1 /* 2 * plugin-gen.c - TCG-related bits of plugin infrastructure 3 * 4 * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> 5 * License: GNU GPL, version 2 or later. 6 * See the COPYING file in the top-level directory. 7 * 8 * We support instrumentation at an instruction granularity. That is, 9 * if a plugin wants to instrument the memory accesses performed by a 10 * particular instruction, it can just do that instead of instrumenting 11 * all memory accesses. Thus, in order to do this we first have to 12 * translate a TB, so that plugins can decide what/where to instrument. 13 * 14 * Injecting the desired instrumentation could be done with a second 15 * translation pass that combined the instrumentation requests, but that 16 * would be ugly and inefficient since we would decode the guest code twice. 17 * Instead, during TB translation we add "empty" instrumentation calls for all 18 * possible instrumentation events, and then once we collect the instrumentation 19 * requests from plugins, we either "fill in" those empty events or remove them 20 * if they have no requests. 21 * 22 * When "filling in" an event we first copy the empty callback's TCG ops. This 23 * might seem unnecessary, but it is done to support an arbitrary number 24 * of callbacks per event. Take for example a regular instruction callback. 25 * We first generate a callback to an empty helper function. Then, if two 26 * plugins register one callback each for this instruction, we make two copies 27 * of the TCG ops generated for the empty callback, substituting the function 28 * pointer that points to the empty helper function with the plugins' desired 29 * callback functions. After that we remove the empty callback's ops. 30 * 31 * Note that the location in TCGOp.args[] of the pointer to a helper function 32 * varies across different guest and host architectures. Instead of duplicating 33 * the logic that figures this out, we rely on the fact that the empty 34 * callbacks point to empty functions that are unique pointers in the program. 35 * Thus, to find the right location we just have to look for a match in 36 * TCGOp.args[]. This is the main reason why we first copy an empty callback's 37 * TCG ops and then fill them in; regardless of whether we have one or many 38 * callbacks for that event, the logic to add all of them is the same. 39 * 40 * When generating more than one callback per event, we make a small 41 * optimization to avoid generating redundant operations. For instance, for the 42 * second and all subsequent callbacks of an event, we do not need to reload the 43 * CPU's index into a TCG temp, since the first callback did it already. 44 */ 45 #include "qemu/osdep.h" 46 #include "qemu/plugin.h" 47 #include "cpu.h" 48 #include "tcg/tcg.h" 49 #include "tcg/tcg-temp-internal.h" 50 #include "tcg/tcg-op.h" 51 #include "exec/exec-all.h" 52 #include "exec/plugin-gen.h" 53 #include "exec/translator.h" 54 #include "exec/helper-proto-common.h" 55 56 #define HELPER_H "accel/tcg/plugin-helpers.h" 57 #include "exec/helper-info.c.inc" 58 #undef HELPER_H 59 60 /* 61 * plugin_cb_start TCG op args[]: 62 * 0: enum plugin_gen_from 63 * 1: enum plugin_gen_cb 64 * 2: set to 1 for mem callback that is a write, 0 otherwise. 65 */ 66 67 enum plugin_gen_from { 68 PLUGIN_GEN_FROM_TB, 69 PLUGIN_GEN_FROM_INSN, 70 PLUGIN_GEN_FROM_MEM, 71 PLUGIN_GEN_AFTER_INSN, 72 PLUGIN_GEN_N_FROMS, 73 }; 74 75 enum plugin_gen_cb { 76 PLUGIN_GEN_CB_UDATA, 77 PLUGIN_GEN_CB_UDATA_R, 78 PLUGIN_GEN_CB_INLINE, 79 PLUGIN_GEN_CB_MEM, 80 PLUGIN_GEN_ENABLE_MEM_HELPER, 81 PLUGIN_GEN_DISABLE_MEM_HELPER, 82 PLUGIN_GEN_N_CBS, 83 }; 84 85 /* 86 * These helpers are stubs that get dynamically switched out for calls 87 * direct to the plugin if they are subscribed to. 88 */ 89 void HELPER(plugin_vcpu_udata_cb_no_wg)(uint32_t cpu_index, void *udata) 90 { } 91 92 void HELPER(plugin_vcpu_udata_cb_no_rwg)(uint32_t cpu_index, void *udata) 93 { } 94 95 void HELPER(plugin_vcpu_mem_cb)(unsigned int vcpu_index, 96 qemu_plugin_meminfo_t info, uint64_t vaddr, 97 void *userdata) 98 { } 99 100 static void gen_empty_udata_cb(void (*gen_helper)(TCGv_i32, TCGv_ptr)) 101 { 102 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 103 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 104 105 tcg_gen_movi_ptr(udata, 0); 106 tcg_gen_ld_i32(cpu_index, tcg_env, 107 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 108 gen_helper(cpu_index, udata); 109 110 tcg_temp_free_ptr(udata); 111 tcg_temp_free_i32(cpu_index); 112 } 113 114 static void gen_empty_udata_cb_no_wg(void) 115 { 116 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_wg); 117 } 118 119 static void gen_empty_udata_cb_no_rwg(void) 120 { 121 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_rwg); 122 } 123 124 /* 125 * For now we only support addi_i64. 126 * When we support more ops, we can generate one empty inline cb for each. 127 */ 128 static void gen_empty_inline_cb(void) 129 { 130 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 131 TCGv_ptr cpu_index_as_ptr = tcg_temp_ebb_new_ptr(); 132 TCGv_i64 val = tcg_temp_ebb_new_i64(); 133 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 134 135 tcg_gen_ld_i32(cpu_index, tcg_env, 136 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 137 /* second operand will be replaced by immediate value */ 138 tcg_gen_mul_i32(cpu_index, cpu_index, cpu_index); 139 tcg_gen_ext_i32_ptr(cpu_index_as_ptr, cpu_index); 140 141 tcg_gen_movi_ptr(ptr, 0); 142 tcg_gen_add_ptr(ptr, ptr, cpu_index_as_ptr); 143 tcg_gen_ld_i64(val, ptr, 0); 144 /* second operand will be replaced by immediate value */ 145 tcg_gen_add_i64(val, val, val); 146 147 tcg_gen_st_i64(val, ptr, 0); 148 tcg_temp_free_ptr(ptr); 149 tcg_temp_free_i64(val); 150 tcg_temp_free_ptr(cpu_index_as_ptr); 151 tcg_temp_free_i32(cpu_index); 152 } 153 154 static void gen_empty_mem_cb(TCGv_i64 addr, uint32_t info) 155 { 156 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 157 TCGv_i32 meminfo = tcg_temp_ebb_new_i32(); 158 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 159 160 tcg_gen_movi_i32(meminfo, info); 161 tcg_gen_movi_ptr(udata, 0); 162 tcg_gen_ld_i32(cpu_index, tcg_env, 163 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 164 165 gen_helper_plugin_vcpu_mem_cb(cpu_index, meminfo, addr, udata); 166 167 tcg_temp_free_ptr(udata); 168 tcg_temp_free_i32(meminfo); 169 tcg_temp_free_i32(cpu_index); 170 } 171 172 /* 173 * Share the same function for enable/disable. When enabling, the NULL 174 * pointer will be overwritten later. 175 */ 176 static void gen_empty_mem_helper(void) 177 { 178 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 179 180 tcg_gen_movi_ptr(ptr, 0); 181 tcg_gen_st_ptr(ptr, tcg_env, offsetof(CPUState, plugin_mem_cbs) - 182 offsetof(ArchCPU, env)); 183 tcg_temp_free_ptr(ptr); 184 } 185 186 static void gen_plugin_cb_start(enum plugin_gen_from from, 187 enum plugin_gen_cb type, unsigned wr) 188 { 189 tcg_gen_plugin_cb_start(from, type, wr); 190 } 191 192 static void gen_wrapped(enum plugin_gen_from from, 193 enum plugin_gen_cb type, void (*func)(void)) 194 { 195 gen_plugin_cb_start(from, type, 0); 196 func(); 197 tcg_gen_plugin_cb_end(); 198 } 199 200 static void plugin_gen_empty_callback(enum plugin_gen_from from) 201 { 202 switch (from) { 203 case PLUGIN_GEN_AFTER_INSN: 204 gen_wrapped(from, PLUGIN_GEN_DISABLE_MEM_HELPER, 205 gen_empty_mem_helper); 206 break; 207 case PLUGIN_GEN_FROM_INSN: 208 /* 209 * Note: plugin_gen_inject() relies on ENABLE_MEM_HELPER being 210 * the first callback of an instruction 211 */ 212 gen_wrapped(from, PLUGIN_GEN_ENABLE_MEM_HELPER, 213 gen_empty_mem_helper); 214 /* fall through */ 215 case PLUGIN_GEN_FROM_TB: 216 gen_wrapped(from, PLUGIN_GEN_CB_UDATA, gen_empty_udata_cb_no_rwg); 217 gen_wrapped(from, PLUGIN_GEN_CB_UDATA_R, gen_empty_udata_cb_no_wg); 218 gen_wrapped(from, PLUGIN_GEN_CB_INLINE, gen_empty_inline_cb); 219 break; 220 default: 221 g_assert_not_reached(); 222 } 223 } 224 225 void plugin_gen_empty_mem_callback(TCGv_i64 addr, uint32_t info) 226 { 227 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 228 229 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_MEM, rw); 230 gen_empty_mem_cb(addr, info); 231 tcg_gen_plugin_cb_end(); 232 233 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_INLINE, rw); 234 gen_empty_inline_cb(); 235 tcg_gen_plugin_cb_end(); 236 } 237 238 static TCGOp *find_op(TCGOp *op, TCGOpcode opc) 239 { 240 while (op) { 241 if (op->opc == opc) { 242 return op; 243 } 244 op = QTAILQ_NEXT(op, link); 245 } 246 return NULL; 247 } 248 249 static TCGOp *rm_ops_range(TCGOp *begin, TCGOp *end) 250 { 251 TCGOp *ret = QTAILQ_NEXT(end, link); 252 253 QTAILQ_REMOVE_SEVERAL(&tcg_ctx->ops, begin, end, link); 254 return ret; 255 } 256 257 /* remove all ops until (and including) plugin_cb_end */ 258 static TCGOp *rm_ops(TCGOp *op) 259 { 260 TCGOp *end_op = find_op(op, INDEX_op_plugin_cb_end); 261 262 tcg_debug_assert(end_op); 263 return rm_ops_range(op, end_op); 264 } 265 266 static TCGOp *copy_op_nocheck(TCGOp **begin_op, TCGOp *op) 267 { 268 TCGOp *old_op = QTAILQ_NEXT(*begin_op, link); 269 unsigned nargs = old_op->nargs; 270 271 *begin_op = old_op; 272 op = tcg_op_insert_after(tcg_ctx, op, old_op->opc, nargs); 273 memcpy(op->args, old_op->args, sizeof(op->args[0]) * nargs); 274 275 return op; 276 } 277 278 static TCGOp *copy_op(TCGOp **begin_op, TCGOp *op, TCGOpcode opc) 279 { 280 op = copy_op_nocheck(begin_op, op); 281 tcg_debug_assert((*begin_op)->opc == opc); 282 return op; 283 } 284 285 static TCGOp *copy_const_ptr(TCGOp **begin_op, TCGOp *op, void *ptr) 286 { 287 if (UINTPTR_MAX == UINT32_MAX) { 288 /* mov_i32 */ 289 op = copy_op(begin_op, op, INDEX_op_mov_i32); 290 op->args[1] = tcgv_i32_arg(tcg_constant_i32((uintptr_t)ptr)); 291 } else { 292 /* mov_i64 */ 293 op = copy_op(begin_op, op, INDEX_op_mov_i64); 294 op->args[1] = tcgv_i64_arg(tcg_constant_i64((uintptr_t)ptr)); 295 } 296 return op; 297 } 298 299 static TCGOp *copy_ld_i32(TCGOp **begin_op, TCGOp *op) 300 { 301 return copy_op(begin_op, op, INDEX_op_ld_i32); 302 } 303 304 static TCGOp *copy_ext_i32_ptr(TCGOp **begin_op, TCGOp *op) 305 { 306 if (UINTPTR_MAX == UINT32_MAX) { 307 op = copy_op(begin_op, op, INDEX_op_mov_i32); 308 } else { 309 op = copy_op(begin_op, op, INDEX_op_ext_i32_i64); 310 } 311 return op; 312 } 313 314 static TCGOp *copy_add_ptr(TCGOp **begin_op, TCGOp *op) 315 { 316 if (UINTPTR_MAX == UINT32_MAX) { 317 op = copy_op(begin_op, op, INDEX_op_add_i32); 318 } else { 319 op = copy_op(begin_op, op, INDEX_op_add_i64); 320 } 321 return op; 322 } 323 324 static TCGOp *copy_ld_i64(TCGOp **begin_op, TCGOp *op) 325 { 326 if (TCG_TARGET_REG_BITS == 32) { 327 /* 2x ld_i32 */ 328 op = copy_ld_i32(begin_op, op); 329 op = copy_ld_i32(begin_op, op); 330 } else { 331 /* ld_i64 */ 332 op = copy_op(begin_op, op, INDEX_op_ld_i64); 333 } 334 return op; 335 } 336 337 static TCGOp *copy_st_i64(TCGOp **begin_op, TCGOp *op) 338 { 339 if (TCG_TARGET_REG_BITS == 32) { 340 /* 2x st_i32 */ 341 op = copy_op(begin_op, op, INDEX_op_st_i32); 342 op = copy_op(begin_op, op, INDEX_op_st_i32); 343 } else { 344 /* st_i64 */ 345 op = copy_op(begin_op, op, INDEX_op_st_i64); 346 } 347 return op; 348 } 349 350 static TCGOp *copy_add_i64(TCGOp **begin_op, TCGOp *op, uint64_t v) 351 { 352 if (TCG_TARGET_REG_BITS == 32) { 353 /* all 32-bit backends must implement add2_i32 */ 354 g_assert(TCG_TARGET_HAS_add2_i32); 355 op = copy_op(begin_op, op, INDEX_op_add2_i32); 356 op->args[4] = tcgv_i32_arg(tcg_constant_i32(v)); 357 op->args[5] = tcgv_i32_arg(tcg_constant_i32(v >> 32)); 358 } else { 359 op = copy_op(begin_op, op, INDEX_op_add_i64); 360 op->args[2] = tcgv_i64_arg(tcg_constant_i64(v)); 361 } 362 return op; 363 } 364 365 static TCGOp *copy_mul_i32(TCGOp **begin_op, TCGOp *op, uint32_t v) 366 { 367 op = copy_op(begin_op, op, INDEX_op_mul_i32); 368 op->args[2] = tcgv_i32_arg(tcg_constant_i32(v)); 369 return op; 370 } 371 372 static TCGOp *copy_st_ptr(TCGOp **begin_op, TCGOp *op) 373 { 374 if (UINTPTR_MAX == UINT32_MAX) { 375 /* st_i32 */ 376 op = copy_op(begin_op, op, INDEX_op_st_i32); 377 } else { 378 /* st_i64 */ 379 op = copy_st_i64(begin_op, op); 380 } 381 return op; 382 } 383 384 static TCGOp *copy_call(TCGOp **begin_op, TCGOp *op, void *func, int *cb_idx) 385 { 386 TCGOp *old_op; 387 int func_idx; 388 389 /* copy all ops until the call */ 390 do { 391 op = copy_op_nocheck(begin_op, op); 392 } while (op->opc != INDEX_op_call); 393 394 /* fill in the op call */ 395 old_op = *begin_op; 396 TCGOP_CALLI(op) = TCGOP_CALLI(old_op); 397 TCGOP_CALLO(op) = TCGOP_CALLO(old_op); 398 tcg_debug_assert(op->life == 0); 399 400 func_idx = TCGOP_CALLO(op) + TCGOP_CALLI(op); 401 *cb_idx = func_idx; 402 op->args[func_idx] = (uintptr_t)func; 403 404 return op; 405 } 406 407 /* 408 * When we append/replace ops here we are sensitive to changing patterns of 409 * TCGOps generated by the tcg_gen_FOO calls when we generated the 410 * empty callbacks. This will assert very quickly in a debug build as 411 * we assert the ops we are replacing are the correct ones. 412 */ 413 static TCGOp *append_udata_cb(const struct qemu_plugin_dyn_cb *cb, 414 TCGOp *begin_op, TCGOp *op, int *cb_idx) 415 { 416 /* const_ptr */ 417 op = copy_const_ptr(&begin_op, op, cb->userp); 418 419 /* copy the ld_i32, but note that we only have to copy it once */ 420 if (*cb_idx == -1) { 421 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 422 } else { 423 begin_op = QTAILQ_NEXT(begin_op, link); 424 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 425 } 426 427 /* call */ 428 op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx); 429 430 return op; 431 } 432 433 static TCGOp *append_inline_cb(const struct qemu_plugin_dyn_cb *cb, 434 TCGOp *begin_op, TCGOp *op, 435 int *unused) 436 { 437 char *ptr = cb->inline_insn.entry.score->data->data; 438 size_t elem_size = g_array_get_element_size( 439 cb->inline_insn.entry.score->data); 440 size_t offset = cb->inline_insn.entry.offset; 441 442 op = copy_ld_i32(&begin_op, op); 443 op = copy_mul_i32(&begin_op, op, elem_size); 444 op = copy_ext_i32_ptr(&begin_op, op); 445 op = copy_const_ptr(&begin_op, op, ptr + offset); 446 op = copy_add_ptr(&begin_op, op); 447 op = copy_ld_i64(&begin_op, op); 448 op = copy_add_i64(&begin_op, op, cb->inline_insn.imm); 449 op = copy_st_i64(&begin_op, op); 450 return op; 451 } 452 453 static TCGOp *append_mem_cb(const struct qemu_plugin_dyn_cb *cb, 454 TCGOp *begin_op, TCGOp *op, int *cb_idx) 455 { 456 enum plugin_gen_cb type = begin_op->args[1]; 457 458 tcg_debug_assert(type == PLUGIN_GEN_CB_MEM); 459 460 /* const_i32 == mov_i32 ("info", so it remains as is) */ 461 op = copy_op(&begin_op, op, INDEX_op_mov_i32); 462 463 /* const_ptr */ 464 op = copy_const_ptr(&begin_op, op, cb->userp); 465 466 /* copy the ld_i32, but note that we only have to copy it once */ 467 if (*cb_idx == -1) { 468 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 469 } else { 470 begin_op = QTAILQ_NEXT(begin_op, link); 471 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 472 } 473 474 if (type == PLUGIN_GEN_CB_MEM) { 475 /* call */ 476 op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx); 477 } 478 479 return op; 480 } 481 482 typedef TCGOp *(*inject_fn)(const struct qemu_plugin_dyn_cb *cb, 483 TCGOp *begin_op, TCGOp *op, int *intp); 484 typedef bool (*op_ok_fn)(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb); 485 486 static bool op_ok(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 487 { 488 return true; 489 } 490 491 static bool op_rw(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 492 { 493 int w; 494 495 w = op->args[2]; 496 return !!(cb->rw & (w + 1)); 497 } 498 499 static void inject_cb_type(const GArray *cbs, TCGOp *begin_op, 500 inject_fn inject, op_ok_fn ok) 501 { 502 TCGOp *end_op; 503 TCGOp *op; 504 int cb_idx = -1; 505 int i; 506 507 if (!cbs || cbs->len == 0) { 508 rm_ops(begin_op); 509 return; 510 } 511 512 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 513 tcg_debug_assert(end_op); 514 515 op = end_op; 516 for (i = 0; i < cbs->len; i++) { 517 struct qemu_plugin_dyn_cb *cb = 518 &g_array_index(cbs, struct qemu_plugin_dyn_cb, i); 519 520 if (!ok(begin_op, cb)) { 521 continue; 522 } 523 op = inject(cb, begin_op, op, &cb_idx); 524 } 525 rm_ops_range(begin_op, end_op); 526 } 527 528 static void 529 inject_udata_cb(const GArray *cbs, TCGOp *begin_op) 530 { 531 inject_cb_type(cbs, begin_op, append_udata_cb, op_ok); 532 } 533 534 static void 535 inject_inline_cb(const GArray *cbs, TCGOp *begin_op, op_ok_fn ok) 536 { 537 inject_cb_type(cbs, begin_op, append_inline_cb, ok); 538 } 539 540 static void 541 inject_mem_cb(const GArray *cbs, TCGOp *begin_op) 542 { 543 inject_cb_type(cbs, begin_op, append_mem_cb, op_rw); 544 } 545 546 /* we could change the ops in place, but we can reuse more code by copying */ 547 static void inject_mem_helper(TCGOp *begin_op, GArray *arr) 548 { 549 TCGOp *orig_op = begin_op; 550 TCGOp *end_op; 551 TCGOp *op; 552 553 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 554 tcg_debug_assert(end_op); 555 556 /* const ptr */ 557 op = copy_const_ptr(&begin_op, end_op, arr); 558 559 /* st_ptr */ 560 op = copy_st_ptr(&begin_op, op); 561 562 rm_ops_range(orig_op, end_op); 563 } 564 565 /* 566 * Tracking memory accesses performed from helpers requires extra work. 567 * If an instruction is emulated with helpers, we do two things: 568 * (1) copy the CB descriptors, and keep track of it so that they can be 569 * freed later on, and (2) point CPUState.plugin_mem_cbs to the descriptors, so 570 * that we can read them at run-time (i.e. when the helper executes). 571 * This run-time access is performed from qemu_plugin_vcpu_mem_cb. 572 * 573 * Note that plugin_gen_disable_mem_helpers undoes (2). Since it 574 * is possible that the code we generate after the instruction is 575 * dead, we also add checks before generating tb_exit etc. 576 */ 577 static void inject_mem_enable_helper(struct qemu_plugin_tb *ptb, 578 struct qemu_plugin_insn *plugin_insn, 579 TCGOp *begin_op) 580 { 581 GArray *cbs[2]; 582 GArray *arr; 583 size_t n_cbs, i; 584 585 cbs[0] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR]; 586 cbs[1] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 587 588 n_cbs = 0; 589 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 590 n_cbs += cbs[i]->len; 591 } 592 593 plugin_insn->mem_helper = plugin_insn->calls_helpers && n_cbs; 594 if (likely(!plugin_insn->mem_helper)) { 595 rm_ops(begin_op); 596 return; 597 } 598 ptb->mem_helper = true; 599 600 arr = g_array_sized_new(false, false, 601 sizeof(struct qemu_plugin_dyn_cb), n_cbs); 602 603 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 604 g_array_append_vals(arr, cbs[i]->data, cbs[i]->len); 605 } 606 607 qemu_plugin_add_dyn_cb_arr(arr); 608 inject_mem_helper(begin_op, arr); 609 } 610 611 static void inject_mem_disable_helper(struct qemu_plugin_insn *plugin_insn, 612 TCGOp *begin_op) 613 { 614 if (likely(!plugin_insn->mem_helper)) { 615 rm_ops(begin_op); 616 return; 617 } 618 inject_mem_helper(begin_op, NULL); 619 } 620 621 /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */ 622 void plugin_gen_disable_mem_helpers(void) 623 { 624 /* 625 * We could emit the clearing unconditionally and be done. However, this can 626 * be wasteful if for instance plugins don't track memory accesses, or if 627 * most TBs don't use helpers. Instead, emit the clearing iff the TB calls 628 * helpers that might access guest memory. 629 * 630 * Note: we do not reset plugin_tb->mem_helper here; a TB might have several 631 * exit points, and we want to emit the clearing from all of them. 632 */ 633 if (!tcg_ctx->plugin_tb->mem_helper) { 634 return; 635 } 636 tcg_gen_st_ptr(tcg_constant_ptr(NULL), tcg_env, 637 offsetof(CPUState, plugin_mem_cbs) - offsetof(ArchCPU, env)); 638 } 639 640 static void plugin_gen_tb_udata(const struct qemu_plugin_tb *ptb, 641 TCGOp *begin_op) 642 { 643 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR], begin_op); 644 } 645 646 static void plugin_gen_tb_udata_r(const struct qemu_plugin_tb *ptb, 647 TCGOp *begin_op) 648 { 649 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR_R], begin_op); 650 } 651 652 static void plugin_gen_tb_inline(const struct qemu_plugin_tb *ptb, 653 TCGOp *begin_op) 654 { 655 inject_inline_cb(ptb->cbs[PLUGIN_CB_INLINE], begin_op, op_ok); 656 } 657 658 static void plugin_gen_insn_udata(const struct qemu_plugin_tb *ptb, 659 TCGOp *begin_op, int insn_idx) 660 { 661 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 662 663 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], begin_op); 664 } 665 666 static void plugin_gen_insn_udata_r(const struct qemu_plugin_tb *ptb, 667 TCGOp *begin_op, int insn_idx) 668 { 669 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 670 671 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR_R], begin_op); 672 } 673 674 static void plugin_gen_insn_inline(const struct qemu_plugin_tb *ptb, 675 TCGOp *begin_op, int insn_idx) 676 { 677 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 678 inject_inline_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 679 begin_op, op_ok); 680 } 681 682 static void plugin_gen_mem_regular(const struct qemu_plugin_tb *ptb, 683 TCGOp *begin_op, int insn_idx) 684 { 685 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 686 inject_mem_cb(insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], begin_op); 687 } 688 689 static void plugin_gen_mem_inline(const struct qemu_plugin_tb *ptb, 690 TCGOp *begin_op, int insn_idx) 691 { 692 const GArray *cbs; 693 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 694 695 cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 696 inject_inline_cb(cbs, begin_op, op_rw); 697 } 698 699 static void plugin_gen_enable_mem_helper(struct qemu_plugin_tb *ptb, 700 TCGOp *begin_op, int insn_idx) 701 { 702 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 703 inject_mem_enable_helper(ptb, insn, begin_op); 704 } 705 706 static void plugin_gen_disable_mem_helper(struct qemu_plugin_tb *ptb, 707 TCGOp *begin_op, int insn_idx) 708 { 709 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 710 inject_mem_disable_helper(insn, begin_op); 711 } 712 713 /* #define DEBUG_PLUGIN_GEN_OPS */ 714 static void pr_ops(void) 715 { 716 #ifdef DEBUG_PLUGIN_GEN_OPS 717 TCGOp *op; 718 int i = 0; 719 720 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { 721 const char *name = ""; 722 const char *type = ""; 723 724 if (op->opc == INDEX_op_plugin_cb_start) { 725 switch (op->args[0]) { 726 case PLUGIN_GEN_FROM_TB: 727 name = "tb"; 728 break; 729 case PLUGIN_GEN_FROM_INSN: 730 name = "insn"; 731 break; 732 case PLUGIN_GEN_FROM_MEM: 733 name = "mem"; 734 break; 735 case PLUGIN_GEN_AFTER_INSN: 736 name = "after insn"; 737 break; 738 default: 739 break; 740 } 741 switch (op->args[1]) { 742 case PLUGIN_GEN_CB_UDATA: 743 type = "udata"; 744 break; 745 case PLUGIN_GEN_CB_INLINE: 746 type = "inline"; 747 break; 748 case PLUGIN_GEN_CB_MEM: 749 type = "mem"; 750 break; 751 case PLUGIN_GEN_ENABLE_MEM_HELPER: 752 type = "enable mem helper"; 753 break; 754 case PLUGIN_GEN_DISABLE_MEM_HELPER: 755 type = "disable mem helper"; 756 break; 757 default: 758 break; 759 } 760 } 761 printf("op[%2i]: %s %s %s\n", i, tcg_op_defs[op->opc].name, name, type); 762 i++; 763 } 764 #endif 765 } 766 767 static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb) 768 { 769 TCGOp *op; 770 int insn_idx = -1; 771 772 pr_ops(); 773 774 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { 775 switch (op->opc) { 776 case INDEX_op_insn_start: 777 insn_idx++; 778 break; 779 case INDEX_op_plugin_cb_start: 780 { 781 enum plugin_gen_from from = op->args[0]; 782 enum plugin_gen_cb type = op->args[1]; 783 784 switch (from) { 785 case PLUGIN_GEN_FROM_TB: 786 { 787 g_assert(insn_idx == -1); 788 789 switch (type) { 790 case PLUGIN_GEN_CB_UDATA: 791 plugin_gen_tb_udata(plugin_tb, op); 792 break; 793 case PLUGIN_GEN_CB_UDATA_R: 794 plugin_gen_tb_udata_r(plugin_tb, op); 795 break; 796 case PLUGIN_GEN_CB_INLINE: 797 plugin_gen_tb_inline(plugin_tb, op); 798 break; 799 default: 800 g_assert_not_reached(); 801 } 802 break; 803 } 804 case PLUGIN_GEN_FROM_INSN: 805 { 806 g_assert(insn_idx >= 0); 807 808 switch (type) { 809 case PLUGIN_GEN_CB_UDATA: 810 plugin_gen_insn_udata(plugin_tb, op, insn_idx); 811 break; 812 case PLUGIN_GEN_CB_UDATA_R: 813 plugin_gen_insn_udata_r(plugin_tb, op, insn_idx); 814 break; 815 case PLUGIN_GEN_CB_INLINE: 816 plugin_gen_insn_inline(plugin_tb, op, insn_idx); 817 break; 818 case PLUGIN_GEN_ENABLE_MEM_HELPER: 819 plugin_gen_enable_mem_helper(plugin_tb, op, insn_idx); 820 break; 821 default: 822 g_assert_not_reached(); 823 } 824 break; 825 } 826 case PLUGIN_GEN_FROM_MEM: 827 { 828 g_assert(insn_idx >= 0); 829 830 switch (type) { 831 case PLUGIN_GEN_CB_MEM: 832 plugin_gen_mem_regular(plugin_tb, op, insn_idx); 833 break; 834 case PLUGIN_GEN_CB_INLINE: 835 plugin_gen_mem_inline(plugin_tb, op, insn_idx); 836 break; 837 default: 838 g_assert_not_reached(); 839 } 840 841 break; 842 } 843 case PLUGIN_GEN_AFTER_INSN: 844 { 845 g_assert(insn_idx >= 0); 846 847 switch (type) { 848 case PLUGIN_GEN_DISABLE_MEM_HELPER: 849 plugin_gen_disable_mem_helper(plugin_tb, op, insn_idx); 850 break; 851 default: 852 g_assert_not_reached(); 853 } 854 break; 855 } 856 default: 857 g_assert_not_reached(); 858 } 859 break; 860 } 861 default: 862 /* plugins don't care about any other ops */ 863 break; 864 } 865 } 866 pr_ops(); 867 } 868 869 bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db, 870 bool mem_only) 871 { 872 bool ret = false; 873 874 if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_state->event_mask)) { 875 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 876 int i; 877 878 /* reset callbacks */ 879 for (i = 0; i < PLUGIN_N_CB_SUBTYPES; i++) { 880 if (ptb->cbs[i]) { 881 g_array_set_size(ptb->cbs[i], 0); 882 } 883 } 884 ptb->n = 0; 885 886 ret = true; 887 888 ptb->vaddr = db->pc_first; 889 ptb->vaddr2 = -1; 890 ptb->haddr1 = db->host_addr[0]; 891 ptb->haddr2 = NULL; 892 ptb->mem_only = mem_only; 893 ptb->mem_helper = false; 894 895 plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB); 896 } 897 898 tcg_ctx->plugin_insn = NULL; 899 900 return ret; 901 } 902 903 void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db) 904 { 905 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 906 struct qemu_plugin_insn *pinsn; 907 908 pinsn = qemu_plugin_tb_insn_get(ptb, db->pc_next); 909 tcg_ctx->plugin_insn = pinsn; 910 plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN); 911 912 /* 913 * Detect page crossing to get the new host address. 914 * Note that we skip this when haddr1 == NULL, e.g. when we're 915 * fetching instructions from a region not backed by RAM. 916 */ 917 if (ptb->haddr1 == NULL) { 918 pinsn->haddr = NULL; 919 } else if (is_same_page(db, db->pc_next)) { 920 pinsn->haddr = ptb->haddr1 + pinsn->vaddr - ptb->vaddr; 921 } else { 922 if (ptb->vaddr2 == -1) { 923 ptb->vaddr2 = TARGET_PAGE_ALIGN(db->pc_first); 924 get_page_addr_code_hostp(cpu_env(cpu), ptb->vaddr2, &ptb->haddr2); 925 } 926 pinsn->haddr = ptb->haddr2 + pinsn->vaddr - ptb->vaddr2; 927 } 928 } 929 930 void plugin_gen_insn_end(void) 931 { 932 plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN); 933 } 934 935 /* 936 * There are cases where we never get to finalise a translation - for 937 * example a page fault during translation. As a result we shouldn't 938 * do any clean-up here and make sure things are reset in 939 * plugin_gen_tb_start. 940 */ 941 void plugin_gen_tb_end(CPUState *cpu, size_t num_insns) 942 { 943 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 944 945 /* translator may have removed instructions, update final count */ 946 g_assert(num_insns <= ptb->n); 947 ptb->n = num_insns; 948 949 /* collect instrumentation requests */ 950 qemu_plugin_tb_trans_cb(cpu, ptb); 951 952 /* inject the instrumentation at the appropriate places */ 953 plugin_gen_inject(ptb); 954 } 955