1/* 2 * Routines common to user and system emulation of load/store. 3 * 4 * Copyright (c) 2022 Linaro, Ltd. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or later. 9 * See the COPYING file in the top-level directory. 10 */ 11 12#include "host/load-extract-al16-al8.h" 13#include "host/store-insert-al16.h" 14 15#ifdef CONFIG_ATOMIC64 16# define HAVE_al8 true 17#else 18# define HAVE_al8 false 19#endif 20#define HAVE_al8_fast (ATOMIC_REG_SIZE >= 8) 21 22/** 23 * required_atomicity: 24 * 25 * Return the lg2 bytes of atomicity required by @memop for @p. 26 * If the operation must be split into two operations to be 27 * examined separately for atomicity, return -lg2. 28 */ 29static int required_atomicity(CPUArchState *env, uintptr_t p, MemOp memop) 30{ 31 MemOp atom = memop & MO_ATOM_MASK; 32 MemOp size = memop & MO_SIZE; 33 MemOp half = size ? size - 1 : 0; 34 unsigned tmp; 35 int atmax; 36 37 switch (atom) { 38 case MO_ATOM_NONE: 39 atmax = MO_8; 40 break; 41 42 case MO_ATOM_IFALIGN_PAIR: 43 size = half; 44 /* fall through */ 45 46 case MO_ATOM_IFALIGN: 47 tmp = (1 << size) - 1; 48 atmax = p & tmp ? MO_8 : size; 49 break; 50 51 case MO_ATOM_WITHIN16: 52 tmp = p & 15; 53 atmax = (tmp + (1 << size) <= 16 ? size : MO_8); 54 break; 55 56 case MO_ATOM_WITHIN16_PAIR: 57 tmp = p & 15; 58 if (tmp + (1 << size) <= 16) { 59 atmax = size; 60 } else if (tmp + (1 << half) == 16) { 61 /* 62 * The pair exactly straddles the boundary. 63 * Both halves are naturally aligned and atomic. 64 */ 65 atmax = half; 66 } else { 67 /* 68 * One of the pair crosses the boundary, and is non-atomic. 69 * The other of the pair does not cross, and is atomic. 70 */ 71 atmax = -half; 72 } 73 break; 74 75 case MO_ATOM_SUBALIGN: 76 /* 77 * Examine the alignment of p to determine if there are subobjects 78 * that must be aligned. Note that we only really need ctz4() -- 79 * any more sigificant bits are discarded by the immediately 80 * following comparison. 81 */ 82 tmp = ctz32(p); 83 atmax = MIN(size, tmp); 84 break; 85 86 default: 87 g_assert_not_reached(); 88 } 89 90 /* 91 * Here we have the architectural atomicity of the operation. 92 * However, when executing in a serial context, we need no extra 93 * host atomicity in order to avoid racing. This reduction 94 * avoids looping with cpu_loop_exit_atomic. 95 */ 96 if (cpu_in_serial_context(env_cpu(env))) { 97 return MO_8; 98 } 99 return atmax; 100} 101 102/** 103 * load_atomic2: 104 * @pv: host address 105 * 106 * Atomically load 2 aligned bytes from @pv. 107 */ 108static inline uint16_t load_atomic2(void *pv) 109{ 110 uint16_t *p = __builtin_assume_aligned(pv, 2); 111 return qatomic_read(p); 112} 113 114/** 115 * load_atomic4: 116 * @pv: host address 117 * 118 * Atomically load 4 aligned bytes from @pv. 119 */ 120static inline uint32_t load_atomic4(void *pv) 121{ 122 uint32_t *p = __builtin_assume_aligned(pv, 4); 123 return qatomic_read(p); 124} 125 126/** 127 * load_atomic8: 128 * @pv: host address 129 * 130 * Atomically load 8 aligned bytes from @pv. 131 */ 132static inline uint64_t load_atomic8(void *pv) 133{ 134 uint64_t *p = __builtin_assume_aligned(pv, 8); 135 136 qemu_build_assert(HAVE_al8); 137 return qatomic_read__nocheck(p); 138} 139 140/** 141 * load_atomic8_or_exit: 142 * @env: cpu context 143 * @ra: host unwind address 144 * @pv: host address 145 * 146 * Atomically load 8 aligned bytes from @pv. 147 * If this is not possible, longjmp out to restart serially. 148 */ 149static uint64_t load_atomic8_or_exit(CPUArchState *env, uintptr_t ra, void *pv) 150{ 151 if (HAVE_al8) { 152 return load_atomic8(pv); 153 } 154 155#ifdef CONFIG_USER_ONLY 156 /* 157 * If the page is not writable, then assume the value is immutable 158 * and requires no locking. This ignores the case of MAP_SHARED with 159 * another process, because the fallback start_exclusive solution 160 * provides no protection across processes. 161 */ 162 WITH_MMAP_LOCK_GUARD() { 163 if (!page_check_range(h2g(pv), 8, PAGE_WRITE_ORG)) { 164 uint64_t *p = __builtin_assume_aligned(pv, 8); 165 return *p; 166 } 167 } 168#endif 169 170 /* Ultimate fallback: re-execute in serial context. */ 171 cpu_loop_exit_atomic(env_cpu(env), ra); 172} 173 174/** 175 * load_atomic16_or_exit: 176 * @env: cpu context 177 * @ra: host unwind address 178 * @pv: host address 179 * 180 * Atomically load 16 aligned bytes from @pv. 181 * If this is not possible, longjmp out to restart serially. 182 */ 183static Int128 load_atomic16_or_exit(CPUArchState *env, uintptr_t ra, void *pv) 184{ 185 Int128 *p = __builtin_assume_aligned(pv, 16); 186 187 if (HAVE_ATOMIC128_RO) { 188 return atomic16_read_ro(p); 189 } 190 191 /* 192 * We can only use cmpxchg to emulate a load if the page is writable. 193 * If the page is not writable, then assume the value is immutable 194 * and requires no locking. This ignores the case of MAP_SHARED with 195 * another process, because the fallback start_exclusive solution 196 * provides no protection across processes. 197 * 198 * In system mode all guest pages are writable. For user mode, 199 * we must take mmap_lock so that the query remains valid until 200 * the write is complete -- tests/tcg/multiarch/munmap-pthread.c 201 * is an example that can race. 202 */ 203 WITH_MMAP_LOCK_GUARD() { 204#ifdef CONFIG_USER_ONLY 205 if (!page_check_range(h2g(p), 16, PAGE_WRITE_ORG)) { 206 return *p; 207 } 208#endif 209 if (HAVE_ATOMIC128_RW) { 210 return atomic16_read_rw(p); 211 } 212 } 213 214 /* Ultimate fallback: re-execute in serial context. */ 215 cpu_loop_exit_atomic(env_cpu(env), ra); 216} 217 218/** 219 * load_atom_extract_al4x2: 220 * @pv: host address 221 * 222 * Load 4 bytes from @p, from two sequential atomic 4-byte loads. 223 */ 224static uint32_t load_atom_extract_al4x2(void *pv) 225{ 226 uintptr_t pi = (uintptr_t)pv; 227 int sh = (pi & 3) * 8; 228 uint32_t a, b; 229 230 pv = (void *)(pi & ~3); 231 a = load_atomic4(pv); 232 b = load_atomic4(pv + 4); 233 234 if (HOST_BIG_ENDIAN) { 235 return (a << sh) | (b >> (-sh & 31)); 236 } else { 237 return (a >> sh) | (b << (-sh & 31)); 238 } 239} 240 241/** 242 * load_atom_extract_al8x2: 243 * @pv: host address 244 * 245 * Load 8 bytes from @p, from two sequential atomic 8-byte loads. 246 */ 247static uint64_t load_atom_extract_al8x2(void *pv) 248{ 249 uintptr_t pi = (uintptr_t)pv; 250 int sh = (pi & 7) * 8; 251 uint64_t a, b; 252 253 pv = (void *)(pi & ~7); 254 a = load_atomic8(pv); 255 b = load_atomic8(pv + 8); 256 257 if (HOST_BIG_ENDIAN) { 258 return (a << sh) | (b >> (-sh & 63)); 259 } else { 260 return (a >> sh) | (b << (-sh & 63)); 261 } 262} 263 264/** 265 * load_atom_extract_al8_or_exit: 266 * @env: cpu context 267 * @ra: host unwind address 268 * @pv: host address 269 * @s: object size in bytes, @s <= 4. 270 * 271 * Atomically load @s bytes from @p, when p % s != 0, and [p, p+s-1] does 272 * not cross an 8-byte boundary. This means that we can perform an atomic 273 * 8-byte load and extract. 274 * The value is returned in the low bits of a uint32_t. 275 */ 276static uint32_t load_atom_extract_al8_or_exit(CPUArchState *env, uintptr_t ra, 277 void *pv, int s) 278{ 279 uintptr_t pi = (uintptr_t)pv; 280 int o = pi & 7; 281 int shr = (HOST_BIG_ENDIAN ? 8 - s - o : o) * 8; 282 283 pv = (void *)(pi & ~7); 284 return load_atomic8_or_exit(env, ra, pv) >> shr; 285} 286 287/** 288 * load_atom_extract_al16_or_exit: 289 * @env: cpu context 290 * @ra: host unwind address 291 * @p: host address 292 * @s: object size in bytes, @s <= 8. 293 * 294 * Atomically load @s bytes from @p, when p % 16 < 8 295 * and p % 16 + s > 8. I.e. does not cross a 16-byte 296 * boundary, but *does* cross an 8-byte boundary. 297 * This is the slow version, so we must have eliminated 298 * any faster load_atom_extract_al8_or_exit case. 299 * 300 * If this is not possible, longjmp out to restart serially. 301 */ 302static uint64_t load_atom_extract_al16_or_exit(CPUArchState *env, uintptr_t ra, 303 void *pv, int s) 304{ 305 uintptr_t pi = (uintptr_t)pv; 306 int o = pi & 7; 307 int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8; 308 Int128 r; 309 310 /* 311 * Note constraints above: p & 8 must be clear. 312 * Provoke SIGBUS if possible otherwise. 313 */ 314 pv = (void *)(pi & ~7); 315 r = load_atomic16_or_exit(env, ra, pv); 316 317 r = int128_urshift(r, shr); 318 return int128_getlo(r); 319} 320 321/** 322 * load_atom_4_by_2: 323 * @pv: host address 324 * 325 * Load 4 bytes from @pv, with two 2-byte atomic loads. 326 */ 327static inline uint32_t load_atom_4_by_2(void *pv) 328{ 329 uint32_t a = load_atomic2(pv); 330 uint32_t b = load_atomic2(pv + 2); 331 332 if (HOST_BIG_ENDIAN) { 333 return (a << 16) | b; 334 } else { 335 return (b << 16) | a; 336 } 337} 338 339/** 340 * load_atom_8_by_2: 341 * @pv: host address 342 * 343 * Load 8 bytes from @pv, with four 2-byte atomic loads. 344 */ 345static inline uint64_t load_atom_8_by_2(void *pv) 346{ 347 uint32_t a = load_atom_4_by_2(pv); 348 uint32_t b = load_atom_4_by_2(pv + 4); 349 350 if (HOST_BIG_ENDIAN) { 351 return ((uint64_t)a << 32) | b; 352 } else { 353 return ((uint64_t)b << 32) | a; 354 } 355} 356 357/** 358 * load_atom_8_by_4: 359 * @pv: host address 360 * 361 * Load 8 bytes from @pv, with two 4-byte atomic loads. 362 */ 363static inline uint64_t load_atom_8_by_4(void *pv) 364{ 365 uint32_t a = load_atomic4(pv); 366 uint32_t b = load_atomic4(pv + 4); 367 368 if (HOST_BIG_ENDIAN) { 369 return ((uint64_t)a << 32) | b; 370 } else { 371 return ((uint64_t)b << 32) | a; 372 } 373} 374 375/** 376 * load_atom_8_by_8_or_4: 377 * @pv: host address 378 * 379 * Load 8 bytes from aligned @pv, with at least 4-byte atomicity. 380 */ 381static inline uint64_t load_atom_8_by_8_or_4(void *pv) 382{ 383 if (HAVE_al8_fast) { 384 return load_atomic8(pv); 385 } else { 386 return load_atom_8_by_4(pv); 387 } 388} 389 390/** 391 * load_atom_2: 392 * @p: host address 393 * @memop: the full memory op 394 * 395 * Load 2 bytes from @p, honoring the atomicity of @memop. 396 */ 397static uint16_t load_atom_2(CPUArchState *env, uintptr_t ra, 398 void *pv, MemOp memop) 399{ 400 uintptr_t pi = (uintptr_t)pv; 401 int atmax; 402 403 if (likely((pi & 1) == 0)) { 404 return load_atomic2(pv); 405 } 406 if (HAVE_ATOMIC128_RO) { 407 return load_atom_extract_al16_or_al8(pv, 2); 408 } 409 410 atmax = required_atomicity(env, pi, memop); 411 switch (atmax) { 412 case MO_8: 413 return lduw_he_p(pv); 414 case MO_16: 415 /* The only case remaining is MO_ATOM_WITHIN16. */ 416 if (!HAVE_al8_fast && (pi & 3) == 1) { 417 /* Big or little endian, we want the middle two bytes. */ 418 return load_atomic4(pv - 1) >> 8; 419 } 420 if ((pi & 15) != 7) { 421 return load_atom_extract_al8_or_exit(env, ra, pv, 2); 422 } 423 return load_atom_extract_al16_or_exit(env, ra, pv, 2); 424 default: 425 g_assert_not_reached(); 426 } 427} 428 429/** 430 * load_atom_4: 431 * @p: host address 432 * @memop: the full memory op 433 * 434 * Load 4 bytes from @p, honoring the atomicity of @memop. 435 */ 436static uint32_t load_atom_4(CPUArchState *env, uintptr_t ra, 437 void *pv, MemOp memop) 438{ 439 uintptr_t pi = (uintptr_t)pv; 440 int atmax; 441 442 if (likely((pi & 3) == 0)) { 443 return load_atomic4(pv); 444 } 445 if (HAVE_ATOMIC128_RO) { 446 return load_atom_extract_al16_or_al8(pv, 4); 447 } 448 449 atmax = required_atomicity(env, pi, memop); 450 switch (atmax) { 451 case MO_8: 452 case MO_16: 453 case -MO_16: 454 /* 455 * For MO_ATOM_IFALIGN, this is more atomicity than required, 456 * but it's trivially supported on all hosts, better than 4 457 * individual byte loads (when the host requires alignment), 458 * and overlaps with the MO_ATOM_SUBALIGN case of p % 2 == 0. 459 */ 460 return load_atom_extract_al4x2(pv); 461 case MO_32: 462 if (!(pi & 4)) { 463 return load_atom_extract_al8_or_exit(env, ra, pv, 4); 464 } 465 return load_atom_extract_al16_or_exit(env, ra, pv, 4); 466 default: 467 g_assert_not_reached(); 468 } 469} 470 471/** 472 * load_atom_8: 473 * @p: host address 474 * @memop: the full memory op 475 * 476 * Load 8 bytes from @p, honoring the atomicity of @memop. 477 */ 478static uint64_t load_atom_8(CPUArchState *env, uintptr_t ra, 479 void *pv, MemOp memop) 480{ 481 uintptr_t pi = (uintptr_t)pv; 482 int atmax; 483 484 /* 485 * If the host does not support 8-byte atomics, wait until we have 486 * examined the atomicity parameters below. 487 */ 488 if (HAVE_al8 && likely((pi & 7) == 0)) { 489 return load_atomic8(pv); 490 } 491 if (HAVE_ATOMIC128_RO) { 492 return load_atom_extract_al16_or_al8(pv, 8); 493 } 494 495 atmax = required_atomicity(env, pi, memop); 496 if (atmax == MO_64) { 497 if (!HAVE_al8 && (pi & 7) == 0) { 498 load_atomic8_or_exit(env, ra, pv); 499 } 500 return load_atom_extract_al16_or_exit(env, ra, pv, 8); 501 } 502 if (HAVE_al8_fast) { 503 return load_atom_extract_al8x2(pv); 504 } 505 switch (atmax) { 506 case MO_8: 507 return ldq_he_p(pv); 508 case MO_16: 509 return load_atom_8_by_2(pv); 510 case MO_32: 511 return load_atom_8_by_4(pv); 512 case -MO_32: 513 if (HAVE_al8) { 514 return load_atom_extract_al8x2(pv); 515 } 516 cpu_loop_exit_atomic(env_cpu(env), ra); 517 default: 518 g_assert_not_reached(); 519 } 520} 521 522/** 523 * load_atom_16: 524 * @p: host address 525 * @memop: the full memory op 526 * 527 * Load 16 bytes from @p, honoring the atomicity of @memop. 528 */ 529static Int128 load_atom_16(CPUArchState *env, uintptr_t ra, 530 void *pv, MemOp memop) 531{ 532 uintptr_t pi = (uintptr_t)pv; 533 int atmax; 534 Int128 r; 535 uint64_t a, b; 536 537 /* 538 * If the host does not support 16-byte atomics, wait until we have 539 * examined the atomicity parameters below. 540 */ 541 if (HAVE_ATOMIC128_RO && likely((pi & 15) == 0)) { 542 return atomic16_read_ro(pv); 543 } 544 545 atmax = required_atomicity(env, pi, memop); 546 switch (atmax) { 547 case MO_8: 548 memcpy(&r, pv, 16); 549 return r; 550 case MO_16: 551 a = load_atom_8_by_2(pv); 552 b = load_atom_8_by_2(pv + 8); 553 break; 554 case MO_32: 555 a = load_atom_8_by_4(pv); 556 b = load_atom_8_by_4(pv + 8); 557 break; 558 case MO_64: 559 if (!HAVE_al8) { 560 cpu_loop_exit_atomic(env_cpu(env), ra); 561 } 562 a = load_atomic8(pv); 563 b = load_atomic8(pv + 8); 564 break; 565 case -MO_64: 566 if (!HAVE_al8) { 567 cpu_loop_exit_atomic(env_cpu(env), ra); 568 } 569 a = load_atom_extract_al8x2(pv); 570 b = load_atom_extract_al8x2(pv + 8); 571 break; 572 case MO_128: 573 return load_atomic16_or_exit(env, ra, pv); 574 default: 575 g_assert_not_reached(); 576 } 577 return int128_make128(HOST_BIG_ENDIAN ? b : a, HOST_BIG_ENDIAN ? a : b); 578} 579 580/** 581 * store_atomic2: 582 * @pv: host address 583 * @val: value to store 584 * 585 * Atomically store 2 aligned bytes to @pv. 586 */ 587static inline void store_atomic2(void *pv, uint16_t val) 588{ 589 uint16_t *p = __builtin_assume_aligned(pv, 2); 590 qatomic_set(p, val); 591} 592 593/** 594 * store_atomic4: 595 * @pv: host address 596 * @val: value to store 597 * 598 * Atomically store 4 aligned bytes to @pv. 599 */ 600static inline void store_atomic4(void *pv, uint32_t val) 601{ 602 uint32_t *p = __builtin_assume_aligned(pv, 4); 603 qatomic_set(p, val); 604} 605 606/** 607 * store_atomic8: 608 * @pv: host address 609 * @val: value to store 610 * 611 * Atomically store 8 aligned bytes to @pv. 612 */ 613static inline void store_atomic8(void *pv, uint64_t val) 614{ 615 uint64_t *p = __builtin_assume_aligned(pv, 8); 616 617 qemu_build_assert(HAVE_al8); 618 qatomic_set__nocheck(p, val); 619} 620 621/** 622 * store_atom_4x2 623 */ 624static inline void store_atom_4_by_2(void *pv, uint32_t val) 625{ 626 store_atomic2(pv, val >> (HOST_BIG_ENDIAN ? 16 : 0)); 627 store_atomic2(pv + 2, val >> (HOST_BIG_ENDIAN ? 0 : 16)); 628} 629 630/** 631 * store_atom_8_by_2 632 */ 633static inline void store_atom_8_by_2(void *pv, uint64_t val) 634{ 635 store_atom_4_by_2(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0)); 636 store_atom_4_by_2(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32)); 637} 638 639/** 640 * store_atom_8_by_4 641 */ 642static inline void store_atom_8_by_4(void *pv, uint64_t val) 643{ 644 store_atomic4(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0)); 645 store_atomic4(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32)); 646} 647 648/** 649 * store_atom_insert_al4: 650 * @p: host address 651 * @val: shifted value to store 652 * @msk: mask for value to store 653 * 654 * Atomically store @val to @p, masked by @msk. 655 */ 656static void store_atom_insert_al4(uint32_t *p, uint32_t val, uint32_t msk) 657{ 658 uint32_t old, new; 659 660 p = __builtin_assume_aligned(p, 4); 661 old = qatomic_read(p); 662 do { 663 new = (old & ~msk) | val; 664 } while (!__atomic_compare_exchange_n(p, &old, new, true, 665 __ATOMIC_RELAXED, __ATOMIC_RELAXED)); 666} 667 668/** 669 * store_atom_insert_al8: 670 * @p: host address 671 * @val: shifted value to store 672 * @msk: mask for value to store 673 * 674 * Atomically store @val to @p masked by @msk. 675 */ 676static void store_atom_insert_al8(uint64_t *p, uint64_t val, uint64_t msk) 677{ 678 uint64_t old, new; 679 680 qemu_build_assert(HAVE_al8); 681 p = __builtin_assume_aligned(p, 8); 682 old = qatomic_read__nocheck(p); 683 do { 684 new = (old & ~msk) | val; 685 } while (!__atomic_compare_exchange_n(p, &old, new, true, 686 __ATOMIC_RELAXED, __ATOMIC_RELAXED)); 687} 688 689/** 690 * store_bytes_leN: 691 * @pv: host address 692 * @size: number of bytes to store 693 * @val_le: data to store 694 * 695 * Store @size bytes at @p. The bytes to store are extracted in little-endian order 696 * from @val_le; return the bytes of @val_le beyond @size that have not been stored. 697 */ 698static uint64_t store_bytes_leN(void *pv, int size, uint64_t val_le) 699{ 700 uint8_t *p = pv; 701 for (int i = 0; i < size; i++, val_le >>= 8) { 702 p[i] = val_le; 703 } 704 return val_le; 705} 706 707/** 708 * store_parts_leN 709 * @pv: host address 710 * @size: number of bytes to store 711 * @val_le: data to store 712 * 713 * As store_bytes_leN, but atomically on each aligned part. 714 */ 715G_GNUC_UNUSED 716static uint64_t store_parts_leN(void *pv, int size, uint64_t val_le) 717{ 718 do { 719 int n; 720 721 /* Find minimum of alignment and size */ 722 switch (((uintptr_t)pv | size) & 7) { 723 case 4: 724 store_atomic4(pv, le32_to_cpu(val_le)); 725 val_le >>= 32; 726 n = 4; 727 break; 728 case 2: 729 case 6: 730 store_atomic2(pv, le16_to_cpu(val_le)); 731 val_le >>= 16; 732 n = 2; 733 break; 734 default: 735 *(uint8_t *)pv = val_le; 736 val_le >>= 8; 737 n = 1; 738 break; 739 case 0: 740 g_assert_not_reached(); 741 } 742 pv += n; 743 size -= n; 744 } while (size != 0); 745 746 return val_le; 747} 748 749/** 750 * store_whole_le4 751 * @pv: host address 752 * @size: number of bytes to store 753 * @val_le: data to store 754 * 755 * As store_bytes_leN, but atomically as a whole. 756 * Four aligned bytes are guaranteed to cover the store. 757 */ 758static uint64_t store_whole_le4(void *pv, int size, uint64_t val_le) 759{ 760 int sz = size * 8; 761 int o = (uintptr_t)pv & 3; 762 int sh = o * 8; 763 uint32_t m = MAKE_64BIT_MASK(0, sz); 764 uint32_t v; 765 766 if (HOST_BIG_ENDIAN) { 767 v = bswap32(val_le) >> sh; 768 m = bswap32(m) >> sh; 769 } else { 770 v = val_le << sh; 771 m <<= sh; 772 } 773 store_atom_insert_al4(pv - o, v, m); 774 return val_le >> sz; 775} 776 777/** 778 * store_whole_le8 779 * @pv: host address 780 * @size: number of bytes to store 781 * @val_le: data to store 782 * 783 * As store_bytes_leN, but atomically as a whole. 784 * Eight aligned bytes are guaranteed to cover the store. 785 */ 786static uint64_t store_whole_le8(void *pv, int size, uint64_t val_le) 787{ 788 int sz = size * 8; 789 int o = (uintptr_t)pv & 7; 790 int sh = o * 8; 791 uint64_t m = MAKE_64BIT_MASK(0, sz); 792 uint64_t v; 793 794 qemu_build_assert(HAVE_al8); 795 if (HOST_BIG_ENDIAN) { 796 v = bswap64(val_le) >> sh; 797 m = bswap64(m) >> sh; 798 } else { 799 v = val_le << sh; 800 m <<= sh; 801 } 802 store_atom_insert_al8(pv - o, v, m); 803 return val_le >> sz; 804} 805 806/** 807 * store_whole_le16 808 * @pv: host address 809 * @size: number of bytes to store 810 * @val_le: data to store 811 * 812 * As store_bytes_leN, but atomically as a whole. 813 * 16 aligned bytes are guaranteed to cover the store. 814 */ 815static uint64_t store_whole_le16(void *pv, int size, Int128 val_le) 816{ 817 int sz = size * 8; 818 int o = (uintptr_t)pv & 15; 819 int sh = o * 8; 820 Int128 m, v; 821 822 qemu_build_assert(HAVE_ATOMIC128_RW); 823 824 /* Like MAKE_64BIT_MASK(0, sz), but larger. */ 825 if (sz <= 64) { 826 m = int128_make64(MAKE_64BIT_MASK(0, sz)); 827 } else { 828 m = int128_make128(-1, MAKE_64BIT_MASK(0, sz - 64)); 829 } 830 831 if (HOST_BIG_ENDIAN) { 832 v = int128_urshift(bswap128(val_le), sh); 833 m = int128_urshift(bswap128(m), sh); 834 } else { 835 v = int128_lshift(val_le, sh); 836 m = int128_lshift(m, sh); 837 } 838 store_atom_insert_al16(pv - o, v, m); 839 840 if (sz <= 64) { 841 return 0; 842 } 843 return int128_gethi(val_le) >> (sz - 64); 844} 845 846/** 847 * store_atom_2: 848 * @p: host address 849 * @val: the value to store 850 * @memop: the full memory op 851 * 852 * Store 2 bytes to @p, honoring the atomicity of @memop. 853 */ 854static void store_atom_2(CPUArchState *env, uintptr_t ra, 855 void *pv, MemOp memop, uint16_t val) 856{ 857 uintptr_t pi = (uintptr_t)pv; 858 int atmax; 859 860 if (likely((pi & 1) == 0)) { 861 store_atomic2(pv, val); 862 return; 863 } 864 865 atmax = required_atomicity(env, pi, memop); 866 if (atmax == MO_8) { 867 stw_he_p(pv, val); 868 return; 869 } 870 871 /* 872 * The only case remaining is MO_ATOM_WITHIN16. 873 * Big or little endian, we want the middle two bytes in each test. 874 */ 875 if ((pi & 3) == 1) { 876 store_atom_insert_al4(pv - 1, (uint32_t)val << 8, MAKE_64BIT_MASK(8, 16)); 877 return; 878 } else if ((pi & 7) == 3) { 879 if (HAVE_al8) { 880 store_atom_insert_al8(pv - 3, (uint64_t)val << 24, MAKE_64BIT_MASK(24, 16)); 881 return; 882 } 883 } else if ((pi & 15) == 7) { 884 if (HAVE_ATOMIC128_RW) { 885 Int128 v = int128_lshift(int128_make64(val), 56); 886 Int128 m = int128_lshift(int128_make64(0xffff), 56); 887 store_atom_insert_al16(pv - 7, v, m); 888 return; 889 } 890 } else { 891 g_assert_not_reached(); 892 } 893 894 cpu_loop_exit_atomic(env_cpu(env), ra); 895} 896 897/** 898 * store_atom_4: 899 * @p: host address 900 * @val: the value to store 901 * @memop: the full memory op 902 * 903 * Store 4 bytes to @p, honoring the atomicity of @memop. 904 */ 905static void store_atom_4(CPUArchState *env, uintptr_t ra, 906 void *pv, MemOp memop, uint32_t val) 907{ 908 uintptr_t pi = (uintptr_t)pv; 909 int atmax; 910 911 if (likely((pi & 3) == 0)) { 912 store_atomic4(pv, val); 913 return; 914 } 915 916 atmax = required_atomicity(env, pi, memop); 917 switch (atmax) { 918 case MO_8: 919 stl_he_p(pv, val); 920 return; 921 case MO_16: 922 store_atom_4_by_2(pv, val); 923 return; 924 case -MO_16: 925 { 926 uint32_t val_le = cpu_to_le32(val); 927 int s2 = pi & 3; 928 int s1 = 4 - s2; 929 930 switch (s2) { 931 case 1: 932 val_le = store_whole_le4(pv, s1, val_le); 933 *(uint8_t *)(pv + 3) = val_le; 934 break; 935 case 3: 936 *(uint8_t *)pv = val_le; 937 store_whole_le4(pv + 1, s2, val_le >> 8); 938 break; 939 case 0: /* aligned */ 940 case 2: /* atmax MO_16 */ 941 default: 942 g_assert_not_reached(); 943 } 944 } 945 return; 946 case MO_32: 947 if ((pi & 7) < 4) { 948 if (HAVE_al8) { 949 store_whole_le8(pv, 4, cpu_to_le32(val)); 950 return; 951 } 952 } else { 953 if (HAVE_ATOMIC128_RW) { 954 store_whole_le16(pv, 4, int128_make64(cpu_to_le32(val))); 955 return; 956 } 957 } 958 cpu_loop_exit_atomic(env_cpu(env), ra); 959 default: 960 g_assert_not_reached(); 961 } 962} 963 964/** 965 * store_atom_8: 966 * @p: host address 967 * @val: the value to store 968 * @memop: the full memory op 969 * 970 * Store 8 bytes to @p, honoring the atomicity of @memop. 971 */ 972static void store_atom_8(CPUArchState *env, uintptr_t ra, 973 void *pv, MemOp memop, uint64_t val) 974{ 975 uintptr_t pi = (uintptr_t)pv; 976 int atmax; 977 978 if (HAVE_al8 && likely((pi & 7) == 0)) { 979 store_atomic8(pv, val); 980 return; 981 } 982 983 atmax = required_atomicity(env, pi, memop); 984 switch (atmax) { 985 case MO_8: 986 stq_he_p(pv, val); 987 return; 988 case MO_16: 989 store_atom_8_by_2(pv, val); 990 return; 991 case MO_32: 992 store_atom_8_by_4(pv, val); 993 return; 994 case -MO_32: 995 if (HAVE_al8) { 996 uint64_t val_le = cpu_to_le64(val); 997 int s2 = pi & 7; 998 int s1 = 8 - s2; 999 1000 switch (s2) { 1001 case 1 ... 3: 1002 val_le = store_whole_le8(pv, s1, val_le); 1003 store_bytes_leN(pv + s1, s2, val_le); 1004 break; 1005 case 5 ... 7: 1006 val_le = store_bytes_leN(pv, s1, val_le); 1007 store_whole_le8(pv + s1, s2, val_le); 1008 break; 1009 case 0: /* aligned */ 1010 case 4: /* atmax MO_32 */ 1011 default: 1012 g_assert_not_reached(); 1013 } 1014 return; 1015 } 1016 break; 1017 case MO_64: 1018 if (HAVE_ATOMIC128_RW) { 1019 store_whole_le16(pv, 8, int128_make64(cpu_to_le64(val))); 1020 return; 1021 } 1022 break; 1023 default: 1024 g_assert_not_reached(); 1025 } 1026 cpu_loop_exit_atomic(env_cpu(env), ra); 1027} 1028 1029/** 1030 * store_atom_16: 1031 * @p: host address 1032 * @val: the value to store 1033 * @memop: the full memory op 1034 * 1035 * Store 16 bytes to @p, honoring the atomicity of @memop. 1036 */ 1037static void store_atom_16(CPUArchState *env, uintptr_t ra, 1038 void *pv, MemOp memop, Int128 val) 1039{ 1040 uintptr_t pi = (uintptr_t)pv; 1041 uint64_t a, b; 1042 int atmax; 1043 1044 if (HAVE_ATOMIC128_RW && likely((pi & 15) == 0)) { 1045 atomic16_set(pv, val); 1046 return; 1047 } 1048 1049 atmax = required_atomicity(env, pi, memop); 1050 1051 a = HOST_BIG_ENDIAN ? int128_gethi(val) : int128_getlo(val); 1052 b = HOST_BIG_ENDIAN ? int128_getlo(val) : int128_gethi(val); 1053 switch (atmax) { 1054 case MO_8: 1055 memcpy(pv, &val, 16); 1056 return; 1057 case MO_16: 1058 store_atom_8_by_2(pv, a); 1059 store_atom_8_by_2(pv + 8, b); 1060 return; 1061 case MO_32: 1062 store_atom_8_by_4(pv, a); 1063 store_atom_8_by_4(pv + 8, b); 1064 return; 1065 case MO_64: 1066 if (HAVE_al8) { 1067 store_atomic8(pv, a); 1068 store_atomic8(pv + 8, b); 1069 return; 1070 } 1071 break; 1072 case -MO_64: 1073 if (HAVE_ATOMIC128_RW) { 1074 uint64_t val_le; 1075 int s2 = pi & 15; 1076 int s1 = 16 - s2; 1077 1078 if (HOST_BIG_ENDIAN) { 1079 val = bswap128(val); 1080 } 1081 switch (s2) { 1082 case 1 ... 7: 1083 val_le = store_whole_le16(pv, s1, val); 1084 store_bytes_leN(pv + s1, s2, val_le); 1085 break; 1086 case 9 ... 15: 1087 store_bytes_leN(pv, s1, int128_getlo(val)); 1088 val = int128_urshift(val, s1 * 8); 1089 store_whole_le16(pv + s1, s2, val); 1090 break; 1091 case 0: /* aligned */ 1092 case 8: /* atmax MO_64 */ 1093 default: 1094 g_assert_not_reached(); 1095 } 1096 return; 1097 } 1098 break; 1099 case MO_128: 1100 if (HAVE_ATOMIC128_RW) { 1101 atomic16_set(pv, val); 1102 return; 1103 } 1104 break; 1105 default: 1106 g_assert_not_reached(); 1107 } 1108 cpu_loop_exit_atomic(env_cpu(env), ra); 1109} 1110