslationBlock. */ 36 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 37 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 38 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 39 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 40 41 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 42 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 43 44 static bool tb_cmp(const void *ap, const void *bp) 45 { 46 const TranslationBlock *a = ap; 47 const TranslationBlock *b = bp; 48 49 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 50 a->cs_base == b->cs_base && 51 a->flags == b->flags && 52 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 53 tb_page_addr0(a) == tb_page_addr0(b) && 54 tb_page_addr1(a) == tb_page_addr1(b)); 55 } 56 57 void tb_htable_init(void) 58 { 59 unsigned int mode = QHT_MODE_AUTO_RESIZE; 60 61 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 62 } 63 64 typedef struct PageDesc PageDesc; 65 66 #ifdef CONFIG_USER_ONLY 67 68 /* 69 * In user-mode page locks aren't used; mmap_lock is enough. 70 */ 71 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 72 73 static inline void tb_lock_pages(const TranslationBlock *tb) { } 74 75 /* 76 * For user-only, since we are protecting all of memory with a single lock, 77 * and because the two pages of a TranslationBlock are always contiguous, 78 * use a single data structure to record all TranslationBlocks. 79 */ 80 static IntervalTreeRoot tb_root; 81 82 static void tb_remove_all(void) 83 { 84 assert_memory_lock(); 85 memset(&tb_root, 0, sizeof(tb_root)); 86 } 87 88 /* Call with mmap_lock held. */ 89 static void tb_record(TranslationBlock *tb) 90 { 91 vaddr addr; 92 int flags; 93 94 assert_memory_lock(); 95 tb->itree.last = tb->itree.start + tb->size - 1; 96 97 /* translator_loop() must have made all TB pages non-writable */ 98 addr = tb_page_addr0(tb); 99 flags = page_get_flags(addr); 100 assert(!(flags & PAGE_WRITE)); 101 102 addr = tb_page_addr1(tb); 103 if (addr != -1) { 104 flags = page_get_flags(addr); 105 assert(!(flags & PAGE_WRITE)); 106 } 107 108 interval_tree_insert(&tb->itree, &tb_root); 109 } 110 111 /* Call with mmap_lock held. */ 112 static void tb_remove(TranslationBlock *tb) 113 { 114 assert_memory_lock(); 115 interval_tree_remove(&tb->itree, &tb_root); 116 } 117 118 /* TODO: For now, still shared with translate-all.c for system mode. */ 119 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 120 for (T = foreach_tb_first(start, last), \ 121 N = foreach_tb_next(T, start, last); \ 122 T != NULL; \ 123 T = N, N = foreach_tb_next(N, start, last)) 124 125 typedef TranslationBlock *PageForEachNext; 126 127 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 128 tb_page_addr_t last) 129 { 130 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 131 return n ? container_of(n, TranslationBlock, itree) : NULL; 132 } 133 134 static PageForEachNext foreach_tb_next(PageForEachNext tb, 135 tb_page_addr_t start, 136 tb_page_addr_t last) 137 { 138 IntervalTreeNode *n; 139 140 if (tb) { 141 n = interval_tree_iter_next(&tb->itree, start, last); 142 if (n) { 143 return container_of(n, TranslationBlock, itree); 144 } 145 } 146 return NULL; 147 } 148 149 #else 150 /* 151 * In system mode we want L1_MAP to be based on ram offsets. 152 */ 153 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 154 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 155 #else 156 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 157 #endif 158 159 /* Size of the L2 (and L3, etc) page tables. */ 160 #define V_L2_BITS 10 161 #define V_L2_SIZE (1 << V_L2_BITS) 162 163 /* 164 * L1 Mapping properties 165 */ 166 static int v_l1_size; 167 static int v_l1_shift; 168 static int v_l2_levels; 169 170 /* 171 * The bottom level has pointers to PageDesc, and is indexed by 172 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 173 */ 174 #define V_L1_MIN_BITS 4 175 #define V_L1_MAX_BITS (V_L2_BITS + 3) 176 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 177 178 static void *l1_map[V_L1_MAX_SIZE]; 179 180 struct PageDesc { 181 QemuSpin lock; 182 /* list of TBs intersecting this ram page */ 183 uintptr_t first_tb; 184 }; 185 186 void page_table_config_init(void) 187 { 188 uint32_t v_l1_bits; 189 190 assert(TARGET_PAGE_BITS); 191 /* The bits remaining after N lower levels of page tables. */ 192 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 193 if (v_l1_bits < V_L1_MIN_BITS) { 194 v_l1_bits += V_L2_BITS; 195 } 196 197 v_l1_size = 1 << v_l1_bits; 198 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 199 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 200 201 assert(v_l1_bits <= V_L1_MAX_BITS); 202 assert(v_l1_shift % V_L2_BITS == 0); 203 assert(v_l2_levels >= 0); 204 } 205 206 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 207 { 208 PageDesc *pd; 209 void **lp; 210 211 /* Level 1. Always allocated. */ 212 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 213 214 /* Level 2..N-1. */ 215 for (int i = v_l2_levels; i > 0; i--) { 216 void **p = qatomic_rcu_read(lp); 217 218 if (p == NULL) { 219 void *existing; 220 221 if (!alloc) { 222 return NULL; 223 } 224 p = g_new0(void *, V_L2_SIZE); 225 existing = qatomic_cmpxchg(lp, NULL, p); 226 if (unlikely(existing)) { 227 g_free(p); 228 p = existing; 229 } 230 } 231 232 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 233 } 234 235 pd = qatomic_rcu_read(lp); 236 if (pd == NULL) { 237 void *existing; 238 239 if (!alloc) { 240 return NULL; 241 } 242 243 pd = g_new0(PageDesc, V_L2_SIZE); 244 for (int i = 0; i < V_L2_SIZE; i++) { 245 qemu_spin_init(&pd[i].lock); 246 } 247 248 existing = qatomic_cmpxchg(lp, NULL, pd); 249 if (unlikely(existing)) { 250 for (int i = 0; i < V_L2_SIZE; i++) { 251 qemu_spin_destroy(&pd[i].lock); 252 } 253 g_free(pd); 254 pd = existing; 255 } 256 } 257 258 return pd + (index & (V_L2_SIZE - 1)); 259 } 260 261 static inline PageDesc *page_find(tb_page_addr_t index) 262 { 263 return page_find_alloc(index, false); 264 } 265 266 /** 267 * struct page_entry - page descriptor entry 268 * @pd: pointer to the &struct PageDesc of the page this entry represents 269 * @index: page index of the page 270 * @locked: whether the page is locked 271 * 272 * This struct helps us keep track of the locked state of a page, without 273 * bloating &struct PageDesc. 274 * 275 * A page lock protects accesses to all fields of &struct PageDesc. 276 * 277 * See also: &struct page_collection. 278 */ 279 struct page_entry { 280 PageDesc *pd; 281 tb_page_addr_t index; 282 bool locked; 283 }; 284 285 /** 286 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 287 * @tree: Binary search tree (BST) of the pages, with key == page index 288 * @max: Pointer to the page in @tree with the highest page index 289 * 290 * To avoid deadlock we lock pages in ascending order of page index. 291 * When operating on a set of pages, we need to keep track of them so that 292 * we can lock them in order and also unlock them later. For this we collect 293 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 294 * @tree implementation we use does not provide an O(1) operation to obtain the 295 * highest-ranked element, we use @max to keep track of the inserted page 296 * with the highest index. This is valuable because if a page is not in 297 * the tree and its index is higher than @max's, then we can lock it 298 * without breaking the locking order rule. 299 * 300 * Note on naming: 'struct page_set' would be shorter, but we already have a few 301 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 302 * 303 * See also: page_collection_lock(). 304 */ 305 struct page_collection { 306 QTree *tree; 307 struct page_entry *max; 308 }; 309 310 typedef int PageForEachNext; 311 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 312 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 313 314 #ifdef CONFIG_DEBUG_TCG 315 316 static __thread GHashTable *ht_pages_locked_debug; 317 318 static void ht_pages_locked_debug_init(void) 319 { 320 if (ht_pages_locked_debug) { 321 return; 322 } 323 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 324 } 325 326 static bool page_is_locked(const PageDesc *pd) 327 { 328 PageDesc *found; 329 330 ht_pages_locked_debug_init(); 331 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 332 return !!found; 333 } 334 335 static void page_lock__debug(PageDesc *pd) 336 { 337 ht_pages_locked_debug_init(); 338 g_assert(!page_is_locked(pd)); 339 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 340 } 341 342 static void page_unlock__debug(const PageDesc *pd) 343 { 344 bool removed; 345 346 ht_pages_locked_debug_init(); 347 g_assert(page_is_locked(pd)); 348 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 349 g_assert(removed); 350 } 351 352 static void do_assert_page_locked(const PageDesc *pd, 353 const char *file, int line) 354 { 355 if (unlikely(!page_is_locked(pd))) { 356 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 357 pd, file, line); 358 abort(); 359 } 360 } 361 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 362 363 void assert_no_pages_locked(void) 364 { 365 ht_pages_locked_debug_init(); 366 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 367 } 368 369 #else /* !CONFIG_DEBUG_TCG */ 370 371 static inline void page_lock__debug(const PageDesc *pd) { } 372 static inline void page_unlock__debug(const PageDesc *pd) { } 373 static inline void assert_page_locked(const PageDesc *pd) { } 374 375 #endif /* CONFIG_DEBUG_TCG */ 376 377 static void page_lock(PageDesc *pd) 378 { 379 page_lock__debug(pd); 380 qemu_spin_lock(&pd->lock); 381 } 382 383 /* Like qemu_spin_trylock, returns false on success */ 384 static bool page_trylock(PageDesc *pd) 385 { 386 bool busy = qemu_spin_trylock(&pd->lock); 387 if (!busy) { 388 page_lock__debug(pd); 389 } 390 return busy; 391 } 392 393 static void page_unlock(PageDesc *pd) 394 { 395 qemu_spin_unlock(&pd->lock); 396 page_unlock__debug(pd); 397 } 398 399 void tb_lock_page0(tb_page_addr_t paddr) 400 { 401 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true)); 402 } 403 404 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 405 { 406 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 407 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 408 PageDesc *pd0, *pd1; 409 410 if (pindex0 == pindex1) { 411 /* Identical pages, and the first page is already locked. */ 412 return; 413 } 414 415 pd1 = page_find_alloc(pindex1, true); 416 if (pindex0 < pindex1) { 417 /* Correct locking order, we may block. */ 418 page_lock(pd1); 419 return; 420 } 421 422 /* Incorrect locking order, we cannot block lest we deadlock. */ 423 if (!page_trylock(pd1)) { 424 return; 425 } 426 427 /* 428 * Drop the lock on page0 and get both page locks in the right order. 429 * Restart translation via longjmp. 430 */ 431 pd0 = page_find_alloc(pindex0, false); 432 page_unlock(pd0); 433 page_lock(pd1); 434 page_lock(pd0); 435 siglongjmp(tcg_ctx->jmp_trans, -3); 436 } 437 438 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 439 { 440 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 441 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 442 443 if (pindex0 != pindex1) { 444 page_unlock(page_find_alloc(pindex1, false)); 445 } 446 } 447 448 static void tb_lock_pages(TranslationBlock *tb) 449 { 450 tb_page_addr_t paddr0 = tb_page_addr0(tb); 451 tb_page_addr_t paddr1 = tb_page_addr1(tb); 452 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 453 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 454 455 if (unlikely(paddr0 == -1)) { 456 return; 457 } 458 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 459 if (pindex0 < pindex1) { 460 page_lock(page_find_alloc(pindex0, true)); 461 page_lock(page_find_alloc(pindex1, true)); 462 return; 463 } 464 page_lock(page_find_alloc(pindex1, true)); 465 } 466 page_lock(page_find_alloc(pindex0, true)); 467 } 468 469 void tb_unlock_pages(TranslationBlock *tb) 470 { 471 tb_page_addr_t paddr0 = tb_page_addr0(tb); 472 tb_page_addr_t paddr1 = tb_page_addr1(tb); 473 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 474 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 475 476 if (unlikely(paddr0 == -1)) { 477 return; 478 } 479 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 480 page_unlock(page_find_alloc(pindex1, false)); 481 } 482 page_unlock(page_find_alloc(pindex0, false)); 483 } 484 485 static inline struct page_entry * 486 page_entry_new(PageDesc *pd, tb_page_addr_t index) 487 { 488 struct page_entry *pe = g_malloc(sizeof(*pe)); 489 490 pe->index = index; 491 pe->pd = pd; 492 pe->locked = false; 493 return pe; 494 } 495 496 static void page_entry_destroy(gpointer p) 497 { 498 struct page_entry *pe = p; 499 500 g_assert(pe->locked); 501 page_unlock(pe->pd); 502 g_free(pe); 503 } 504 505 /* returns false on success */ 506 static bool page_entry_trylock(struct page_entry *pe) 507 { 508 bool busy = page_trylock(pe->pd); 509 if (!busy) { 510 g_assert(!pe->locked); 511 pe->locked = true; 512 } 513 return busy; 514 } 515 516 static void do_page_entry_lock(struct page_entry *pe) 517 { 518 page_lock(pe->pd); 519 g_assert(!pe->locked); 520 pe->locked = true; 521 } 522 523 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 524 { 525 struct page_entry *pe = value; 526 527 do_page_entry_lock(pe); 528 return FALSE; 529 } 530 531 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 532 { 533 struct page_entry *pe = value; 534 535 if (pe->locked) { 536 pe->locked = false; 537 page_unlock(pe->pd); 538 } 539 return FALSE; 540 } 541 542 /* 543 * Trylock a page, and if successful, add the page to a collection. 544 * Returns true ("busy") if the page could not be locked; false otherwise. 545 */ 546 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 547 { 548 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 549 struct page_entry *pe; 550 PageDesc *pd; 551 552 pe = q_tree_lookup(set->tree, &index); 553 if (pe) { 554 return false; 555 } 556 557 pd = page_find(index); 558 if (pd == NULL) { 559 return false; 560 } 561 562 pe = page_entry_new(pd, index); 563 q_tree_insert(set->tree, &pe->index, pe); 564 565 /* 566 * If this is either (1) the first insertion or (2) a page whose index 567 * is higher than any other so far, just lock the page and move on. 568 */ 569 if (set->max == NULL || pe->index > set->max->index) { 570 set->max = pe; 571 do_page_entry_lock(pe); 572 return false; 573 } 574 /* 575 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 576 * locks in order. 577 */ 578 return page_entry_trylock(pe); 579 } 580 581 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 582 { 583 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 584 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 585 586 if (a == b) { 587 return 0; 588 } else if (a < b) { 589 return -1; 590 } 591 return 1; 592 } 593 594 /* 595 * Lock a range of pages ([@start,@last]) as well as the pages of all 596 * intersecting TBs. 597 * Locking order: acquire locks in ascending order of page index. 598 */ 599 static struct page_collection *page_collection_lock(tb_page_addr_t start, 600 tb_page_addr_t last) 601 { 602 struct page_collection *set = g_malloc(sizeof(*set)); 603 tb_page_addr_t index; 604 PageDesc *pd; 605 606 start >>= TARGET_PAGE_BITS; 607 last >>= TARGET_PAGE_BITS; 608 g_assert(start <= last); 609 610 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 611 page_entry_destroy); 612 set->max = NULL; 613 assert_no_pages_locked(); 614 615 retry: 616 q_tree_foreach(set->tree, page_entry_lock, NULL); 617 618 for (index = start; index <= last; index++) { 619 TranslationBlock *tb; 620 PageForEachNext n; 621 622 pd = page_find(index); 623 if (pd == NULL) { 624 continue; 625 } 626 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 627 q_tree_foreach(set->tree, page_entry_unlock, NULL); 628 goto retry; 629 } 630 assert_page_locked(pd); 631 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 632 if (page_trylock_add(set, tb_page_addr0(tb)) || 633 (tb_page_addr1(tb) != -1 && 634 page_trylock_add(set, tb_page_addr1(tb)))) { 635 /* drop all locks, and reacquire in order */ 636 q_tree_foreach(set->tree, page_entry_unlock, NULL); 637 goto retry; 638 } 639 } 640 } 641 return set; 642 } 643 644 static void page_collection_unlock(struct page_collection *set) 645 { 646 /* entries are unlocked and freed via page_entry_destroy */ 647 q_tree_destroy(set->tree); 648 g_free(set); 649 } 650 651 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 652 static void tb_remove_all_1(int level, void **lp) 653 { 654 int i; 655 656 if (*lp == NULL) { 657 return; 658 } 659 if (level == 0) { 660 PageDesc *pd = *lp; 661 662 for (i = 0; i < V_L2_SIZE; ++i) { 663 page_lock(&pd[i]); 664 pd[i].first_tb = (uintptr_t)NULL; 665 page_unlock(&pd[i]); 666 } 667 } else { 668 void **pp = *lp; 669 670 for (i = 0; i < V_L2_SIZE; ++i) { 671 tb_remove_all_1(level - 1, pp + i); 672 } 673 } 674 } 675 676 static void tb_remove_all(void) 677 { 678 int i, l1_sz = v_l1_size; 679 680 for (i = 0; i < l1_sz; i++) { 681 tb_remove_all_1(v_l2_levels, l1_map + i); 682 } 683 } 684 685 /* 686 * Add the tb in the target page and protect it if necessary. 687 * Called with @p->lock held. 688 */ 689 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n) 690 { 691 bool page_already_protected; 692 693 assert_page_locked(p); 694 695 tb->page_next[n] = p->first_tb; 696 page_already_protected = p->first_tb != 0; 697 p->first_tb = (uintptr_t)tb | n; 698 699 /* 700 * If some code is already present, then the pages are already 701 * protected. So we handle the case where only the first TB is 702 * allocated in a physical page. 703 */ 704 if (!page_already_protected) { 705 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 706 } 707 } 708 709 static void tb_record(TranslationBlock *tb) 710 { 711 tb_page_addr_t paddr0 = tb_page_addr0(tb); 712 tb_page_addr_t paddr1 = tb_page_addr1(tb); 713 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 714 tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS; 715 716 assert(paddr0 != -1); 717 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 718 tb_page_add(page_find_alloc(pindex1, false), tb, 1); 719 } 720 tb_page_add(page_find_alloc(pindex0, false), tb, 0); 721 } 722 723 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 724 { 725 TranslationBlock *tb1; 726 uintptr_t *pprev; 727 PageForEachNext n1; 728 729 assert_page_locked(pd); 730 pprev = &pd->first_tb; 731 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 732 if (tb1 == tb) { 733 *pprev = tb1->page_next[n1]; 734 return; 735 } 736 pprev = &tb1->page_next[n1]; 737 } 738 g_assert_not_reached(); 739 } 740 741 static void tb_remove(TranslationBlock *tb) 742 { 743 tb_page_addr_t paddr0 = tb_page_addr0(tb); 744 tb_page_addr_t paddr1 = tb_page_addr1(tb); 745 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 746 tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS; 747 748 assert(paddr0 != -1); 749 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 750 tb_page_remove(page_find_alloc(pindex1, false), tb); 751 } 752 tb_page_remove(page_find_alloc(pindex0, false), tb); 753 } 754 #endif /* CONFIG_USER_ONLY */ 755 756 /* flush all the translation blocks */ 757 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 758 { 759 bool did_flush = false; 760 761 mmap_lock(); 762 /* If it is already been done on request of another CPU, just retry. */ 763 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 764 goto done; 765 } 766 did_flush = true; 767 768 CPU_FOREACH(cpu) { 769 tcg_flush_jmp_cache(cpu); 770 } 771 772 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 773 tb_remove_all(); 774 775 tcg_region_reset_all(); 776 /* XXX: flush processor icache at this point if cache flush is expensive */ 777 qatomic_inc(&tb_ctx.tb_flush_count); 778 779 done: 780 mmap_unlock(); 781 if (did_flush) { 782 qemu_plugin_flush_cb(); 783 } 784 } 785 786 void tb_flush(CPUState *cpu) 787 { 788 if (tcg_enabled()) { 789 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); 790 791 if (cpu_in_serial_context(cpu)) { 792 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 793 } else { 794 async_safe_run_on_cpu(cpu, do_tb_flush, 795 RUN_ON_CPU_HOST_INT(tb_flush_count)); 796 } 797 } 798 } 799 800 /* remove @orig from its @n_orig-th jump list */ 801 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 802 { 803 uintptr_t ptr, ptr_locked; 804 TranslationBlock *dest; 805 TranslationBlock *tb; 806 uintptr_t *pprev; 807 int n; 808 809 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 810 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 811 dest = (TranslationBlock *)(ptr & ~1); 812 if (dest == NULL) { 813 return; 814 } 815 816 qemu_spin_lock(&dest->jmp_lock); 817 /* 818 * While acquiring the lock, the jump might have been removed if the 819 * destination TB was invalidated; check again. 820 */ 821 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 822 if (ptr_locked != ptr) { 823 qemu_spin_unlock(&dest->jmp_lock); 824 /* 825 * The only possibility is that the jump was unlinked via 826 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 827 * because we set the LSB above. 828 */ 829 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 830 return; 831 } 832 /* 833 * We first acquired the lock, and since the destination pointer matches, 834 * we know for sure that @orig is in the jmp list. 835 */ 836 pprev = &dest->jmp_list_head; 837 TB_FOR_EACH_JMP(dest, tb, n) { 838 if (tb == orig && n == n_orig) { 839 *pprev = tb->jmp_list_next[n]; 840 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 841 qemu_spin_unlock(&dest->jmp_lock); 842 return; 843 } 844 pprev = &tb->jmp_list_next[n]; 845 } 846 g_assert_not_reached(); 847 } 848 849 /* 850 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 851 */ 852 void tb_reset_jump(TranslationBlock *tb, int n) 853 { 854 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 855 tb_set_jmp_target(tb, n, addr); 856 } 857 858 /* remove any jumps to the TB */ 859 static inline void tb_jmp_unlink(TranslationBlock *dest) 860 { 861 TranslationBlock *tb; 862 int n; 863 864 qemu_spin_lock(&dest->jmp_lock); 865 866 TB_FOR_EACH_JMP(dest, tb, n) { 867 tb_reset_jump(tb, n); 868 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 869 /* No need to clear the list entry; setting the dest ptr is enough */ 870 } 871 dest->jmp_list_head = (uintptr_t)NULL; 872 873 qemu_spin_unlock(&dest->jmp_lock); 874 } 875 876 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 877 { 878 CPUState *cpu; 879 880 if (tb_cflags(tb) & CF_PCREL) { 881 /* A TB may be at any virtual address */ 882 CPU_FOREACH(cpu) { 883 tcg_flush_jmp_cache(cpu); 884 } 885 } else { 886 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 887 888 CPU_FOREACH(cpu) { 889 CPUJumpCache *jc = cpu->tb_jmp_cache; 890 891 if (qatomic_read(&jc->array[h].tb) == tb) { 892 qatomic_set(&jc->array[h].tb, NULL); 893 } 894 } 895 } 896 } 897 898 /* 899 * In user-mode, call with mmap_lock held. 900 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 901 * locks held. 902 */ 903 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 904 { 905 uint32_t h; 906 tb_page_addr_t phys_pc; 907 uint32_t orig_cflags = tb_cflags(tb); 908 909 assert_memory_lock(); 910 911 /* make sure no further incoming jumps will be chained to this TB */ 912 qemu_spin_lock(&tb->jmp_lock); 913 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 914 qemu_spin_unlock(&tb->jmp_lock); 915 916 /* remove the TB from the hash list */ 917 phys_pc = tb_page_addr0(tb); 918 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 919 tb->flags, tb->cs_base, orig_cflags); 920 if (!qht_remove(&tb_ctx.htable, tb, h)) { 921 return; 922 } 923 924 /* remove the TB from the page list */ 925 if (rm_from_page_list) { 926 tb_remove(tb); 927 } 928 929 /* remove the TB from the hash list */ 930 tb_jmp_cache_inval_tb(tb); 931 932 /* suppress this TB from the two jump lists */ 933 tb_remove_from_jmp_list(tb, 0); 934 tb_remove_from_jmp_list(tb, 1); 935 936 /* suppress any remaining jumps to this TB */ 937 tb_jmp_unlink(tb); 938 939 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 940 tb_ctx.tb_phys_invalidate_count + 1); 941 } 942 943 static void tb_phys_invalidate__locked(TranslationBlock *tb) 944 { 945 qemu_thread_jit_write(); 946 do_tb_phys_invalidate(tb, true); 947 qemu_thread_jit_execute(); 948 } 949 950 /* 951 * Invalidate one TB. 952 * Called with mmap_lock held in user-mode. 953 */ 954 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 955 { 956 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 957 tb_lock_pages(tb); 958 do_tb_phys_invalidate(tb, true); 959 tb_unlock_pages(tb); 960 } else { 961 do_tb_phys_invalidate(tb, false); 962 } 963 } 964 965 /* 966 * Add a new TB and link it to the physical page tables. 967 * Called with mmap_lock held for user-mode emulation. 968 * 969 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 970 * Note that in !user-mode, another thread might have already added a TB 971 * for the same block of guest code that @tb corresponds to. In that case, 972 * the caller should discard the original @tb, and use instead the returned TB. 973 */ 974 TranslationBlock *tb_link_page(TranslationBlock *tb) 975 { 976 void *existing_tb = NULL; 977 uint32_t h; 978 979 assert_memory_lock(); 980 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 981 982 tb_record(tb); 983 984 /* add in the hash table */ 985 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc), 986 tb->flags, tb->cs_base, tb->cflags); 987 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 988 989 /* remove TB from the page(s) if we couldn't insert it */ 990 if (unlikely(existing_tb)) { 991 tb_remove(tb); 992 tb_unlock_pages(tb); 993 return existing_tb; 994 } 995 996 tb_unlock_pages(tb); 997 return tb; 998 } 999 1000 #ifdef CONFIG_USER_ONLY 1001 /* 1002 * Invalidate all TBs which intersect with the target address range. 1003 * Called with mmap_lock held for user-mode emulation. 1004 * NOTE: this function must not be called while a TB is running. 1005 */ 1006 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1007 { 1008 TranslationBlock *tb; 1009 PageForEachNext n; 1010 1011 assert_memory_lock(); 1012 1013 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1014 tb_phys_invalidate__locked(tb); 1015 } 1016 } 1017 1018 /* 1019 * Invalidate all TBs which intersect with the target address page @addr. 1020 * Called with mmap_lock held for user-mode emulation 1021 * NOTE: this function must not be called while a TB is running. 1022 */ 1023 void tb_invalidate_phys_page(tb_page_addr_t addr) 1024 { 1025 tb_page_addr_t start, last; 1026 1027 start = addr & TARGET_PAGE_MASK; 1028 last = addr | ~TARGET_PAGE_MASK; 1029 tb_invalidate_phys_range(start, last); 1030 } 1031 1032 /* 1033 * Called with mmap_lock held. If pc is not 0 then it indicates the 1034 * host PC of the faulting store instruction that caused this invalidate. 1035 * Returns true if the caller needs to abort execution of the current 1036 * TB (because it was modified by this store and the guest CPU has 1037 * precise-SMC semantics). 1038 */ 1039 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1040 { 1041 TranslationBlock *current_tb; 1042 bool current_tb_modified; 1043 TranslationBlock *tb; 1044 PageForEachNext n; 1045 tb_page_addr_t last; 1046 1047 /* 1048 * Without precise smc semantics, or when outside of a TB, 1049 * we can skip to invalidate. 1050 */ 1051 #ifndef TARGET_HAS_PRECISE_SMC 1052 pc = 0; 1053 #endif 1054 if (!pc) { 1055 tb_invalidate_phys_page(addr); 1056 return false; 1057 } 1058 1059 assert_memory_lock(); 1060 current_tb = tcg_tb_lookup(pc); 1061 1062 last = addr | ~TARGET_PAGE_MASK; 1063 addr &= TARGET_PAGE_MASK; 1064 current_tb_modified = false; 1065 1066 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1067 if (current_tb == tb && 1068 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1069 /* 1070 * If we are modifying the current TB, we must stop its 1071 * execution. We could be more precise by checking that 1072 * the modification is after the current PC, but it would 1073 * require a specialized function to partially restore 1074 * the CPU state. 1075 */ 1076 current_tb_modified = true; 1077 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1078 } 1079 tb_phys_invalidate__locked(tb); 1080 } 1081 1082 if (current_tb_modified) { 1083 /* Force execution of one insn next time. */ 1084 CPUState *cpu = current_cpu; 1085 cpu->cflags_next_tb = 1086 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(current_cpu); 1087 return true; 1088 } 1089 return false; 1090 } 1091 #else 1092 /* 1093 * @p must be non-NULL. 1094 * Call with all @pages locked. 1095 */ 1096 static void 1097 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1098 PageDesc *p, tb_page_addr_t start, 1099 tb_page_addr_t last, 1100 uintptr_t retaddr) 1101 { 1102 TranslationBlock *tb; 1103 PageForEachNext n; 1104 #ifdef TARGET_HAS_PRECISE_SMC 1105 bool current_tb_modified = false; 1106 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1107 #endif /* TARGET_HAS_PRECISE_SMC */ 1108 1109 /* Range may not cross a page. */ 1110 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0); 1111 1112 /* 1113 * We remove all the TBs in the range [start, last]. 1114 * XXX: see if in some cases it could be faster to invalidate all the code 1115 */ 1116 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1117 tb_page_addr_t tb_start, tb_last; 1118 1119 /* NOTE: this is subtle as a TB may span two physical pages */ 1120 tb_start = tb_page_addr0(tb); 1121 tb_last = tb_start + tb->size - 1; 1122 if (n == 0) { 1123 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1124 } else { 1125 tb_start = tb_page_addr1(tb); 1126 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1127 } 1128 if (!(tb_last < start || tb_start > last)) { 1129 #ifdef TARGET_HAS_PRECISE_SMC 1130 if (current_tb == tb && 1131 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1132 /* 1133 * If we are modifying the current TB, we must stop 1134 * its execution. We could be more precise by checking 1135 * that the modification is after the current PC, but it 1136 * would require a specialized function to partially 1137 * restore the CPU state. 1138 */ 1139 current_tb_modified = true; 1140 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1141 } 1142 #endif /* TARGET_HAS_PRECISE_SMC */ 1143 tb_phys_invalidate__locked(tb); 1144 } 1145 } 1146 1147 /* if no code remaining, no need to continue to use slow writes */ 1148 if (!p->first_tb) { 1149 tlb_unprotect_code(start); 1150 } 1151 1152 #ifdef TARGET_HAS_PRECISE_SMC 1153 if (current_tb_modified) { 1154 page_collection_unlock(pages); 1155 /* Force execution of one insn next time. */ 1156 current_cpu->cflags_next_tb = 1157 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(current_cpu); 1158 mmap_unlock(); 1159 cpu_loop_exit_noexc(current_cpu); 1160 } 1161 #endif 1162 } 1163 1164 /* 1165 * Invalidate all TBs which intersect with the target physical 1166 * address page @addr. 1167 */ 1168 void tb_invalidate_phys_page(tb_page_addr_t addr) 1169 { 1170 struct page_collection *pages; 1171 tb_page_addr_t start, last; 1172 PageDesc *p; 1173 1174 p = page_find(addr >> TARGET_PAGE_BITS); 1175 if (p == NULL) { 1176 return; 1177 } 1178 1179 start = addr & TARGET_PAGE_MASK; 1180 last = addr | ~TARGET_PAGE_MASK; 1181 pages = page_collection_lock(start, last); 1182 tb_invalidate_phys_page_range__locked(pages, p, start, last, 0); 1183 page_collection_unlock(pages); 1184 } 1185 1186 /* 1187 * Invalidate all TBs which intersect with the target physical address range 1188 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1189 * 'is_cpu_write_access' should be true if called from a real cpu write 1190 * access: the virtual CPU will exit the current TB if code is modified inside 1191 * this TB. 1192 */ 1193 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1194 { 1195 struct page_collection *pages; 1196 tb_page_addr_t index, index_last; 1197 1198 pages = page_collection_lock(start, last); 1199 1200 index_last = last >> TARGET_PAGE_BITS; 1201 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1202 PageDesc *pd = page_find(index); 1203 tb_page_addr_t page_start, page_last; 1204 1205 if (pd == NULL) { 1206 continue; 1207 } 1208 assert_page_locked(pd); 1209 page_start = index << TARGET_PAGE_BITS; 1210 page_last = page_start | ~TARGET_PAGE_MASK; 1211 page_last = MIN(page_last, last); 1212 tb_invalidate_phys_page_range__locked(pages, pd, 1213 page_start, page_last, 0); 1214 } 1215 page_collection_unlock(pages); 1216 } 1217 1218 /* 1219 * Call with all @pages in the range [@start, @start + len[ locked. 1220 */ 1221 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1222 tb_page_addr_t start, 1223 unsigned len, uintptr_t ra) 1224 { 1225 PageDesc *p; 1226 1227 p = page_find(start >> TARGET_PAGE_BITS); 1228 if (!p) { 1229 return; 1230 } 1231 1232 assert_page_locked(p); 1233 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1234 } 1235 1236 /* 1237 * len must be <= 8 and start must be a multiple of len. 1238 * Called via softmmu_template.h when code areas are written to with 1239 * iothread mutex not held. 1240 */ 1241 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1242 unsigned size, 1243 uintptr_t retaddr) 1244 { 1245 struct page_collection *pages; 1246 1247 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1248 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1249 page_collection_unlock(pages); 1250 } 1251 1252 #endif /* CONFIG_USER_ONLY */ 1253