1 /* 2 * plugin-gen.c - TCG-related bits of plugin infrastructure 3 * 4 * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> 5 * License: GNU GPL, version 2 or later. 6 * See the COPYING file in the top-level directory. 7 * 8 * We support instrumentation at an instruction granularity. That is, 9 * if a plugin wants to instrument the memory accesses performed by a 10 * particular instruction, it can just do that instead of instrumenting 11 * all memory accesses. Thus, in order to do this we first have to 12 * translate a TB, so that plugins can decide what/where to instrument. 13 * 14 * Injecting the desired instrumentation could be done with a second 15 * translation pass that combined the instrumentation requests, but that 16 * would be ugly and inefficient since we would decode the guest code twice. 17 * Instead, during TB translation we add "empty" instrumentation calls for all 18 * possible instrumentation events, and then once we collect the instrumentation 19 * requests from plugins, we either "fill in" those empty events or remove them 20 * if they have no requests. 21 * 22 * When "filling in" an event we first copy the empty callback's TCG ops. This 23 * might seem unnecessary, but it is done to support an arbitrary number 24 * of callbacks per event. Take for example a regular instruction callback. 25 * We first generate a callback to an empty helper function. Then, if two 26 * plugins register one callback each for this instruction, we make two copies 27 * of the TCG ops generated for the empty callback, substituting the function 28 * pointer that points to the empty helper function with the plugins' desired 29 * callback functions. After that we remove the empty callback's ops. 30 * 31 * Note that the location in TCGOp.args[] of the pointer to a helper function 32 * varies across different guest and host architectures. Instead of duplicating 33 * the logic that figures this out, we rely on the fact that the empty 34 * callbacks point to empty functions that are unique pointers in the program. 35 * Thus, to find the right location we just have to look for a match in 36 * TCGOp.args[]. This is the main reason why we first copy an empty callback's 37 * TCG ops and then fill them in; regardless of whether we have one or many 38 * callbacks for that event, the logic to add all of them is the same. 39 * 40 * When generating more than one callback per event, we make a small 41 * optimization to avoid generating redundant operations. For instance, for the 42 * second and all subsequent callbacks of an event, we do not need to reload the 43 * CPU's index into a TCG temp, since the first callback did it already. 44 */ 45 #include "qemu/osdep.h" 46 #include "tcg/tcg.h" 47 #include "tcg/tcg-temp-internal.h" 48 #include "tcg/tcg-op.h" 49 #include "exec/exec-all.h" 50 #include "exec/plugin-gen.h" 51 #include "exec/translator.h" 52 53 #ifdef CONFIG_SOFTMMU 54 # define CONFIG_SOFTMMU_GATE 1 55 #else 56 # define CONFIG_SOFTMMU_GATE 0 57 #endif 58 59 /* 60 * plugin_cb_start TCG op args[]: 61 * 0: enum plugin_gen_from 62 * 1: enum plugin_gen_cb 63 * 2: set to 1 for mem callback that is a write, 0 otherwise. 64 */ 65 66 enum plugin_gen_from { 67 PLUGIN_GEN_FROM_TB, 68 PLUGIN_GEN_FROM_INSN, 69 PLUGIN_GEN_FROM_MEM, 70 PLUGIN_GEN_AFTER_INSN, 71 PLUGIN_GEN_N_FROMS, 72 }; 73 74 enum plugin_gen_cb { 75 PLUGIN_GEN_CB_UDATA, 76 PLUGIN_GEN_CB_INLINE, 77 PLUGIN_GEN_CB_MEM, 78 PLUGIN_GEN_ENABLE_MEM_HELPER, 79 PLUGIN_GEN_DISABLE_MEM_HELPER, 80 PLUGIN_GEN_N_CBS, 81 }; 82 83 /* 84 * These helpers are stubs that get dynamically switched out for calls 85 * direct to the plugin if they are subscribed to. 86 */ 87 void HELPER(plugin_vcpu_udata_cb)(uint32_t cpu_index, void *udata) 88 { } 89 90 void HELPER(plugin_vcpu_mem_cb)(unsigned int vcpu_index, 91 qemu_plugin_meminfo_t info, uint64_t vaddr, 92 void *userdata) 93 { } 94 95 static void gen_empty_udata_cb(void) 96 { 97 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 98 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 99 100 tcg_gen_movi_ptr(udata, 0); 101 tcg_gen_ld_i32(cpu_index, cpu_env, 102 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 103 gen_helper_plugin_vcpu_udata_cb(cpu_index, udata); 104 105 tcg_temp_free_ptr(udata); 106 tcg_temp_free_i32(cpu_index); 107 } 108 109 /* 110 * For now we only support addi_i64. 111 * When we support more ops, we can generate one empty inline cb for each. 112 */ 113 static void gen_empty_inline_cb(void) 114 { 115 TCGv_i64 val = tcg_temp_ebb_new_i64(); 116 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 117 118 tcg_gen_movi_ptr(ptr, 0); 119 tcg_gen_ld_i64(val, ptr, 0); 120 /* pass an immediate != 0 so that it doesn't get optimized away */ 121 tcg_gen_addi_i64(val, val, 0xdeadface); 122 tcg_gen_st_i64(val, ptr, 0); 123 tcg_temp_free_ptr(ptr); 124 tcg_temp_free_i64(val); 125 } 126 127 static void gen_empty_mem_cb(TCGv_i64 addr, uint32_t info) 128 { 129 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 130 TCGv_i32 meminfo = tcg_temp_ebb_new_i32(); 131 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 132 133 tcg_gen_movi_i32(meminfo, info); 134 tcg_gen_movi_ptr(udata, 0); 135 tcg_gen_ld_i32(cpu_index, cpu_env, 136 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 137 138 gen_helper_plugin_vcpu_mem_cb(cpu_index, meminfo, addr, udata); 139 140 tcg_temp_free_ptr(udata); 141 tcg_temp_free_i32(meminfo); 142 tcg_temp_free_i32(cpu_index); 143 } 144 145 /* 146 * Share the same function for enable/disable. When enabling, the NULL 147 * pointer will be overwritten later. 148 */ 149 static void gen_empty_mem_helper(void) 150 { 151 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 152 153 tcg_gen_movi_ptr(ptr, 0); 154 tcg_gen_st_ptr(ptr, cpu_env, offsetof(CPUState, plugin_mem_cbs) - 155 offsetof(ArchCPU, env)); 156 tcg_temp_free_ptr(ptr); 157 } 158 159 static void gen_plugin_cb_start(enum plugin_gen_from from, 160 enum plugin_gen_cb type, unsigned wr) 161 { 162 tcg_gen_plugin_cb_start(from, type, wr); 163 } 164 165 static void gen_wrapped(enum plugin_gen_from from, 166 enum plugin_gen_cb type, void (*func)(void)) 167 { 168 gen_plugin_cb_start(from, type, 0); 169 func(); 170 tcg_gen_plugin_cb_end(); 171 } 172 173 static void plugin_gen_empty_callback(enum plugin_gen_from from) 174 { 175 switch (from) { 176 case PLUGIN_GEN_AFTER_INSN: 177 gen_wrapped(from, PLUGIN_GEN_DISABLE_MEM_HELPER, 178 gen_empty_mem_helper); 179 break; 180 case PLUGIN_GEN_FROM_INSN: 181 /* 182 * Note: plugin_gen_inject() relies on ENABLE_MEM_HELPER being 183 * the first callback of an instruction 184 */ 185 gen_wrapped(from, PLUGIN_GEN_ENABLE_MEM_HELPER, 186 gen_empty_mem_helper); 187 /* fall through */ 188 case PLUGIN_GEN_FROM_TB: 189 gen_wrapped(from, PLUGIN_GEN_CB_UDATA, gen_empty_udata_cb); 190 gen_wrapped(from, PLUGIN_GEN_CB_INLINE, gen_empty_inline_cb); 191 break; 192 default: 193 g_assert_not_reached(); 194 } 195 } 196 197 void plugin_gen_empty_mem_callback(TCGv_i64 addr, uint32_t info) 198 { 199 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 200 201 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_MEM, rw); 202 gen_empty_mem_cb(addr, info); 203 tcg_gen_plugin_cb_end(); 204 205 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_INLINE, rw); 206 gen_empty_inline_cb(); 207 tcg_gen_plugin_cb_end(); 208 } 209 210 static TCGOp *find_op(TCGOp *op, TCGOpcode opc) 211 { 212 while (op) { 213 if (op->opc == opc) { 214 return op; 215 } 216 op = QTAILQ_NEXT(op, link); 217 } 218 return NULL; 219 } 220 221 static TCGOp *rm_ops_range(TCGOp *begin, TCGOp *end) 222 { 223 TCGOp *ret = QTAILQ_NEXT(end, link); 224 225 QTAILQ_REMOVE_SEVERAL(&tcg_ctx->ops, begin, end, link); 226 return ret; 227 } 228 229 /* remove all ops until (and including) plugin_cb_end */ 230 static TCGOp *rm_ops(TCGOp *op) 231 { 232 TCGOp *end_op = find_op(op, INDEX_op_plugin_cb_end); 233 234 tcg_debug_assert(end_op); 235 return rm_ops_range(op, end_op); 236 } 237 238 static TCGOp *copy_op_nocheck(TCGOp **begin_op, TCGOp *op) 239 { 240 TCGOp *old_op = QTAILQ_NEXT(*begin_op, link); 241 unsigned nargs = old_op->nargs; 242 243 *begin_op = old_op; 244 op = tcg_op_insert_after(tcg_ctx, op, old_op->opc, nargs); 245 memcpy(op->args, old_op->args, sizeof(op->args[0]) * nargs); 246 247 return op; 248 } 249 250 static TCGOp *copy_op(TCGOp **begin_op, TCGOp *op, TCGOpcode opc) 251 { 252 op = copy_op_nocheck(begin_op, op); 253 tcg_debug_assert((*begin_op)->opc == opc); 254 return op; 255 } 256 257 static TCGOp *copy_extu_i32_i64(TCGOp **begin_op, TCGOp *op) 258 { 259 if (TCG_TARGET_REG_BITS == 32) { 260 /* mov_i32 */ 261 op = copy_op(begin_op, op, INDEX_op_mov_i32); 262 /* mov_i32 w/ $0 */ 263 op = copy_op(begin_op, op, INDEX_op_mov_i32); 264 } else { 265 /* extu_i32_i64 */ 266 op = copy_op(begin_op, op, INDEX_op_extu_i32_i64); 267 } 268 return op; 269 } 270 271 static TCGOp *copy_mov_i64(TCGOp **begin_op, TCGOp *op) 272 { 273 if (TCG_TARGET_REG_BITS == 32) { 274 /* 2x mov_i32 */ 275 op = copy_op(begin_op, op, INDEX_op_mov_i32); 276 op = copy_op(begin_op, op, INDEX_op_mov_i32); 277 } else { 278 /* mov_i64 */ 279 op = copy_op(begin_op, op, INDEX_op_mov_i64); 280 } 281 return op; 282 } 283 284 static TCGOp *copy_const_ptr(TCGOp **begin_op, TCGOp *op, void *ptr) 285 { 286 if (UINTPTR_MAX == UINT32_MAX) { 287 /* mov_i32 */ 288 op = copy_op(begin_op, op, INDEX_op_mov_i32); 289 op->args[1] = tcgv_i32_arg(tcg_constant_i32((uintptr_t)ptr)); 290 } else { 291 /* mov_i64 */ 292 op = copy_op(begin_op, op, INDEX_op_mov_i64); 293 op->args[1] = tcgv_i64_arg(tcg_constant_i64((uintptr_t)ptr)); 294 } 295 return op; 296 } 297 298 static TCGOp *copy_extu_tl_i64(TCGOp **begin_op, TCGOp *op) 299 { 300 if (TARGET_LONG_BITS == 32) { 301 /* extu_i32_i64 */ 302 op = copy_extu_i32_i64(begin_op, op); 303 } else { 304 /* mov_i64 */ 305 op = copy_mov_i64(begin_op, op); 306 } 307 return op; 308 } 309 310 static TCGOp *copy_ld_i64(TCGOp **begin_op, TCGOp *op) 311 { 312 if (TCG_TARGET_REG_BITS == 32) { 313 /* 2x ld_i32 */ 314 op = copy_op(begin_op, op, INDEX_op_ld_i32); 315 op = copy_op(begin_op, op, INDEX_op_ld_i32); 316 } else { 317 /* ld_i64 */ 318 op = copy_op(begin_op, op, INDEX_op_ld_i64); 319 } 320 return op; 321 } 322 323 static TCGOp *copy_st_i64(TCGOp **begin_op, TCGOp *op) 324 { 325 if (TCG_TARGET_REG_BITS == 32) { 326 /* 2x st_i32 */ 327 op = copy_op(begin_op, op, INDEX_op_st_i32); 328 op = copy_op(begin_op, op, INDEX_op_st_i32); 329 } else { 330 /* st_i64 */ 331 op = copy_op(begin_op, op, INDEX_op_st_i64); 332 } 333 return op; 334 } 335 336 static TCGOp *copy_add_i64(TCGOp **begin_op, TCGOp *op, uint64_t v) 337 { 338 if (TCG_TARGET_REG_BITS == 32) { 339 /* all 32-bit backends must implement add2_i32 */ 340 g_assert(TCG_TARGET_HAS_add2_i32); 341 op = copy_op(begin_op, op, INDEX_op_add2_i32); 342 op->args[4] = tcgv_i32_arg(tcg_constant_i32(v)); 343 op->args[5] = tcgv_i32_arg(tcg_constant_i32(v >> 32)); 344 } else { 345 op = copy_op(begin_op, op, INDEX_op_add_i64); 346 op->args[2] = tcgv_i64_arg(tcg_constant_i64(v)); 347 } 348 return op; 349 } 350 351 static TCGOp *copy_st_ptr(TCGOp **begin_op, TCGOp *op) 352 { 353 if (UINTPTR_MAX == UINT32_MAX) { 354 /* st_i32 */ 355 op = copy_op(begin_op, op, INDEX_op_st_i32); 356 } else { 357 /* st_i64 */ 358 op = copy_st_i64(begin_op, op); 359 } 360 return op; 361 } 362 363 static TCGOp *copy_call(TCGOp **begin_op, TCGOp *op, void *empty_func, 364 void *func, int *cb_idx) 365 { 366 TCGOp *old_op; 367 int func_idx; 368 369 /* copy all ops until the call */ 370 do { 371 op = copy_op_nocheck(begin_op, op); 372 } while (op->opc != INDEX_op_call); 373 374 /* fill in the op call */ 375 old_op = *begin_op; 376 TCGOP_CALLI(op) = TCGOP_CALLI(old_op); 377 TCGOP_CALLO(op) = TCGOP_CALLO(old_op); 378 tcg_debug_assert(op->life == 0); 379 380 func_idx = TCGOP_CALLO(op) + TCGOP_CALLI(op); 381 *cb_idx = func_idx; 382 op->args[func_idx] = (uintptr_t)func; 383 384 return op; 385 } 386 387 /* 388 * When we append/replace ops here we are sensitive to changing patterns of 389 * TCGOps generated by the tcg_gen_FOO calls when we generated the 390 * empty callbacks. This will assert very quickly in a debug build as 391 * we assert the ops we are replacing are the correct ones. 392 */ 393 static TCGOp *append_udata_cb(const struct qemu_plugin_dyn_cb *cb, 394 TCGOp *begin_op, TCGOp *op, int *cb_idx) 395 { 396 /* const_ptr */ 397 op = copy_const_ptr(&begin_op, op, cb->userp); 398 399 /* copy the ld_i32, but note that we only have to copy it once */ 400 if (*cb_idx == -1) { 401 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 402 } else { 403 begin_op = QTAILQ_NEXT(begin_op, link); 404 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 405 } 406 407 /* call */ 408 op = copy_call(&begin_op, op, HELPER(plugin_vcpu_udata_cb), 409 cb->f.vcpu_udata, cb_idx); 410 411 return op; 412 } 413 414 static TCGOp *append_inline_cb(const struct qemu_plugin_dyn_cb *cb, 415 TCGOp *begin_op, TCGOp *op, 416 int *unused) 417 { 418 /* const_ptr */ 419 op = copy_const_ptr(&begin_op, op, cb->userp); 420 421 /* ld_i64 */ 422 op = copy_ld_i64(&begin_op, op); 423 424 /* add_i64 */ 425 op = copy_add_i64(&begin_op, op, cb->inline_insn.imm); 426 427 /* st_i64 */ 428 op = copy_st_i64(&begin_op, op); 429 430 return op; 431 } 432 433 static TCGOp *append_mem_cb(const struct qemu_plugin_dyn_cb *cb, 434 TCGOp *begin_op, TCGOp *op, int *cb_idx) 435 { 436 enum plugin_gen_cb type = begin_op->args[1]; 437 438 tcg_debug_assert(type == PLUGIN_GEN_CB_MEM); 439 440 /* const_i32 == mov_i32 ("info", so it remains as is) */ 441 op = copy_op(&begin_op, op, INDEX_op_mov_i32); 442 443 /* const_ptr */ 444 op = copy_const_ptr(&begin_op, op, cb->userp); 445 446 /* copy the ld_i32, but note that we only have to copy it once */ 447 if (*cb_idx == -1) { 448 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 449 } else { 450 begin_op = QTAILQ_NEXT(begin_op, link); 451 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 452 } 453 454 /* extu_tl_i64 */ 455 op = copy_extu_tl_i64(&begin_op, op); 456 457 if (type == PLUGIN_GEN_CB_MEM) { 458 /* call */ 459 op = copy_call(&begin_op, op, HELPER(plugin_vcpu_mem_cb), 460 cb->f.vcpu_udata, cb_idx); 461 } 462 463 return op; 464 } 465 466 typedef TCGOp *(*inject_fn)(const struct qemu_plugin_dyn_cb *cb, 467 TCGOp *begin_op, TCGOp *op, int *intp); 468 typedef bool (*op_ok_fn)(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb); 469 470 static bool op_ok(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 471 { 472 return true; 473 } 474 475 static bool op_rw(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 476 { 477 int w; 478 479 w = op->args[2]; 480 return !!(cb->rw & (w + 1)); 481 } 482 483 static void inject_cb_type(const GArray *cbs, TCGOp *begin_op, 484 inject_fn inject, op_ok_fn ok) 485 { 486 TCGOp *end_op; 487 TCGOp *op; 488 int cb_idx = -1; 489 int i; 490 491 if (!cbs || cbs->len == 0) { 492 rm_ops(begin_op); 493 return; 494 } 495 496 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 497 tcg_debug_assert(end_op); 498 499 op = end_op; 500 for (i = 0; i < cbs->len; i++) { 501 struct qemu_plugin_dyn_cb *cb = 502 &g_array_index(cbs, struct qemu_plugin_dyn_cb, i); 503 504 if (!ok(begin_op, cb)) { 505 continue; 506 } 507 op = inject(cb, begin_op, op, &cb_idx); 508 } 509 rm_ops_range(begin_op, end_op); 510 } 511 512 static void 513 inject_udata_cb(const GArray *cbs, TCGOp *begin_op) 514 { 515 inject_cb_type(cbs, begin_op, append_udata_cb, op_ok); 516 } 517 518 static void 519 inject_inline_cb(const GArray *cbs, TCGOp *begin_op, op_ok_fn ok) 520 { 521 inject_cb_type(cbs, begin_op, append_inline_cb, ok); 522 } 523 524 static void 525 inject_mem_cb(const GArray *cbs, TCGOp *begin_op) 526 { 527 inject_cb_type(cbs, begin_op, append_mem_cb, op_rw); 528 } 529 530 /* we could change the ops in place, but we can reuse more code by copying */ 531 static void inject_mem_helper(TCGOp *begin_op, GArray *arr) 532 { 533 TCGOp *orig_op = begin_op; 534 TCGOp *end_op; 535 TCGOp *op; 536 537 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 538 tcg_debug_assert(end_op); 539 540 /* const ptr */ 541 op = copy_const_ptr(&begin_op, end_op, arr); 542 543 /* st_ptr */ 544 op = copy_st_ptr(&begin_op, op); 545 546 rm_ops_range(orig_op, end_op); 547 } 548 549 /* 550 * Tracking memory accesses performed from helpers requires extra work. 551 * If an instruction is emulated with helpers, we do two things: 552 * (1) copy the CB descriptors, and keep track of it so that they can be 553 * freed later on, and (2) point CPUState.plugin_mem_cbs to the descriptors, so 554 * that we can read them at run-time (i.e. when the helper executes). 555 * This run-time access is performed from qemu_plugin_vcpu_mem_cb. 556 * 557 * Note that plugin_gen_disable_mem_helpers undoes (2). Since it 558 * is possible that the code we generate after the instruction is 559 * dead, we also add checks before generating tb_exit etc. 560 */ 561 static void inject_mem_enable_helper(struct qemu_plugin_tb *ptb, 562 struct qemu_plugin_insn *plugin_insn, 563 TCGOp *begin_op) 564 { 565 GArray *cbs[2]; 566 GArray *arr; 567 size_t n_cbs, i; 568 569 cbs[0] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR]; 570 cbs[1] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 571 572 n_cbs = 0; 573 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 574 n_cbs += cbs[i]->len; 575 } 576 577 plugin_insn->mem_helper = plugin_insn->calls_helpers && n_cbs; 578 if (likely(!plugin_insn->mem_helper)) { 579 rm_ops(begin_op); 580 return; 581 } 582 ptb->mem_helper = true; 583 584 arr = g_array_sized_new(false, false, 585 sizeof(struct qemu_plugin_dyn_cb), n_cbs); 586 587 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 588 g_array_append_vals(arr, cbs[i]->data, cbs[i]->len); 589 } 590 591 qemu_plugin_add_dyn_cb_arr(arr); 592 inject_mem_helper(begin_op, arr); 593 } 594 595 static void inject_mem_disable_helper(struct qemu_plugin_insn *plugin_insn, 596 TCGOp *begin_op) 597 { 598 if (likely(!plugin_insn->mem_helper)) { 599 rm_ops(begin_op); 600 return; 601 } 602 inject_mem_helper(begin_op, NULL); 603 } 604 605 /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */ 606 void plugin_gen_disable_mem_helpers(void) 607 { 608 /* 609 * We could emit the clearing unconditionally and be done. However, this can 610 * be wasteful if for instance plugins don't track memory accesses, or if 611 * most TBs don't use helpers. Instead, emit the clearing iff the TB calls 612 * helpers that might access guest memory. 613 * 614 * Note: we do not reset plugin_tb->mem_helper here; a TB might have several 615 * exit points, and we want to emit the clearing from all of them. 616 */ 617 if (!tcg_ctx->plugin_tb->mem_helper) { 618 return; 619 } 620 tcg_gen_st_ptr(tcg_constant_ptr(NULL), cpu_env, 621 offsetof(CPUState, plugin_mem_cbs) - offsetof(ArchCPU, env)); 622 } 623 624 static void plugin_gen_tb_udata(const struct qemu_plugin_tb *ptb, 625 TCGOp *begin_op) 626 { 627 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR], begin_op); 628 } 629 630 static void plugin_gen_tb_inline(const struct qemu_plugin_tb *ptb, 631 TCGOp *begin_op) 632 { 633 inject_inline_cb(ptb->cbs[PLUGIN_CB_INLINE], begin_op, op_ok); 634 } 635 636 static void plugin_gen_insn_udata(const struct qemu_plugin_tb *ptb, 637 TCGOp *begin_op, int insn_idx) 638 { 639 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 640 641 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], begin_op); 642 } 643 644 static void plugin_gen_insn_inline(const struct qemu_plugin_tb *ptb, 645 TCGOp *begin_op, int insn_idx) 646 { 647 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 648 inject_inline_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 649 begin_op, op_ok); 650 } 651 652 static void plugin_gen_mem_regular(const struct qemu_plugin_tb *ptb, 653 TCGOp *begin_op, int insn_idx) 654 { 655 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 656 inject_mem_cb(insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], begin_op); 657 } 658 659 static void plugin_gen_mem_inline(const struct qemu_plugin_tb *ptb, 660 TCGOp *begin_op, int insn_idx) 661 { 662 const GArray *cbs; 663 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 664 665 cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 666 inject_inline_cb(cbs, begin_op, op_rw); 667 } 668 669 static void plugin_gen_enable_mem_helper(struct qemu_plugin_tb *ptb, 670 TCGOp *begin_op, int insn_idx) 671 { 672 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 673 inject_mem_enable_helper(ptb, insn, begin_op); 674 } 675 676 static void plugin_gen_disable_mem_helper(struct qemu_plugin_tb *ptb, 677 TCGOp *begin_op, int insn_idx) 678 { 679 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 680 inject_mem_disable_helper(insn, begin_op); 681 } 682 683 /* #define DEBUG_PLUGIN_GEN_OPS */ 684 static void pr_ops(void) 685 { 686 #ifdef DEBUG_PLUGIN_GEN_OPS 687 TCGOp *op; 688 int i = 0; 689 690 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { 691 const char *name = ""; 692 const char *type = ""; 693 694 if (op->opc == INDEX_op_plugin_cb_start) { 695 switch (op->args[0]) { 696 case PLUGIN_GEN_FROM_TB: 697 name = "tb"; 698 break; 699 case PLUGIN_GEN_FROM_INSN: 700 name = "insn"; 701 break; 702 case PLUGIN_GEN_FROM_MEM: 703 name = "mem"; 704 break; 705 case PLUGIN_GEN_AFTER_INSN: 706 name = "after insn"; 707 break; 708 default: 709 break; 710 } 711 switch (op->args[1]) { 712 case PLUGIN_GEN_CB_UDATA: 713 type = "udata"; 714 break; 715 case PLUGIN_GEN_CB_INLINE: 716 type = "inline"; 717 break; 718 case PLUGIN_GEN_CB_MEM: 719 type = "mem"; 720 break; 721 case PLUGIN_GEN_ENABLE_MEM_HELPER: 722 type = "enable mem helper"; 723 break; 724 case PLUGIN_GEN_DISABLE_MEM_HELPER: 725 type = "disable mem helper"; 726 break; 727 default: 728 break; 729 } 730 } 731 printf("op[%2i]: %s %s %s\n", i, tcg_op_defs[op->opc].name, name, type); 732 i++; 733 } 734 #endif 735 } 736 737 static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb) 738 { 739 TCGOp *op; 740 int insn_idx = -1; 741 742 pr_ops(); 743 744 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { 745 switch (op->opc) { 746 case INDEX_op_insn_start: 747 insn_idx++; 748 break; 749 case INDEX_op_plugin_cb_start: 750 { 751 enum plugin_gen_from from = op->args[0]; 752 enum plugin_gen_cb type = op->args[1]; 753 754 switch (from) { 755 case PLUGIN_GEN_FROM_TB: 756 { 757 g_assert(insn_idx == -1); 758 759 switch (type) { 760 case PLUGIN_GEN_CB_UDATA: 761 plugin_gen_tb_udata(plugin_tb, op); 762 break; 763 case PLUGIN_GEN_CB_INLINE: 764 plugin_gen_tb_inline(plugin_tb, op); 765 break; 766 default: 767 g_assert_not_reached(); 768 } 769 break; 770 } 771 case PLUGIN_GEN_FROM_INSN: 772 { 773 g_assert(insn_idx >= 0); 774 775 switch (type) { 776 case PLUGIN_GEN_CB_UDATA: 777 plugin_gen_insn_udata(plugin_tb, op, insn_idx); 778 break; 779 case PLUGIN_GEN_CB_INLINE: 780 plugin_gen_insn_inline(plugin_tb, op, insn_idx); 781 break; 782 case PLUGIN_GEN_ENABLE_MEM_HELPER: 783 plugin_gen_enable_mem_helper(plugin_tb, op, insn_idx); 784 break; 785 default: 786 g_assert_not_reached(); 787 } 788 break; 789 } 790 case PLUGIN_GEN_FROM_MEM: 791 { 792 g_assert(insn_idx >= 0); 793 794 switch (type) { 795 case PLUGIN_GEN_CB_MEM: 796 plugin_gen_mem_regular(plugin_tb, op, insn_idx); 797 break; 798 case PLUGIN_GEN_CB_INLINE: 799 plugin_gen_mem_inline(plugin_tb, op, insn_idx); 800 break; 801 default: 802 g_assert_not_reached(); 803 } 804 805 break; 806 } 807 case PLUGIN_GEN_AFTER_INSN: 808 { 809 g_assert(insn_idx >= 0); 810 811 switch (type) { 812 case PLUGIN_GEN_DISABLE_MEM_HELPER: 813 plugin_gen_disable_mem_helper(plugin_tb, op, insn_idx); 814 break; 815 default: 816 g_assert_not_reached(); 817 } 818 break; 819 } 820 default: 821 g_assert_not_reached(); 822 } 823 break; 824 } 825 default: 826 /* plugins don't care about any other ops */ 827 break; 828 } 829 } 830 pr_ops(); 831 } 832 833 bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db, 834 bool mem_only) 835 { 836 bool ret = false; 837 838 if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_mask)) { 839 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 840 int i; 841 842 /* reset callbacks */ 843 for (i = 0; i < PLUGIN_N_CB_SUBTYPES; i++) { 844 if (ptb->cbs[i]) { 845 g_array_set_size(ptb->cbs[i], 0); 846 } 847 } 848 ptb->n = 0; 849 850 ret = true; 851 852 ptb->vaddr = db->pc_first; 853 ptb->vaddr2 = -1; 854 ptb->haddr1 = db->host_addr[0]; 855 ptb->haddr2 = NULL; 856 ptb->mem_only = mem_only; 857 ptb->mem_helper = false; 858 859 plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB); 860 } 861 862 tcg_ctx->plugin_insn = NULL; 863 864 return ret; 865 } 866 867 void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db) 868 { 869 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 870 struct qemu_plugin_insn *pinsn; 871 872 pinsn = qemu_plugin_tb_insn_get(ptb, db->pc_next); 873 tcg_ctx->plugin_insn = pinsn; 874 plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN); 875 876 /* 877 * Detect page crossing to get the new host address. 878 * Note that we skip this when haddr1 == NULL, e.g. when we're 879 * fetching instructions from a region not backed by RAM. 880 */ 881 if (ptb->haddr1 == NULL) { 882 pinsn->haddr = NULL; 883 } else if (is_same_page(db, db->pc_next)) { 884 pinsn->haddr = ptb->haddr1 + pinsn->vaddr - ptb->vaddr; 885 } else { 886 if (ptb->vaddr2 == -1) { 887 ptb->vaddr2 = TARGET_PAGE_ALIGN(db->pc_first); 888 get_page_addr_code_hostp(cpu->env_ptr, ptb->vaddr2, &ptb->haddr2); 889 } 890 pinsn->haddr = ptb->haddr2 + pinsn->vaddr - ptb->vaddr2; 891 } 892 } 893 894 void plugin_gen_insn_end(void) 895 { 896 plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN); 897 } 898 899 /* 900 * There are cases where we never get to finalise a translation - for 901 * example a page fault during translation. As a result we shouldn't 902 * do any clean-up here and make sure things are reset in 903 * plugin_gen_tb_start. 904 */ 905 void plugin_gen_tb_end(CPUState *cpu) 906 { 907 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 908 909 /* collect instrumentation requests */ 910 qemu_plugin_tb_trans_cb(cpu, ptb); 911 912 /* inject the instrumentation at the appropriate places */ 913 plugin_gen_inject(ptb); 914 } 915