1 /* 2 * Translation Block Maintenance 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "exec/cputlb.h" 24 #include "exec/log.h" 25 #include "exec/exec-all.h" 26 #include "exec/tb-flush.h" 27 #include "exec/translate-all.h" 28 #include "sysemu/tcg.h" 29 #include "tcg/tcg.h" 30 #include "tb-hash.h" 31 #include "tb-context.h" 32 #include "internal-common.h" 33 #include "internal-target.h" 34 35 36 /* List iterators for lists of tagged pointers in TranslationBlock. */ 37 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 38 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 39 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 40 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 41 42 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 43 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 44 45 static bool tb_cmp(const void *ap, const void *bp) 46 { 47 const TranslationBlock *a = ap; 48 const TranslationBlock *b = bp; 49 50 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 51 a->cs_base == b->cs_base && 52 a->flags == b->flags && 53 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 54 tb_page_addr0(a) == tb_page_addr0(b) && 55 tb_page_addr1(a) == tb_page_addr1(b)); 56 } 57 58 void tb_htable_init(void) 59 { 60 unsigned int mode = QHT_MODE_AUTO_RESIZE; 61 62 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 63 } 64 65 typedef struct PageDesc PageDesc; 66 67 #ifdef CONFIG_USER_ONLY 68 69 /* 70 * In user-mode page locks aren't used; mmap_lock is enough. 71 */ 72 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 73 74 static inline void tb_lock_pages(const TranslationBlock *tb) { } 75 76 /* 77 * For user-only, since we are protecting all of memory with a single lock, 78 * and because the two pages of a TranslationBlock are always contiguous, 79 * use a single data structure to record all TranslationBlocks. 80 */ 81 static IntervalTreeRoot tb_root; 82 83 static void tb_remove_all(void) 84 { 85 assert_memory_lock(); 86 memset(&tb_root, 0, sizeof(tb_root)); 87 } 88 89 /* Call with mmap_lock held. */ 90 static void tb_record(TranslationBlock *tb) 91 { 92 vaddr addr; 93 int flags; 94 95 assert_memory_lock(); 96 tb->itree.last = tb->itree.start + tb->size - 1; 97 98 /* translator_loop() must have made all TB pages non-writable */ 99 addr = tb_page_addr0(tb); 100 flags = page_get_flags(addr); 101 assert(!(flags & PAGE_WRITE)); 102 103 addr = tb_page_addr1(tb); 104 if (addr != -1) { 105 flags = page_get_flags(addr); 106 assert(!(flags & PAGE_WRITE)); 107 } 108 109 interval_tree_insert(&tb->itree, &tb_root); 110 } 111 112 /* Call with mmap_lock held. */ 113 static void tb_remove(TranslationBlock *tb) 114 { 115 assert_memory_lock(); 116 interval_tree_remove(&tb->itree, &tb_root); 117 } 118 119 /* TODO: For now, still shared with translate-all.c for system mode. */ 120 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 121 for (T = foreach_tb_first(start, last), \ 122 N = foreach_tb_next(T, start, last); \ 123 T != NULL; \ 124 T = N, N = foreach_tb_next(N, start, last)) 125 126 typedef TranslationBlock *PageForEachNext; 127 128 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 129 tb_page_addr_t last) 130 { 131 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 132 return n ? container_of(n, TranslationBlock, itree) : NULL; 133 } 134 135 static PageForEachNext foreach_tb_next(PageForEachNext tb, 136 tb_page_addr_t start, 137 tb_page_addr_t last) 138 { 139 IntervalTreeNode *n; 140 141 if (tb) { 142 n = interval_tree_iter_next(&tb->itree, start, last); 143 if (n) { 144 return container_of(n, TranslationBlock, itree); 145 } 146 } 147 return NULL; 148 } 149 150 #else 151 /* 152 * In system mode we want L1_MAP to be based on ram offsets. 153 */ 154 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 155 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 156 #else 157 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 158 #endif 159 160 /* Size of the L2 (and L3, etc) page tables. */ 161 #define V_L2_BITS 10 162 #define V_L2_SIZE (1 << V_L2_BITS) 163 164 /* 165 * L1 Mapping properties 166 */ 167 static int v_l1_size; 168 static int v_l1_shift; 169 static int v_l2_levels; 170 171 /* 172 * The bottom level has pointers to PageDesc, and is indexed by 173 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 174 */ 175 #define V_L1_MIN_BITS 4 176 #define V_L1_MAX_BITS (V_L2_BITS + 3) 177 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 178 179 static void *l1_map[V_L1_MAX_SIZE]; 180 181 struct PageDesc { 182 QemuSpin lock; 183 /* list of TBs intersecting this ram page */ 184 uintptr_t first_tb; 185 }; 186 187 void page_table_config_init(void) 188 { 189 uint32_t v_l1_bits; 190 191 assert(TARGET_PAGE_BITS); 192 /* The bits remaining after N lower levels of page tables. */ 193 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 194 if (v_l1_bits < V_L1_MIN_BITS) { 195 v_l1_bits += V_L2_BITS; 196 } 197 198 v_l1_size = 1 << v_l1_bits; 199 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 200 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 201 202 assert(v_l1_bits <= V_L1_MAX_BITS); 203 assert(v_l1_shift % V_L2_BITS == 0); 204 assert(v_l2_levels >= 0); 205 } 206 207 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 208 { 209 PageDesc *pd; 210 void **lp; 211 212 /* Level 1. Always allocated. */ 213 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 214 215 /* Level 2..N-1. */ 216 for (int i = v_l2_levels; i > 0; i--) { 217 void **p = qatomic_rcu_read(lp); 218 219 if (p == NULL) { 220 void *existing; 221 222 if (!alloc) { 223 return NULL; 224 } 225 p = g_new0(void *, V_L2_SIZE); 226 existing = qatomic_cmpxchg(lp, NULL, p); 227 if (unlikely(existing)) { 228 g_free(p); 229 p = existing; 230 } 231 } 232 233 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 234 } 235 236 pd = qatomic_rcu_read(lp); 237 if (pd == NULL) { 238 void *existing; 239 240 if (!alloc) { 241 return NULL; 242 } 243 244 pd = g_new0(PageDesc, V_L2_SIZE); 245 for (int i = 0; i < V_L2_SIZE; i++) { 246 qemu_spin_init(&pd[i].lock); 247 } 248 249 existing = qatomic_cmpxchg(lp, NULL, pd); 250 if (unlikely(existing)) { 251 for (int i = 0; i < V_L2_SIZE; i++) { 252 qemu_spin_destroy(&pd[i].lock); 253 } 254 g_free(pd); 255 pd = existing; 256 } 257 } 258 259 return pd + (index & (V_L2_SIZE - 1)); 260 } 261 262 static inline PageDesc *page_find(tb_page_addr_t index) 263 { 264 return page_find_alloc(index, false); 265 } 266 267 /** 268 * struct page_entry - page descriptor entry 269 * @pd: pointer to the &struct PageDesc of the page this entry represents 270 * @index: page index of the page 271 * @locked: whether the page is locked 272 * 273 * This struct helps us keep track of the locked state of a page, without 274 * bloating &struct PageDesc. 275 * 276 * A page lock protects accesses to all fields of &struct PageDesc. 277 * 278 * See also: &struct page_collection. 279 */ 280 struct page_entry { 281 PageDesc *pd; 282 tb_page_addr_t index; 283 bool locked; 284 }; 285 286 /** 287 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 288 * @tree: Binary search tree (BST) of the pages, with key == page index 289 * @max: Pointer to the page in @tree with the highest page index 290 * 291 * To avoid deadlock we lock pages in ascending order of page index. 292 * When operating on a set of pages, we need to keep track of them so that 293 * we can lock them in order and also unlock them later. For this we collect 294 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 295 * @tree implementation we use does not provide an O(1) operation to obtain the 296 * highest-ranked element, we use @max to keep track of the inserted page 297 * with the highest index. This is valuable because if a page is not in 298 * the tree and its index is higher than @max's, then we can lock it 299 * without breaking the locking order rule. 300 * 301 * Note on naming: 'struct page_set' would be shorter, but we already have a few 302 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 303 * 304 * See also: page_collection_lock(). 305 */ 306 struct page_collection { 307 QTree *tree; 308 struct page_entry *max; 309 }; 310 311 typedef int PageForEachNext; 312 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 313 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 314 315 #ifdef CONFIG_DEBUG_TCG 316 317 static __thread GHashTable *ht_pages_locked_debug; 318 319 static void ht_pages_locked_debug_init(void) 320 { 321 if (ht_pages_locked_debug) { 322 return; 323 } 324 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 325 } 326 327 static bool page_is_locked(const PageDesc *pd) 328 { 329 PageDesc *found; 330 331 ht_pages_locked_debug_init(); 332 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 333 return !!found; 334 } 335 336 static void page_lock__debug(PageDesc *pd) 337 { 338 ht_pages_locked_debug_init(); 339 g_assert(!page_is_locked(pd)); 340 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 341 } 342 343 static void page_unlock__debug(const PageDesc *pd) 344 { 345 bool removed; 346 347 ht_pages_locked_debug_init(); 348 g_assert(page_is_locked(pd)); 349 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 350 g_assert(removed); 351 } 352 353 static void do_assert_page_locked(const PageDesc *pd, 354 const char *file, int line) 355 { 356 if (unlikely(!page_is_locked(pd))) { 357 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 358 pd, file, line); 359 abort(); 360 } 361 } 362 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 363 364 void assert_no_pages_locked(void) 365 { 366 ht_pages_locked_debug_init(); 367 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 368 } 369 370 #else /* !CONFIG_DEBUG_TCG */ 371 372 static inline void page_lock__debug(const PageDesc *pd) { } 373 static inline void page_unlock__debug(const PageDesc *pd) { } 374 static inline void assert_page_locked(const PageDesc *pd) { } 375 376 #endif /* CONFIG_DEBUG_TCG */ 377 378 static void page_lock(PageDesc *pd) 379 { 380 page_lock__debug(pd); 381 qemu_spin_lock(&pd->lock); 382 } 383 384 /* Like qemu_spin_trylock, returns false on success */ 385 static bool page_trylock(PageDesc *pd) 386 { 387 bool busy = qemu_spin_trylock(&pd->lock); 388 if (!busy) { 389 page_lock__debug(pd); 390 } 391 return busy; 392 } 393 394 static void page_unlock(PageDesc *pd) 395 { 396 qemu_spin_unlock(&pd->lock); 397 page_unlock__debug(pd); 398 } 399 400 void tb_lock_page0(tb_page_addr_t paddr) 401 { 402 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true)); 403 } 404 405 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 406 { 407 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 408 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 409 PageDesc *pd0, *pd1; 410 411 if (pindex0 == pindex1) { 412 /* Identical pages, and the first page is already locked. */ 413 return; 414 } 415 416 pd1 = page_find_alloc(pindex1, true); 417 if (pindex0 < pindex1) { 418 /* Correct locking order, we may block. */ 419 page_lock(pd1); 420 return; 421 } 422 423 /* Incorrect locking order, we cannot block lest we deadlock. */ 424 if (!page_trylock(pd1)) { 425 return; 426 } 427 428 /* 429 * Drop the lock on page0 and get both page locks in the right order. 430 * Restart translation via longjmp. 431 */ 432 pd0 = page_find_alloc(pindex0, false); 433 page_unlock(pd0); 434 page_lock(pd1); 435 page_lock(pd0); 436 siglongjmp(tcg_ctx->jmp_trans, -3); 437 } 438 439 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 440 { 441 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 442 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 443 444 if (pindex0 != pindex1) { 445 page_unlock(page_find_alloc(pindex1, false)); 446 } 447 } 448 449 static void tb_lock_pages(TranslationBlock *tb) 450 { 451 tb_page_addr_t paddr0 = tb_page_addr0(tb); 452 tb_page_addr_t paddr1 = tb_page_addr1(tb); 453 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 454 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 455 456 if (unlikely(paddr0 == -1)) { 457 return; 458 } 459 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 460 if (pindex0 < pindex1) { 461 page_lock(page_find_alloc(pindex0, true)); 462 page_lock(page_find_alloc(pindex1, true)); 463 return; 464 } 465 page_lock(page_find_alloc(pindex1, true)); 466 } 467 page_lock(page_find_alloc(pindex0, true)); 468 } 469 470 void tb_unlock_pages(TranslationBlock *tb) 471 { 472 tb_page_addr_t paddr0 = tb_page_addr0(tb); 473 tb_page_addr_t paddr1 = tb_page_addr1(tb); 474 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 475 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 476 477 if (unlikely(paddr0 == -1)) { 478 return; 479 } 480 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 481 page_unlock(page_find_alloc(pindex1, false)); 482 } 483 page_unlock(page_find_alloc(pindex0, false)); 484 } 485 486 static inline struct page_entry * 487 page_entry_new(PageDesc *pd, tb_page_addr_t index) 488 { 489 struct page_entry *pe = g_malloc(sizeof(*pe)); 490 491 pe->index = index; 492 pe->pd = pd; 493 pe->locked = false; 494 return pe; 495 } 496 497 static void page_entry_destroy(gpointer p) 498 { 499 struct page_entry *pe = p; 500 501 g_assert(pe->locked); 502 page_unlock(pe->pd); 503 g_free(pe); 504 } 505 506 /* returns false on success */ 507 static bool page_entry_trylock(struct page_entry *pe) 508 { 509 bool busy = page_trylock(pe->pd); 510 if (!busy) { 511 g_assert(!pe->locked); 512 pe->locked = true; 513 } 514 return busy; 515 } 516 517 static void do_page_entry_lock(struct page_entry *pe) 518 { 519 page_lock(pe->pd); 520 g_assert(!pe->locked); 521 pe->locked = true; 522 } 523 524 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 525 { 526 struct page_entry *pe = value; 527 528 do_page_entry_lock(pe); 529 return FALSE; 530 } 531 532 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 533 { 534 struct page_entry *pe = value; 535 536 if (pe->locked) { 537 pe->locked = false; 538 page_unlock(pe->pd); 539 } 540 return FALSE; 541 } 542 543 /* 544 * Trylock a page, and if successful, add the page to a collection. 545 * Returns true ("busy") if the page could not be locked; false otherwise. 546 */ 547 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 548 { 549 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 550 struct page_entry *pe; 551 PageDesc *pd; 552 553 pe = q_tree_lookup(set->tree, &index); 554 if (pe) { 555 return false; 556 } 557 558 pd = page_find(index); 559 if (pd == NULL) { 560 return false; 561 } 562 563 pe = page_entry_new(pd, index); 564 q_tree_insert(set->tree, &pe->index, pe); 565 566 /* 567 * If this is either (1) the first insertion or (2) a page whose index 568 * is higher than any other so far, just lock the page and move on. 569 */ 570 if (set->max == NULL || pe->index > set->max->index) { 571 set->max = pe; 572 do_page_entry_lock(pe); 573 return false; 574 } 575 /* 576 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 577 * locks in order. 578 */ 579 return page_entry_trylock(pe); 580 } 581 582 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 583 { 584 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 585 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 586 587 if (a == b) { 588 return 0; 589 } else if (a < b) { 590 return -1; 591 } 592 return 1; 593 } 594 595 /* 596 * Lock a range of pages ([@start,@last]) as well as the pages of all 597 * intersecting TBs. 598 * Locking order: acquire locks in ascending order of page index. 599 */ 600 static struct page_collection *page_collection_lock(tb_page_addr_t start, 601 tb_page_addr_t last) 602 { 603 struct page_collection *set = g_malloc(sizeof(*set)); 604 tb_page_addr_t index; 605 PageDesc *pd; 606 607 start >>= TARGET_PAGE_BITS; 608 last >>= TARGET_PAGE_BITS; 609 g_assert(start <= last); 610 611 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 612 page_entry_destroy); 613 set->max = NULL; 614 assert_no_pages_locked(); 615 616 retry: 617 q_tree_foreach(set->tree, page_entry_lock, NULL); 618 619 for (index = start; index <= last; index++) { 620 TranslationBlock *tb; 621 PageForEachNext n; 622 623 pd = page_find(index); 624 if (pd == NULL) { 625 continue; 626 } 627 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 628 q_tree_foreach(set->tree, page_entry_unlock, NULL); 629 goto retry; 630 } 631 assert_page_locked(pd); 632 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 633 if (page_trylock_add(set, tb_page_addr0(tb)) || 634 (tb_page_addr1(tb) != -1 && 635 page_trylock_add(set, tb_page_addr1(tb)))) { 636 /* drop all locks, and reacquire in order */ 637 q_tree_foreach(set->tree, page_entry_unlock, NULL); 638 goto retry; 639 } 640 } 641 } 642 return set; 643 } 644 645 static void page_collection_unlock(struct page_collection *set) 646 { 647 /* entries are unlocked and freed via page_entry_destroy */ 648 q_tree_destroy(set->tree); 649 g_free(set); 650 } 651 652 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 653 static void tb_remove_all_1(int level, void **lp) 654 { 655 int i; 656 657 if (*lp == NULL) { 658 return; 659 } 660 if (level == 0) { 661 PageDesc *pd = *lp; 662 663 for (i = 0; i < V_L2_SIZE; ++i) { 664 page_lock(&pd[i]); 665 pd[i].first_tb = (uintptr_t)NULL; 666 page_unlock(&pd[i]); 667 } 668 } else { 669 void **pp = *lp; 670 671 for (i = 0; i < V_L2_SIZE; ++i) { 672 tb_remove_all_1(level - 1, pp + i); 673 } 674 } 675 } 676 677 static void tb_remove_all(void) 678 { 679 int i, l1_sz = v_l1_size; 680 681 for (i = 0; i < l1_sz; i++) { 682 tb_remove_all_1(v_l2_levels, l1_map + i); 683 } 684 } 685 686 /* 687 * Add the tb in the target page and protect it if necessary. 688 * Called with @p->lock held. 689 */ 690 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n) 691 { 692 bool page_already_protected; 693 694 assert_page_locked(p); 695 696 tb->page_next[n] = p->first_tb; 697 page_already_protected = p->first_tb != 0; 698 p->first_tb = (uintptr_t)tb | n; 699 700 /* 701 * If some code is already present, then the pages are already 702 * protected. So we handle the case where only the first TB is 703 * allocated in a physical page. 704 */ 705 if (!page_already_protected) { 706 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 707 } 708 } 709 710 static void tb_record(TranslationBlock *tb) 711 { 712 tb_page_addr_t paddr0 = tb_page_addr0(tb); 713 tb_page_addr_t paddr1 = tb_page_addr1(tb); 714 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 715 tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS; 716 717 assert(paddr0 != -1); 718 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 719 tb_page_add(page_find_alloc(pindex1, false), tb, 1); 720 } 721 tb_page_add(page_find_alloc(pindex0, false), tb, 0); 722 } 723 724 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 725 { 726 TranslationBlock *tb1; 727 uintptr_t *pprev; 728 PageForEachNext n1; 729 730 assert_page_locked(pd); 731 pprev = &pd->first_tb; 732 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 733 if (tb1 == tb) { 734 *pprev = tb1->page_next[n1]; 735 return; 736 } 737 pprev = &tb1->page_next[n1]; 738 } 739 g_assert_not_reached(); 740 } 741 742 static void tb_remove(TranslationBlock *tb) 743 { 744 tb_page_addr_t paddr0 = tb_page_addr0(tb); 745 tb_page_addr_t paddr1 = tb_page_addr1(tb); 746 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 747 tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS; 748 749 assert(paddr0 != -1); 750 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 751 tb_page_remove(page_find_alloc(pindex1, false), tb); 752 } 753 tb_page_remove(page_find_alloc(pindex0, false), tb); 754 } 755 #endif /* CONFIG_USER_ONLY */ 756 757 /* flush all the translation blocks */ 758 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 759 { 760 bool did_flush = false; 761 762 mmap_lock(); 763 /* If it is already been done on request of another CPU, just retry. */ 764 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 765 goto done; 766 } 767 did_flush = true; 768 769 CPU_FOREACH(cpu) { 770 tcg_flush_jmp_cache(cpu); 771 } 772 773 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 774 tb_remove_all(); 775 776 tcg_region_reset_all(); 777 /* XXX: flush processor icache at this point if cache flush is expensive */ 778 qatomic_inc(&tb_ctx.tb_flush_count); 779 780 done: 781 mmap_unlock(); 782 if (did_flush) { 783 qemu_plugin_flush_cb(); 784 } 785 } 786 787 void tb_flush(CPUState *cpu) 788 { 789 if (tcg_enabled()) { 790 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); 791 792 if (cpu_in_serial_context(cpu)) { 793 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 794 } else { 795 async_safe_run_on_cpu(cpu, do_tb_flush, 796 RUN_ON_CPU_HOST_INT(tb_flush_count)); 797 } 798 } 799 } 800 801 /* remove @orig from its @n_orig-th jump list */ 802 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 803 { 804 uintptr_t ptr, ptr_locked; 805 TranslationBlock *dest; 806 TranslationBlock *tb; 807 uintptr_t *pprev; 808 int n; 809 810 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 811 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 812 dest = (TranslationBlock *)(ptr & ~1); 813 if (dest == NULL) { 814 return; 815 } 816 817 qemu_spin_lock(&dest->jmp_lock); 818 /* 819 * While acquiring the lock, the jump might have been removed if the 820 * destination TB was invalidated; check again. 821 */ 822 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 823 if (ptr_locked != ptr) { 824 qemu_spin_unlock(&dest->jmp_lock); 825 /* 826 * The only possibility is that the jump was unlinked via 827 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 828 * because we set the LSB above. 829 */ 830 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 831 return; 832 } 833 /* 834 * We first acquired the lock, and since the destination pointer matches, 835 * we know for sure that @orig is in the jmp list. 836 */ 837 pprev = &dest->jmp_list_head; 838 TB_FOR_EACH_JMP(dest, tb, n) { 839 if (tb == orig && n == n_orig) { 840 *pprev = tb->jmp_list_next[n]; 841 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 842 qemu_spin_unlock(&dest->jmp_lock); 843 return; 844 } 845 pprev = &tb->jmp_list_next[n]; 846 } 847 g_assert_not_reached(); 848 } 849 850 /* 851 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 852 */ 853 void tb_reset_jump(TranslationBlock *tb, int n) 854 { 855 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 856 tb_set_jmp_target(tb, n, addr); 857 } 858 859 /* remove any jumps to the TB */ 860 static inline void tb_jmp_unlink(TranslationBlock *dest) 861 { 862 TranslationBlock *tb; 863 int n; 864 865 qemu_spin_lock(&dest->jmp_lock); 866 867 TB_FOR_EACH_JMP(dest, tb, n) { 868 tb_reset_jump(tb, n); 869 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 870 /* No need to clear the list entry; setting the dest ptr is enough */ 871 } 872 dest->jmp_list_head = (uintptr_t)NULL; 873 874 qemu_spin_unlock(&dest->jmp_lock); 875 } 876 877 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 878 { 879 CPUState *cpu; 880 881 if (tb_cflags(tb) & CF_PCREL) { 882 /* A TB may be at any virtual address */ 883 CPU_FOREACH(cpu) { 884 tcg_flush_jmp_cache(cpu); 885 } 886 } else { 887 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 888 889 CPU_FOREACH(cpu) { 890 CPUJumpCache *jc = cpu->tb_jmp_cache; 891 892 if (qatomic_read(&jc->array[h].tb) == tb) { 893 qatomic_set(&jc->array[h].tb, NULL); 894 } 895 } 896 } 897 } 898 899 /* 900 * In user-mode, call with mmap_lock held. 901 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 902 * locks held. 903 */ 904 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 905 { 906 uint32_t h; 907 tb_page_addr_t phys_pc; 908 uint32_t orig_cflags = tb_cflags(tb); 909 910 assert_memory_lock(); 911 912 /* make sure no further incoming jumps will be chained to this TB */ 913 qemu_spin_lock(&tb->jmp_lock); 914 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 915 qemu_spin_unlock(&tb->jmp_lock); 916 917 /* remove the TB from the hash list */ 918 phys_pc = tb_page_addr0(tb); 919 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 920 tb->flags, tb->cs_base, orig_cflags); 921 if (!qht_remove(&tb_ctx.htable, tb, h)) { 922 return; 923 } 924 925 /* remove the TB from the page list */ 926 if (rm_from_page_list) { 927 tb_remove(tb); 928 } 929 930 /* remove the TB from the hash list */ 931 tb_jmp_cache_inval_tb(tb); 932 933 /* suppress this TB from the two jump lists */ 934 tb_remove_from_jmp_list(tb, 0); 935 tb_remove_from_jmp_list(tb, 1); 936 937 /* suppress any remaining jumps to this TB */ 938 tb_jmp_unlink(tb); 939 940 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 941 tb_ctx.tb_phys_invalidate_count + 1); 942 } 943 944 static void tb_phys_invalidate__locked(TranslationBlock *tb) 945 { 946 qemu_thread_jit_write(); 947 do_tb_phys_invalidate(tb, true); 948 qemu_thread_jit_execute(); 949 } 950 951 /* 952 * Invalidate one TB. 953 * Called with mmap_lock held in user-mode. 954 */ 955 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 956 { 957 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 958 tb_lock_pages(tb); 959 do_tb_phys_invalidate(tb, true); 960 tb_unlock_pages(tb); 961 } else { 962 do_tb_phys_invalidate(tb, false); 963 } 964 } 965 966 /* 967 * Add a new TB and link it to the physical page tables. 968 * Called with mmap_lock held for user-mode emulation. 969 * 970 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 971 * Note that in !user-mode, another thread might have already added a TB 972 * for the same block of guest code that @tb corresponds to. In that case, 973 * the caller should discard the original @tb, and use instead the returned TB. 974 */ 975 TranslationBlock *tb_link_page(TranslationBlock *tb) 976 { 977 void *existing_tb = NULL; 978 uint32_t h; 979 980 assert_memory_lock(); 981 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 982 983 tb_record(tb); 984 985 /* add in the hash table */ 986 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc), 987 tb->flags, tb->cs_base, tb->cflags); 988 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 989 990 /* remove TB from the page(s) if we couldn't insert it */ 991 if (unlikely(existing_tb)) { 992 tb_remove(tb); 993 tb_unlock_pages(tb); 994 return existing_tb; 995 } 996 997 tb_unlock_pages(tb); 998 return tb; 999 } 1000 1001 #ifdef CONFIG_USER_ONLY 1002 /* 1003 * Invalidate all TBs which intersect with the target address range. 1004 * Called with mmap_lock held for user-mode emulation. 1005 * NOTE: this function must not be called while a TB is running. 1006 */ 1007 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1008 { 1009 TranslationBlock *tb; 1010 PageForEachNext n; 1011 1012 assert_memory_lock(); 1013 1014 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1015 tb_phys_invalidate__locked(tb); 1016 } 1017 } 1018 1019 /* 1020 * Invalidate all TBs which intersect with the target address page @addr. 1021 * Called with mmap_lock held for user-mode emulation 1022 * NOTE: this function must not be called while a TB is running. 1023 */ 1024 void tb_invalidate_phys_page(tb_page_addr_t addr) 1025 { 1026 tb_page_addr_t start, last; 1027 1028 start = addr & TARGET_PAGE_MASK; 1029 last = addr | ~TARGET_PAGE_MASK; 1030 tb_invalidate_phys_range(start, last); 1031 } 1032 1033 /* 1034 * Called with mmap_lock held. If pc is not 0 then it indicates the 1035 * host PC of the faulting store instruction that caused this invalidate. 1036 * Returns true if the caller needs to abort execution of the current 1037 * TB (because it was modified by this store and the guest CPU has 1038 * precise-SMC semantics). 1039 */ 1040 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1041 { 1042 TranslationBlock *current_tb; 1043 bool current_tb_modified; 1044 TranslationBlock *tb; 1045 PageForEachNext n; 1046 tb_page_addr_t last; 1047 1048 /* 1049 * Without precise smc semantics, or when outside of a TB, 1050 * we can skip to invalidate. 1051 */ 1052 #ifndef TARGET_HAS_PRECISE_SMC 1053 pc = 0; 1054 #endif 1055 if (!pc) { 1056 tb_invalidate_phys_page(addr); 1057 return false; 1058 } 1059 1060 assert_memory_lock(); 1061 current_tb = tcg_tb_lookup(pc); 1062 1063 last = addr | ~TARGET_PAGE_MASK; 1064 addr &= TARGET_PAGE_MASK; 1065 current_tb_modified = false; 1066 1067 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1068 if (current_tb == tb && 1069 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1070 /* 1071 * If we are modifying the current TB, we must stop its 1072 * execution. We could be more precise by checking that 1073 * the modification is after the current PC, but it would 1074 * require a specialized function to partially restore 1075 * the CPU state. 1076 */ 1077 current_tb_modified = true; 1078 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1079 } 1080 tb_phys_invalidate__locked(tb); 1081 } 1082 1083 if (current_tb_modified) { 1084 /* Force execution of one insn next time. */ 1085 CPUState *cpu = current_cpu; 1086 cpu->cflags_next_tb = 1087 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(current_cpu); 1088 return true; 1089 } 1090 return false; 1091 } 1092 #else 1093 /* 1094 * @p must be non-NULL. 1095 * Call with all @pages locked. 1096 */ 1097 static void 1098 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1099 PageDesc *p, tb_page_addr_t start, 1100 tb_page_addr_t last, 1101 uintptr_t retaddr) 1102 { 1103 TranslationBlock *tb; 1104 PageForEachNext n; 1105 #ifdef TARGET_HAS_PRECISE_SMC 1106 bool current_tb_modified = false; 1107 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1108 #endif /* TARGET_HAS_PRECISE_SMC */ 1109 1110 /* Range may not cross a page. */ 1111 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0); 1112 1113 /* 1114 * We remove all the TBs in the range [start, last]. 1115 * XXX: see if in some cases it could be faster to invalidate all the code 1116 */ 1117 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1118 tb_page_addr_t tb_start, tb_last; 1119 1120 /* NOTE: this is subtle as a TB may span two physical pages */ 1121 tb_start = tb_page_addr0(tb); 1122 tb_last = tb_start + tb->size - 1; 1123 if (n == 0) { 1124 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1125 } else { 1126 tb_start = tb_page_addr1(tb); 1127 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1128 } 1129 if (!(tb_last < start || tb_start > last)) { 1130 #ifdef TARGET_HAS_PRECISE_SMC 1131 if (current_tb == tb && 1132 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1133 /* 1134 * If we are modifying the current TB, we must stop 1135 * its execution. We could be more precise by checking 1136 * that the modification is after the current PC, but it 1137 * would require a specialized function to partially 1138 * restore the CPU state. 1139 */ 1140 current_tb_modified = true; 1141 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1142 } 1143 #endif /* TARGET_HAS_PRECISE_SMC */ 1144 tb_phys_invalidate__locked(tb); 1145 } 1146 } 1147 1148 /* if no code remaining, no need to continue to use slow writes */ 1149 if (!p->first_tb) { 1150 tlb_unprotect_code(start); 1151 } 1152 1153 #ifdef TARGET_HAS_PRECISE_SMC 1154 if (current_tb_modified) { 1155 page_collection_unlock(pages); 1156 /* Force execution of one insn next time. */ 1157 current_cpu->cflags_next_tb = 1158 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(current_cpu); 1159 mmap_unlock(); 1160 cpu_loop_exit_noexc(current_cpu); 1161 } 1162 #endif 1163 } 1164 1165 /* 1166 * Invalidate all TBs which intersect with the target physical 1167 * address page @addr. 1168 */ 1169 void tb_invalidate_phys_page(tb_page_addr_t addr) 1170 { 1171 struct page_collection *pages; 1172 tb_page_addr_t start, last; 1173 PageDesc *p; 1174 1175 p = page_find(addr >> TARGET_PAGE_BITS); 1176 if (p == NULL) { 1177 return; 1178 } 1179 1180 start = addr & TARGET_PAGE_MASK; 1181 last = addr | ~TARGET_PAGE_MASK; 1182 pages = page_collection_lock(start, last); 1183 tb_invalidate_phys_page_range__locked(pages, p, start, last, 0); 1184 page_collection_unlock(pages); 1185 } 1186 1187 /* 1188 * Invalidate all TBs which intersect with the target physical address range 1189 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1190 * 'is_cpu_write_access' should be true if called from a real cpu write 1191 * access: the virtual CPU will exit the current TB if code is modified inside 1192 * this TB. 1193 */ 1194 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1195 { 1196 struct page_collection *pages; 1197 tb_page_addr_t index, index_last; 1198 1199 pages = page_collection_lock(start, last); 1200 1201 index_last = last >> TARGET_PAGE_BITS; 1202 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1203 PageDesc *pd = page_find(index); 1204 tb_page_addr_t page_start, page_last; 1205 1206 if (pd == NULL) { 1207 continue; 1208 } 1209 assert_page_locked(pd); 1210 page_start = index << TARGET_PAGE_BITS; 1211 page_last = page_start | ~TARGET_PAGE_MASK; 1212 page_last = MIN(page_last, last); 1213 tb_invalidate_phys_page_range__locked(pages, pd, 1214 page_start, page_last, 0); 1215 } 1216 page_collection_unlock(pages); 1217 } 1218 1219 /* 1220 * Call with all @pages in the range [@start, @start + len[ locked. 1221 */ 1222 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1223 tb_page_addr_t start, 1224 unsigned len, uintptr_t ra) 1225 { 1226 PageDesc *p; 1227 1228 p = page_find(start >> TARGET_PAGE_BITS); 1229 if (!p) { 1230 return; 1231 } 1232 1233 assert_page_locked(p); 1234 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1235 } 1236 1237 /* 1238 * len must be <= 8 and start must be a multiple of len. 1239 * Called via softmmu_template.h when code areas are written to with 1240 * iothread mutex not held. 1241 */ 1242 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1243 unsigned size, 1244 uintptr_t retaddr) 1245 { 1246 struct page_collection *pages; 1247 1248 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1249 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1250 page_collection_unlock(pages); 1251 } 1252 1253 #endif /* CONFIG_USER_ONLY */ 1254