1 /* 2 * Translation Block Maintaince 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "exec/cputlb.h" 24 #include "exec/log.h" 25 #include "exec/exec-all.h" 26 #include "exec/tb-flush.h" 27 #include "exec/translate-all.h" 28 #include "sysemu/tcg.h" 29 #include "tcg/tcg.h" 30 #include "tb-hash.h" 31 #include "tb-context.h" 32 #include "internal.h" 33 34 35 /* List iterators for lists of tagged pointers in TranslationBlock. */ 36 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 37 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 38 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 39 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 40 41 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 42 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 43 44 static bool tb_cmp(const void *ap, const void *bp) 45 { 46 const TranslationBlock *a = ap; 47 const TranslationBlock *b = bp; 48 49 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 50 a->cs_base == b->cs_base && 51 a->flags == b->flags && 52 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 53 tb_page_addr0(a) == tb_page_addr0(b) && 54 tb_page_addr1(a) == tb_page_addr1(b)); 55 } 56 57 void tb_htable_init(void) 58 { 59 unsigned int mode = QHT_MODE_AUTO_RESIZE; 60 61 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 62 } 63 64 typedef struct PageDesc PageDesc; 65 66 #ifdef CONFIG_USER_ONLY 67 68 /* 69 * In user-mode page locks aren't used; mmap_lock is enough. 70 */ 71 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 72 73 static inline void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 74 PageDesc **ret_p2, tb_page_addr_t phys2, 75 bool alloc) 76 { 77 *ret_p1 = NULL; 78 *ret_p2 = NULL; 79 } 80 81 static inline void page_unlock(PageDesc *pd) { } 82 static inline void page_lock_tb(const TranslationBlock *tb) { } 83 static inline void page_unlock_tb(const TranslationBlock *tb) { } 84 85 /* 86 * For user-only, since we are protecting all of memory with a single lock, 87 * and because the two pages of a TranslationBlock are always contiguous, 88 * use a single data structure to record all TranslationBlocks. 89 */ 90 static IntervalTreeRoot tb_root; 91 92 static void tb_remove_all(void) 93 { 94 assert_memory_lock(); 95 memset(&tb_root, 0, sizeof(tb_root)); 96 } 97 98 /* Call with mmap_lock held. */ 99 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2) 100 { 101 target_ulong addr; 102 int flags; 103 104 assert_memory_lock(); 105 tb->itree.last = tb->itree.start + tb->size - 1; 106 107 /* translator_loop() must have made all TB pages non-writable */ 108 addr = tb_page_addr0(tb); 109 flags = page_get_flags(addr); 110 assert(!(flags & PAGE_WRITE)); 111 112 addr = tb_page_addr1(tb); 113 if (addr != -1) { 114 flags = page_get_flags(addr); 115 assert(!(flags & PAGE_WRITE)); 116 } 117 118 interval_tree_insert(&tb->itree, &tb_root); 119 } 120 121 /* Call with mmap_lock held. */ 122 static void tb_remove(TranslationBlock *tb) 123 { 124 assert_memory_lock(); 125 interval_tree_remove(&tb->itree, &tb_root); 126 } 127 128 /* TODO: For now, still shared with translate-all.c for system mode. */ 129 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 130 for (T = foreach_tb_first(start, last), \ 131 N = foreach_tb_next(T, start, last); \ 132 T != NULL; \ 133 T = N, N = foreach_tb_next(N, start, last)) 134 135 typedef TranslationBlock *PageForEachNext; 136 137 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 138 tb_page_addr_t last) 139 { 140 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 141 return n ? container_of(n, TranslationBlock, itree) : NULL; 142 } 143 144 static PageForEachNext foreach_tb_next(PageForEachNext tb, 145 tb_page_addr_t start, 146 tb_page_addr_t last) 147 { 148 IntervalTreeNode *n; 149 150 if (tb) { 151 n = interval_tree_iter_next(&tb->itree, start, last); 152 if (n) { 153 return container_of(n, TranslationBlock, itree); 154 } 155 } 156 return NULL; 157 } 158 159 #else 160 /* 161 * In system mode we want L1_MAP to be based on ram offsets. 162 */ 163 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 164 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 165 #else 166 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 167 #endif 168 169 /* Size of the L2 (and L3, etc) page tables. */ 170 #define V_L2_BITS 10 171 #define V_L2_SIZE (1 << V_L2_BITS) 172 173 /* 174 * L1 Mapping properties 175 */ 176 static int v_l1_size; 177 static int v_l1_shift; 178 static int v_l2_levels; 179 180 /* 181 * The bottom level has pointers to PageDesc, and is indexed by 182 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 183 */ 184 #define V_L1_MIN_BITS 4 185 #define V_L1_MAX_BITS (V_L2_BITS + 3) 186 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 187 188 static void *l1_map[V_L1_MAX_SIZE]; 189 190 struct PageDesc { 191 QemuSpin lock; 192 /* list of TBs intersecting this ram page */ 193 uintptr_t first_tb; 194 }; 195 196 void page_table_config_init(void) 197 { 198 uint32_t v_l1_bits; 199 200 assert(TARGET_PAGE_BITS); 201 /* The bits remaining after N lower levels of page tables. */ 202 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 203 if (v_l1_bits < V_L1_MIN_BITS) { 204 v_l1_bits += V_L2_BITS; 205 } 206 207 v_l1_size = 1 << v_l1_bits; 208 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 209 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 210 211 assert(v_l1_bits <= V_L1_MAX_BITS); 212 assert(v_l1_shift % V_L2_BITS == 0); 213 assert(v_l2_levels >= 0); 214 } 215 216 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 217 { 218 PageDesc *pd; 219 void **lp; 220 int i; 221 222 /* Level 1. Always allocated. */ 223 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 224 225 /* Level 2..N-1. */ 226 for (i = v_l2_levels; i > 0; i--) { 227 void **p = qatomic_rcu_read(lp); 228 229 if (p == NULL) { 230 void *existing; 231 232 if (!alloc) { 233 return NULL; 234 } 235 p = g_new0(void *, V_L2_SIZE); 236 existing = qatomic_cmpxchg(lp, NULL, p); 237 if (unlikely(existing)) { 238 g_free(p); 239 p = existing; 240 } 241 } 242 243 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 244 } 245 246 pd = qatomic_rcu_read(lp); 247 if (pd == NULL) { 248 void *existing; 249 250 if (!alloc) { 251 return NULL; 252 } 253 254 pd = g_new0(PageDesc, V_L2_SIZE); 255 for (int i = 0; i < V_L2_SIZE; i++) { 256 qemu_spin_init(&pd[i].lock); 257 } 258 259 existing = qatomic_cmpxchg(lp, NULL, pd); 260 if (unlikely(existing)) { 261 for (int i = 0; i < V_L2_SIZE; i++) { 262 qemu_spin_destroy(&pd[i].lock); 263 } 264 g_free(pd); 265 pd = existing; 266 } 267 } 268 269 return pd + (index & (V_L2_SIZE - 1)); 270 } 271 272 static inline PageDesc *page_find(tb_page_addr_t index) 273 { 274 return page_find_alloc(index, false); 275 } 276 277 /** 278 * struct page_entry - page descriptor entry 279 * @pd: pointer to the &struct PageDesc of the page this entry represents 280 * @index: page index of the page 281 * @locked: whether the page is locked 282 * 283 * This struct helps us keep track of the locked state of a page, without 284 * bloating &struct PageDesc. 285 * 286 * A page lock protects accesses to all fields of &struct PageDesc. 287 * 288 * See also: &struct page_collection. 289 */ 290 struct page_entry { 291 PageDesc *pd; 292 tb_page_addr_t index; 293 bool locked; 294 }; 295 296 /** 297 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 298 * @tree: Binary search tree (BST) of the pages, with key == page index 299 * @max: Pointer to the page in @tree with the highest page index 300 * 301 * To avoid deadlock we lock pages in ascending order of page index. 302 * When operating on a set of pages, we need to keep track of them so that 303 * we can lock them in order and also unlock them later. For this we collect 304 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 305 * @tree implementation we use does not provide an O(1) operation to obtain the 306 * highest-ranked element, we use @max to keep track of the inserted page 307 * with the highest index. This is valuable because if a page is not in 308 * the tree and its index is higher than @max's, then we can lock it 309 * without breaking the locking order rule. 310 * 311 * Note on naming: 'struct page_set' would be shorter, but we already have a few 312 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 313 * 314 * See also: page_collection_lock(). 315 */ 316 struct page_collection { 317 QTree *tree; 318 struct page_entry *max; 319 }; 320 321 typedef int PageForEachNext; 322 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 323 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 324 325 #ifdef CONFIG_DEBUG_TCG 326 327 static __thread GHashTable *ht_pages_locked_debug; 328 329 static void ht_pages_locked_debug_init(void) 330 { 331 if (ht_pages_locked_debug) { 332 return; 333 } 334 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 335 } 336 337 static bool page_is_locked(const PageDesc *pd) 338 { 339 PageDesc *found; 340 341 ht_pages_locked_debug_init(); 342 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 343 return !!found; 344 } 345 346 static void page_lock__debug(PageDesc *pd) 347 { 348 ht_pages_locked_debug_init(); 349 g_assert(!page_is_locked(pd)); 350 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 351 } 352 353 static void page_unlock__debug(const PageDesc *pd) 354 { 355 bool removed; 356 357 ht_pages_locked_debug_init(); 358 g_assert(page_is_locked(pd)); 359 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 360 g_assert(removed); 361 } 362 363 static void do_assert_page_locked(const PageDesc *pd, 364 const char *file, int line) 365 { 366 if (unlikely(!page_is_locked(pd))) { 367 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 368 pd, file, line); 369 abort(); 370 } 371 } 372 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 373 374 void assert_no_pages_locked(void) 375 { 376 ht_pages_locked_debug_init(); 377 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 378 } 379 380 #else /* !CONFIG_DEBUG_TCG */ 381 382 static inline void page_lock__debug(const PageDesc *pd) { } 383 static inline void page_unlock__debug(const PageDesc *pd) { } 384 static inline void assert_page_locked(const PageDesc *pd) { } 385 386 #endif /* CONFIG_DEBUG_TCG */ 387 388 static void page_lock(PageDesc *pd) 389 { 390 page_lock__debug(pd); 391 qemu_spin_lock(&pd->lock); 392 } 393 394 static void page_unlock(PageDesc *pd) 395 { 396 qemu_spin_unlock(&pd->lock); 397 page_unlock__debug(pd); 398 } 399 400 static inline struct page_entry * 401 page_entry_new(PageDesc *pd, tb_page_addr_t index) 402 { 403 struct page_entry *pe = g_malloc(sizeof(*pe)); 404 405 pe->index = index; 406 pe->pd = pd; 407 pe->locked = false; 408 return pe; 409 } 410 411 static void page_entry_destroy(gpointer p) 412 { 413 struct page_entry *pe = p; 414 415 g_assert(pe->locked); 416 page_unlock(pe->pd); 417 g_free(pe); 418 } 419 420 /* returns false on success */ 421 static bool page_entry_trylock(struct page_entry *pe) 422 { 423 bool busy; 424 425 busy = qemu_spin_trylock(&pe->pd->lock); 426 if (!busy) { 427 g_assert(!pe->locked); 428 pe->locked = true; 429 page_lock__debug(pe->pd); 430 } 431 return busy; 432 } 433 434 static void do_page_entry_lock(struct page_entry *pe) 435 { 436 page_lock(pe->pd); 437 g_assert(!pe->locked); 438 pe->locked = true; 439 } 440 441 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 442 { 443 struct page_entry *pe = value; 444 445 do_page_entry_lock(pe); 446 return FALSE; 447 } 448 449 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 450 { 451 struct page_entry *pe = value; 452 453 if (pe->locked) { 454 pe->locked = false; 455 page_unlock(pe->pd); 456 } 457 return FALSE; 458 } 459 460 /* 461 * Trylock a page, and if successful, add the page to a collection. 462 * Returns true ("busy") if the page could not be locked; false otherwise. 463 */ 464 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 465 { 466 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 467 struct page_entry *pe; 468 PageDesc *pd; 469 470 pe = q_tree_lookup(set->tree, &index); 471 if (pe) { 472 return false; 473 } 474 475 pd = page_find(index); 476 if (pd == NULL) { 477 return false; 478 } 479 480 pe = page_entry_new(pd, index); 481 q_tree_insert(set->tree, &pe->index, pe); 482 483 /* 484 * If this is either (1) the first insertion or (2) a page whose index 485 * is higher than any other so far, just lock the page and move on. 486 */ 487 if (set->max == NULL || pe->index > set->max->index) { 488 set->max = pe; 489 do_page_entry_lock(pe); 490 return false; 491 } 492 /* 493 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 494 * locks in order. 495 */ 496 return page_entry_trylock(pe); 497 } 498 499 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 500 { 501 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 502 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 503 504 if (a == b) { 505 return 0; 506 } else if (a < b) { 507 return -1; 508 } 509 return 1; 510 } 511 512 /* 513 * Lock a range of pages ([@start,@last]) as well as the pages of all 514 * intersecting TBs. 515 * Locking order: acquire locks in ascending order of page index. 516 */ 517 static struct page_collection *page_collection_lock(tb_page_addr_t start, 518 tb_page_addr_t last) 519 { 520 struct page_collection *set = g_malloc(sizeof(*set)); 521 tb_page_addr_t index; 522 PageDesc *pd; 523 524 start >>= TARGET_PAGE_BITS; 525 last >>= TARGET_PAGE_BITS; 526 g_assert(start <= last); 527 528 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 529 page_entry_destroy); 530 set->max = NULL; 531 assert_no_pages_locked(); 532 533 retry: 534 q_tree_foreach(set->tree, page_entry_lock, NULL); 535 536 for (index = start; index <= last; index++) { 537 TranslationBlock *tb; 538 PageForEachNext n; 539 540 pd = page_find(index); 541 if (pd == NULL) { 542 continue; 543 } 544 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 545 q_tree_foreach(set->tree, page_entry_unlock, NULL); 546 goto retry; 547 } 548 assert_page_locked(pd); 549 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 550 if (page_trylock_add(set, tb_page_addr0(tb)) || 551 (tb_page_addr1(tb) != -1 && 552 page_trylock_add(set, tb_page_addr1(tb)))) { 553 /* drop all locks, and reacquire in order */ 554 q_tree_foreach(set->tree, page_entry_unlock, NULL); 555 goto retry; 556 } 557 } 558 } 559 return set; 560 } 561 562 static void page_collection_unlock(struct page_collection *set) 563 { 564 /* entries are unlocked and freed via page_entry_destroy */ 565 q_tree_destroy(set->tree); 566 g_free(set); 567 } 568 569 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 570 static void tb_remove_all_1(int level, void **lp) 571 { 572 int i; 573 574 if (*lp == NULL) { 575 return; 576 } 577 if (level == 0) { 578 PageDesc *pd = *lp; 579 580 for (i = 0; i < V_L2_SIZE; ++i) { 581 page_lock(&pd[i]); 582 pd[i].first_tb = (uintptr_t)NULL; 583 page_unlock(&pd[i]); 584 } 585 } else { 586 void **pp = *lp; 587 588 for (i = 0; i < V_L2_SIZE; ++i) { 589 tb_remove_all_1(level - 1, pp + i); 590 } 591 } 592 } 593 594 static void tb_remove_all(void) 595 { 596 int i, l1_sz = v_l1_size; 597 598 for (i = 0; i < l1_sz; i++) { 599 tb_remove_all_1(v_l2_levels, l1_map + i); 600 } 601 } 602 603 /* 604 * Add the tb in the target page and protect it if necessary. 605 * Called with @p->lock held. 606 */ 607 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 608 unsigned int n) 609 { 610 bool page_already_protected; 611 612 assert_page_locked(p); 613 614 tb->page_next[n] = p->first_tb; 615 page_already_protected = p->first_tb != 0; 616 p->first_tb = (uintptr_t)tb | n; 617 618 /* 619 * If some code is already present, then the pages are already 620 * protected. So we handle the case where only the first TB is 621 * allocated in a physical page. 622 */ 623 if (!page_already_protected) { 624 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 625 } 626 } 627 628 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2) 629 { 630 tb_page_add(p1, tb, 0); 631 if (unlikely(p2)) { 632 tb_page_add(p2, tb, 1); 633 } 634 } 635 636 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 637 { 638 TranslationBlock *tb1; 639 uintptr_t *pprev; 640 PageForEachNext n1; 641 642 assert_page_locked(pd); 643 pprev = &pd->first_tb; 644 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 645 if (tb1 == tb) { 646 *pprev = tb1->page_next[n1]; 647 return; 648 } 649 pprev = &tb1->page_next[n1]; 650 } 651 g_assert_not_reached(); 652 } 653 654 static void tb_remove(TranslationBlock *tb) 655 { 656 PageDesc *pd; 657 658 pd = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 659 tb_page_remove(pd, tb); 660 if (unlikely(tb->page_addr[1] != -1)) { 661 pd = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 662 tb_page_remove(pd, tb); 663 } 664 } 665 666 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 667 PageDesc **ret_p2, tb_page_addr_t phys2, bool alloc) 668 { 669 PageDesc *p1, *p2; 670 tb_page_addr_t page1; 671 tb_page_addr_t page2; 672 673 assert_memory_lock(); 674 g_assert(phys1 != -1); 675 676 page1 = phys1 >> TARGET_PAGE_BITS; 677 page2 = phys2 >> TARGET_PAGE_BITS; 678 679 p1 = page_find_alloc(page1, alloc); 680 if (ret_p1) { 681 *ret_p1 = p1; 682 } 683 if (likely(phys2 == -1)) { 684 page_lock(p1); 685 return; 686 } else if (page1 == page2) { 687 page_lock(p1); 688 if (ret_p2) { 689 *ret_p2 = p1; 690 } 691 return; 692 } 693 p2 = page_find_alloc(page2, alloc); 694 if (ret_p2) { 695 *ret_p2 = p2; 696 } 697 if (page1 < page2) { 698 page_lock(p1); 699 page_lock(p2); 700 } else { 701 page_lock(p2); 702 page_lock(p1); 703 } 704 } 705 706 /* lock the page(s) of a TB in the correct acquisition order */ 707 static void page_lock_tb(const TranslationBlock *tb) 708 { 709 page_lock_pair(NULL, tb_page_addr0(tb), NULL, tb_page_addr1(tb), false); 710 } 711 712 static void page_unlock_tb(const TranslationBlock *tb) 713 { 714 PageDesc *p1 = page_find(tb_page_addr0(tb) >> TARGET_PAGE_BITS); 715 716 page_unlock(p1); 717 if (unlikely(tb_page_addr1(tb) != -1)) { 718 PageDesc *p2 = page_find(tb_page_addr1(tb) >> TARGET_PAGE_BITS); 719 720 if (p2 != p1) { 721 page_unlock(p2); 722 } 723 } 724 } 725 #endif /* CONFIG_USER_ONLY */ 726 727 /* flush all the translation blocks */ 728 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 729 { 730 bool did_flush = false; 731 732 mmap_lock(); 733 /* If it is already been done on request of another CPU, just retry. */ 734 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 735 goto done; 736 } 737 did_flush = true; 738 739 CPU_FOREACH(cpu) { 740 tcg_flush_jmp_cache(cpu); 741 } 742 743 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 744 tb_remove_all(); 745 746 tcg_region_reset_all(); 747 /* XXX: flush processor icache at this point if cache flush is expensive */ 748 qatomic_inc(&tb_ctx.tb_flush_count); 749 750 done: 751 mmap_unlock(); 752 if (did_flush) { 753 qemu_plugin_flush_cb(); 754 } 755 } 756 757 void tb_flush(CPUState *cpu) 758 { 759 if (tcg_enabled()) { 760 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); 761 762 if (cpu_in_serial_context(cpu)) { 763 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 764 } else { 765 async_safe_run_on_cpu(cpu, do_tb_flush, 766 RUN_ON_CPU_HOST_INT(tb_flush_count)); 767 } 768 } 769 } 770 771 /* remove @orig from its @n_orig-th jump list */ 772 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 773 { 774 uintptr_t ptr, ptr_locked; 775 TranslationBlock *dest; 776 TranslationBlock *tb; 777 uintptr_t *pprev; 778 int n; 779 780 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 781 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 782 dest = (TranslationBlock *)(ptr & ~1); 783 if (dest == NULL) { 784 return; 785 } 786 787 qemu_spin_lock(&dest->jmp_lock); 788 /* 789 * While acquiring the lock, the jump might have been removed if the 790 * destination TB was invalidated; check again. 791 */ 792 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 793 if (ptr_locked != ptr) { 794 qemu_spin_unlock(&dest->jmp_lock); 795 /* 796 * The only possibility is that the jump was unlinked via 797 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 798 * because we set the LSB above. 799 */ 800 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 801 return; 802 } 803 /* 804 * We first acquired the lock, and since the destination pointer matches, 805 * we know for sure that @orig is in the jmp list. 806 */ 807 pprev = &dest->jmp_list_head; 808 TB_FOR_EACH_JMP(dest, tb, n) { 809 if (tb == orig && n == n_orig) { 810 *pprev = tb->jmp_list_next[n]; 811 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 812 qemu_spin_unlock(&dest->jmp_lock); 813 return; 814 } 815 pprev = &tb->jmp_list_next[n]; 816 } 817 g_assert_not_reached(); 818 } 819 820 /* 821 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 822 */ 823 void tb_reset_jump(TranslationBlock *tb, int n) 824 { 825 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 826 tb_set_jmp_target(tb, n, addr); 827 } 828 829 /* remove any jumps to the TB */ 830 static inline void tb_jmp_unlink(TranslationBlock *dest) 831 { 832 TranslationBlock *tb; 833 int n; 834 835 qemu_spin_lock(&dest->jmp_lock); 836 837 TB_FOR_EACH_JMP(dest, tb, n) { 838 tb_reset_jump(tb, n); 839 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 840 /* No need to clear the list entry; setting the dest ptr is enough */ 841 } 842 dest->jmp_list_head = (uintptr_t)NULL; 843 844 qemu_spin_unlock(&dest->jmp_lock); 845 } 846 847 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 848 { 849 CPUState *cpu; 850 851 if (tb_cflags(tb) & CF_PCREL) { 852 /* A TB may be at any virtual address */ 853 CPU_FOREACH(cpu) { 854 tcg_flush_jmp_cache(cpu); 855 } 856 } else { 857 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 858 859 CPU_FOREACH(cpu) { 860 CPUJumpCache *jc = cpu->tb_jmp_cache; 861 862 if (qatomic_read(&jc->array[h].tb) == tb) { 863 qatomic_set(&jc->array[h].tb, NULL); 864 } 865 } 866 } 867 } 868 869 /* 870 * In user-mode, call with mmap_lock held. 871 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 872 * locks held. 873 */ 874 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 875 { 876 uint32_t h; 877 tb_page_addr_t phys_pc; 878 uint32_t orig_cflags = tb_cflags(tb); 879 880 assert_memory_lock(); 881 882 /* make sure no further incoming jumps will be chained to this TB */ 883 qemu_spin_lock(&tb->jmp_lock); 884 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 885 qemu_spin_unlock(&tb->jmp_lock); 886 887 /* remove the TB from the hash list */ 888 phys_pc = tb_page_addr0(tb); 889 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 890 tb->flags, tb->cs_base, orig_cflags); 891 if (!qht_remove(&tb_ctx.htable, tb, h)) { 892 return; 893 } 894 895 /* remove the TB from the page list */ 896 if (rm_from_page_list) { 897 tb_remove(tb); 898 } 899 900 /* remove the TB from the hash list */ 901 tb_jmp_cache_inval_tb(tb); 902 903 /* suppress this TB from the two jump lists */ 904 tb_remove_from_jmp_list(tb, 0); 905 tb_remove_from_jmp_list(tb, 1); 906 907 /* suppress any remaining jumps to this TB */ 908 tb_jmp_unlink(tb); 909 910 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 911 tb_ctx.tb_phys_invalidate_count + 1); 912 } 913 914 static void tb_phys_invalidate__locked(TranslationBlock *tb) 915 { 916 qemu_thread_jit_write(); 917 do_tb_phys_invalidate(tb, true); 918 qemu_thread_jit_execute(); 919 } 920 921 /* 922 * Invalidate one TB. 923 * Called with mmap_lock held in user-mode. 924 */ 925 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 926 { 927 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 928 page_lock_tb(tb); 929 do_tb_phys_invalidate(tb, true); 930 page_unlock_tb(tb); 931 } else { 932 do_tb_phys_invalidate(tb, false); 933 } 934 } 935 936 /* 937 * Add a new TB and link it to the physical page tables. phys_page2 is 938 * (-1) to indicate that only one page contains the TB. 939 * 940 * Called with mmap_lock held for user-mode emulation. 941 * 942 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 943 * Note that in !user-mode, another thread might have already added a TB 944 * for the same block of guest code that @tb corresponds to. In that case, 945 * the caller should discard the original @tb, and use instead the returned TB. 946 */ 947 TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 948 tb_page_addr_t phys_page2) 949 { 950 PageDesc *p; 951 PageDesc *p2 = NULL; 952 void *existing_tb = NULL; 953 uint32_t h; 954 955 assert_memory_lock(); 956 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 957 958 /* 959 * Add the TB to the page list, acquiring first the pages's locks. 960 * We keep the locks held until after inserting the TB in the hash table, 961 * so that if the insertion fails we know for sure that the TBs are still 962 * in the page descriptors. 963 * Note that inserting into the hash table first isn't an option, since 964 * we can only insert TBs that are fully initialized. 965 */ 966 page_lock_pair(&p, phys_pc, &p2, phys_page2, true); 967 tb_record(tb, p, p2); 968 969 /* add in the hash table */ 970 h = tb_hash_func(phys_pc, (tb->cflags & CF_PCREL ? 0 : tb->pc), 971 tb->flags, tb->cs_base, tb->cflags); 972 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 973 974 /* remove TB from the page(s) if we couldn't insert it */ 975 if (unlikely(existing_tb)) { 976 tb_remove(tb); 977 tb = existing_tb; 978 } 979 980 if (p2 && p2 != p) { 981 page_unlock(p2); 982 } 983 page_unlock(p); 984 return tb; 985 } 986 987 #ifdef CONFIG_USER_ONLY 988 /* 989 * Invalidate all TBs which intersect with the target address range. 990 * Called with mmap_lock held for user-mode emulation. 991 * NOTE: this function must not be called while a TB is running. 992 */ 993 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 994 { 995 TranslationBlock *tb; 996 PageForEachNext n; 997 998 assert_memory_lock(); 999 1000 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1001 tb_phys_invalidate__locked(tb); 1002 } 1003 } 1004 1005 /* 1006 * Invalidate all TBs which intersect with the target address page @addr. 1007 * Called with mmap_lock held for user-mode emulation 1008 * NOTE: this function must not be called while a TB is running. 1009 */ 1010 void tb_invalidate_phys_page(tb_page_addr_t addr) 1011 { 1012 tb_page_addr_t start, last; 1013 1014 start = addr & TARGET_PAGE_MASK; 1015 last = addr | ~TARGET_PAGE_MASK; 1016 tb_invalidate_phys_range(start, last); 1017 } 1018 1019 /* 1020 * Called with mmap_lock held. If pc is not 0 then it indicates the 1021 * host PC of the faulting store instruction that caused this invalidate. 1022 * Returns true if the caller needs to abort execution of the current 1023 * TB (because it was modified by this store and the guest CPU has 1024 * precise-SMC semantics). 1025 */ 1026 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1027 { 1028 TranslationBlock *current_tb; 1029 bool current_tb_modified; 1030 TranslationBlock *tb; 1031 PageForEachNext n; 1032 tb_page_addr_t last; 1033 1034 /* 1035 * Without precise smc semantics, or when outside of a TB, 1036 * we can skip to invalidate. 1037 */ 1038 #ifndef TARGET_HAS_PRECISE_SMC 1039 pc = 0; 1040 #endif 1041 if (!pc) { 1042 tb_invalidate_phys_page(addr); 1043 return false; 1044 } 1045 1046 assert_memory_lock(); 1047 current_tb = tcg_tb_lookup(pc); 1048 1049 last = addr | ~TARGET_PAGE_MASK; 1050 addr &= TARGET_PAGE_MASK; 1051 current_tb_modified = false; 1052 1053 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1054 if (current_tb == tb && 1055 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1056 /* 1057 * If we are modifying the current TB, we must stop its 1058 * execution. We could be more precise by checking that 1059 * the modification is after the current PC, but it would 1060 * require a specialized function to partially restore 1061 * the CPU state. 1062 */ 1063 current_tb_modified = true; 1064 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1065 } 1066 tb_phys_invalidate__locked(tb); 1067 } 1068 1069 if (current_tb_modified) { 1070 /* Force execution of one insn next time. */ 1071 CPUState *cpu = current_cpu; 1072 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1073 return true; 1074 } 1075 return false; 1076 } 1077 #else 1078 /* 1079 * @p must be non-NULL. 1080 * Call with all @pages locked. 1081 */ 1082 static void 1083 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1084 PageDesc *p, tb_page_addr_t start, 1085 tb_page_addr_t last, 1086 uintptr_t retaddr) 1087 { 1088 TranslationBlock *tb; 1089 PageForEachNext n; 1090 #ifdef TARGET_HAS_PRECISE_SMC 1091 bool current_tb_modified = false; 1092 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1093 #endif /* TARGET_HAS_PRECISE_SMC */ 1094 1095 /* 1096 * We remove all the TBs in the range [start, last]. 1097 * XXX: see if in some cases it could be faster to invalidate all the code 1098 */ 1099 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1100 tb_page_addr_t tb_start, tb_last; 1101 1102 /* NOTE: this is subtle as a TB may span two physical pages */ 1103 tb_start = tb_page_addr0(tb); 1104 tb_last = tb_start + tb->size - 1; 1105 if (n == 0) { 1106 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1107 } else { 1108 tb_start = tb_page_addr1(tb); 1109 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1110 } 1111 if (!(tb_last < start || tb_start > last)) { 1112 #ifdef TARGET_HAS_PRECISE_SMC 1113 if (current_tb == tb && 1114 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1115 /* 1116 * If we are modifying the current TB, we must stop 1117 * its execution. We could be more precise by checking 1118 * that the modification is after the current PC, but it 1119 * would require a specialized function to partially 1120 * restore the CPU state. 1121 */ 1122 current_tb_modified = true; 1123 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1124 } 1125 #endif /* TARGET_HAS_PRECISE_SMC */ 1126 tb_phys_invalidate__locked(tb); 1127 } 1128 } 1129 1130 /* if no code remaining, no need to continue to use slow writes */ 1131 if (!p->first_tb) { 1132 tlb_unprotect_code(start); 1133 } 1134 1135 #ifdef TARGET_HAS_PRECISE_SMC 1136 if (current_tb_modified) { 1137 page_collection_unlock(pages); 1138 /* Force execution of one insn next time. */ 1139 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1140 mmap_unlock(); 1141 cpu_loop_exit_noexc(current_cpu); 1142 } 1143 #endif 1144 } 1145 1146 /* 1147 * Invalidate all TBs which intersect with the target physical 1148 * address page @addr. 1149 */ 1150 void tb_invalidate_phys_page(tb_page_addr_t addr) 1151 { 1152 struct page_collection *pages; 1153 tb_page_addr_t start, last; 1154 PageDesc *p; 1155 1156 p = page_find(addr >> TARGET_PAGE_BITS); 1157 if (p == NULL) { 1158 return; 1159 } 1160 1161 start = addr & TARGET_PAGE_MASK; 1162 last = addr | ~TARGET_PAGE_MASK; 1163 pages = page_collection_lock(start, last); 1164 tb_invalidate_phys_page_range__locked(pages, p, start, last, 0); 1165 page_collection_unlock(pages); 1166 } 1167 1168 /* 1169 * Invalidate all TBs which intersect with the target physical address range 1170 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1171 * 'is_cpu_write_access' should be true if called from a real cpu write 1172 * access: the virtual CPU will exit the current TB if code is modified inside 1173 * this TB. 1174 */ 1175 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1176 { 1177 struct page_collection *pages; 1178 tb_page_addr_t index, index_last; 1179 1180 pages = page_collection_lock(start, last); 1181 1182 index_last = last >> TARGET_PAGE_BITS; 1183 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1184 PageDesc *pd = page_find(index); 1185 tb_page_addr_t bound; 1186 1187 if (pd == NULL) { 1188 continue; 1189 } 1190 assert_page_locked(pd); 1191 bound = (index << TARGET_PAGE_BITS) | ~TARGET_PAGE_MASK; 1192 bound = MIN(bound, last); 1193 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 1194 } 1195 page_collection_unlock(pages); 1196 } 1197 1198 /* 1199 * Call with all @pages in the range [@start, @start + len[ locked. 1200 */ 1201 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1202 tb_page_addr_t start, 1203 unsigned len, uintptr_t ra) 1204 { 1205 PageDesc *p; 1206 1207 p = page_find(start >> TARGET_PAGE_BITS); 1208 if (!p) { 1209 return; 1210 } 1211 1212 assert_page_locked(p); 1213 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1214 } 1215 1216 /* 1217 * len must be <= 8 and start must be a multiple of len. 1218 * Called via softmmu_template.h when code areas are written to with 1219 * iothread mutex not held. 1220 */ 1221 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1222 unsigned size, 1223 uintptr_t retaddr) 1224 { 1225 struct page_collection *pages; 1226 1227 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1228 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1229 page_collection_unlock(pages); 1230 } 1231 1232 #endif /* CONFIG_USER_ONLY */ 1233