xref: /openbmc/qemu/accel/tcg/cputlb.c (revision f441b4d19b289f55a378b8d033994f45a333b581)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/memory.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/tb-flush.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "exec/mmu-access-type.h"
32 #include "exec/tlb-common.h"
33 #include "exec/vaddr.h"
34 #include "tcg/tcg.h"
35 #include "qemu/error-report.h"
36 #include "exec/log.h"
37 #include "exec/helper-proto-common.h"
38 #include "qemu/atomic.h"
39 #include "qemu/atomic128.h"
40 #include "tb-internal.h"
41 #include "trace.h"
42 #include "tb-hash.h"
43 #include "tb-internal.h"
44 #include "internal-common.h"
45 #include "internal-target.h"
46 #ifdef CONFIG_PLUGIN
47 #include "qemu/plugin-memory.h"
48 #endif
49 #include "tcg/tcg-ldst.h"
50 
51 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
52 /* #define DEBUG_TLB */
53 /* #define DEBUG_TLB_LOG */
54 
55 #ifdef DEBUG_TLB
56 # define DEBUG_TLB_GATE 1
57 # ifdef DEBUG_TLB_LOG
58 #  define DEBUG_TLB_LOG_GATE 1
59 # else
60 #  define DEBUG_TLB_LOG_GATE 0
61 # endif
62 #else
63 # define DEBUG_TLB_GATE 0
64 # define DEBUG_TLB_LOG_GATE 0
65 #endif
66 
67 #define tlb_debug(fmt, ...) do { \
68     if (DEBUG_TLB_LOG_GATE) { \
69         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
70                       ## __VA_ARGS__); \
71     } else if (DEBUG_TLB_GATE) { \
72         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
73     } \
74 } while (0)
75 
76 #define assert_cpu_is_self(cpu) do {                              \
77         if (DEBUG_TLB_GATE) {                                     \
78             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
79         }                                                         \
80     } while (0)
81 
82 /* run_on_cpu_data.target_ptr should always be big enough for a
83  * vaddr even on 32 bit builds
84  */
85 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
86 
87 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
88  */
89 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
90 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
91 
92 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
93 {
94     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
95 }
96 
97 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
98 {
99     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
100 }
101 
102 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
103                                     MMUAccessType access_type)
104 {
105     /* Do not rearrange the CPUTLBEntry structure members. */
106     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
107                       MMU_DATA_LOAD * sizeof(uint64_t));
108     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
109                       MMU_DATA_STORE * sizeof(uint64_t));
110     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
111                       MMU_INST_FETCH * sizeof(uint64_t));
112 
113 #if TARGET_LONG_BITS == 32
114     /* Use qatomic_read, in case of addr_write; only care about low bits. */
115     const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type];
116     ptr += HOST_BIG_ENDIAN;
117     return qatomic_read(ptr);
118 #else
119     const uint64_t *ptr = &entry->addr_idx[access_type];
120     /* ofs might correspond to .addr_write, so use qatomic_read */
121     return qatomic_read(ptr);
122 #endif
123 }
124 
125 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
126 {
127     return tlb_read_idx(entry, MMU_DATA_STORE);
128 }
129 
130 /* Find the TLB index corresponding to the mmu_idx + address pair.  */
131 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx,
132                                   vaddr addr)
133 {
134     uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
135 
136     return (addr >> TARGET_PAGE_BITS) & size_mask;
137 }
138 
139 /* Find the TLB entry corresponding to the mmu_idx + address pair.  */
140 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx,
141                                      vaddr addr)
142 {
143     return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)];
144 }
145 
146 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
147                              size_t max_entries)
148 {
149     desc->window_begin_ns = ns;
150     desc->window_max_entries = max_entries;
151 }
152 
153 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
154 {
155     CPUJumpCache *jc = cpu->tb_jmp_cache;
156     int i, i0;
157 
158     if (unlikely(!jc)) {
159         return;
160     }
161 
162     i0 = tb_jmp_cache_hash_page(page_addr);
163     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
164         qatomic_set(&jc->array[i0 + i].tb, NULL);
165     }
166 }
167 
168 /**
169  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
170  * @desc: The CPUTLBDesc portion of the TLB
171  * @fast: The CPUTLBDescFast portion of the same TLB
172  *
173  * Called with tlb_lock_held.
174  *
175  * We have two main constraints when resizing a TLB: (1) we only resize it
176  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
177  * the array or unnecessarily flushing it), which means we do not control how
178  * frequently the resizing can occur; (2) we don't have access to the guest's
179  * future scheduling decisions, and therefore have to decide the magnitude of
180  * the resize based on past observations.
181  *
182  * In general, a memory-hungry process can benefit greatly from an appropriately
183  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
184  * we just have to make the TLB as large as possible; while an oversized TLB
185  * results in minimal TLB miss rates, it also takes longer to be flushed
186  * (flushes can be _very_ frequent), and the reduced locality can also hurt
187  * performance.
188  *
189  * To achieve near-optimal performance for all kinds of workloads, we:
190  *
191  * 1. Aggressively increase the size of the TLB when the use rate of the
192  * TLB being flushed is high, since it is likely that in the near future this
193  * memory-hungry process will execute again, and its memory hungriness will
194  * probably be similar.
195  *
196  * 2. Slowly reduce the size of the TLB as the use rate declines over a
197  * reasonably large time window. The rationale is that if in such a time window
198  * we have not observed a high TLB use rate, it is likely that we won't observe
199  * it in the near future. In that case, once a time window expires we downsize
200  * the TLB to match the maximum use rate observed in the window.
201  *
202  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
203  * since in that range performance is likely near-optimal. Recall that the TLB
204  * is direct mapped, so we want the use rate to be low (or at least not too
205  * high), since otherwise we are likely to have a significant amount of
206  * conflict misses.
207  */
208 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
209                                   int64_t now)
210 {
211     size_t old_size = tlb_n_entries(fast);
212     size_t rate;
213     size_t new_size = old_size;
214     int64_t window_len_ms = 100;
215     int64_t window_len_ns = window_len_ms * 1000 * 1000;
216     bool window_expired = now > desc->window_begin_ns + window_len_ns;
217 
218     if (desc->n_used_entries > desc->window_max_entries) {
219         desc->window_max_entries = desc->n_used_entries;
220     }
221     rate = desc->window_max_entries * 100 / old_size;
222 
223     if (rate > 70) {
224         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
225     } else if (rate < 30 && window_expired) {
226         size_t ceil = pow2ceil(desc->window_max_entries);
227         size_t expected_rate = desc->window_max_entries * 100 / ceil;
228 
229         /*
230          * Avoid undersizing when the max number of entries seen is just below
231          * a pow2. For instance, if max_entries == 1025, the expected use rate
232          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
233          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
234          * later. Thus, make sure that the expected use rate remains below 70%.
235          * (and since we double the size, that means the lowest rate we'd
236          * expect to get is 35%, which is still in the 30-70% range where
237          * we consider that the size is appropriate.)
238          */
239         if (expected_rate > 70) {
240             ceil *= 2;
241         }
242         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
243     }
244 
245     if (new_size == old_size) {
246         if (window_expired) {
247             tlb_window_reset(desc, now, desc->n_used_entries);
248         }
249         return;
250     }
251 
252     g_free(fast->table);
253     g_free(desc->fulltlb);
254 
255     tlb_window_reset(desc, now, 0);
256     /* desc->n_used_entries is cleared by the caller */
257     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
258     fast->table = g_try_new(CPUTLBEntry, new_size);
259     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
260 
261     /*
262      * If the allocations fail, try smaller sizes. We just freed some
263      * memory, so going back to half of new_size has a good chance of working.
264      * Increased memory pressure elsewhere in the system might cause the
265      * allocations to fail though, so we progressively reduce the allocation
266      * size, aborting if we cannot even allocate the smallest TLB we support.
267      */
268     while (fast->table == NULL || desc->fulltlb == NULL) {
269         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
270             error_report("%s: %s", __func__, strerror(errno));
271             abort();
272         }
273         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
274         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
275 
276         g_free(fast->table);
277         g_free(desc->fulltlb);
278         fast->table = g_try_new(CPUTLBEntry, new_size);
279         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
280     }
281 }
282 
283 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
284 {
285     desc->n_used_entries = 0;
286     desc->large_page_addr = -1;
287     desc->large_page_mask = -1;
288     desc->vindex = 0;
289     memset(fast->table, -1, sizeof_tlb(fast));
290     memset(desc->vtable, -1, sizeof(desc->vtable));
291 }
292 
293 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
294                                         int64_t now)
295 {
296     CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
297     CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
298 
299     tlb_mmu_resize_locked(desc, fast, now);
300     tlb_mmu_flush_locked(desc, fast);
301 }
302 
303 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
304 {
305     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
306 
307     tlb_window_reset(desc, now, 0);
308     desc->n_used_entries = 0;
309     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
310     fast->table = g_new(CPUTLBEntry, n_entries);
311     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
312     tlb_mmu_flush_locked(desc, fast);
313 }
314 
315 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
316 {
317     cpu->neg.tlb.d[mmu_idx].n_used_entries++;
318 }
319 
320 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
321 {
322     cpu->neg.tlb.d[mmu_idx].n_used_entries--;
323 }
324 
325 void tlb_init(CPUState *cpu)
326 {
327     int64_t now = get_clock_realtime();
328     int i;
329 
330     qemu_spin_init(&cpu->neg.tlb.c.lock);
331 
332     /* All tlbs are initialized flushed. */
333     cpu->neg.tlb.c.dirty = 0;
334 
335     for (i = 0; i < NB_MMU_MODES; i++) {
336         tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
337     }
338 }
339 
340 void tlb_destroy(CPUState *cpu)
341 {
342     int i;
343 
344     qemu_spin_destroy(&cpu->neg.tlb.c.lock);
345     for (i = 0; i < NB_MMU_MODES; i++) {
346         CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
347         CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
348 
349         g_free(fast->table);
350         g_free(desc->fulltlb);
351     }
352 }
353 
354 /* flush_all_helper: run fn across all cpus
355  *
356  * If the wait flag is set then the src cpu's helper will be queued as
357  * "safe" work and the loop exited creating a synchronisation point
358  * where all queued work will be finished before execution starts
359  * again.
360  */
361 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
362                              run_on_cpu_data d)
363 {
364     CPUState *cpu;
365 
366     CPU_FOREACH(cpu) {
367         if (cpu != src) {
368             async_run_on_cpu(cpu, fn, d);
369         }
370     }
371 }
372 
373 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
374 {
375     uint16_t asked = data.host_int;
376     uint16_t all_dirty, work, to_clean;
377     int64_t now = get_clock_realtime();
378 
379     assert_cpu_is_self(cpu);
380 
381     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
382 
383     qemu_spin_lock(&cpu->neg.tlb.c.lock);
384 
385     all_dirty = cpu->neg.tlb.c.dirty;
386     to_clean = asked & all_dirty;
387     all_dirty &= ~to_clean;
388     cpu->neg.tlb.c.dirty = all_dirty;
389 
390     for (work = to_clean; work != 0; work &= work - 1) {
391         int mmu_idx = ctz32(work);
392         tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
393     }
394 
395     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
396 
397     tcg_flush_jmp_cache(cpu);
398 
399     if (to_clean == ALL_MMUIDX_BITS) {
400         qatomic_set(&cpu->neg.tlb.c.full_flush_count,
401                     cpu->neg.tlb.c.full_flush_count + 1);
402     } else {
403         qatomic_set(&cpu->neg.tlb.c.part_flush_count,
404                     cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
405         if (to_clean != asked) {
406             qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
407                         cpu->neg.tlb.c.elide_flush_count +
408                         ctpop16(asked & ~to_clean));
409         }
410     }
411 }
412 
413 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
414 {
415     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
416 
417     assert_cpu_is_self(cpu);
418 
419     tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
420 }
421 
422 void tlb_flush(CPUState *cpu)
423 {
424     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
425 }
426 
427 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
428 {
429     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
430 
431     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
432 
433     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
434     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
435 }
436 
437 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
438 {
439     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
440 }
441 
442 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
443                                       vaddr page, vaddr mask)
444 {
445     page &= mask;
446     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
447 
448     return (page == (tlb_entry->addr_read & mask) ||
449             page == (tlb_addr_write(tlb_entry) & mask) ||
450             page == (tlb_entry->addr_code & mask));
451 }
452 
453 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
454 {
455     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
456 }
457 
458 /**
459  * tlb_entry_is_empty - return true if the entry is not in use
460  * @te: pointer to CPUTLBEntry
461  */
462 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
463 {
464     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
465 }
466 
467 /* Called with tlb_c.lock held */
468 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
469                                         vaddr page,
470                                         vaddr mask)
471 {
472     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
473         memset(tlb_entry, -1, sizeof(*tlb_entry));
474         return true;
475     }
476     return false;
477 }
478 
479 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
480 {
481     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
482 }
483 
484 /* Called with tlb_c.lock held */
485 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
486                                             vaddr page,
487                                             vaddr mask)
488 {
489     CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
490     int k;
491 
492     assert_cpu_is_self(cpu);
493     for (k = 0; k < CPU_VTLB_SIZE; k++) {
494         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
495             tlb_n_used_entries_dec(cpu, mmu_idx);
496         }
497     }
498 }
499 
500 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
501                                               vaddr page)
502 {
503     tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
504 }
505 
506 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
507 {
508     vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
509     vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
510 
511     /* Check if we need to flush due to large pages.  */
512     if ((page & lp_mask) == lp_addr) {
513         tlb_debug("forcing full flush midx %d (%016"
514                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
515                   midx, lp_addr, lp_mask);
516         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
517     } else {
518         if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
519             tlb_n_used_entries_dec(cpu, midx);
520         }
521         tlb_flush_vtlb_page_locked(cpu, midx, page);
522     }
523 }
524 
525 /**
526  * tlb_flush_page_by_mmuidx_async_0:
527  * @cpu: cpu on which to flush
528  * @addr: page of virtual address to flush
529  * @idxmap: set of mmu_idx to flush
530  *
531  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
532  * at @addr from the tlbs indicated by @idxmap from @cpu.
533  */
534 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
535                                              vaddr addr,
536                                              uint16_t idxmap)
537 {
538     int mmu_idx;
539 
540     assert_cpu_is_self(cpu);
541 
542     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
543 
544     qemu_spin_lock(&cpu->neg.tlb.c.lock);
545     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
546         if ((idxmap >> mmu_idx) & 1) {
547             tlb_flush_page_locked(cpu, mmu_idx, addr);
548         }
549     }
550     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
551 
552     /*
553      * Discard jump cache entries for any tb which might potentially
554      * overlap the flushed page, which includes the previous.
555      */
556     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
557     tb_jmp_cache_clear_page(cpu, addr);
558 }
559 
560 /**
561  * tlb_flush_page_by_mmuidx_async_1:
562  * @cpu: cpu on which to flush
563  * @data: encoded addr + idxmap
564  *
565  * Helper for tlb_flush_page_by_mmuidx and friends, called through
566  * async_run_on_cpu.  The idxmap parameter is encoded in the page
567  * offset of the target_ptr field.  This limits the set of mmu_idx
568  * that can be passed via this method.
569  */
570 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
571                                              run_on_cpu_data data)
572 {
573     vaddr addr_and_idxmap = data.target_ptr;
574     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
575     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
576 
577     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
578 }
579 
580 typedef struct {
581     vaddr addr;
582     uint16_t idxmap;
583 } TLBFlushPageByMMUIdxData;
584 
585 /**
586  * tlb_flush_page_by_mmuidx_async_2:
587  * @cpu: cpu on which to flush
588  * @data: allocated addr + idxmap
589  *
590  * Helper for tlb_flush_page_by_mmuidx and friends, called through
591  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
592  * TLBFlushPageByMMUIdxData structure that has been allocated
593  * specifically for this helper.  Free the structure when done.
594  */
595 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
596                                              run_on_cpu_data data)
597 {
598     TLBFlushPageByMMUIdxData *d = data.host_ptr;
599 
600     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
601     g_free(d);
602 }
603 
604 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
605 {
606     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
607 
608     assert_cpu_is_self(cpu);
609 
610     /* This should already be page aligned */
611     addr &= TARGET_PAGE_MASK;
612 
613     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
614 }
615 
616 void tlb_flush_page(CPUState *cpu, vaddr addr)
617 {
618     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
619 }
620 
621 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
622                                               vaddr addr,
623                                               uint16_t idxmap)
624 {
625     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
626 
627     /* This should already be page aligned */
628     addr &= TARGET_PAGE_MASK;
629 
630     /*
631      * Allocate memory to hold addr+idxmap only when needed.
632      * See tlb_flush_page_by_mmuidx for details.
633      */
634     if (idxmap < TARGET_PAGE_SIZE) {
635         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
636                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
637         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639     } else {
640         CPUState *dst_cpu;
641         TLBFlushPageByMMUIdxData *d;
642 
643         /* Allocate a separate data block for each destination cpu.  */
644         CPU_FOREACH(dst_cpu) {
645             if (dst_cpu != src_cpu) {
646                 d = g_new(TLBFlushPageByMMUIdxData, 1);
647                 d->addr = addr;
648                 d->idxmap = idxmap;
649                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
650                                  RUN_ON_CPU_HOST_PTR(d));
651             }
652         }
653 
654         d = g_new(TLBFlushPageByMMUIdxData, 1);
655         d->addr = addr;
656         d->idxmap = idxmap;
657         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
658                               RUN_ON_CPU_HOST_PTR(d));
659     }
660 }
661 
662 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
663 {
664     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
665 }
666 
667 static void tlb_flush_range_locked(CPUState *cpu, int midx,
668                                    vaddr addr, vaddr len,
669                                    unsigned bits)
670 {
671     CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
672     CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
673     vaddr mask = MAKE_64BIT_MASK(0, bits);
674 
675     /*
676      * If @bits is smaller than the tlb size, there may be multiple entries
677      * within the TLB; otherwise all addresses that match under @mask hit
678      * the same TLB entry.
679      * TODO: Perhaps allow bits to be a few bits less than the size.
680      * For now, just flush the entire TLB.
681      *
682      * If @len is larger than the tlb size, then it will take longer to
683      * test all of the entries in the TLB than it will to flush it all.
684      */
685     if (mask < f->mask || len > f->mask) {
686         tlb_debug("forcing full flush midx %d ("
687                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
688                   midx, addr, mask, len);
689         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
690         return;
691     }
692 
693     /*
694      * Check if we need to flush due to large pages.
695      * Because large_page_mask contains all 1's from the msb,
696      * we only need to test the end of the range.
697      */
698     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
699         tlb_debug("forcing full flush midx %d ("
700                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
701                   midx, d->large_page_addr, d->large_page_mask);
702         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
703         return;
704     }
705 
706     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
707         vaddr page = addr + i;
708         CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
709 
710         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
711             tlb_n_used_entries_dec(cpu, midx);
712         }
713         tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
714     }
715 }
716 
717 typedef struct {
718     vaddr addr;
719     vaddr len;
720     uint16_t idxmap;
721     uint16_t bits;
722 } TLBFlushRangeData;
723 
724 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
725                                               TLBFlushRangeData d)
726 {
727     int mmu_idx;
728 
729     assert_cpu_is_self(cpu);
730 
731     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
732               d.addr, d.bits, d.len, d.idxmap);
733 
734     qemu_spin_lock(&cpu->neg.tlb.c.lock);
735     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
736         if ((d.idxmap >> mmu_idx) & 1) {
737             tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
738         }
739     }
740     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
741 
742     /*
743      * If the length is larger than the jump cache size, then it will take
744      * longer to clear each entry individually than it will to clear it all.
745      */
746     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
747         tcg_flush_jmp_cache(cpu);
748         return;
749     }
750 
751     /*
752      * Discard jump cache entries for any tb which might potentially
753      * overlap the flushed pages, which includes the previous.
754      */
755     d.addr -= TARGET_PAGE_SIZE;
756     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
757         tb_jmp_cache_clear_page(cpu, d.addr);
758         d.addr += TARGET_PAGE_SIZE;
759     }
760 }
761 
762 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
763                                               run_on_cpu_data data)
764 {
765     TLBFlushRangeData *d = data.host_ptr;
766     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
767     g_free(d);
768 }
769 
770 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
771                                vaddr len, uint16_t idxmap,
772                                unsigned bits)
773 {
774     TLBFlushRangeData d;
775 
776     assert_cpu_is_self(cpu);
777 
778     /*
779      * If all bits are significant, and len is small,
780      * this devolves to tlb_flush_page.
781      */
782     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
783         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
784         return;
785     }
786     /* If no page bits are significant, this devolves to tlb_flush. */
787     if (bits < TARGET_PAGE_BITS) {
788         tlb_flush_by_mmuidx(cpu, idxmap);
789         return;
790     }
791 
792     /* This should already be page aligned */
793     d.addr = addr & TARGET_PAGE_MASK;
794     d.len = len;
795     d.idxmap = idxmap;
796     d.bits = bits;
797 
798     tlb_flush_range_by_mmuidx_async_0(cpu, d);
799 }
800 
801 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
802                                    uint16_t idxmap, unsigned bits)
803 {
804     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
805 }
806 
807 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
808                                                vaddr addr,
809                                                vaddr len,
810                                                uint16_t idxmap,
811                                                unsigned bits)
812 {
813     TLBFlushRangeData d, *p;
814     CPUState *dst_cpu;
815 
816     /*
817      * If all bits are significant, and len is small,
818      * this devolves to tlb_flush_page.
819      */
820     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
821         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
822         return;
823     }
824     /* If no page bits are significant, this devolves to tlb_flush. */
825     if (bits < TARGET_PAGE_BITS) {
826         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
827         return;
828     }
829 
830     /* This should already be page aligned */
831     d.addr = addr & TARGET_PAGE_MASK;
832     d.len = len;
833     d.idxmap = idxmap;
834     d.bits = bits;
835 
836     /* Allocate a separate data block for each destination cpu.  */
837     CPU_FOREACH(dst_cpu) {
838         if (dst_cpu != src_cpu) {
839             p = g_memdup(&d, sizeof(d));
840             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
841                              RUN_ON_CPU_HOST_PTR(p));
842         }
843     }
844 
845     p = g_memdup(&d, sizeof(d));
846     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
847                           RUN_ON_CPU_HOST_PTR(p));
848 }
849 
850 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
851                                                    vaddr addr,
852                                                    uint16_t idxmap,
853                                                    unsigned bits)
854 {
855     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
856                                               idxmap, bits);
857 }
858 
859 /* update the TLBs so that writes to code in the virtual page 'addr'
860    can be detected */
861 void tlb_protect_code(ram_addr_t ram_addr)
862 {
863     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
864                                              TARGET_PAGE_SIZE,
865                                              DIRTY_MEMORY_CODE);
866 }
867 
868 /* update the TLB so that writes in physical page 'phys_addr' are no longer
869    tested for self modifying code */
870 void tlb_unprotect_code(ram_addr_t ram_addr)
871 {
872     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
873 }
874 
875 
876 /*
877  * Dirty write flag handling
878  *
879  * When the TCG code writes to a location it looks up the address in
880  * the TLB and uses that data to compute the final address. If any of
881  * the lower bits of the address are set then the slow path is forced.
882  * There are a number of reasons to do this but for normal RAM the
883  * most usual is detecting writes to code regions which may invalidate
884  * generated code.
885  *
886  * Other vCPUs might be reading their TLBs during guest execution, so we update
887  * te->addr_write with qatomic_set. We don't need to worry about this for
888  * oversized guests as MTTCG is disabled for them.
889  *
890  * Called with tlb_c.lock held.
891  */
892 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
893                                          uintptr_t start, uintptr_t length)
894 {
895     uintptr_t addr = tlb_entry->addr_write;
896 
897     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
898                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
899         addr &= TARGET_PAGE_MASK;
900         addr += tlb_entry->addend;
901         if ((addr - start) < length) {
902 #if TARGET_LONG_BITS == 32
903             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
904             ptr_write += HOST_BIG_ENDIAN;
905             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
906 #else
907             qatomic_set(&tlb_entry->addr_write,
908                         tlb_entry->addr_write | TLB_NOTDIRTY);
909 #endif
910         }
911     }
912 }
913 
914 /*
915  * Called with tlb_c.lock held.
916  * Called only from the vCPU context, i.e. the TLB's owner thread.
917  */
918 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
919 {
920     *d = *s;
921 }
922 
923 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
924  * the target vCPU).
925  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
926  * thing actually updated is the target TLB entry ->addr_write flags.
927  */
928 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
929 {
930     int mmu_idx;
931 
932     qemu_spin_lock(&cpu->neg.tlb.c.lock);
933     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
934         unsigned int i;
935         unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
936 
937         for (i = 0; i < n; i++) {
938             tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
939                                          start1, length);
940         }
941 
942         for (i = 0; i < CPU_VTLB_SIZE; i++) {
943             tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
944                                          start1, length);
945         }
946     }
947     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
948 }
949 
950 /* Called with tlb_c.lock held */
951 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
952                                          vaddr addr)
953 {
954     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
955         tlb_entry->addr_write = addr;
956     }
957 }
958 
959 /* update the TLB corresponding to virtual page vaddr
960    so that it is no longer dirty */
961 static void tlb_set_dirty(CPUState *cpu, vaddr addr)
962 {
963     int mmu_idx;
964 
965     assert_cpu_is_self(cpu);
966 
967     addr &= TARGET_PAGE_MASK;
968     qemu_spin_lock(&cpu->neg.tlb.c.lock);
969     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
970         tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
971     }
972 
973     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
974         int k;
975         for (k = 0; k < CPU_VTLB_SIZE; k++) {
976             tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
977         }
978     }
979     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
980 }
981 
982 /* Our TLB does not support large pages, so remember the area covered by
983    large pages and trigger a full TLB flush if these are invalidated.  */
984 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
985                                vaddr addr, uint64_t size)
986 {
987     vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
988     vaddr lp_mask = ~(size - 1);
989 
990     if (lp_addr == (vaddr)-1) {
991         /* No previous large page.  */
992         lp_addr = addr;
993     } else {
994         /* Extend the existing region to include the new page.
995            This is a compromise between unnecessary flushes and
996            the cost of maintaining a full variable size TLB.  */
997         lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
998         while (((lp_addr ^ addr) & lp_mask) != 0) {
999             lp_mask <<= 1;
1000         }
1001     }
1002     cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1003     cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
1004 }
1005 
1006 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1007                                    vaddr address, int flags,
1008                                    MMUAccessType access_type, bool enable)
1009 {
1010     if (enable) {
1011         address |= flags & TLB_FLAGS_MASK;
1012         flags &= TLB_SLOW_FLAGS_MASK;
1013         if (flags) {
1014             address |= TLB_FORCE_SLOW;
1015         }
1016     } else {
1017         address = -1;
1018         flags = 0;
1019     }
1020     ent->addr_idx[access_type] = address;
1021     full->slow_flags[access_type] = flags;
1022 }
1023 
1024 /*
1025  * Add a new TLB entry. At most one entry for a given virtual address
1026  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1027  * supplied size is only used by tlb_flush_page.
1028  *
1029  * Called from TCG-generated code, which is under an RCU read-side
1030  * critical section.
1031  */
1032 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1033                        vaddr addr, CPUTLBEntryFull *full)
1034 {
1035     CPUTLB *tlb = &cpu->neg.tlb;
1036     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1037     MemoryRegionSection *section;
1038     unsigned int index, read_flags, write_flags;
1039     uintptr_t addend;
1040     CPUTLBEntry *te, tn;
1041     hwaddr iotlb, xlat, sz, paddr_page;
1042     vaddr addr_page;
1043     int asidx, wp_flags, prot;
1044     bool is_ram, is_romd;
1045 
1046     assert_cpu_is_self(cpu);
1047 
1048     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1049         sz = TARGET_PAGE_SIZE;
1050     } else {
1051         sz = (hwaddr)1 << full->lg_page_size;
1052         tlb_add_large_page(cpu, mmu_idx, addr, sz);
1053     }
1054     addr_page = addr & TARGET_PAGE_MASK;
1055     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1056 
1057     prot = full->prot;
1058     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1059     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1060                                                 &xlat, &sz, full->attrs, &prot);
1061     assert(sz >= TARGET_PAGE_SIZE);
1062 
1063     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1064               " prot=%x idx=%d\n",
1065               addr, full->phys_addr, prot, mmu_idx);
1066 
1067     read_flags = full->tlb_fill_flags;
1068     if (full->lg_page_size < TARGET_PAGE_BITS) {
1069         /* Repeat the MMU check and TLB fill on every access.  */
1070         read_flags |= TLB_INVALID_MASK;
1071     }
1072 
1073     is_ram = memory_region_is_ram(section->mr);
1074     is_romd = memory_region_is_romd(section->mr);
1075 
1076     if (is_ram || is_romd) {
1077         /* RAM and ROMD both have associated host memory. */
1078         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1079     } else {
1080         /* I/O does not; force the host address to NULL. */
1081         addend = 0;
1082     }
1083 
1084     write_flags = read_flags;
1085     if (is_ram) {
1086         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1087         assert(!(iotlb & ~TARGET_PAGE_MASK));
1088         /*
1089          * Computing is_clean is expensive; avoid all that unless
1090          * the page is actually writable.
1091          */
1092         if (prot & PAGE_WRITE) {
1093             if (section->readonly) {
1094                 write_flags |= TLB_DISCARD_WRITE;
1095             } else if (cpu_physical_memory_is_clean(iotlb)) {
1096                 write_flags |= TLB_NOTDIRTY;
1097             }
1098         }
1099     } else {
1100         /* I/O or ROMD */
1101         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1102         /*
1103          * Writes to romd devices must go through MMIO to enable write.
1104          * Reads to romd devices go through the ram_ptr found above,
1105          * but of course reads to I/O must go through MMIO.
1106          */
1107         write_flags |= TLB_MMIO;
1108         if (!is_romd) {
1109             read_flags = write_flags;
1110         }
1111     }
1112 
1113     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1114                                               TARGET_PAGE_SIZE);
1115 
1116     index = tlb_index(cpu, mmu_idx, addr_page);
1117     te = tlb_entry(cpu, mmu_idx, addr_page);
1118 
1119     /*
1120      * Hold the TLB lock for the rest of the function. We could acquire/release
1121      * the lock several times in the function, but it is faster to amortize the
1122      * acquisition cost by acquiring it just once. Note that this leads to
1123      * a longer critical section, but this is not a concern since the TLB lock
1124      * is unlikely to be contended.
1125      */
1126     qemu_spin_lock(&tlb->c.lock);
1127 
1128     /* Note that the tlb is no longer clean.  */
1129     tlb->c.dirty |= 1 << mmu_idx;
1130 
1131     /* Make sure there's no cached translation for the new page.  */
1132     tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1133 
1134     /*
1135      * Only evict the old entry to the victim tlb if it's for a
1136      * different page; otherwise just overwrite the stale data.
1137      */
1138     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1139         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1140         CPUTLBEntry *tv = &desc->vtable[vidx];
1141 
1142         /* Evict the old entry into the victim tlb.  */
1143         copy_tlb_helper_locked(tv, te);
1144         desc->vfulltlb[vidx] = desc->fulltlb[index];
1145         tlb_n_used_entries_dec(cpu, mmu_idx);
1146     }
1147 
1148     /* refill the tlb */
1149     /*
1150      * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1151      * aligned ram_addr_t of the page base of the target RAM.
1152      * Otherwise, iotlb contains
1153      *  - a physical section number in the lower TARGET_PAGE_BITS
1154      *  - the offset within section->mr of the page base (I/O, ROMD) with the
1155      *    TARGET_PAGE_BITS masked off.
1156      * We subtract addr_page (which is page aligned and thus won't
1157      * disturb the low bits) to give an offset which can be added to the
1158      * (non-page-aligned) vaddr of the eventual memory access to get
1159      * the MemoryRegion offset for the access. Note that the vaddr we
1160      * subtract here is that of the page base, and not the same as the
1161      * vaddr we add back in io_prepare()/get_page_addr_code().
1162      */
1163     desc->fulltlb[index] = *full;
1164     full = &desc->fulltlb[index];
1165     full->xlat_section = iotlb - addr_page;
1166     full->phys_addr = paddr_page;
1167 
1168     /* Now calculate the new entry */
1169     tn.addend = addend - addr_page;
1170 
1171     tlb_set_compare(full, &tn, addr_page, read_flags,
1172                     MMU_INST_FETCH, prot & PAGE_EXEC);
1173 
1174     if (wp_flags & BP_MEM_READ) {
1175         read_flags |= TLB_WATCHPOINT;
1176     }
1177     tlb_set_compare(full, &tn, addr_page, read_flags,
1178                     MMU_DATA_LOAD, prot & PAGE_READ);
1179 
1180     if (prot & PAGE_WRITE_INV) {
1181         write_flags |= TLB_INVALID_MASK;
1182     }
1183     if (wp_flags & BP_MEM_WRITE) {
1184         write_flags |= TLB_WATCHPOINT;
1185     }
1186     tlb_set_compare(full, &tn, addr_page, write_flags,
1187                     MMU_DATA_STORE, prot & PAGE_WRITE);
1188 
1189     copy_tlb_helper_locked(te, &tn);
1190     tlb_n_used_entries_inc(cpu, mmu_idx);
1191     qemu_spin_unlock(&tlb->c.lock);
1192 }
1193 
1194 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1195                              hwaddr paddr, MemTxAttrs attrs, int prot,
1196                              int mmu_idx, uint64_t size)
1197 {
1198     CPUTLBEntryFull full = {
1199         .phys_addr = paddr,
1200         .attrs = attrs,
1201         .prot = prot,
1202         .lg_page_size = ctz64(size)
1203     };
1204 
1205     assert(is_power_of_2(size));
1206     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1207 }
1208 
1209 void tlb_set_page(CPUState *cpu, vaddr addr,
1210                   hwaddr paddr, int prot,
1211                   int mmu_idx, uint64_t size)
1212 {
1213     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1214                             prot, mmu_idx, size);
1215 }
1216 
1217 /*
1218  * Note: tlb_fill_align() can trigger a resize of the TLB.
1219  * This means that all of the caller's prior references to the TLB table
1220  * (e.g. CPUTLBEntry pointers) must be discarded and looked up again
1221  * (e.g. via tlb_entry()).
1222  */
1223 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type,
1224                            int mmu_idx, MemOp memop, int size,
1225                            bool probe, uintptr_t ra)
1226 {
1227     const TCGCPUOps *ops = cpu->cc->tcg_ops;
1228     CPUTLBEntryFull full;
1229 
1230     if (ops->tlb_fill_align) {
1231         if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx,
1232                                 memop, size, probe, ra)) {
1233             tlb_set_page_full(cpu, mmu_idx, addr, &full);
1234             return true;
1235         }
1236     } else {
1237         /* Legacy behaviour is alignment before paging. */
1238         if (addr & ((1u << memop_alignment_bits(memop)) - 1)) {
1239             ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra);
1240         }
1241         if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) {
1242             return true;
1243         }
1244     }
1245     assert(probe);
1246     return false;
1247 }
1248 
1249 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1250                                         MMUAccessType access_type,
1251                                         int mmu_idx, uintptr_t retaddr)
1252 {
1253     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1254                                           mmu_idx, retaddr);
1255 }
1256 
1257 static MemoryRegionSection *
1258 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1259            MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1260 {
1261     MemoryRegionSection *section;
1262     hwaddr mr_offset;
1263 
1264     section = iotlb_to_section(cpu, xlat, attrs);
1265     mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1266     cpu->mem_io_pc = retaddr;
1267     if (!cpu->neg.can_do_io) {
1268         cpu_io_recompile(cpu, retaddr);
1269     }
1270 
1271     *out_offset = mr_offset;
1272     return section;
1273 }
1274 
1275 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1276                       unsigned size, MMUAccessType access_type, int mmu_idx,
1277                       MemTxResult response, uintptr_t retaddr)
1278 {
1279     if (!cpu->ignore_memory_transaction_failures
1280         && cpu->cc->tcg_ops->do_transaction_failed) {
1281         hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1282 
1283         cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1284                                                 access_type, mmu_idx,
1285                                                 full->attrs, response, retaddr);
1286     }
1287 }
1288 
1289 /* Return true if ADDR is present in the victim tlb, and has been copied
1290    back to the main tlb.  */
1291 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1292                            MMUAccessType access_type, vaddr page)
1293 {
1294     size_t vidx;
1295 
1296     assert_cpu_is_self(cpu);
1297     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1298         CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1299         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1300 
1301         if (cmp == page) {
1302             /* Found entry in victim tlb, swap tlb and iotlb.  */
1303             CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1304 
1305             qemu_spin_lock(&cpu->neg.tlb.c.lock);
1306             copy_tlb_helper_locked(&tmptlb, tlb);
1307             copy_tlb_helper_locked(tlb, vtlb);
1308             copy_tlb_helper_locked(vtlb, &tmptlb);
1309             qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1310 
1311             CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1312             CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1313             CPUTLBEntryFull tmpf;
1314             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1315             return true;
1316         }
1317     }
1318     return false;
1319 }
1320 
1321 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1322                            CPUTLBEntryFull *full, uintptr_t retaddr)
1323 {
1324     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1325 
1326     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1327 
1328     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1329         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1330     }
1331 
1332     /*
1333      * Set both VGA and migration bits for simplicity and to remove
1334      * the notdirty callback faster.
1335      */
1336     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1337 
1338     /* We remove the notdirty callback only if the code has been flushed. */
1339     if (!cpu_physical_memory_is_clean(ram_addr)) {
1340         trace_memory_notdirty_set_dirty(mem_vaddr);
1341         tlb_set_dirty(cpu, mem_vaddr);
1342     }
1343 }
1344 
1345 static int probe_access_internal(CPUState *cpu, vaddr addr,
1346                                  int fault_size, MMUAccessType access_type,
1347                                  int mmu_idx, bool nonfault,
1348                                  void **phost, CPUTLBEntryFull **pfull,
1349                                  uintptr_t retaddr, bool check_mem_cbs)
1350 {
1351     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1352     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1353     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1354     vaddr page_addr = addr & TARGET_PAGE_MASK;
1355     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1356     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1357     CPUTLBEntryFull *full;
1358 
1359     if (!tlb_hit_page(tlb_addr, page_addr)) {
1360         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1361             if (!tlb_fill_align(cpu, addr, access_type, mmu_idx,
1362                                 0, fault_size, nonfault, retaddr)) {
1363                 /* Non-faulting page table read failed.  */
1364                 *phost = NULL;
1365                 *pfull = NULL;
1366                 return TLB_INVALID_MASK;
1367             }
1368 
1369             /* TLB resize via tlb_fill_align may have moved the entry.  */
1370             index = tlb_index(cpu, mmu_idx, addr);
1371             entry = tlb_entry(cpu, mmu_idx, addr);
1372 
1373             /*
1374              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1375              * to force the next access through tlb_fill_align.  We've just
1376              * called tlb_fill_align, so we know that this entry *is* valid.
1377              */
1378             flags &= ~TLB_INVALID_MASK;
1379         }
1380         tlb_addr = tlb_read_idx(entry, access_type);
1381     }
1382     flags &= tlb_addr;
1383 
1384     *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1385     flags |= full->slow_flags[access_type];
1386 
1387     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1388     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
1389         || (access_type != MMU_INST_FETCH && force_mmio)) {
1390         *phost = NULL;
1391         return TLB_MMIO;
1392     }
1393 
1394     /* Everything else is RAM. */
1395     *phost = (void *)((uintptr_t)addr + entry->addend);
1396     return flags;
1397 }
1398 
1399 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1400                       MMUAccessType access_type, int mmu_idx,
1401                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1402                       uintptr_t retaddr)
1403 {
1404     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1405                                       mmu_idx, nonfault, phost, pfull, retaddr,
1406                                       true);
1407 
1408     /* Handle clean RAM pages.  */
1409     if (unlikely(flags & TLB_NOTDIRTY)) {
1410         int dirtysize = size == 0 ? 1 : size;
1411         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1412         flags &= ~TLB_NOTDIRTY;
1413     }
1414 
1415     return flags;
1416 }
1417 
1418 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1419                           MMUAccessType access_type, int mmu_idx,
1420                           void **phost, CPUTLBEntryFull **pfull)
1421 {
1422     void *discard_phost;
1423     CPUTLBEntryFull *discard_tlb;
1424 
1425     /* privately handle users that don't need full results */
1426     phost = phost ? phost : &discard_phost;
1427     pfull = pfull ? pfull : &discard_tlb;
1428 
1429     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1430                                       mmu_idx, true, phost, pfull, 0, false);
1431 
1432     /* Handle clean RAM pages.  */
1433     if (unlikely(flags & TLB_NOTDIRTY)) {
1434         int dirtysize = size == 0 ? 1 : size;
1435         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1436         flags &= ~TLB_NOTDIRTY;
1437     }
1438 
1439     return flags;
1440 }
1441 
1442 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1443                        MMUAccessType access_type, int mmu_idx,
1444                        bool nonfault, void **phost, uintptr_t retaddr)
1445 {
1446     CPUTLBEntryFull *full;
1447     int flags;
1448 
1449     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1450 
1451     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1452                                   mmu_idx, nonfault, phost, &full, retaddr,
1453                                   true);
1454 
1455     /* Handle clean RAM pages. */
1456     if (unlikely(flags & TLB_NOTDIRTY)) {
1457         int dirtysize = size == 0 ? 1 : size;
1458         notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1459         flags &= ~TLB_NOTDIRTY;
1460     }
1461 
1462     return flags;
1463 }
1464 
1465 void *probe_access(CPUArchState *env, vaddr addr, int size,
1466                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1467 {
1468     CPUTLBEntryFull *full;
1469     void *host;
1470     int flags;
1471 
1472     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1473 
1474     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1475                                   mmu_idx, false, &host, &full, retaddr,
1476                                   true);
1477 
1478     /* Per the interface, size == 0 merely faults the access. */
1479     if (size == 0) {
1480         return NULL;
1481     }
1482 
1483     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1484         /* Handle watchpoints.  */
1485         if (flags & TLB_WATCHPOINT) {
1486             int wp_access = (access_type == MMU_DATA_STORE
1487                              ? BP_MEM_WRITE : BP_MEM_READ);
1488             cpu_check_watchpoint(env_cpu(env), addr, size,
1489                                  full->attrs, wp_access, retaddr);
1490         }
1491 
1492         /* Handle clean RAM pages.  */
1493         if (flags & TLB_NOTDIRTY) {
1494             notdirty_write(env_cpu(env), addr, size, full, retaddr);
1495         }
1496     }
1497 
1498     return host;
1499 }
1500 
1501 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr,
1502                         MMUAccessType access_type, int mmu_idx)
1503 {
1504     CPUTLBEntryFull *full;
1505     void *host;
1506     int flags;
1507 
1508     flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1509                                   mmu_idx, true, &host, &full, 0, false);
1510 
1511     /* No combination of flags are expected by the caller. */
1512     return flags ? NULL : host;
1513 }
1514 
1515 /*
1516  * Return a ram_addr_t for the virtual address for execution.
1517  *
1518  * Return -1 if we can't translate and execute from an entire page
1519  * of RAM.  This will force us to execute by loading and translating
1520  * one insn at a time, without caching.
1521  *
1522  * NOTE: This function will trigger an exception if the page is
1523  * not executable.
1524  */
1525 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1526                                         void **hostp)
1527 {
1528     CPUTLBEntryFull *full;
1529     void *p;
1530 
1531     (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1532                                 cpu_mmu_index(env_cpu(env), true), false,
1533                                 &p, &full, 0, false);
1534     if (p == NULL) {
1535         return -1;
1536     }
1537 
1538     if (full->lg_page_size < TARGET_PAGE_BITS) {
1539         return -1;
1540     }
1541 
1542     if (hostp) {
1543         *hostp = p;
1544     }
1545     return qemu_ram_addr_from_host_nofail(p);
1546 }
1547 
1548 /* Load/store with atomicity primitives. */
1549 #include "ldst_atomicity.c.inc"
1550 
1551 #ifdef CONFIG_PLUGIN
1552 /*
1553  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1554  * This should be a hot path as we will have just looked this path up
1555  * in the softmmu lookup code (or helper). We don't handle re-fills or
1556  * checking the victim table. This is purely informational.
1557  *
1558  * The one corner case is i/o write, which can cause changes to the
1559  * address space.  Those changes, and the corresponding tlb flush,
1560  * should be delayed until the next TB, so even then this ought not fail.
1561  * But check, Just in Case.
1562  */
1563 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1564                        bool is_store, struct qemu_plugin_hwaddr *data)
1565 {
1566     CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1567     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1568     MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1569     uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1570     CPUTLBEntryFull *full;
1571 
1572     if (unlikely(!tlb_hit(tlb_addr, addr))) {
1573         return false;
1574     }
1575 
1576     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1577     data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1578 
1579     /* We must have an iotlb entry for MMIO */
1580     if (tlb_addr & TLB_MMIO) {
1581         MemoryRegionSection *section =
1582             iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1583                              full->attrs);
1584         data->is_io = true;
1585         data->mr = section->mr;
1586     } else {
1587         data->is_io = false;
1588         data->mr = NULL;
1589     }
1590     return true;
1591 }
1592 #endif
1593 
1594 /*
1595  * Probe for a load/store operation.
1596  * Return the host address and into @flags.
1597  */
1598 
1599 typedef struct MMULookupPageData {
1600     CPUTLBEntryFull *full;
1601     void *haddr;
1602     vaddr addr;
1603     int flags;
1604     int size;
1605 } MMULookupPageData;
1606 
1607 typedef struct MMULookupLocals {
1608     MMULookupPageData page[2];
1609     MemOp memop;
1610     int mmu_idx;
1611 } MMULookupLocals;
1612 
1613 /**
1614  * mmu_lookup1: translate one page
1615  * @cpu: generic cpu state
1616  * @data: lookup parameters
1617  * @memop: memory operation for the access, or 0
1618  * @mmu_idx: virtual address context
1619  * @access_type: load/store/code
1620  * @ra: return address into tcg generated code, or 0
1621  *
1622  * Resolve the translation for the one page at @data.addr, filling in
1623  * the rest of @data with the results.  If the translation fails,
1624  * tlb_fill_align will longjmp out.  Return true if the softmmu tlb for
1625  * @mmu_idx may have resized.
1626  */
1627 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop,
1628                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1629 {
1630     vaddr addr = data->addr;
1631     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1632     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1633     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1634     bool maybe_resized = false;
1635     CPUTLBEntryFull *full;
1636     int flags;
1637 
1638     /* If the TLB entry is for a different page, reload and try again.  */
1639     if (!tlb_hit(tlb_addr, addr)) {
1640         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1641                             addr & TARGET_PAGE_MASK)) {
1642             tlb_fill_align(cpu, addr, access_type, mmu_idx,
1643                            memop, data->size, false, ra);
1644             maybe_resized = true;
1645             index = tlb_index(cpu, mmu_idx, addr);
1646             entry = tlb_entry(cpu, mmu_idx, addr);
1647         }
1648         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1649     }
1650 
1651     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1652     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1653     flags |= full->slow_flags[access_type];
1654 
1655     if (likely(!maybe_resized)) {
1656         /* Alignment has not been checked by tlb_fill_align. */
1657         int a_bits = memop_alignment_bits(memop);
1658 
1659         /*
1660          * This alignment check differs from the one above, in that this is
1661          * based on the atomicity of the operation. The intended use case is
1662          * the ARM memory type field of each PTE, where access to pages with
1663          * Device memory type require alignment.
1664          */
1665         if (unlikely(flags & TLB_CHECK_ALIGNED)) {
1666             int at_bits = memop_atomicity_bits(memop);
1667             a_bits = MAX(a_bits, at_bits);
1668         }
1669         if (unlikely(addr & ((1 << a_bits) - 1))) {
1670             cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra);
1671         }
1672     }
1673 
1674     data->full = full;
1675     data->flags = flags;
1676     /* Compute haddr speculatively; depending on flags it might be invalid. */
1677     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1678 
1679     return maybe_resized;
1680 }
1681 
1682 /**
1683  * mmu_watch_or_dirty
1684  * @cpu: generic cpu state
1685  * @data: lookup parameters
1686  * @access_type: load/store/code
1687  * @ra: return address into tcg generated code, or 0
1688  *
1689  * Trigger watchpoints for @data.addr:@data.size;
1690  * record writes to protected clean pages.
1691  */
1692 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1693                                MMUAccessType access_type, uintptr_t ra)
1694 {
1695     CPUTLBEntryFull *full = data->full;
1696     vaddr addr = data->addr;
1697     int flags = data->flags;
1698     int size = data->size;
1699 
1700     /* On watchpoint hit, this will longjmp out.  */
1701     if (flags & TLB_WATCHPOINT) {
1702         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1703         cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1704         flags &= ~TLB_WATCHPOINT;
1705     }
1706 
1707     /* Note that notdirty is only set for writes. */
1708     if (flags & TLB_NOTDIRTY) {
1709         notdirty_write(cpu, addr, size, full, ra);
1710         flags &= ~TLB_NOTDIRTY;
1711     }
1712     data->flags = flags;
1713 }
1714 
1715 /**
1716  * mmu_lookup: translate page(s)
1717  * @cpu: generic cpu state
1718  * @addr: virtual address
1719  * @oi: combined mmu_idx and MemOp
1720  * @ra: return address into tcg generated code, or 0
1721  * @access_type: load/store/code
1722  * @l: output result
1723  *
1724  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1725  * bytes.  Return true if the lookup crosses a page boundary.
1726  */
1727 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1728                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1729 {
1730     bool crosspage;
1731     int flags;
1732 
1733     l->memop = get_memop(oi);
1734     l->mmu_idx = get_mmuidx(oi);
1735 
1736     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1737 
1738     l->page[0].addr = addr;
1739     l->page[0].size = memop_size(l->memop);
1740     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1741     l->page[1].size = 0;
1742     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1743 
1744     if (likely(!crosspage)) {
1745         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1746 
1747         flags = l->page[0].flags;
1748         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1749             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1750         }
1751         if (unlikely(flags & TLB_BSWAP)) {
1752             l->memop ^= MO_BSWAP;
1753         }
1754     } else {
1755         /* Finish compute of page crossing. */
1756         int size0 = l->page[1].addr - addr;
1757         l->page[1].size = l->page[0].size - size0;
1758         l->page[0].size = size0;
1759 
1760         /*
1761          * Lookup both pages, recognizing exceptions from either.  If the
1762          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1763          */
1764         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1765         if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) {
1766             uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1767             l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1768         }
1769 
1770         flags = l->page[0].flags | l->page[1].flags;
1771         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1772             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1773             mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1774         }
1775 
1776         /*
1777          * Since target/sparc is the only user of TLB_BSWAP, and all
1778          * Sparc accesses are aligned, any treatment across two pages
1779          * would be arbitrary.  Refuse it until there's a use.
1780          */
1781         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1782     }
1783 
1784     return crosspage;
1785 }
1786 
1787 /*
1788  * Probe for an atomic operation.  Do not allow unaligned operations,
1789  * or io operations to proceed.  Return the host address.
1790  */
1791 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1792                                int size, uintptr_t retaddr)
1793 {
1794     uintptr_t mmu_idx = get_mmuidx(oi);
1795     MemOp mop = get_memop(oi);
1796     uintptr_t index;
1797     CPUTLBEntry *tlbe;
1798     vaddr tlb_addr;
1799     void *hostaddr;
1800     CPUTLBEntryFull *full;
1801     bool did_tlb_fill = false;
1802 
1803     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1804 
1805     /* Adjust the given return address.  */
1806     retaddr -= GETPC_ADJ;
1807 
1808     index = tlb_index(cpu, mmu_idx, addr);
1809     tlbe = tlb_entry(cpu, mmu_idx, addr);
1810 
1811     /* Check TLB entry and enforce page permissions.  */
1812     tlb_addr = tlb_addr_write(tlbe);
1813     if (!tlb_hit(tlb_addr, addr)) {
1814         if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1815                             addr & TARGET_PAGE_MASK)) {
1816             tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx,
1817                            mop, size, false, retaddr);
1818             did_tlb_fill = true;
1819             index = tlb_index(cpu, mmu_idx, addr);
1820             tlbe = tlb_entry(cpu, mmu_idx, addr);
1821         }
1822         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1823     }
1824 
1825     /*
1826      * Let the guest notice RMW on a write-only page.
1827      * We have just verified that the page is writable.
1828      * Subpage lookups may have left TLB_INVALID_MASK set,
1829      * but addr_read will only be -1 if PAGE_READ was unset.
1830      */
1831     if (unlikely(tlbe->addr_read == -1)) {
1832         tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx,
1833                        0, size, false, retaddr);
1834         /*
1835          * Since we don't support reads and writes to different
1836          * addresses, and we do have the proper page loaded for
1837          * write, this shouldn't ever return.
1838          */
1839         g_assert_not_reached();
1840     }
1841 
1842     /* Enforce guest required alignment, if not handled by tlb_fill_align. */
1843     if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) {
1844         cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr);
1845     }
1846 
1847     /* Enforce qemu required alignment.  */
1848     if (unlikely(addr & (size - 1))) {
1849         /*
1850          * We get here if guest alignment was not requested, or was not
1851          * enforced by cpu_unaligned_access or tlb_fill_align above.
1852          * We might widen the access and emulate, but for now
1853          * mark an exception and exit the cpu loop.
1854          */
1855         goto stop_the_world;
1856     }
1857 
1858     /* Collect tlb flags for read. */
1859     tlb_addr |= tlbe->addr_read;
1860 
1861     /* Notice an IO access or a needs-MMU-lookup access */
1862     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1863         /* There's really nothing that can be done to
1864            support this apart from stop-the-world.  */
1865         goto stop_the_world;
1866     }
1867 
1868     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1869     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1870 
1871     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1872         notdirty_write(cpu, addr, size, full, retaddr);
1873     }
1874 
1875     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1876         int wp_flags = 0;
1877 
1878         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1879             wp_flags |= BP_MEM_WRITE;
1880         }
1881         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1882             wp_flags |= BP_MEM_READ;
1883         }
1884         if (wp_flags) {
1885             cpu_check_watchpoint(cpu, addr, size,
1886                                  full->attrs, wp_flags, retaddr);
1887         }
1888     }
1889 
1890     return hostaddr;
1891 
1892  stop_the_world:
1893     cpu_loop_exit_atomic(cpu, retaddr);
1894 }
1895 
1896 /*
1897  * Load Helpers
1898  *
1899  * We support two different access types. SOFTMMU_CODE_ACCESS is
1900  * specifically for reading instructions from system memory. It is
1901  * called by the translation loop and in some helpers where the code
1902  * is disassembled. It shouldn't be called directly by guest code.
1903  *
1904  * For the benefit of TCG generated code, we want to avoid the
1905  * complication of ABI-specific return type promotion and always
1906  * return a value extended to the register size of the host. This is
1907  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1908  * data, and for that we always have uint64_t.
1909  *
1910  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1911  */
1912 
1913 /**
1914  * do_ld_mmio_beN:
1915  * @cpu: generic cpu state
1916  * @full: page parameters
1917  * @ret_be: accumulated data
1918  * @addr: virtual address
1919  * @size: number of bytes
1920  * @mmu_idx: virtual address context
1921  * @ra: return address into tcg generated code, or 0
1922  * Context: BQL held
1923  *
1924  * Load @size bytes from @addr, which is memory-mapped i/o.
1925  * The bytes are concatenated in big-endian order with @ret_be.
1926  */
1927 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1928                                 uint64_t ret_be, vaddr addr, int size,
1929                                 int mmu_idx, MMUAccessType type, uintptr_t ra,
1930                                 MemoryRegion *mr, hwaddr mr_offset)
1931 {
1932     do {
1933         MemOp this_mop;
1934         unsigned this_size;
1935         uint64_t val;
1936         MemTxResult r;
1937 
1938         /* Read aligned pieces up to 8 bytes. */
1939         this_mop = ctz32(size | (int)addr | 8);
1940         this_size = 1 << this_mop;
1941         this_mop |= MO_BE;
1942 
1943         r = memory_region_dispatch_read(mr, mr_offset, &val,
1944                                         this_mop, full->attrs);
1945         if (unlikely(r != MEMTX_OK)) {
1946             io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
1947         }
1948         if (this_size == 8) {
1949             return val;
1950         }
1951 
1952         ret_be = (ret_be << (this_size * 8)) | val;
1953         addr += this_size;
1954         mr_offset += this_size;
1955         size -= this_size;
1956     } while (size);
1957 
1958     return ret_be;
1959 }
1960 
1961 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1962                                uint64_t ret_be, vaddr addr, int size,
1963                                int mmu_idx, MMUAccessType type, uintptr_t ra)
1964 {
1965     MemoryRegionSection *section;
1966     MemoryRegion *mr;
1967     hwaddr mr_offset;
1968     MemTxAttrs attrs;
1969 
1970     tcg_debug_assert(size > 0 && size <= 8);
1971 
1972     attrs = full->attrs;
1973     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1974     mr = section->mr;
1975 
1976     BQL_LOCK_GUARD();
1977     return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
1978                            type, ra, mr, mr_offset);
1979 }
1980 
1981 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1982                                uint64_t ret_be, vaddr addr, int size,
1983                                int mmu_idx, uintptr_t ra)
1984 {
1985     MemoryRegionSection *section;
1986     MemoryRegion *mr;
1987     hwaddr mr_offset;
1988     MemTxAttrs attrs;
1989     uint64_t a, b;
1990 
1991     tcg_debug_assert(size > 8 && size <= 16);
1992 
1993     attrs = full->attrs;
1994     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1995     mr = section->mr;
1996 
1997     BQL_LOCK_GUARD();
1998     a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
1999                         MMU_DATA_LOAD, ra, mr, mr_offset);
2000     b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2001                         MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2002     return int128_make128(b, a);
2003 }
2004 
2005 /**
2006  * do_ld_bytes_beN
2007  * @p: translation parameters
2008  * @ret_be: accumulated data
2009  *
2010  * Load @p->size bytes from @p->haddr, which is RAM.
2011  * The bytes to concatenated in big-endian order with @ret_be.
2012  */
2013 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2014 {
2015     uint8_t *haddr = p->haddr;
2016     int i, size = p->size;
2017 
2018     for (i = 0; i < size; i++) {
2019         ret_be = (ret_be << 8) | haddr[i];
2020     }
2021     return ret_be;
2022 }
2023 
2024 /**
2025  * do_ld_parts_beN
2026  * @p: translation parameters
2027  * @ret_be: accumulated data
2028  *
2029  * As do_ld_bytes_beN, but atomically on each aligned part.
2030  */
2031 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2032 {
2033     void *haddr = p->haddr;
2034     int size = p->size;
2035 
2036     do {
2037         uint64_t x;
2038         int n;
2039 
2040         /*
2041          * Find minimum of alignment and size.
2042          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2043          * would have only checked the low bits of addr|size once at the start,
2044          * but is just as easy.
2045          */
2046         switch (((uintptr_t)haddr | size) & 7) {
2047         case 4:
2048             x = cpu_to_be32(load_atomic4(haddr));
2049             ret_be = (ret_be << 32) | x;
2050             n = 4;
2051             break;
2052         case 2:
2053         case 6:
2054             x = cpu_to_be16(load_atomic2(haddr));
2055             ret_be = (ret_be << 16) | x;
2056             n = 2;
2057             break;
2058         default:
2059             x = *(uint8_t *)haddr;
2060             ret_be = (ret_be << 8) | x;
2061             n = 1;
2062             break;
2063         case 0:
2064             g_assert_not_reached();
2065         }
2066         haddr += n;
2067         size -= n;
2068     } while (size != 0);
2069     return ret_be;
2070 }
2071 
2072 /**
2073  * do_ld_parts_be4
2074  * @p: translation parameters
2075  * @ret_be: accumulated data
2076  *
2077  * As do_ld_bytes_beN, but with one atomic load.
2078  * Four aligned bytes are guaranteed to cover the load.
2079  */
2080 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2081 {
2082     int o = p->addr & 3;
2083     uint32_t x = load_atomic4(p->haddr - o);
2084 
2085     x = cpu_to_be32(x);
2086     x <<= o * 8;
2087     x >>= (4 - p->size) * 8;
2088     return (ret_be << (p->size * 8)) | x;
2089 }
2090 
2091 /**
2092  * do_ld_parts_be8
2093  * @p: translation parameters
2094  * @ret_be: accumulated data
2095  *
2096  * As do_ld_bytes_beN, but with one atomic load.
2097  * Eight aligned bytes are guaranteed to cover the load.
2098  */
2099 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2100                                 MMULookupPageData *p, uint64_t ret_be)
2101 {
2102     int o = p->addr & 7;
2103     uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2104 
2105     x = cpu_to_be64(x);
2106     x <<= o * 8;
2107     x >>= (8 - p->size) * 8;
2108     return (ret_be << (p->size * 8)) | x;
2109 }
2110 
2111 /**
2112  * do_ld_parts_be16
2113  * @p: translation parameters
2114  * @ret_be: accumulated data
2115  *
2116  * As do_ld_bytes_beN, but with one atomic load.
2117  * 16 aligned bytes are guaranteed to cover the load.
2118  */
2119 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2120                                MMULookupPageData *p, uint64_t ret_be)
2121 {
2122     int o = p->addr & 15;
2123     Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2124     int size = p->size;
2125 
2126     if (!HOST_BIG_ENDIAN) {
2127         y = bswap128(y);
2128     }
2129     y = int128_lshift(y, o * 8);
2130     y = int128_urshift(y, (16 - size) * 8);
2131     x = int128_make64(ret_be);
2132     x = int128_lshift(x, size * 8);
2133     return int128_or(x, y);
2134 }
2135 
2136 /*
2137  * Wrapper for the above.
2138  */
2139 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2140                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2141                           MemOp mop, uintptr_t ra)
2142 {
2143     MemOp atom;
2144     unsigned tmp, half_size;
2145 
2146     if (unlikely(p->flags & TLB_MMIO)) {
2147         return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2148                               mmu_idx, type, ra);
2149     }
2150 
2151     /*
2152      * It is a given that we cross a page and therefore there is no
2153      * atomicity for the load as a whole, but subobjects may need attention.
2154      */
2155     atom = mop & MO_ATOM_MASK;
2156     switch (atom) {
2157     case MO_ATOM_SUBALIGN:
2158         return do_ld_parts_beN(p, ret_be);
2159 
2160     case MO_ATOM_IFALIGN_PAIR:
2161     case MO_ATOM_WITHIN16_PAIR:
2162         tmp = mop & MO_SIZE;
2163         tmp = tmp ? tmp - 1 : 0;
2164         half_size = 1 << tmp;
2165         if (atom == MO_ATOM_IFALIGN_PAIR
2166             ? p->size == half_size
2167             : p->size >= half_size) {
2168             if (!HAVE_al8_fast && p->size < 4) {
2169                 return do_ld_whole_be4(p, ret_be);
2170             } else {
2171                 return do_ld_whole_be8(cpu, ra, p, ret_be);
2172             }
2173         }
2174         /* fall through */
2175 
2176     case MO_ATOM_IFALIGN:
2177     case MO_ATOM_WITHIN16:
2178     case MO_ATOM_NONE:
2179         return do_ld_bytes_beN(p, ret_be);
2180 
2181     default:
2182         g_assert_not_reached();
2183     }
2184 }
2185 
2186 /*
2187  * Wrapper for the above, for 8 < size < 16.
2188  */
2189 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2190                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2191 {
2192     int size = p->size;
2193     uint64_t b;
2194     MemOp atom;
2195 
2196     if (unlikely(p->flags & TLB_MMIO)) {
2197         return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2198     }
2199 
2200     /*
2201      * It is a given that we cross a page and therefore there is no
2202      * atomicity for the load as a whole, but subobjects may need attention.
2203      */
2204     atom = mop & MO_ATOM_MASK;
2205     switch (atom) {
2206     case MO_ATOM_SUBALIGN:
2207         p->size = size - 8;
2208         a = do_ld_parts_beN(p, a);
2209         p->haddr += size - 8;
2210         p->size = 8;
2211         b = do_ld_parts_beN(p, 0);
2212         break;
2213 
2214     case MO_ATOM_WITHIN16_PAIR:
2215         /* Since size > 8, this is the half that must be atomic. */
2216         return do_ld_whole_be16(cpu, ra, p, a);
2217 
2218     case MO_ATOM_IFALIGN_PAIR:
2219         /*
2220          * Since size > 8, both halves are misaligned,
2221          * and so neither is atomic.
2222          */
2223     case MO_ATOM_IFALIGN:
2224     case MO_ATOM_WITHIN16:
2225     case MO_ATOM_NONE:
2226         p->size = size - 8;
2227         a = do_ld_bytes_beN(p, a);
2228         b = ldq_be_p(p->haddr + size - 8);
2229         break;
2230 
2231     default:
2232         g_assert_not_reached();
2233     }
2234 
2235     return int128_make128(b, a);
2236 }
2237 
2238 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2239                        MMUAccessType type, uintptr_t ra)
2240 {
2241     if (unlikely(p->flags & TLB_MMIO)) {
2242         return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2243     } else {
2244         return *(uint8_t *)p->haddr;
2245     }
2246 }
2247 
2248 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2249                         MMUAccessType type, MemOp memop, uintptr_t ra)
2250 {
2251     uint16_t ret;
2252 
2253     if (unlikely(p->flags & TLB_MMIO)) {
2254         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2255         if ((memop & MO_BSWAP) == MO_LE) {
2256             ret = bswap16(ret);
2257         }
2258     } else {
2259         /* Perform the load host endian, then swap if necessary. */
2260         ret = load_atom_2(cpu, ra, p->haddr, memop);
2261         if (memop & MO_BSWAP) {
2262             ret = bswap16(ret);
2263         }
2264     }
2265     return ret;
2266 }
2267 
2268 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2269                         MMUAccessType type, MemOp memop, uintptr_t ra)
2270 {
2271     uint32_t ret;
2272 
2273     if (unlikely(p->flags & TLB_MMIO)) {
2274         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2275         if ((memop & MO_BSWAP) == MO_LE) {
2276             ret = bswap32(ret);
2277         }
2278     } else {
2279         /* Perform the load host endian. */
2280         ret = load_atom_4(cpu, ra, p->haddr, memop);
2281         if (memop & MO_BSWAP) {
2282             ret = bswap32(ret);
2283         }
2284     }
2285     return ret;
2286 }
2287 
2288 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2289                         MMUAccessType type, MemOp memop, uintptr_t ra)
2290 {
2291     uint64_t ret;
2292 
2293     if (unlikely(p->flags & TLB_MMIO)) {
2294         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2295         if ((memop & MO_BSWAP) == MO_LE) {
2296             ret = bswap64(ret);
2297         }
2298     } else {
2299         /* Perform the load host endian. */
2300         ret = load_atom_8(cpu, ra, p->haddr, memop);
2301         if (memop & MO_BSWAP) {
2302             ret = bswap64(ret);
2303         }
2304     }
2305     return ret;
2306 }
2307 
2308 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2309                           uintptr_t ra, MMUAccessType access_type)
2310 {
2311     MMULookupLocals l;
2312     bool crosspage;
2313 
2314     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2315     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2316     tcg_debug_assert(!crosspage);
2317 
2318     return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2319 }
2320 
2321 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2322                            uintptr_t ra, MMUAccessType access_type)
2323 {
2324     MMULookupLocals l;
2325     bool crosspage;
2326     uint16_t ret;
2327     uint8_t a, b;
2328 
2329     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2330     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2331     if (likely(!crosspage)) {
2332         return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2333     }
2334 
2335     a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2336     b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2337 
2338     if ((l.memop & MO_BSWAP) == MO_LE) {
2339         ret = a | (b << 8);
2340     } else {
2341         ret = b | (a << 8);
2342     }
2343     return ret;
2344 }
2345 
2346 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2347                            uintptr_t ra, MMUAccessType access_type)
2348 {
2349     MMULookupLocals l;
2350     bool crosspage;
2351     uint32_t ret;
2352 
2353     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2354     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2355     if (likely(!crosspage)) {
2356         return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2357     }
2358 
2359     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2360     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2361     if ((l.memop & MO_BSWAP) == MO_LE) {
2362         ret = bswap32(ret);
2363     }
2364     return ret;
2365 }
2366 
2367 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2368                            uintptr_t ra, MMUAccessType access_type)
2369 {
2370     MMULookupLocals l;
2371     bool crosspage;
2372     uint64_t ret;
2373 
2374     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2375     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2376     if (likely(!crosspage)) {
2377         return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2378     }
2379 
2380     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2381     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2382     if ((l.memop & MO_BSWAP) == MO_LE) {
2383         ret = bswap64(ret);
2384     }
2385     return ret;
2386 }
2387 
2388 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2389                           MemOpIdx oi, uintptr_t ra)
2390 {
2391     MMULookupLocals l;
2392     bool crosspage;
2393     uint64_t a, b;
2394     Int128 ret;
2395     int first;
2396 
2397     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2398     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2399     if (likely(!crosspage)) {
2400         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2401             ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2402                                    l.mmu_idx, ra);
2403             if ((l.memop & MO_BSWAP) == MO_LE) {
2404                 ret = bswap128(ret);
2405             }
2406         } else {
2407             /* Perform the load host endian. */
2408             ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2409             if (l.memop & MO_BSWAP) {
2410                 ret = bswap128(ret);
2411             }
2412         }
2413         return ret;
2414     }
2415 
2416     first = l.page[0].size;
2417     if (first == 8) {
2418         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2419 
2420         a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2421         b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2422         if ((mop8 & MO_BSWAP) == MO_LE) {
2423             ret = int128_make128(a, b);
2424         } else {
2425             ret = int128_make128(b, a);
2426         }
2427         return ret;
2428     }
2429 
2430     if (first < 8) {
2431         a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2432                       MMU_DATA_LOAD, l.memop, ra);
2433         ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2434     } else {
2435         ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2436         b = int128_getlo(ret);
2437         ret = int128_lshift(ret, l.page[1].size * 8);
2438         a = int128_gethi(ret);
2439         b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2440                       MMU_DATA_LOAD, l.memop, ra);
2441         ret = int128_make128(b, a);
2442     }
2443     if ((l.memop & MO_BSWAP) == MO_LE) {
2444         ret = bswap128(ret);
2445     }
2446     return ret;
2447 }
2448 
2449 /*
2450  * Store Helpers
2451  */
2452 
2453 /**
2454  * do_st_mmio_leN:
2455  * @cpu: generic cpu state
2456  * @full: page parameters
2457  * @val_le: data to store
2458  * @addr: virtual address
2459  * @size: number of bytes
2460  * @mmu_idx: virtual address context
2461  * @ra: return address into tcg generated code, or 0
2462  * Context: BQL held
2463  *
2464  * Store @size bytes at @addr, which is memory-mapped i/o.
2465  * The bytes to store are extracted in little-endian order from @val_le;
2466  * return the bytes of @val_le beyond @p->size that have not been stored.
2467  */
2468 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2469                                 uint64_t val_le, vaddr addr, int size,
2470                                 int mmu_idx, uintptr_t ra,
2471                                 MemoryRegion *mr, hwaddr mr_offset)
2472 {
2473     do {
2474         MemOp this_mop;
2475         unsigned this_size;
2476         MemTxResult r;
2477 
2478         /* Store aligned pieces up to 8 bytes. */
2479         this_mop = ctz32(size | (int)addr | 8);
2480         this_size = 1 << this_mop;
2481         this_mop |= MO_LE;
2482 
2483         r = memory_region_dispatch_write(mr, mr_offset, val_le,
2484                                          this_mop, full->attrs);
2485         if (unlikely(r != MEMTX_OK)) {
2486             io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2487                       mmu_idx, r, ra);
2488         }
2489         if (this_size == 8) {
2490             return 0;
2491         }
2492 
2493         val_le >>= this_size * 8;
2494         addr += this_size;
2495         mr_offset += this_size;
2496         size -= this_size;
2497     } while (size);
2498 
2499     return val_le;
2500 }
2501 
2502 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2503                                uint64_t val_le, vaddr addr, int size,
2504                                int mmu_idx, uintptr_t ra)
2505 {
2506     MemoryRegionSection *section;
2507     hwaddr mr_offset;
2508     MemoryRegion *mr;
2509     MemTxAttrs attrs;
2510 
2511     tcg_debug_assert(size > 0 && size <= 8);
2512 
2513     attrs = full->attrs;
2514     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2515     mr = section->mr;
2516 
2517     BQL_LOCK_GUARD();
2518     return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2519                            ra, mr, mr_offset);
2520 }
2521 
2522 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2523                                  Int128 val_le, vaddr addr, int size,
2524                                  int mmu_idx, uintptr_t ra)
2525 {
2526     MemoryRegionSection *section;
2527     MemoryRegion *mr;
2528     hwaddr mr_offset;
2529     MemTxAttrs attrs;
2530 
2531     tcg_debug_assert(size > 8 && size <= 16);
2532 
2533     attrs = full->attrs;
2534     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2535     mr = section->mr;
2536 
2537     BQL_LOCK_GUARD();
2538     int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2539                     mmu_idx, ra, mr, mr_offset);
2540     return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2541                            size - 8, mmu_idx, ra, mr, mr_offset + 8);
2542 }
2543 
2544 /*
2545  * Wrapper for the above.
2546  */
2547 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2548                           uint64_t val_le, int mmu_idx,
2549                           MemOp mop, uintptr_t ra)
2550 {
2551     MemOp atom;
2552     unsigned tmp, half_size;
2553 
2554     if (unlikely(p->flags & TLB_MMIO)) {
2555         return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2556                               p->size, mmu_idx, ra);
2557     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2558         return val_le >> (p->size * 8);
2559     }
2560 
2561     /*
2562      * It is a given that we cross a page and therefore there is no atomicity
2563      * for the store as a whole, but subobjects may need attention.
2564      */
2565     atom = mop & MO_ATOM_MASK;
2566     switch (atom) {
2567     case MO_ATOM_SUBALIGN:
2568         return store_parts_leN(p->haddr, p->size, val_le);
2569 
2570     case MO_ATOM_IFALIGN_PAIR:
2571     case MO_ATOM_WITHIN16_PAIR:
2572         tmp = mop & MO_SIZE;
2573         tmp = tmp ? tmp - 1 : 0;
2574         half_size = 1 << tmp;
2575         if (atom == MO_ATOM_IFALIGN_PAIR
2576             ? p->size == half_size
2577             : p->size >= half_size) {
2578             if (!HAVE_al8_fast && p->size <= 4) {
2579                 return store_whole_le4(p->haddr, p->size, val_le);
2580             } else if (HAVE_al8) {
2581                 return store_whole_le8(p->haddr, p->size, val_le);
2582             } else {
2583                 cpu_loop_exit_atomic(cpu, ra);
2584             }
2585         }
2586         /* fall through */
2587 
2588     case MO_ATOM_IFALIGN:
2589     case MO_ATOM_WITHIN16:
2590     case MO_ATOM_NONE:
2591         return store_bytes_leN(p->haddr, p->size, val_le);
2592 
2593     default:
2594         g_assert_not_reached();
2595     }
2596 }
2597 
2598 /*
2599  * Wrapper for the above, for 8 < size < 16.
2600  */
2601 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2602                             Int128 val_le, int mmu_idx,
2603                             MemOp mop, uintptr_t ra)
2604 {
2605     int size = p->size;
2606     MemOp atom;
2607 
2608     if (unlikely(p->flags & TLB_MMIO)) {
2609         return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2610                                 size, mmu_idx, ra);
2611     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2612         return int128_gethi(val_le) >> ((size - 8) * 8);
2613     }
2614 
2615     /*
2616      * It is a given that we cross a page and therefore there is no atomicity
2617      * for the store as a whole, but subobjects may need attention.
2618      */
2619     atom = mop & MO_ATOM_MASK;
2620     switch (atom) {
2621     case MO_ATOM_SUBALIGN:
2622         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2623         return store_parts_leN(p->haddr + 8, p->size - 8,
2624                                int128_gethi(val_le));
2625 
2626     case MO_ATOM_WITHIN16_PAIR:
2627         /* Since size > 8, this is the half that must be atomic. */
2628         if (!HAVE_CMPXCHG128) {
2629             cpu_loop_exit_atomic(cpu, ra);
2630         }
2631         return store_whole_le16(p->haddr, p->size, val_le);
2632 
2633     case MO_ATOM_IFALIGN_PAIR:
2634         /*
2635          * Since size > 8, both halves are misaligned,
2636          * and so neither is atomic.
2637          */
2638     case MO_ATOM_IFALIGN:
2639     case MO_ATOM_WITHIN16:
2640     case MO_ATOM_NONE:
2641         stq_le_p(p->haddr, int128_getlo(val_le));
2642         return store_bytes_leN(p->haddr + 8, p->size - 8,
2643                                int128_gethi(val_le));
2644 
2645     default:
2646         g_assert_not_reached();
2647     }
2648 }
2649 
2650 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2651                     int mmu_idx, uintptr_t ra)
2652 {
2653     if (unlikely(p->flags & TLB_MMIO)) {
2654         do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2655     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2656         /* nothing */
2657     } else {
2658         *(uint8_t *)p->haddr = val;
2659     }
2660 }
2661 
2662 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2663                     int mmu_idx, MemOp memop, uintptr_t ra)
2664 {
2665     if (unlikely(p->flags & TLB_MMIO)) {
2666         if ((memop & MO_BSWAP) != MO_LE) {
2667             val = bswap16(val);
2668         }
2669         do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2670     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2671         /* nothing */
2672     } else {
2673         /* Swap to host endian if necessary, then store. */
2674         if (memop & MO_BSWAP) {
2675             val = bswap16(val);
2676         }
2677         store_atom_2(cpu, ra, p->haddr, memop, val);
2678     }
2679 }
2680 
2681 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2682                     int mmu_idx, MemOp memop, uintptr_t ra)
2683 {
2684     if (unlikely(p->flags & TLB_MMIO)) {
2685         if ((memop & MO_BSWAP) != MO_LE) {
2686             val = bswap32(val);
2687         }
2688         do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2689     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2690         /* nothing */
2691     } else {
2692         /* Swap to host endian if necessary, then store. */
2693         if (memop & MO_BSWAP) {
2694             val = bswap32(val);
2695         }
2696         store_atom_4(cpu, ra, p->haddr, memop, val);
2697     }
2698 }
2699 
2700 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2701                     int mmu_idx, MemOp memop, uintptr_t ra)
2702 {
2703     if (unlikely(p->flags & TLB_MMIO)) {
2704         if ((memop & MO_BSWAP) != MO_LE) {
2705             val = bswap64(val);
2706         }
2707         do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2708     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2709         /* nothing */
2710     } else {
2711         /* Swap to host endian if necessary, then store. */
2712         if (memop & MO_BSWAP) {
2713             val = bswap64(val);
2714         }
2715         store_atom_8(cpu, ra, p->haddr, memop, val);
2716     }
2717 }
2718 
2719 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2720                        MemOpIdx oi, uintptr_t ra)
2721 {
2722     MMULookupLocals l;
2723     bool crosspage;
2724 
2725     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2726     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2727     tcg_debug_assert(!crosspage);
2728 
2729     do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2730 }
2731 
2732 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2733                        MemOpIdx oi, uintptr_t ra)
2734 {
2735     MMULookupLocals l;
2736     bool crosspage;
2737     uint8_t a, b;
2738 
2739     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2740     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2741     if (likely(!crosspage)) {
2742         do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2743         return;
2744     }
2745 
2746     if ((l.memop & MO_BSWAP) == MO_LE) {
2747         a = val, b = val >> 8;
2748     } else {
2749         b = val, a = val >> 8;
2750     }
2751     do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2752     do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2753 }
2754 
2755 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2756                        MemOpIdx oi, uintptr_t ra)
2757 {
2758     MMULookupLocals l;
2759     bool crosspage;
2760 
2761     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2762     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2763     if (likely(!crosspage)) {
2764         do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2765         return;
2766     }
2767 
2768     /* Swap to little endian for simplicity, then store by bytes. */
2769     if ((l.memop & MO_BSWAP) != MO_LE) {
2770         val = bswap32(val);
2771     }
2772     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2773     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2774 }
2775 
2776 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2777                        MemOpIdx oi, uintptr_t ra)
2778 {
2779     MMULookupLocals l;
2780     bool crosspage;
2781 
2782     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2783     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2784     if (likely(!crosspage)) {
2785         do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2786         return;
2787     }
2788 
2789     /* Swap to little endian for simplicity, then store by bytes. */
2790     if ((l.memop & MO_BSWAP) != MO_LE) {
2791         val = bswap64(val);
2792     }
2793     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2794     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2795 }
2796 
2797 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2798                         MemOpIdx oi, uintptr_t ra)
2799 {
2800     MMULookupLocals l;
2801     bool crosspage;
2802     uint64_t a, b;
2803     int first;
2804 
2805     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2806     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2807     if (likely(!crosspage)) {
2808         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2809             if ((l.memop & MO_BSWAP) != MO_LE) {
2810                 val = bswap128(val);
2811             }
2812             do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2813         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2814             /* nothing */
2815         } else {
2816             /* Swap to host endian if necessary, then store. */
2817             if (l.memop & MO_BSWAP) {
2818                 val = bswap128(val);
2819             }
2820             store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2821         }
2822         return;
2823     }
2824 
2825     first = l.page[0].size;
2826     if (first == 8) {
2827         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2828 
2829         if (l.memop & MO_BSWAP) {
2830             val = bswap128(val);
2831         }
2832         if (HOST_BIG_ENDIAN) {
2833             b = int128_getlo(val), a = int128_gethi(val);
2834         } else {
2835             a = int128_getlo(val), b = int128_gethi(val);
2836         }
2837         do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2838         do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2839         return;
2840     }
2841 
2842     if ((l.memop & MO_BSWAP) != MO_LE) {
2843         val = bswap128(val);
2844     }
2845     if (first < 8) {
2846         do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2847         val = int128_urshift(val, first * 8);
2848         do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2849     } else {
2850         b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2851         do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2852     }
2853 }
2854 
2855 #include "ldst_common.c.inc"
2856 
2857 /*
2858  * First set of functions passes in OI and RETADDR.
2859  * This makes them callable from other helpers.
2860  */
2861 
2862 #define ATOMIC_NAME(X) \
2863     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2864 
2865 #define ATOMIC_MMU_CLEANUP
2866 
2867 #include "atomic_common.c.inc"
2868 
2869 #define DATA_SIZE 1
2870 #include "atomic_template.h"
2871 
2872 #define DATA_SIZE 2
2873 #include "atomic_template.h"
2874 
2875 #define DATA_SIZE 4
2876 #include "atomic_template.h"
2877 
2878 #ifdef CONFIG_ATOMIC64
2879 #define DATA_SIZE 8
2880 #include "atomic_template.h"
2881 #endif
2882 
2883 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2884 #define DATA_SIZE 16
2885 #include "atomic_template.h"
2886 #endif
2887 
2888 /* Code access functions.  */
2889 
2890 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2891 {
2892     CPUState *cs = env_cpu(env);
2893     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
2894     return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2895 }
2896 
2897 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2898 {
2899     CPUState *cs = env_cpu(env);
2900     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
2901     return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2902 }
2903 
2904 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2905 {
2906     CPUState *cs = env_cpu(env);
2907     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
2908     return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2909 }
2910 
2911 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2912 {
2913     CPUState *cs = env_cpu(env);
2914     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
2915     return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2916 }
2917 
2918 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2919                          MemOpIdx oi, uintptr_t retaddr)
2920 {
2921     return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2922 }
2923 
2924 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
2925                           MemOpIdx oi, uintptr_t retaddr)
2926 {
2927     return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2928 }
2929 
2930 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
2931                           MemOpIdx oi, uintptr_t retaddr)
2932 {
2933     return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2934 }
2935 
2936 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
2937                           MemOpIdx oi, uintptr_t retaddr)
2938 {
2939     return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2940 }
2941