1 /* 2 * plugin-gen.c - TCG-related bits of plugin infrastructure 3 * 4 * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> 5 * License: GNU GPL, version 2 or later. 6 * See the COPYING file in the top-level directory. 7 * 8 * We support instrumentation at an instruction granularity. That is, 9 * if a plugin wants to instrument the memory accesses performed by a 10 * particular instruction, it can just do that instead of instrumenting 11 * all memory accesses. Thus, in order to do this we first have to 12 * translate a TB, so that plugins can decide what/where to instrument. 13 * 14 * Injecting the desired instrumentation could be done with a second 15 * translation pass that combined the instrumentation requests, but that 16 * would be ugly and inefficient since we would decode the guest code twice. 17 * Instead, during TB translation we add "empty" instrumentation calls for all 18 * possible instrumentation events, and then once we collect the instrumentation 19 * requests from plugins, we either "fill in" those empty events or remove them 20 * if they have no requests. 21 * 22 * When "filling in" an event we first copy the empty callback's TCG ops. This 23 * might seem unnecessary, but it is done to support an arbitrary number 24 * of callbacks per event. Take for example a regular instruction callback. 25 * We first generate a callback to an empty helper function. Then, if two 26 * plugins register one callback each for this instruction, we make two copies 27 * of the TCG ops generated for the empty callback, substituting the function 28 * pointer that points to the empty helper function with the plugins' desired 29 * callback functions. After that we remove the empty callback's ops. 30 * 31 * Note that the location in TCGOp.args[] of the pointer to a helper function 32 * varies across different guest and host architectures. Instead of duplicating 33 * the logic that figures this out, we rely on the fact that the empty 34 * callbacks point to empty functions that are unique pointers in the program. 35 * Thus, to find the right location we just have to look for a match in 36 * TCGOp.args[]. This is the main reason why we first copy an empty callback's 37 * TCG ops and then fill them in; regardless of whether we have one or many 38 * callbacks for that event, the logic to add all of them is the same. 39 * 40 * When generating more than one callback per event, we make a small 41 * optimization to avoid generating redundant operations. For instance, for the 42 * second and all subsequent callbacks of an event, we do not need to reload the 43 * CPU's index into a TCG temp, since the first callback did it already. 44 */ 45 #include "qemu/osdep.h" 46 #include "qemu/plugin.h" 47 #include "cpu.h" 48 #include "tcg/tcg.h" 49 #include "tcg/tcg-temp-internal.h" 50 #include "tcg/tcg-op.h" 51 #include "exec/exec-all.h" 52 #include "exec/plugin-gen.h" 53 #include "exec/translator.h" 54 #include "exec/helper-proto-common.h" 55 56 #define HELPER_H "accel/tcg/plugin-helpers.h" 57 #include "exec/helper-info.c.inc" 58 #undef HELPER_H 59 60 #ifdef CONFIG_SOFTMMU 61 # define CONFIG_SOFTMMU_GATE 1 62 #else 63 # define CONFIG_SOFTMMU_GATE 0 64 #endif 65 66 /* 67 * plugin_cb_start TCG op args[]: 68 * 0: enum plugin_gen_from 69 * 1: enum plugin_gen_cb 70 * 2: set to 1 for mem callback that is a write, 0 otherwise. 71 */ 72 73 enum plugin_gen_from { 74 PLUGIN_GEN_FROM_TB, 75 PLUGIN_GEN_FROM_INSN, 76 PLUGIN_GEN_FROM_MEM, 77 PLUGIN_GEN_AFTER_INSN, 78 PLUGIN_GEN_N_FROMS, 79 }; 80 81 enum plugin_gen_cb { 82 PLUGIN_GEN_CB_UDATA, 83 PLUGIN_GEN_CB_UDATA_R, 84 PLUGIN_GEN_CB_INLINE, 85 PLUGIN_GEN_CB_MEM, 86 PLUGIN_GEN_ENABLE_MEM_HELPER, 87 PLUGIN_GEN_DISABLE_MEM_HELPER, 88 PLUGIN_GEN_N_CBS, 89 }; 90 91 /* 92 * These helpers are stubs that get dynamically switched out for calls 93 * direct to the plugin if they are subscribed to. 94 */ 95 void HELPER(plugin_vcpu_udata_cb_no_wg)(uint32_t cpu_index, void *udata) 96 { } 97 98 void HELPER(plugin_vcpu_udata_cb_no_rwg)(uint32_t cpu_index, void *udata) 99 { } 100 101 void HELPER(plugin_vcpu_mem_cb)(unsigned int vcpu_index, 102 qemu_plugin_meminfo_t info, uint64_t vaddr, 103 void *userdata) 104 { } 105 106 static void gen_empty_udata_cb(void (*gen_helper)(TCGv_i32, TCGv_ptr)) 107 { 108 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 109 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 110 111 tcg_gen_movi_ptr(udata, 0); 112 tcg_gen_ld_i32(cpu_index, tcg_env, 113 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 114 gen_helper(cpu_index, udata); 115 116 tcg_temp_free_ptr(udata); 117 tcg_temp_free_i32(cpu_index); 118 } 119 120 static void gen_empty_udata_cb_no_wg(void) 121 { 122 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_wg); 123 } 124 125 static void gen_empty_udata_cb_no_rwg(void) 126 { 127 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_rwg); 128 } 129 130 /* 131 * For now we only support addi_i64. 132 * When we support more ops, we can generate one empty inline cb for each. 133 */ 134 static void gen_empty_inline_cb(void) 135 { 136 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 137 TCGv_ptr cpu_index_as_ptr = tcg_temp_ebb_new_ptr(); 138 TCGv_i64 val = tcg_temp_ebb_new_i64(); 139 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 140 141 tcg_gen_ld_i32(cpu_index, tcg_env, 142 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 143 /* second operand will be replaced by immediate value */ 144 tcg_gen_mul_i32(cpu_index, cpu_index, cpu_index); 145 tcg_gen_ext_i32_ptr(cpu_index_as_ptr, cpu_index); 146 147 tcg_gen_movi_ptr(ptr, 0); 148 tcg_gen_add_ptr(ptr, ptr, cpu_index_as_ptr); 149 tcg_gen_ld_i64(val, ptr, 0); 150 /* second operand will be replaced by immediate value */ 151 tcg_gen_add_i64(val, val, val); 152 153 tcg_gen_st_i64(val, ptr, 0); 154 tcg_temp_free_ptr(ptr); 155 tcg_temp_free_i64(val); 156 tcg_temp_free_ptr(cpu_index_as_ptr); 157 tcg_temp_free_i32(cpu_index); 158 } 159 160 static void gen_empty_mem_cb(TCGv_i64 addr, uint32_t info) 161 { 162 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 163 TCGv_i32 meminfo = tcg_temp_ebb_new_i32(); 164 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 165 166 tcg_gen_movi_i32(meminfo, info); 167 tcg_gen_movi_ptr(udata, 0); 168 tcg_gen_ld_i32(cpu_index, tcg_env, 169 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 170 171 gen_helper_plugin_vcpu_mem_cb(cpu_index, meminfo, addr, udata); 172 173 tcg_temp_free_ptr(udata); 174 tcg_temp_free_i32(meminfo); 175 tcg_temp_free_i32(cpu_index); 176 } 177 178 /* 179 * Share the same function for enable/disable. When enabling, the NULL 180 * pointer will be overwritten later. 181 */ 182 static void gen_empty_mem_helper(void) 183 { 184 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 185 186 tcg_gen_movi_ptr(ptr, 0); 187 tcg_gen_st_ptr(ptr, tcg_env, offsetof(CPUState, plugin_mem_cbs) - 188 offsetof(ArchCPU, env)); 189 tcg_temp_free_ptr(ptr); 190 } 191 192 static void gen_plugin_cb_start(enum plugin_gen_from from, 193 enum plugin_gen_cb type, unsigned wr) 194 { 195 tcg_gen_plugin_cb_start(from, type, wr); 196 } 197 198 static void gen_wrapped(enum plugin_gen_from from, 199 enum plugin_gen_cb type, void (*func)(void)) 200 { 201 gen_plugin_cb_start(from, type, 0); 202 func(); 203 tcg_gen_plugin_cb_end(); 204 } 205 206 static void plugin_gen_empty_callback(enum plugin_gen_from from) 207 { 208 switch (from) { 209 case PLUGIN_GEN_AFTER_INSN: 210 gen_wrapped(from, PLUGIN_GEN_DISABLE_MEM_HELPER, 211 gen_empty_mem_helper); 212 break; 213 case PLUGIN_GEN_FROM_INSN: 214 /* 215 * Note: plugin_gen_inject() relies on ENABLE_MEM_HELPER being 216 * the first callback of an instruction 217 */ 218 gen_wrapped(from, PLUGIN_GEN_ENABLE_MEM_HELPER, 219 gen_empty_mem_helper); 220 /* fall through */ 221 case PLUGIN_GEN_FROM_TB: 222 gen_wrapped(from, PLUGIN_GEN_CB_UDATA, gen_empty_udata_cb_no_rwg); 223 gen_wrapped(from, PLUGIN_GEN_CB_UDATA_R, gen_empty_udata_cb_no_wg); 224 gen_wrapped(from, PLUGIN_GEN_CB_INLINE, gen_empty_inline_cb); 225 break; 226 default: 227 g_assert_not_reached(); 228 } 229 } 230 231 void plugin_gen_empty_mem_callback(TCGv_i64 addr, uint32_t info) 232 { 233 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 234 235 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_MEM, rw); 236 gen_empty_mem_cb(addr, info); 237 tcg_gen_plugin_cb_end(); 238 239 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_INLINE, rw); 240 gen_empty_inline_cb(); 241 tcg_gen_plugin_cb_end(); 242 } 243 244 static TCGOp *find_op(TCGOp *op, TCGOpcode opc) 245 { 246 while (op) { 247 if (op->opc == opc) { 248 return op; 249 } 250 op = QTAILQ_NEXT(op, link); 251 } 252 return NULL; 253 } 254 255 static TCGOp *rm_ops_range(TCGOp *begin, TCGOp *end) 256 { 257 TCGOp *ret = QTAILQ_NEXT(end, link); 258 259 QTAILQ_REMOVE_SEVERAL(&tcg_ctx->ops, begin, end, link); 260 return ret; 261 } 262 263 /* remove all ops until (and including) plugin_cb_end */ 264 static TCGOp *rm_ops(TCGOp *op) 265 { 266 TCGOp *end_op = find_op(op, INDEX_op_plugin_cb_end); 267 268 tcg_debug_assert(end_op); 269 return rm_ops_range(op, end_op); 270 } 271 272 static TCGOp *copy_op_nocheck(TCGOp **begin_op, TCGOp *op) 273 { 274 TCGOp *old_op = QTAILQ_NEXT(*begin_op, link); 275 unsigned nargs = old_op->nargs; 276 277 *begin_op = old_op; 278 op = tcg_op_insert_after(tcg_ctx, op, old_op->opc, nargs); 279 memcpy(op->args, old_op->args, sizeof(op->args[0]) * nargs); 280 281 return op; 282 } 283 284 static TCGOp *copy_op(TCGOp **begin_op, TCGOp *op, TCGOpcode opc) 285 { 286 op = copy_op_nocheck(begin_op, op); 287 tcg_debug_assert((*begin_op)->opc == opc); 288 return op; 289 } 290 291 static TCGOp *copy_const_ptr(TCGOp **begin_op, TCGOp *op, void *ptr) 292 { 293 if (UINTPTR_MAX == UINT32_MAX) { 294 /* mov_i32 */ 295 op = copy_op(begin_op, op, INDEX_op_mov_i32); 296 op->args[1] = tcgv_i32_arg(tcg_constant_i32((uintptr_t)ptr)); 297 } else { 298 /* mov_i64 */ 299 op = copy_op(begin_op, op, INDEX_op_mov_i64); 300 op->args[1] = tcgv_i64_arg(tcg_constant_i64((uintptr_t)ptr)); 301 } 302 return op; 303 } 304 305 static TCGOp *copy_ld_i32(TCGOp **begin_op, TCGOp *op) 306 { 307 return copy_op(begin_op, op, INDEX_op_ld_i32); 308 } 309 310 static TCGOp *copy_ext_i32_ptr(TCGOp **begin_op, TCGOp *op) 311 { 312 if (UINTPTR_MAX == UINT32_MAX) { 313 op = copy_op(begin_op, op, INDEX_op_mov_i32); 314 } else { 315 op = copy_op(begin_op, op, INDEX_op_ext_i32_i64); 316 } 317 return op; 318 } 319 320 static TCGOp *copy_add_ptr(TCGOp **begin_op, TCGOp *op) 321 { 322 if (UINTPTR_MAX == UINT32_MAX) { 323 op = copy_op(begin_op, op, INDEX_op_add_i32); 324 } else { 325 op = copy_op(begin_op, op, INDEX_op_add_i64); 326 } 327 return op; 328 } 329 330 static TCGOp *copy_ld_i64(TCGOp **begin_op, TCGOp *op) 331 { 332 if (TCG_TARGET_REG_BITS == 32) { 333 /* 2x ld_i32 */ 334 op = copy_ld_i32(begin_op, op); 335 op = copy_ld_i32(begin_op, op); 336 } else { 337 /* ld_i64 */ 338 op = copy_op(begin_op, op, INDEX_op_ld_i64); 339 } 340 return op; 341 } 342 343 static TCGOp *copy_st_i64(TCGOp **begin_op, TCGOp *op) 344 { 345 if (TCG_TARGET_REG_BITS == 32) { 346 /* 2x st_i32 */ 347 op = copy_op(begin_op, op, INDEX_op_st_i32); 348 op = copy_op(begin_op, op, INDEX_op_st_i32); 349 } else { 350 /* st_i64 */ 351 op = copy_op(begin_op, op, INDEX_op_st_i64); 352 } 353 return op; 354 } 355 356 static TCGOp *copy_add_i64(TCGOp **begin_op, TCGOp *op, uint64_t v) 357 { 358 if (TCG_TARGET_REG_BITS == 32) { 359 /* all 32-bit backends must implement add2_i32 */ 360 g_assert(TCG_TARGET_HAS_add2_i32); 361 op = copy_op(begin_op, op, INDEX_op_add2_i32); 362 op->args[4] = tcgv_i32_arg(tcg_constant_i32(v)); 363 op->args[5] = tcgv_i32_arg(tcg_constant_i32(v >> 32)); 364 } else { 365 op = copy_op(begin_op, op, INDEX_op_add_i64); 366 op->args[2] = tcgv_i64_arg(tcg_constant_i64(v)); 367 } 368 return op; 369 } 370 371 static TCGOp *copy_mul_i32(TCGOp **begin_op, TCGOp *op, uint32_t v) 372 { 373 op = copy_op(begin_op, op, INDEX_op_mul_i32); 374 op->args[2] = tcgv_i32_arg(tcg_constant_i32(v)); 375 return op; 376 } 377 378 static TCGOp *copy_st_ptr(TCGOp **begin_op, TCGOp *op) 379 { 380 if (UINTPTR_MAX == UINT32_MAX) { 381 /* st_i32 */ 382 op = copy_op(begin_op, op, INDEX_op_st_i32); 383 } else { 384 /* st_i64 */ 385 op = copy_st_i64(begin_op, op); 386 } 387 return op; 388 } 389 390 static TCGOp *copy_call(TCGOp **begin_op, TCGOp *op, void *func, int *cb_idx) 391 { 392 TCGOp *old_op; 393 int func_idx; 394 395 /* copy all ops until the call */ 396 do { 397 op = copy_op_nocheck(begin_op, op); 398 } while (op->opc != INDEX_op_call); 399 400 /* fill in the op call */ 401 old_op = *begin_op; 402 TCGOP_CALLI(op) = TCGOP_CALLI(old_op); 403 TCGOP_CALLO(op) = TCGOP_CALLO(old_op); 404 tcg_debug_assert(op->life == 0); 405 406 func_idx = TCGOP_CALLO(op) + TCGOP_CALLI(op); 407 *cb_idx = func_idx; 408 op->args[func_idx] = (uintptr_t)func; 409 410 return op; 411 } 412 413 /* 414 * When we append/replace ops here we are sensitive to changing patterns of 415 * TCGOps generated by the tcg_gen_FOO calls when we generated the 416 * empty callbacks. This will assert very quickly in a debug build as 417 * we assert the ops we are replacing are the correct ones. 418 */ 419 static TCGOp *append_udata_cb(const struct qemu_plugin_dyn_cb *cb, 420 TCGOp *begin_op, TCGOp *op, int *cb_idx) 421 { 422 /* const_ptr */ 423 op = copy_const_ptr(&begin_op, op, cb->userp); 424 425 /* copy the ld_i32, but note that we only have to copy it once */ 426 if (*cb_idx == -1) { 427 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 428 } else { 429 begin_op = QTAILQ_NEXT(begin_op, link); 430 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 431 } 432 433 /* call */ 434 op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx); 435 436 return op; 437 } 438 439 static TCGOp *append_inline_cb(const struct qemu_plugin_dyn_cb *cb, 440 TCGOp *begin_op, TCGOp *op, 441 int *unused) 442 { 443 char *ptr = cb->inline_insn.entry.score->data->data; 444 size_t elem_size = g_array_get_element_size( 445 cb->inline_insn.entry.score->data); 446 size_t offset = cb->inline_insn.entry.offset; 447 448 op = copy_ld_i32(&begin_op, op); 449 op = copy_mul_i32(&begin_op, op, elem_size); 450 op = copy_ext_i32_ptr(&begin_op, op); 451 op = copy_const_ptr(&begin_op, op, ptr + offset); 452 op = copy_add_ptr(&begin_op, op); 453 op = copy_ld_i64(&begin_op, op); 454 op = copy_add_i64(&begin_op, op, cb->inline_insn.imm); 455 op = copy_st_i64(&begin_op, op); 456 return op; 457 } 458 459 static TCGOp *append_mem_cb(const struct qemu_plugin_dyn_cb *cb, 460 TCGOp *begin_op, TCGOp *op, int *cb_idx) 461 { 462 enum plugin_gen_cb type = begin_op->args[1]; 463 464 tcg_debug_assert(type == PLUGIN_GEN_CB_MEM); 465 466 /* const_i32 == mov_i32 ("info", so it remains as is) */ 467 op = copy_op(&begin_op, op, INDEX_op_mov_i32); 468 469 /* const_ptr */ 470 op = copy_const_ptr(&begin_op, op, cb->userp); 471 472 /* copy the ld_i32, but note that we only have to copy it once */ 473 if (*cb_idx == -1) { 474 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 475 } else { 476 begin_op = QTAILQ_NEXT(begin_op, link); 477 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 478 } 479 480 if (type == PLUGIN_GEN_CB_MEM) { 481 /* call */ 482 op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx); 483 } 484 485 return op; 486 } 487 488 typedef TCGOp *(*inject_fn)(const struct qemu_plugin_dyn_cb *cb, 489 TCGOp *begin_op, TCGOp *op, int *intp); 490 typedef bool (*op_ok_fn)(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb); 491 492 static bool op_ok(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 493 { 494 return true; 495 } 496 497 static bool op_rw(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 498 { 499 int w; 500 501 w = op->args[2]; 502 return !!(cb->rw & (w + 1)); 503 } 504 505 static void inject_cb_type(const GArray *cbs, TCGOp *begin_op, 506 inject_fn inject, op_ok_fn ok) 507 { 508 TCGOp *end_op; 509 TCGOp *op; 510 int cb_idx = -1; 511 int i; 512 513 if (!cbs || cbs->len == 0) { 514 rm_ops(begin_op); 515 return; 516 } 517 518 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 519 tcg_debug_assert(end_op); 520 521 op = end_op; 522 for (i = 0; i < cbs->len; i++) { 523 struct qemu_plugin_dyn_cb *cb = 524 &g_array_index(cbs, struct qemu_plugin_dyn_cb, i); 525 526 if (!ok(begin_op, cb)) { 527 continue; 528 } 529 op = inject(cb, begin_op, op, &cb_idx); 530 } 531 rm_ops_range(begin_op, end_op); 532 } 533 534 static void 535 inject_udata_cb(const GArray *cbs, TCGOp *begin_op) 536 { 537 inject_cb_type(cbs, begin_op, append_udata_cb, op_ok); 538 } 539 540 static void 541 inject_inline_cb(const GArray *cbs, TCGOp *begin_op, op_ok_fn ok) 542 { 543 inject_cb_type(cbs, begin_op, append_inline_cb, ok); 544 } 545 546 static void 547 inject_mem_cb(const GArray *cbs, TCGOp *begin_op) 548 { 549 inject_cb_type(cbs, begin_op, append_mem_cb, op_rw); 550 } 551 552 /* we could change the ops in place, but we can reuse more code by copying */ 553 static void inject_mem_helper(TCGOp *begin_op, GArray *arr) 554 { 555 TCGOp *orig_op = begin_op; 556 TCGOp *end_op; 557 TCGOp *op; 558 559 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 560 tcg_debug_assert(end_op); 561 562 /* const ptr */ 563 op = copy_const_ptr(&begin_op, end_op, arr); 564 565 /* st_ptr */ 566 op = copy_st_ptr(&begin_op, op); 567 568 rm_ops_range(orig_op, end_op); 569 } 570 571 /* 572 * Tracking memory accesses performed from helpers requires extra work. 573 * If an instruction is emulated with helpers, we do two things: 574 * (1) copy the CB descriptors, and keep track of it so that they can be 575 * freed later on, and (2) point CPUState.plugin_mem_cbs to the descriptors, so 576 * that we can read them at run-time (i.e. when the helper executes). 577 * This run-time access is performed from qemu_plugin_vcpu_mem_cb. 578 * 579 * Note that plugin_gen_disable_mem_helpers undoes (2). Since it 580 * is possible that the code we generate after the instruction is 581 * dead, we also add checks before generating tb_exit etc. 582 */ 583 static void inject_mem_enable_helper(struct qemu_plugin_tb *ptb, 584 struct qemu_plugin_insn *plugin_insn, 585 TCGOp *begin_op) 586 { 587 GArray *cbs[2]; 588 GArray *arr; 589 size_t n_cbs, i; 590 591 cbs[0] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR]; 592 cbs[1] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 593 594 n_cbs = 0; 595 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 596 n_cbs += cbs[i]->len; 597 } 598 599 plugin_insn->mem_helper = plugin_insn->calls_helpers && n_cbs; 600 if (likely(!plugin_insn->mem_helper)) { 601 rm_ops(begin_op); 602 return; 603 } 604 ptb->mem_helper = true; 605 606 arr = g_array_sized_new(false, false, 607 sizeof(struct qemu_plugin_dyn_cb), n_cbs); 608 609 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 610 g_array_append_vals(arr, cbs[i]->data, cbs[i]->len); 611 } 612 613 qemu_plugin_add_dyn_cb_arr(arr); 614 inject_mem_helper(begin_op, arr); 615 } 616 617 static void inject_mem_disable_helper(struct qemu_plugin_insn *plugin_insn, 618 TCGOp *begin_op) 619 { 620 if (likely(!plugin_insn->mem_helper)) { 621 rm_ops(begin_op); 622 return; 623 } 624 inject_mem_helper(begin_op, NULL); 625 } 626 627 /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */ 628 void plugin_gen_disable_mem_helpers(void) 629 { 630 /* 631 * We could emit the clearing unconditionally and be done. However, this can 632 * be wasteful if for instance plugins don't track memory accesses, or if 633 * most TBs don't use helpers. Instead, emit the clearing iff the TB calls 634 * helpers that might access guest memory. 635 * 636 * Note: we do not reset plugin_tb->mem_helper here; a TB might have several 637 * exit points, and we want to emit the clearing from all of them. 638 */ 639 if (!tcg_ctx->plugin_tb->mem_helper) { 640 return; 641 } 642 tcg_gen_st_ptr(tcg_constant_ptr(NULL), tcg_env, 643 offsetof(CPUState, plugin_mem_cbs) - offsetof(ArchCPU, env)); 644 } 645 646 static void plugin_gen_tb_udata(const struct qemu_plugin_tb *ptb, 647 TCGOp *begin_op) 648 { 649 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR], begin_op); 650 } 651 652 static void plugin_gen_tb_udata_r(const struct qemu_plugin_tb *ptb, 653 TCGOp *begin_op) 654 { 655 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR_R], begin_op); 656 } 657 658 static void plugin_gen_tb_inline(const struct qemu_plugin_tb *ptb, 659 TCGOp *begin_op) 660 { 661 inject_inline_cb(ptb->cbs[PLUGIN_CB_INLINE], begin_op, op_ok); 662 } 663 664 static void plugin_gen_insn_udata(const struct qemu_plugin_tb *ptb, 665 TCGOp *begin_op, int insn_idx) 666 { 667 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 668 669 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], begin_op); 670 } 671 672 static void plugin_gen_insn_udata_r(const struct qemu_plugin_tb *ptb, 673 TCGOp *begin_op, int insn_idx) 674 { 675 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 676 677 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR_R], begin_op); 678 } 679 680 static void plugin_gen_insn_inline(const struct qemu_plugin_tb *ptb, 681 TCGOp *begin_op, int insn_idx) 682 { 683 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 684 inject_inline_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 685 begin_op, op_ok); 686 } 687 688 static void plugin_gen_mem_regular(const struct qemu_plugin_tb *ptb, 689 TCGOp *begin_op, int insn_idx) 690 { 691 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 692 inject_mem_cb(insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], begin_op); 693 } 694 695 static void plugin_gen_mem_inline(const struct qemu_plugin_tb *ptb, 696 TCGOp *begin_op, int insn_idx) 697 { 698 const GArray *cbs; 699 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 700 701 cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 702 inject_inline_cb(cbs, begin_op, op_rw); 703 } 704 705 static void plugin_gen_enable_mem_helper(struct qemu_plugin_tb *ptb, 706 TCGOp *begin_op, int insn_idx) 707 { 708 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 709 inject_mem_enable_helper(ptb, insn, begin_op); 710 } 711 712 static void plugin_gen_disable_mem_helper(struct qemu_plugin_tb *ptb, 713 TCGOp *begin_op, int insn_idx) 714 { 715 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 716 inject_mem_disable_helper(insn, begin_op); 717 } 718 719 /* #define DEBUG_PLUGIN_GEN_OPS */ 720 static void pr_ops(void) 721 { 722 #ifdef DEBUG_PLUGIN_GEN_OPS 723 TCGOp *op; 724 int i = 0; 725 726 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { 727 const char *name = ""; 728 const char *type = ""; 729 730 if (op->opc == INDEX_op_plugin_cb_start) { 731 switch (op->args[0]) { 732 case PLUGIN_GEN_FROM_TB: 733 name = "tb"; 734 break; 735 case PLUGIN_GEN_FROM_INSN: 736 name = "insn"; 737 break; 738 case PLUGIN_GEN_FROM_MEM: 739 name = "mem"; 740 break; 741 case PLUGIN_GEN_AFTER_INSN: 742 name = "after insn"; 743 break; 744 default: 745 break; 746 } 747 switch (op->args[1]) { 748 case PLUGIN_GEN_CB_UDATA: 749 type = "udata"; 750 break; 751 case PLUGIN_GEN_CB_INLINE: 752 type = "inline"; 753 break; 754 case PLUGIN_GEN_CB_MEM: 755 type = "mem"; 756 break; 757 case PLUGIN_GEN_ENABLE_MEM_HELPER: 758 type = "enable mem helper"; 759 break; 760 case PLUGIN_GEN_DISABLE_MEM_HELPER: 761 type = "disable mem helper"; 762 break; 763 default: 764 break; 765 } 766 } 767 printf("op[%2i]: %s %s %s\n", i, tcg_op_defs[op->opc].name, name, type); 768 i++; 769 } 770 #endif 771 } 772 773 static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb) 774 { 775 TCGOp *op; 776 int insn_idx = -1; 777 778 pr_ops(); 779 780 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { 781 switch (op->opc) { 782 case INDEX_op_insn_start: 783 insn_idx++; 784 break; 785 case INDEX_op_plugin_cb_start: 786 { 787 enum plugin_gen_from from = op->args[0]; 788 enum plugin_gen_cb type = op->args[1]; 789 790 switch (from) { 791 case PLUGIN_GEN_FROM_TB: 792 { 793 g_assert(insn_idx == -1); 794 795 switch (type) { 796 case PLUGIN_GEN_CB_UDATA: 797 plugin_gen_tb_udata(plugin_tb, op); 798 break; 799 case PLUGIN_GEN_CB_UDATA_R: 800 plugin_gen_tb_udata_r(plugin_tb, op); 801 break; 802 case PLUGIN_GEN_CB_INLINE: 803 plugin_gen_tb_inline(plugin_tb, op); 804 break; 805 default: 806 g_assert_not_reached(); 807 } 808 break; 809 } 810 case PLUGIN_GEN_FROM_INSN: 811 { 812 g_assert(insn_idx >= 0); 813 814 switch (type) { 815 case PLUGIN_GEN_CB_UDATA: 816 plugin_gen_insn_udata(plugin_tb, op, insn_idx); 817 break; 818 case PLUGIN_GEN_CB_UDATA_R: 819 plugin_gen_insn_udata_r(plugin_tb, op, insn_idx); 820 break; 821 case PLUGIN_GEN_CB_INLINE: 822 plugin_gen_insn_inline(plugin_tb, op, insn_idx); 823 break; 824 case PLUGIN_GEN_ENABLE_MEM_HELPER: 825 plugin_gen_enable_mem_helper(plugin_tb, op, insn_idx); 826 break; 827 default: 828 g_assert_not_reached(); 829 } 830 break; 831 } 832 case PLUGIN_GEN_FROM_MEM: 833 { 834 g_assert(insn_idx >= 0); 835 836 switch (type) { 837 case PLUGIN_GEN_CB_MEM: 838 plugin_gen_mem_regular(plugin_tb, op, insn_idx); 839 break; 840 case PLUGIN_GEN_CB_INLINE: 841 plugin_gen_mem_inline(plugin_tb, op, insn_idx); 842 break; 843 default: 844 g_assert_not_reached(); 845 } 846 847 break; 848 } 849 case PLUGIN_GEN_AFTER_INSN: 850 { 851 g_assert(insn_idx >= 0); 852 853 switch (type) { 854 case PLUGIN_GEN_DISABLE_MEM_HELPER: 855 plugin_gen_disable_mem_helper(plugin_tb, op, insn_idx); 856 break; 857 default: 858 g_assert_not_reached(); 859 } 860 break; 861 } 862 default: 863 g_assert_not_reached(); 864 } 865 break; 866 } 867 default: 868 /* plugins don't care about any other ops */ 869 break; 870 } 871 } 872 pr_ops(); 873 } 874 875 bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db, 876 bool mem_only) 877 { 878 bool ret = false; 879 880 if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_state->event_mask)) { 881 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 882 int i; 883 884 /* reset callbacks */ 885 for (i = 0; i < PLUGIN_N_CB_SUBTYPES; i++) { 886 if (ptb->cbs[i]) { 887 g_array_set_size(ptb->cbs[i], 0); 888 } 889 } 890 ptb->n = 0; 891 892 ret = true; 893 894 ptb->vaddr = db->pc_first; 895 ptb->vaddr2 = -1; 896 ptb->haddr1 = db->host_addr[0]; 897 ptb->haddr2 = NULL; 898 ptb->mem_only = mem_only; 899 ptb->mem_helper = false; 900 901 plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB); 902 } 903 904 tcg_ctx->plugin_insn = NULL; 905 906 return ret; 907 } 908 909 void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db) 910 { 911 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 912 struct qemu_plugin_insn *pinsn; 913 914 pinsn = qemu_plugin_tb_insn_get(ptb, db->pc_next); 915 tcg_ctx->plugin_insn = pinsn; 916 plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN); 917 918 /* 919 * Detect page crossing to get the new host address. 920 * Note that we skip this when haddr1 == NULL, e.g. when we're 921 * fetching instructions from a region not backed by RAM. 922 */ 923 if (ptb->haddr1 == NULL) { 924 pinsn->haddr = NULL; 925 } else if (is_same_page(db, db->pc_next)) { 926 pinsn->haddr = ptb->haddr1 + pinsn->vaddr - ptb->vaddr; 927 } else { 928 if (ptb->vaddr2 == -1) { 929 ptb->vaddr2 = TARGET_PAGE_ALIGN(db->pc_first); 930 get_page_addr_code_hostp(cpu_env(cpu), ptb->vaddr2, &ptb->haddr2); 931 } 932 pinsn->haddr = ptb->haddr2 + pinsn->vaddr - ptb->vaddr2; 933 } 934 } 935 936 void plugin_gen_insn_end(void) 937 { 938 plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN); 939 } 940 941 /* 942 * There are cases where we never get to finalise a translation - for 943 * example a page fault during translation. As a result we shouldn't 944 * do any clean-up here and make sure things are reset in 945 * plugin_gen_tb_start. 946 */ 947 void plugin_gen_tb_end(CPUState *cpu, size_t num_insns) 948 { 949 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 950 951 /* translator may have removed instructions, update final count */ 952 g_assert(num_insns <= ptb->n); 953 ptb->n = num_insns; 954 955 /* collect instrumentation requests */ 956 qemu_plugin_tb_trans_cb(cpu, ptb); 957 958 /* inject the instrumentation at the appropriate places */ 959 plugin_gen_inject(ptb); 960 } 961