xref: /openbmc/qemu/accel/tcg/cputlb.c (revision ef17dd6a)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace/trace-root.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
47 
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 #  define DEBUG_TLB_LOG_GATE 1
52 # else
53 #  define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
59 
60 #define tlb_debug(fmt, ...) do { \
61     if (DEBUG_TLB_LOG_GATE) { \
62         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63                       ## __VA_ARGS__); \
64     } else if (DEBUG_TLB_GATE) { \
65         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66     } \
67 } while (0)
68 
69 #define assert_cpu_is_self(cpu) do {                              \
70         if (DEBUG_TLB_GATE) {                                     \
71             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
72         }                                                         \
73     } while (0)
74 
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76  * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78 
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80  */
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83 
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
85 {
86     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
87 }
88 
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
90 {
91     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
92 }
93 
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95                              size_t max_entries)
96 {
97     desc->window_begin_ns = ns;
98     desc->window_max_entries = max_entries;
99 }
100 
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
102 {
103     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
104 
105     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
106         qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
107     }
108 }
109 
110 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
111 {
112     /* Discard jump cache entries for any tb which might potentially
113        overlap the flushed page.  */
114     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
115     tb_jmp_cache_clear_page(cpu, addr);
116 }
117 
118 /**
119  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120  * @desc: The CPUTLBDesc portion of the TLB
121  * @fast: The CPUTLBDescFast portion of the same TLB
122  *
123  * Called with tlb_lock_held.
124  *
125  * We have two main constraints when resizing a TLB: (1) we only resize it
126  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127  * the array or unnecessarily flushing it), which means we do not control how
128  * frequently the resizing can occur; (2) we don't have access to the guest's
129  * future scheduling decisions, and therefore have to decide the magnitude of
130  * the resize based on past observations.
131  *
132  * In general, a memory-hungry process can benefit greatly from an appropriately
133  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134  * we just have to make the TLB as large as possible; while an oversized TLB
135  * results in minimal TLB miss rates, it also takes longer to be flushed
136  * (flushes can be _very_ frequent), and the reduced locality can also hurt
137  * performance.
138  *
139  * To achieve near-optimal performance for all kinds of workloads, we:
140  *
141  * 1. Aggressively increase the size of the TLB when the use rate of the
142  * TLB being flushed is high, since it is likely that in the near future this
143  * memory-hungry process will execute again, and its memory hungriness will
144  * probably be similar.
145  *
146  * 2. Slowly reduce the size of the TLB as the use rate declines over a
147  * reasonably large time window. The rationale is that if in such a time window
148  * we have not observed a high TLB use rate, it is likely that we won't observe
149  * it in the near future. In that case, once a time window expires we downsize
150  * the TLB to match the maximum use rate observed in the window.
151  *
152  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153  * since in that range performance is likely near-optimal. Recall that the TLB
154  * is direct mapped, so we want the use rate to be low (or at least not too
155  * high), since otherwise we are likely to have a significant amount of
156  * conflict misses.
157  */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159                                   int64_t now)
160 {
161     size_t old_size = tlb_n_entries(fast);
162     size_t rate;
163     size_t new_size = old_size;
164     int64_t window_len_ms = 100;
165     int64_t window_len_ns = window_len_ms * 1000 * 1000;
166     bool window_expired = now > desc->window_begin_ns + window_len_ns;
167 
168     if (desc->n_used_entries > desc->window_max_entries) {
169         desc->window_max_entries = desc->n_used_entries;
170     }
171     rate = desc->window_max_entries * 100 / old_size;
172 
173     if (rate > 70) {
174         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175     } else if (rate < 30 && window_expired) {
176         size_t ceil = pow2ceil(desc->window_max_entries);
177         size_t expected_rate = desc->window_max_entries * 100 / ceil;
178 
179         /*
180          * Avoid undersizing when the max number of entries seen is just below
181          * a pow2. For instance, if max_entries == 1025, the expected use rate
182          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184          * later. Thus, make sure that the expected use rate remains below 70%.
185          * (and since we double the size, that means the lowest rate we'd
186          * expect to get is 35%, which is still in the 30-70% range where
187          * we consider that the size is appropriate.)
188          */
189         if (expected_rate > 70) {
190             ceil *= 2;
191         }
192         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193     }
194 
195     if (new_size == old_size) {
196         if (window_expired) {
197             tlb_window_reset(desc, now, desc->n_used_entries);
198         }
199         return;
200     }
201 
202     g_free(fast->table);
203     g_free(desc->iotlb);
204 
205     tlb_window_reset(desc, now, 0);
206     /* desc->n_used_entries is cleared by the caller */
207     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208     fast->table = g_try_new(CPUTLBEntry, new_size);
209     desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
210 
211     /*
212      * If the allocations fail, try smaller sizes. We just freed some
213      * memory, so going back to half of new_size has a good chance of working.
214      * Increased memory pressure elsewhere in the system might cause the
215      * allocations to fail though, so we progressively reduce the allocation
216      * size, aborting if we cannot even allocate the smallest TLB we support.
217      */
218     while (fast->table == NULL || desc->iotlb == NULL) {
219         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220             error_report("%s: %s", __func__, strerror(errno));
221             abort();
222         }
223         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225 
226         g_free(fast->table);
227         g_free(desc->iotlb);
228         fast->table = g_try_new(CPUTLBEntry, new_size);
229         desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
230     }
231 }
232 
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235     desc->n_used_entries = 0;
236     desc->large_page_addr = -1;
237     desc->large_page_mask = -1;
238     desc->vindex = 0;
239     memset(fast->table, -1, sizeof_tlb(fast));
240     memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242 
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244                                         int64_t now)
245 {
246     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248 
249     tlb_mmu_resize_locked(desc, fast, now);
250     tlb_mmu_flush_locked(desc, fast);
251 }
252 
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256 
257     tlb_window_reset(desc, now, 0);
258     desc->n_used_entries = 0;
259     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260     fast->table = g_new(CPUTLBEntry, n_entries);
261     desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
262     tlb_mmu_flush_locked(desc, fast);
263 }
264 
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267     env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269 
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272     env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274 
275 void tlb_init(CPUState *cpu)
276 {
277     CPUArchState *env = cpu->env_ptr;
278     int64_t now = get_clock_realtime();
279     int i;
280 
281     qemu_spin_init(&env_tlb(env)->c.lock);
282 
283     /* All tlbs are initialized flushed. */
284     env_tlb(env)->c.dirty = 0;
285 
286     for (i = 0; i < NB_MMU_MODES; i++) {
287         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288     }
289 }
290 
291 void tlb_destroy(CPUState *cpu)
292 {
293     CPUArchState *env = cpu->env_ptr;
294     int i;
295 
296     qemu_spin_destroy(&env_tlb(env)->c.lock);
297     for (i = 0; i < NB_MMU_MODES; i++) {
298         CPUTLBDesc *desc = &env_tlb(env)->d[i];
299         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300 
301         g_free(fast->table);
302         g_free(desc->iotlb);
303     }
304 }
305 
306 /* flush_all_helper: run fn across all cpus
307  *
308  * If the wait flag is set then the src cpu's helper will be queued as
309  * "safe" work and the loop exited creating a synchronisation point
310  * where all queued work will be finished before execution starts
311  * again.
312  */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314                              run_on_cpu_data d)
315 {
316     CPUState *cpu;
317 
318     CPU_FOREACH(cpu) {
319         if (cpu != src) {
320             async_run_on_cpu(cpu, fn, d);
321         }
322     }
323 }
324 
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327     CPUState *cpu;
328     size_t full = 0, part = 0, elide = 0;
329 
330     CPU_FOREACH(cpu) {
331         CPUArchState *env = cpu->env_ptr;
332 
333         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336     }
337     *pfull = full;
338     *ppart = part;
339     *pelide = elide;
340 }
341 
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344     CPUArchState *env = cpu->env_ptr;
345     uint16_t asked = data.host_int;
346     uint16_t all_dirty, work, to_clean;
347     int64_t now = get_clock_realtime();
348 
349     assert_cpu_is_self(cpu);
350 
351     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352 
353     qemu_spin_lock(&env_tlb(env)->c.lock);
354 
355     all_dirty = env_tlb(env)->c.dirty;
356     to_clean = asked & all_dirty;
357     all_dirty &= ~to_clean;
358     env_tlb(env)->c.dirty = all_dirty;
359 
360     for (work = to_clean; work != 0; work &= work - 1) {
361         int mmu_idx = ctz32(work);
362         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363     }
364 
365     qemu_spin_unlock(&env_tlb(env)->c.lock);
366 
367     cpu_tb_jmp_cache_clear(cpu);
368 
369     if (to_clean == ALL_MMUIDX_BITS) {
370         qatomic_set(&env_tlb(env)->c.full_flush_count,
371                    env_tlb(env)->c.full_flush_count + 1);
372     } else {
373         qatomic_set(&env_tlb(env)->c.part_flush_count,
374                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375         if (to_clean != asked) {
376             qatomic_set(&env_tlb(env)->c.elide_flush_count,
377                        env_tlb(env)->c.elide_flush_count +
378                        ctpop16(asked & ~to_clean));
379         }
380     }
381 }
382 
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386 
387     if (cpu->created && !qemu_cpu_is_self(cpu)) {
388         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389                          RUN_ON_CPU_HOST_INT(idxmap));
390     } else {
391         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392     }
393 }
394 
395 void tlb_flush(CPUState *cpu)
396 {
397     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399 
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403 
404     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405 
406     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409 
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414 
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418 
419     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420 
421     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424 
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429 
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431                                       target_ulong page, target_ulong mask)
432 {
433     page &= mask;
434     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435 
436     return (page == (tlb_entry->addr_read & mask) ||
437             page == (tlb_addr_write(tlb_entry) & mask) ||
438             page == (tlb_entry->addr_code & mask));
439 }
440 
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
442                                         target_ulong page)
443 {
444     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
445 }
446 
447 /**
448  * tlb_entry_is_empty - return true if the entry is not in use
449  * @te: pointer to CPUTLBEntry
450  */
451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
452 {
453     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
454 }
455 
456 /* Called with tlb_c.lock held */
457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
458                                         target_ulong page,
459                                         target_ulong mask)
460 {
461     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
462         memset(tlb_entry, -1, sizeof(*tlb_entry));
463         return true;
464     }
465     return false;
466 }
467 
468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
469                                           target_ulong page)
470 {
471     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
472 }
473 
474 /* Called with tlb_c.lock held */
475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
476                                             target_ulong page,
477                                             target_ulong mask)
478 {
479     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
480     int k;
481 
482     assert_cpu_is_self(env_cpu(env));
483     for (k = 0; k < CPU_VTLB_SIZE; k++) {
484         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
485             tlb_n_used_entries_dec(env, mmu_idx);
486         }
487     }
488 }
489 
490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
491                                               target_ulong page)
492 {
493     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
494 }
495 
496 static void tlb_flush_page_locked(CPUArchState *env, int midx,
497                                   target_ulong page)
498 {
499     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
500     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
501 
502     /* Check if we need to flush due to large pages.  */
503     if ((page & lp_mask) == lp_addr) {
504         tlb_debug("forcing full flush midx %d ("
505                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
506                   midx, lp_addr, lp_mask);
507         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
508     } else {
509         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
510             tlb_n_used_entries_dec(env, midx);
511         }
512         tlb_flush_vtlb_page_locked(env, midx, page);
513     }
514 }
515 
516 /**
517  * tlb_flush_page_by_mmuidx_async_0:
518  * @cpu: cpu on which to flush
519  * @addr: page of virtual address to flush
520  * @idxmap: set of mmu_idx to flush
521  *
522  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
523  * at @addr from the tlbs indicated by @idxmap from @cpu.
524  */
525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
526                                              target_ulong addr,
527                                              uint16_t idxmap)
528 {
529     CPUArchState *env = cpu->env_ptr;
530     int mmu_idx;
531 
532     assert_cpu_is_self(cpu);
533 
534     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
535 
536     qemu_spin_lock(&env_tlb(env)->c.lock);
537     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
538         if ((idxmap >> mmu_idx) & 1) {
539             tlb_flush_page_locked(env, mmu_idx, addr);
540         }
541     }
542     qemu_spin_unlock(&env_tlb(env)->c.lock);
543 
544     tb_flush_jmp_cache(cpu, addr);
545 }
546 
547 /**
548  * tlb_flush_page_by_mmuidx_async_1:
549  * @cpu: cpu on which to flush
550  * @data: encoded addr + idxmap
551  *
552  * Helper for tlb_flush_page_by_mmuidx and friends, called through
553  * async_run_on_cpu.  The idxmap parameter is encoded in the page
554  * offset of the target_ptr field.  This limits the set of mmu_idx
555  * that can be passed via this method.
556  */
557 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
558                                              run_on_cpu_data data)
559 {
560     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
561     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
562     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
563 
564     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
565 }
566 
567 typedef struct {
568     target_ulong addr;
569     uint16_t idxmap;
570 } TLBFlushPageByMMUIdxData;
571 
572 /**
573  * tlb_flush_page_by_mmuidx_async_2:
574  * @cpu: cpu on which to flush
575  * @data: allocated addr + idxmap
576  *
577  * Helper for tlb_flush_page_by_mmuidx and friends, called through
578  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
579  * TLBFlushPageByMMUIdxData structure that has been allocated
580  * specifically for this helper.  Free the structure when done.
581  */
582 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
583                                              run_on_cpu_data data)
584 {
585     TLBFlushPageByMMUIdxData *d = data.host_ptr;
586 
587     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
588     g_free(d);
589 }
590 
591 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
592 {
593     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
594 
595     /* This should already be page aligned */
596     addr &= TARGET_PAGE_MASK;
597 
598     if (qemu_cpu_is_self(cpu)) {
599         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
600     } else if (idxmap < TARGET_PAGE_SIZE) {
601         /*
602          * Most targets have only a few mmu_idx.  In the case where
603          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
604          * allocating memory for this operation.
605          */
606         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
607                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
608     } else {
609         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
610 
611         /* Otherwise allocate a structure, freed by the worker.  */
612         d->addr = addr;
613         d->idxmap = idxmap;
614         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
615                          RUN_ON_CPU_HOST_PTR(d));
616     }
617 }
618 
619 void tlb_flush_page(CPUState *cpu, target_ulong addr)
620 {
621     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
622 }
623 
624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
625                                        uint16_t idxmap)
626 {
627     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
628 
629     /* This should already be page aligned */
630     addr &= TARGET_PAGE_MASK;
631 
632     /*
633      * Allocate memory to hold addr+idxmap only when needed.
634      * See tlb_flush_page_by_mmuidx for details.
635      */
636     if (idxmap < TARGET_PAGE_SIZE) {
637         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639     } else {
640         CPUState *dst_cpu;
641 
642         /* Allocate a separate data block for each destination cpu.  */
643         CPU_FOREACH(dst_cpu) {
644             if (dst_cpu != src_cpu) {
645                 TLBFlushPageByMMUIdxData *d
646                     = g_new(TLBFlushPageByMMUIdxData, 1);
647 
648                 d->addr = addr;
649                 d->idxmap = idxmap;
650                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
651                                  RUN_ON_CPU_HOST_PTR(d));
652             }
653         }
654     }
655 
656     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
657 }
658 
659 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
660 {
661     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
662 }
663 
664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
665                                               target_ulong addr,
666                                               uint16_t idxmap)
667 {
668     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
669 
670     /* This should already be page aligned */
671     addr &= TARGET_PAGE_MASK;
672 
673     /*
674      * Allocate memory to hold addr+idxmap only when needed.
675      * See tlb_flush_page_by_mmuidx for details.
676      */
677     if (idxmap < TARGET_PAGE_SIZE) {
678         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
679                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
680         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682     } else {
683         CPUState *dst_cpu;
684         TLBFlushPageByMMUIdxData *d;
685 
686         /* Allocate a separate data block for each destination cpu.  */
687         CPU_FOREACH(dst_cpu) {
688             if (dst_cpu != src_cpu) {
689                 d = g_new(TLBFlushPageByMMUIdxData, 1);
690                 d->addr = addr;
691                 d->idxmap = idxmap;
692                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
693                                  RUN_ON_CPU_HOST_PTR(d));
694             }
695         }
696 
697         d = g_new(TLBFlushPageByMMUIdxData, 1);
698         d->addr = addr;
699         d->idxmap = idxmap;
700         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
701                               RUN_ON_CPU_HOST_PTR(d));
702     }
703 }
704 
705 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
706 {
707     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
708 }
709 
710 static void tlb_flush_range_locked(CPUArchState *env, int midx,
711                                    target_ulong addr, target_ulong len,
712                                    unsigned bits)
713 {
714     CPUTLBDesc *d = &env_tlb(env)->d[midx];
715     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
716     target_ulong mask = MAKE_64BIT_MASK(0, bits);
717 
718     /*
719      * If @bits is smaller than the tlb size, there may be multiple entries
720      * within the TLB; otherwise all addresses that match under @mask hit
721      * the same TLB entry.
722      * TODO: Perhaps allow bits to be a few bits less than the size.
723      * For now, just flush the entire TLB.
724      *
725      * If @len is larger than the tlb size, then it will take longer to
726      * test all of the entries in the TLB than it will to flush it all.
727      */
728     if (mask < f->mask || len > f->mask) {
729         tlb_debug("forcing full flush midx %d ("
730                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
731                   midx, addr, mask, len);
732         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
733         return;
734     }
735 
736     /*
737      * Check if we need to flush due to large pages.
738      * Because large_page_mask contains all 1's from the msb,
739      * we only need to test the end of the range.
740      */
741     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
742         tlb_debug("forcing full flush midx %d ("
743                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
744                   midx, d->large_page_addr, d->large_page_mask);
745         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
746         return;
747     }
748 
749     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
750         target_ulong page = addr + i;
751         CPUTLBEntry *entry = tlb_entry(env, midx, page);
752 
753         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
754             tlb_n_used_entries_dec(env, midx);
755         }
756         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
757     }
758 }
759 
760 typedef struct {
761     target_ulong addr;
762     target_ulong len;
763     uint16_t idxmap;
764     uint16_t bits;
765 } TLBFlushRangeData;
766 
767 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
768                                               TLBFlushRangeData d)
769 {
770     CPUArchState *env = cpu->env_ptr;
771     int mmu_idx;
772 
773     assert_cpu_is_self(cpu);
774 
775     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
776               d.addr, d.bits, d.len, d.idxmap);
777 
778     qemu_spin_lock(&env_tlb(env)->c.lock);
779     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
780         if ((d.idxmap >> mmu_idx) & 1) {
781             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
782         }
783     }
784     qemu_spin_unlock(&env_tlb(env)->c.lock);
785 
786     /*
787      * If the length is larger than the jump cache size, then it will take
788      * longer to clear each entry individually than it will to clear it all.
789      */
790     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
791         cpu_tb_jmp_cache_clear(cpu);
792         return;
793     }
794 
795     for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
796         tb_flush_jmp_cache(cpu, d.addr + i);
797     }
798 }
799 
800 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
801                                               run_on_cpu_data data)
802 {
803     TLBFlushRangeData *d = data.host_ptr;
804     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
805     g_free(d);
806 }
807 
808 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
809                                target_ulong len, uint16_t idxmap,
810                                unsigned bits)
811 {
812     TLBFlushRangeData d;
813 
814     /*
815      * If all bits are significant, and len is small,
816      * this devolves to tlb_flush_page.
817      */
818     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
819         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
820         return;
821     }
822     /* If no page bits are significant, this devolves to tlb_flush. */
823     if (bits < TARGET_PAGE_BITS) {
824         tlb_flush_by_mmuidx(cpu, idxmap);
825         return;
826     }
827 
828     /* This should already be page aligned */
829     d.addr = addr & TARGET_PAGE_MASK;
830     d.len = len;
831     d.idxmap = idxmap;
832     d.bits = bits;
833 
834     if (qemu_cpu_is_self(cpu)) {
835         tlb_flush_range_by_mmuidx_async_0(cpu, d);
836     } else {
837         /* Otherwise allocate a structure, freed by the worker.  */
838         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
839         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
840                          RUN_ON_CPU_HOST_PTR(p));
841     }
842 }
843 
844 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
845                                    uint16_t idxmap, unsigned bits)
846 {
847     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
848 }
849 
850 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
851                                         target_ulong addr, target_ulong len,
852                                         uint16_t idxmap, unsigned bits)
853 {
854     TLBFlushRangeData d;
855     CPUState *dst_cpu;
856 
857     /*
858      * If all bits are significant, and len is small,
859      * this devolves to tlb_flush_page.
860      */
861     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
862         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
863         return;
864     }
865     /* If no page bits are significant, this devolves to tlb_flush. */
866     if (bits < TARGET_PAGE_BITS) {
867         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
868         return;
869     }
870 
871     /* This should already be page aligned */
872     d.addr = addr & TARGET_PAGE_MASK;
873     d.len = len;
874     d.idxmap = idxmap;
875     d.bits = bits;
876 
877     /* Allocate a separate data block for each destination cpu.  */
878     CPU_FOREACH(dst_cpu) {
879         if (dst_cpu != src_cpu) {
880             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
881             async_run_on_cpu(dst_cpu,
882                              tlb_flush_range_by_mmuidx_async_1,
883                              RUN_ON_CPU_HOST_PTR(p));
884         }
885     }
886 
887     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
888 }
889 
890 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
891                                             target_ulong addr,
892                                             uint16_t idxmap, unsigned bits)
893 {
894     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
895                                        idxmap, bits);
896 }
897 
898 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
899                                                target_ulong addr,
900                                                target_ulong len,
901                                                uint16_t idxmap,
902                                                unsigned bits)
903 {
904     TLBFlushRangeData d, *p;
905     CPUState *dst_cpu;
906 
907     /*
908      * If all bits are significant, and len is small,
909      * this devolves to tlb_flush_page.
910      */
911     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
912         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
913         return;
914     }
915     /* If no page bits are significant, this devolves to tlb_flush. */
916     if (bits < TARGET_PAGE_BITS) {
917         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
918         return;
919     }
920 
921     /* This should already be page aligned */
922     d.addr = addr & TARGET_PAGE_MASK;
923     d.len = len;
924     d.idxmap = idxmap;
925     d.bits = bits;
926 
927     /* Allocate a separate data block for each destination cpu.  */
928     CPU_FOREACH(dst_cpu) {
929         if (dst_cpu != src_cpu) {
930             p = g_memdup(&d, sizeof(d));
931             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
932                              RUN_ON_CPU_HOST_PTR(p));
933         }
934     }
935 
936     p = g_memdup(&d, sizeof(d));
937     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
938                           RUN_ON_CPU_HOST_PTR(p));
939 }
940 
941 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
942                                                    target_ulong addr,
943                                                    uint16_t idxmap,
944                                                    unsigned bits)
945 {
946     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
947                                               idxmap, bits);
948 }
949 
950 /* update the TLBs so that writes to code in the virtual page 'addr'
951    can be detected */
952 void tlb_protect_code(ram_addr_t ram_addr)
953 {
954     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
955                                              DIRTY_MEMORY_CODE);
956 }
957 
958 /* update the TLB so that writes in physical page 'phys_addr' are no longer
959    tested for self modifying code */
960 void tlb_unprotect_code(ram_addr_t ram_addr)
961 {
962     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
963 }
964 
965 
966 /*
967  * Dirty write flag handling
968  *
969  * When the TCG code writes to a location it looks up the address in
970  * the TLB and uses that data to compute the final address. If any of
971  * the lower bits of the address are set then the slow path is forced.
972  * There are a number of reasons to do this but for normal RAM the
973  * most usual is detecting writes to code regions which may invalidate
974  * generated code.
975  *
976  * Other vCPUs might be reading their TLBs during guest execution, so we update
977  * te->addr_write with qatomic_set. We don't need to worry about this for
978  * oversized guests as MTTCG is disabled for them.
979  *
980  * Called with tlb_c.lock held.
981  */
982 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
983                                          uintptr_t start, uintptr_t length)
984 {
985     uintptr_t addr = tlb_entry->addr_write;
986 
987     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
988                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
989         addr &= TARGET_PAGE_MASK;
990         addr += tlb_entry->addend;
991         if ((addr - start) < length) {
992 #if TCG_OVERSIZED_GUEST
993             tlb_entry->addr_write |= TLB_NOTDIRTY;
994 #else
995             qatomic_set(&tlb_entry->addr_write,
996                        tlb_entry->addr_write | TLB_NOTDIRTY);
997 #endif
998         }
999     }
1000 }
1001 
1002 /*
1003  * Called with tlb_c.lock held.
1004  * Called only from the vCPU context, i.e. the TLB's owner thread.
1005  */
1006 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1007 {
1008     *d = *s;
1009 }
1010 
1011 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1012  * the target vCPU).
1013  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1014  * thing actually updated is the target TLB entry ->addr_write flags.
1015  */
1016 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1017 {
1018     CPUArchState *env;
1019 
1020     int mmu_idx;
1021 
1022     env = cpu->env_ptr;
1023     qemu_spin_lock(&env_tlb(env)->c.lock);
1024     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1025         unsigned int i;
1026         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1027 
1028         for (i = 0; i < n; i++) {
1029             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1030                                          start1, length);
1031         }
1032 
1033         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1034             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1035                                          start1, length);
1036         }
1037     }
1038     qemu_spin_unlock(&env_tlb(env)->c.lock);
1039 }
1040 
1041 /* Called with tlb_c.lock held */
1042 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1043                                          target_ulong vaddr)
1044 {
1045     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1046         tlb_entry->addr_write = vaddr;
1047     }
1048 }
1049 
1050 /* update the TLB corresponding to virtual page vaddr
1051    so that it is no longer dirty */
1052 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1053 {
1054     CPUArchState *env = cpu->env_ptr;
1055     int mmu_idx;
1056 
1057     assert_cpu_is_self(cpu);
1058 
1059     vaddr &= TARGET_PAGE_MASK;
1060     qemu_spin_lock(&env_tlb(env)->c.lock);
1061     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1062         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1063     }
1064 
1065     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1066         int k;
1067         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1068             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1069         }
1070     }
1071     qemu_spin_unlock(&env_tlb(env)->c.lock);
1072 }
1073 
1074 /* Our TLB does not support large pages, so remember the area covered by
1075    large pages and trigger a full TLB flush if these are invalidated.  */
1076 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1077                                target_ulong vaddr, target_ulong size)
1078 {
1079     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1080     target_ulong lp_mask = ~(size - 1);
1081 
1082     if (lp_addr == (target_ulong)-1) {
1083         /* No previous large page.  */
1084         lp_addr = vaddr;
1085     } else {
1086         /* Extend the existing region to include the new page.
1087            This is a compromise between unnecessary flushes and
1088            the cost of maintaining a full variable size TLB.  */
1089         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1090         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1091             lp_mask <<= 1;
1092         }
1093     }
1094     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1095     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1096 }
1097 
1098 /* Add a new TLB entry. At most one entry for a given virtual address
1099  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1100  * supplied size is only used by tlb_flush_page.
1101  *
1102  * Called from TCG-generated code, which is under an RCU read-side
1103  * critical section.
1104  */
1105 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1106                              hwaddr paddr, MemTxAttrs attrs, int prot,
1107                              int mmu_idx, target_ulong size)
1108 {
1109     CPUArchState *env = cpu->env_ptr;
1110     CPUTLB *tlb = env_tlb(env);
1111     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1112     MemoryRegionSection *section;
1113     unsigned int index;
1114     target_ulong address;
1115     target_ulong write_address;
1116     uintptr_t addend;
1117     CPUTLBEntry *te, tn;
1118     hwaddr iotlb, xlat, sz, paddr_page;
1119     target_ulong vaddr_page;
1120     int asidx = cpu_asidx_from_attrs(cpu, attrs);
1121     int wp_flags;
1122     bool is_ram, is_romd;
1123 
1124     assert_cpu_is_self(cpu);
1125 
1126     if (size <= TARGET_PAGE_SIZE) {
1127         sz = TARGET_PAGE_SIZE;
1128     } else {
1129         tlb_add_large_page(env, mmu_idx, vaddr, size);
1130         sz = size;
1131     }
1132     vaddr_page = vaddr & TARGET_PAGE_MASK;
1133     paddr_page = paddr & TARGET_PAGE_MASK;
1134 
1135     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1136                                                 &xlat, &sz, attrs, &prot);
1137     assert(sz >= TARGET_PAGE_SIZE);
1138 
1139     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1140               " prot=%x idx=%d\n",
1141               vaddr, paddr, prot, mmu_idx);
1142 
1143     address = vaddr_page;
1144     if (size < TARGET_PAGE_SIZE) {
1145         /* Repeat the MMU check and TLB fill on every access.  */
1146         address |= TLB_INVALID_MASK;
1147     }
1148     if (attrs.byte_swap) {
1149         address |= TLB_BSWAP;
1150     }
1151 
1152     is_ram = memory_region_is_ram(section->mr);
1153     is_romd = memory_region_is_romd(section->mr);
1154 
1155     if (is_ram || is_romd) {
1156         /* RAM and ROMD both have associated host memory. */
1157         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1158     } else {
1159         /* I/O does not; force the host address to NULL. */
1160         addend = 0;
1161     }
1162 
1163     write_address = address;
1164     if (is_ram) {
1165         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1166         /*
1167          * Computing is_clean is expensive; avoid all that unless
1168          * the page is actually writable.
1169          */
1170         if (prot & PAGE_WRITE) {
1171             if (section->readonly) {
1172                 write_address |= TLB_DISCARD_WRITE;
1173             } else if (cpu_physical_memory_is_clean(iotlb)) {
1174                 write_address |= TLB_NOTDIRTY;
1175             }
1176         }
1177     } else {
1178         /* I/O or ROMD */
1179         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1180         /*
1181          * Writes to romd devices must go through MMIO to enable write.
1182          * Reads to romd devices go through the ram_ptr found above,
1183          * but of course reads to I/O must go through MMIO.
1184          */
1185         write_address |= TLB_MMIO;
1186         if (!is_romd) {
1187             address = write_address;
1188         }
1189     }
1190 
1191     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1192                                               TARGET_PAGE_SIZE);
1193 
1194     index = tlb_index(env, mmu_idx, vaddr_page);
1195     te = tlb_entry(env, mmu_idx, vaddr_page);
1196 
1197     /*
1198      * Hold the TLB lock for the rest of the function. We could acquire/release
1199      * the lock several times in the function, but it is faster to amortize the
1200      * acquisition cost by acquiring it just once. Note that this leads to
1201      * a longer critical section, but this is not a concern since the TLB lock
1202      * is unlikely to be contended.
1203      */
1204     qemu_spin_lock(&tlb->c.lock);
1205 
1206     /* Note that the tlb is no longer clean.  */
1207     tlb->c.dirty |= 1 << mmu_idx;
1208 
1209     /* Make sure there's no cached translation for the new page.  */
1210     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1211 
1212     /*
1213      * Only evict the old entry to the victim tlb if it's for a
1214      * different page; otherwise just overwrite the stale data.
1215      */
1216     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1217         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1218         CPUTLBEntry *tv = &desc->vtable[vidx];
1219 
1220         /* Evict the old entry into the victim tlb.  */
1221         copy_tlb_helper_locked(tv, te);
1222         desc->viotlb[vidx] = desc->iotlb[index];
1223         tlb_n_used_entries_dec(env, mmu_idx);
1224     }
1225 
1226     /* refill the tlb */
1227     /*
1228      * At this point iotlb contains a physical section number in the lower
1229      * TARGET_PAGE_BITS, and either
1230      *  + the ram_addr_t of the page base of the target RAM (RAM)
1231      *  + the offset within section->mr of the page base (I/O, ROMD)
1232      * We subtract the vaddr_page (which is page aligned and thus won't
1233      * disturb the low bits) to give an offset which can be added to the
1234      * (non-page-aligned) vaddr of the eventual memory access to get
1235      * the MemoryRegion offset for the access. Note that the vaddr we
1236      * subtract here is that of the page base, and not the same as the
1237      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1238      */
1239     desc->iotlb[index].addr = iotlb - vaddr_page;
1240     desc->iotlb[index].attrs = attrs;
1241 
1242     /* Now calculate the new entry */
1243     tn.addend = addend - vaddr_page;
1244     if (prot & PAGE_READ) {
1245         tn.addr_read = address;
1246         if (wp_flags & BP_MEM_READ) {
1247             tn.addr_read |= TLB_WATCHPOINT;
1248         }
1249     } else {
1250         tn.addr_read = -1;
1251     }
1252 
1253     if (prot & PAGE_EXEC) {
1254         tn.addr_code = address;
1255     } else {
1256         tn.addr_code = -1;
1257     }
1258 
1259     tn.addr_write = -1;
1260     if (prot & PAGE_WRITE) {
1261         tn.addr_write = write_address;
1262         if (prot & PAGE_WRITE_INV) {
1263             tn.addr_write |= TLB_INVALID_MASK;
1264         }
1265         if (wp_flags & BP_MEM_WRITE) {
1266             tn.addr_write |= TLB_WATCHPOINT;
1267         }
1268     }
1269 
1270     copy_tlb_helper_locked(te, &tn);
1271     tlb_n_used_entries_inc(env, mmu_idx);
1272     qemu_spin_unlock(&tlb->c.lock);
1273 }
1274 
1275 /* Add a new TLB entry, but without specifying the memory
1276  * transaction attributes to be used.
1277  */
1278 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1279                   hwaddr paddr, int prot,
1280                   int mmu_idx, target_ulong size)
1281 {
1282     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1283                             prot, mmu_idx, size);
1284 }
1285 
1286 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1287 {
1288     ram_addr_t ram_addr;
1289 
1290     ram_addr = qemu_ram_addr_from_host(ptr);
1291     if (ram_addr == RAM_ADDR_INVALID) {
1292         error_report("Bad ram pointer %p", ptr);
1293         abort();
1294     }
1295     return ram_addr;
1296 }
1297 
1298 /*
1299  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1300  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1301  * be discarded and looked up again (e.g. via tlb_entry()).
1302  */
1303 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1304                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1305 {
1306     CPUClass *cc = CPU_GET_CLASS(cpu);
1307     bool ok;
1308 
1309     /*
1310      * This is not a probe, so only valid return is success; failure
1311      * should result in exception + longjmp to the cpu loop.
1312      */
1313     ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1314                                access_type, mmu_idx, false, retaddr);
1315     assert(ok);
1316 }
1317 
1318 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1319                                         MMUAccessType access_type,
1320                                         int mmu_idx, uintptr_t retaddr)
1321 {
1322     CPUClass *cc = CPU_GET_CLASS(cpu);
1323 
1324     cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1325 }
1326 
1327 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1328                                           vaddr addr, unsigned size,
1329                                           MMUAccessType access_type,
1330                                           int mmu_idx, MemTxAttrs attrs,
1331                                           MemTxResult response,
1332                                           uintptr_t retaddr)
1333 {
1334     CPUClass *cc = CPU_GET_CLASS(cpu);
1335 
1336     if (!cpu->ignore_memory_transaction_failures &&
1337         cc->tcg_ops->do_transaction_failed) {
1338         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1339                                            access_type, mmu_idx, attrs,
1340                                            response, retaddr);
1341     }
1342 }
1343 
1344 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1345                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
1346                          MMUAccessType access_type, MemOp op)
1347 {
1348     CPUState *cpu = env_cpu(env);
1349     hwaddr mr_offset;
1350     MemoryRegionSection *section;
1351     MemoryRegion *mr;
1352     uint64_t val;
1353     bool locked = false;
1354     MemTxResult r;
1355 
1356     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1357     mr = section->mr;
1358     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1359     cpu->mem_io_pc = retaddr;
1360     if (!cpu->can_do_io) {
1361         cpu_io_recompile(cpu, retaddr);
1362     }
1363 
1364     if (!qemu_mutex_iothread_locked()) {
1365         qemu_mutex_lock_iothread();
1366         locked = true;
1367     }
1368     r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1369     if (r != MEMTX_OK) {
1370         hwaddr physaddr = mr_offset +
1371             section->offset_within_address_space -
1372             section->offset_within_region;
1373 
1374         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1375                                mmu_idx, iotlbentry->attrs, r, retaddr);
1376     }
1377     if (locked) {
1378         qemu_mutex_unlock_iothread();
1379     }
1380 
1381     return val;
1382 }
1383 
1384 /*
1385  * Save a potentially trashed IOTLB entry for later lookup by plugin.
1386  * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1387  * because of the side effect of io_writex changing memory layout.
1388  */
1389 static void save_iotlb_data(CPUState *cs, hwaddr addr,
1390                             MemoryRegionSection *section, hwaddr mr_offset)
1391 {
1392 #ifdef CONFIG_PLUGIN
1393     SavedIOTLB *saved = &cs->saved_iotlb;
1394     saved->addr = addr;
1395     saved->section = section;
1396     saved->mr_offset = mr_offset;
1397 #endif
1398 }
1399 
1400 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1401                       int mmu_idx, uint64_t val, target_ulong addr,
1402                       uintptr_t retaddr, MemOp op)
1403 {
1404     CPUState *cpu = env_cpu(env);
1405     hwaddr mr_offset;
1406     MemoryRegionSection *section;
1407     MemoryRegion *mr;
1408     bool locked = false;
1409     MemTxResult r;
1410 
1411     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1412     mr = section->mr;
1413     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1414     if (!cpu->can_do_io) {
1415         cpu_io_recompile(cpu, retaddr);
1416     }
1417     cpu->mem_io_pc = retaddr;
1418 
1419     /*
1420      * The memory_region_dispatch may trigger a flush/resize
1421      * so for plugins we save the iotlb_data just in case.
1422      */
1423     save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1424 
1425     if (!qemu_mutex_iothread_locked()) {
1426         qemu_mutex_lock_iothread();
1427         locked = true;
1428     }
1429     r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1430     if (r != MEMTX_OK) {
1431         hwaddr physaddr = mr_offset +
1432             section->offset_within_address_space -
1433             section->offset_within_region;
1434 
1435         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1436                                MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1437                                retaddr);
1438     }
1439     if (locked) {
1440         qemu_mutex_unlock_iothread();
1441     }
1442 }
1443 
1444 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1445 {
1446 #if TCG_OVERSIZED_GUEST
1447     return *(target_ulong *)((uintptr_t)entry + ofs);
1448 #else
1449     /* ofs might correspond to .addr_write, so use qatomic_read */
1450     return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1451 #endif
1452 }
1453 
1454 /* Return true if ADDR is present in the victim tlb, and has been copied
1455    back to the main tlb.  */
1456 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1457                            size_t elt_ofs, target_ulong page)
1458 {
1459     size_t vidx;
1460 
1461     assert_cpu_is_self(env_cpu(env));
1462     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1463         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1464         target_ulong cmp;
1465 
1466         /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1467 #if TCG_OVERSIZED_GUEST
1468         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1469 #else
1470         cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1471 #endif
1472 
1473         if (cmp == page) {
1474             /* Found entry in victim tlb, swap tlb and iotlb.  */
1475             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1476 
1477             qemu_spin_lock(&env_tlb(env)->c.lock);
1478             copy_tlb_helper_locked(&tmptlb, tlb);
1479             copy_tlb_helper_locked(tlb, vtlb);
1480             copy_tlb_helper_locked(vtlb, &tmptlb);
1481             qemu_spin_unlock(&env_tlb(env)->c.lock);
1482 
1483             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1484             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1485             tmpio = *io; *io = *vio; *vio = tmpio;
1486             return true;
1487         }
1488     }
1489     return false;
1490 }
1491 
1492 /* Macro to call the above, with local variables from the use context.  */
1493 #define VICTIM_TLB_HIT(TY, ADDR) \
1494   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1495                  (ADDR) & TARGET_PAGE_MASK)
1496 
1497 /*
1498  * Return a ram_addr_t for the virtual address for execution.
1499  *
1500  * Return -1 if we can't translate and execute from an entire page
1501  * of RAM.  This will force us to execute by loading and translating
1502  * one insn at a time, without caching.
1503  *
1504  * NOTE: This function will trigger an exception if the page is
1505  * not executable.
1506  */
1507 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1508                                         void **hostp)
1509 {
1510     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1511     uintptr_t index = tlb_index(env, mmu_idx, addr);
1512     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1513     void *p;
1514 
1515     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1516         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1517             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1518             index = tlb_index(env, mmu_idx, addr);
1519             entry = tlb_entry(env, mmu_idx, addr);
1520 
1521             if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1522                 /*
1523                  * The MMU protection covers a smaller range than a target
1524                  * page, so we must redo the MMU check for every insn.
1525                  */
1526                 return -1;
1527             }
1528         }
1529         assert(tlb_hit(entry->addr_code, addr));
1530     }
1531 
1532     if (unlikely(entry->addr_code & TLB_MMIO)) {
1533         /* The region is not backed by RAM.  */
1534         if (hostp) {
1535             *hostp = NULL;
1536         }
1537         return -1;
1538     }
1539 
1540     p = (void *)((uintptr_t)addr + entry->addend);
1541     if (hostp) {
1542         *hostp = p;
1543     }
1544     return qemu_ram_addr_from_host_nofail(p);
1545 }
1546 
1547 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1548 {
1549     return get_page_addr_code_hostp(env, addr, NULL);
1550 }
1551 
1552 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1553                            CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1554 {
1555     ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1556 
1557     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1558 
1559     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1560         struct page_collection *pages
1561             = page_collection_lock(ram_addr, ram_addr + size);
1562         tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1563         page_collection_unlock(pages);
1564     }
1565 
1566     /*
1567      * Set both VGA and migration bits for simplicity and to remove
1568      * the notdirty callback faster.
1569      */
1570     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1571 
1572     /* We remove the notdirty callback only if the code has been flushed. */
1573     if (!cpu_physical_memory_is_clean(ram_addr)) {
1574         trace_memory_notdirty_set_dirty(mem_vaddr);
1575         tlb_set_dirty(cpu, mem_vaddr);
1576     }
1577 }
1578 
1579 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1580                                  int fault_size, MMUAccessType access_type,
1581                                  int mmu_idx, bool nonfault,
1582                                  void **phost, uintptr_t retaddr)
1583 {
1584     uintptr_t index = tlb_index(env, mmu_idx, addr);
1585     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1586     target_ulong tlb_addr, page_addr;
1587     size_t elt_ofs;
1588     int flags;
1589 
1590     switch (access_type) {
1591     case MMU_DATA_LOAD:
1592         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1593         break;
1594     case MMU_DATA_STORE:
1595         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1596         break;
1597     case MMU_INST_FETCH:
1598         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1599         break;
1600     default:
1601         g_assert_not_reached();
1602     }
1603     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1604 
1605     page_addr = addr & TARGET_PAGE_MASK;
1606     if (!tlb_hit_page(tlb_addr, page_addr)) {
1607         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1608             CPUState *cs = env_cpu(env);
1609             CPUClass *cc = CPU_GET_CLASS(cs);
1610 
1611             if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1612                                        mmu_idx, nonfault, retaddr)) {
1613                 /* Non-faulting page table read failed.  */
1614                 *phost = NULL;
1615                 return TLB_INVALID_MASK;
1616             }
1617 
1618             /* TLB resize via tlb_fill may have moved the entry.  */
1619             entry = tlb_entry(env, mmu_idx, addr);
1620         }
1621         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1622     }
1623     flags = tlb_addr & TLB_FLAGS_MASK;
1624 
1625     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1626     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1627         *phost = NULL;
1628         return TLB_MMIO;
1629     }
1630 
1631     /* Everything else is RAM. */
1632     *phost = (void *)((uintptr_t)addr + entry->addend);
1633     return flags;
1634 }
1635 
1636 int probe_access_flags(CPUArchState *env, target_ulong addr,
1637                        MMUAccessType access_type, int mmu_idx,
1638                        bool nonfault, void **phost, uintptr_t retaddr)
1639 {
1640     int flags;
1641 
1642     flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1643                                   nonfault, phost, retaddr);
1644 
1645     /* Handle clean RAM pages.  */
1646     if (unlikely(flags & TLB_NOTDIRTY)) {
1647         uintptr_t index = tlb_index(env, mmu_idx, addr);
1648         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1649 
1650         notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1651         flags &= ~TLB_NOTDIRTY;
1652     }
1653 
1654     return flags;
1655 }
1656 
1657 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1658                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1659 {
1660     void *host;
1661     int flags;
1662 
1663     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1664 
1665     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1666                                   false, &host, retaddr);
1667 
1668     /* Per the interface, size == 0 merely faults the access. */
1669     if (size == 0) {
1670         return NULL;
1671     }
1672 
1673     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1674         uintptr_t index = tlb_index(env, mmu_idx, addr);
1675         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1676 
1677         /* Handle watchpoints.  */
1678         if (flags & TLB_WATCHPOINT) {
1679             int wp_access = (access_type == MMU_DATA_STORE
1680                              ? BP_MEM_WRITE : BP_MEM_READ);
1681             cpu_check_watchpoint(env_cpu(env), addr, size,
1682                                  iotlbentry->attrs, wp_access, retaddr);
1683         }
1684 
1685         /* Handle clean RAM pages.  */
1686         if (flags & TLB_NOTDIRTY) {
1687             notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1688         }
1689     }
1690 
1691     return host;
1692 }
1693 
1694 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1695                         MMUAccessType access_type, int mmu_idx)
1696 {
1697     void *host;
1698     int flags;
1699 
1700     flags = probe_access_internal(env, addr, 0, access_type,
1701                                   mmu_idx, true, &host, 0);
1702 
1703     /* No combination of flags are expected by the caller. */
1704     return flags ? NULL : host;
1705 }
1706 
1707 #ifdef CONFIG_PLUGIN
1708 /*
1709  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1710  * This should be a hot path as we will have just looked this path up
1711  * in the softmmu lookup code (or helper). We don't handle re-fills or
1712  * checking the victim table. This is purely informational.
1713  *
1714  * This almost never fails as the memory access being instrumented
1715  * should have just filled the TLB. The one corner case is io_writex
1716  * which can cause TLB flushes and potential resizing of the TLBs
1717  * losing the information we need. In those cases we need to recover
1718  * data from a copy of the iotlbentry. As long as this always occurs
1719  * from the same thread (which a mem callback will be) this is safe.
1720  */
1721 
1722 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1723                        bool is_store, struct qemu_plugin_hwaddr *data)
1724 {
1725     CPUArchState *env = cpu->env_ptr;
1726     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1727     uintptr_t index = tlb_index(env, mmu_idx, addr);
1728     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1729 
1730     if (likely(tlb_hit(tlb_addr, addr))) {
1731         /* We must have an iotlb entry for MMIO */
1732         if (tlb_addr & TLB_MMIO) {
1733             CPUIOTLBEntry *iotlbentry;
1734             iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1735             data->is_io = true;
1736             data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1737             data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1738         } else {
1739             data->is_io = false;
1740             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1741         }
1742         return true;
1743     } else {
1744         SavedIOTLB *saved = &cpu->saved_iotlb;
1745         data->is_io = true;
1746         data->v.io.section = saved->section;
1747         data->v.io.offset = saved->mr_offset;
1748         return true;
1749     }
1750 }
1751 
1752 #endif
1753 
1754 /*
1755  * Probe for an atomic operation.  Do not allow unaligned operations,
1756  * or io operations to proceed.  Return the host address.
1757  *
1758  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1759  */
1760 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1761                                MemOpIdx oi, int size, int prot,
1762                                uintptr_t retaddr)
1763 {
1764     size_t mmu_idx = get_mmuidx(oi);
1765     MemOp mop = get_memop(oi);
1766     int a_bits = get_alignment_bits(mop);
1767     uintptr_t index;
1768     CPUTLBEntry *tlbe;
1769     target_ulong tlb_addr;
1770     void *hostaddr;
1771 
1772     /* Adjust the given return address.  */
1773     retaddr -= GETPC_ADJ;
1774 
1775     /* Enforce guest required alignment.  */
1776     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1777         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1778         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1779                              mmu_idx, retaddr);
1780     }
1781 
1782     /* Enforce qemu required alignment.  */
1783     if (unlikely(addr & (size - 1))) {
1784         /* We get here if guest alignment was not requested,
1785            or was not enforced by cpu_unaligned_access above.
1786            We might widen the access and emulate, but for now
1787            mark an exception and exit the cpu loop.  */
1788         goto stop_the_world;
1789     }
1790 
1791     index = tlb_index(env, mmu_idx, addr);
1792     tlbe = tlb_entry(env, mmu_idx, addr);
1793 
1794     /* Check TLB entry and enforce page permissions.  */
1795     if (prot & PAGE_WRITE) {
1796         tlb_addr = tlb_addr_write(tlbe);
1797         if (!tlb_hit(tlb_addr, addr)) {
1798             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1799                 tlb_fill(env_cpu(env), addr, size,
1800                          MMU_DATA_STORE, mmu_idx, retaddr);
1801                 index = tlb_index(env, mmu_idx, addr);
1802                 tlbe = tlb_entry(env, mmu_idx, addr);
1803             }
1804             tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1805         }
1806 
1807         /* Let the guest notice RMW on a write-only page.  */
1808         if ((prot & PAGE_READ) &&
1809             unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1810             tlb_fill(env_cpu(env), addr, size,
1811                      MMU_DATA_LOAD, mmu_idx, retaddr);
1812             /*
1813              * Since we don't support reads and writes to different addresses,
1814              * and we do have the proper page loaded for write, this shouldn't
1815              * ever return.  But just in case, handle via stop-the-world.
1816              */
1817             goto stop_the_world;
1818         }
1819     } else /* if (prot & PAGE_READ) */ {
1820         tlb_addr = tlbe->addr_read;
1821         if (!tlb_hit(tlb_addr, addr)) {
1822             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1823                 tlb_fill(env_cpu(env), addr, size,
1824                          MMU_DATA_LOAD, mmu_idx, retaddr);
1825                 index = tlb_index(env, mmu_idx, addr);
1826                 tlbe = tlb_entry(env, mmu_idx, addr);
1827             }
1828             tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1829         }
1830     }
1831 
1832     /* Notice an IO access or a needs-MMU-lookup access */
1833     if (unlikely(tlb_addr & TLB_MMIO)) {
1834         /* There's really nothing that can be done to
1835            support this apart from stop-the-world.  */
1836         goto stop_the_world;
1837     }
1838 
1839     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1840 
1841     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1842         notdirty_write(env_cpu(env), addr, size,
1843                        &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1844     }
1845 
1846     return hostaddr;
1847 
1848  stop_the_world:
1849     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1850 }
1851 
1852 /*
1853  * Verify that we have passed the correct MemOp to the correct function.
1854  *
1855  * In the case of the helper_*_mmu functions, we will have done this by
1856  * using the MemOp to look up the helper during code generation.
1857  *
1858  * In the case of the cpu_*_mmu functions, this is up to the caller.
1859  * We could present one function to target code, and dispatch based on
1860  * the MemOp, but so far we have worked hard to avoid an indirect function
1861  * call along the memory path.
1862  */
1863 static void validate_memop(MemOpIdx oi, MemOp expected)
1864 {
1865 #ifdef CONFIG_DEBUG_TCG
1866     MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1867     assert(have == expected);
1868 #endif
1869 }
1870 
1871 /*
1872  * Load Helpers
1873  *
1874  * We support two different access types. SOFTMMU_CODE_ACCESS is
1875  * specifically for reading instructions from system memory. It is
1876  * called by the translation loop and in some helpers where the code
1877  * is disassembled. It shouldn't be called directly by guest code.
1878  */
1879 
1880 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1881                                 MemOpIdx oi, uintptr_t retaddr);
1882 
1883 static inline uint64_t QEMU_ALWAYS_INLINE
1884 load_memop(const void *haddr, MemOp op)
1885 {
1886     switch (op) {
1887     case MO_UB:
1888         return ldub_p(haddr);
1889     case MO_BEUW:
1890         return lduw_be_p(haddr);
1891     case MO_LEUW:
1892         return lduw_le_p(haddr);
1893     case MO_BEUL:
1894         return (uint32_t)ldl_be_p(haddr);
1895     case MO_LEUL:
1896         return (uint32_t)ldl_le_p(haddr);
1897     case MO_BEUQ:
1898         return ldq_be_p(haddr);
1899     case MO_LEUQ:
1900         return ldq_le_p(haddr);
1901     default:
1902         qemu_build_not_reached();
1903     }
1904 }
1905 
1906 static inline uint64_t QEMU_ALWAYS_INLINE
1907 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1908             uintptr_t retaddr, MemOp op, bool code_read,
1909             FullLoadHelper *full_load)
1910 {
1911     uintptr_t mmu_idx = get_mmuidx(oi);
1912     uintptr_t index = tlb_index(env, mmu_idx, addr);
1913     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1914     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1915     const size_t tlb_off = code_read ?
1916         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1917     const MMUAccessType access_type =
1918         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1919     unsigned a_bits = get_alignment_bits(get_memop(oi));
1920     void *haddr;
1921     uint64_t res;
1922     size_t size = memop_size(op);
1923 
1924     /* Handle CPU specific unaligned behaviour */
1925     if (addr & ((1 << a_bits) - 1)) {
1926         cpu_unaligned_access(env_cpu(env), addr, access_type,
1927                              mmu_idx, retaddr);
1928     }
1929 
1930     /* If the TLB entry is for a different page, reload and try again.  */
1931     if (!tlb_hit(tlb_addr, addr)) {
1932         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1933                             addr & TARGET_PAGE_MASK)) {
1934             tlb_fill(env_cpu(env), addr, size,
1935                      access_type, mmu_idx, retaddr);
1936             index = tlb_index(env, mmu_idx, addr);
1937             entry = tlb_entry(env, mmu_idx, addr);
1938         }
1939         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1940         tlb_addr &= ~TLB_INVALID_MASK;
1941     }
1942 
1943     /* Handle anything that isn't just a straight memory access.  */
1944     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1945         CPUIOTLBEntry *iotlbentry;
1946         bool need_swap;
1947 
1948         /* For anything that is unaligned, recurse through full_load.  */
1949         if ((addr & (size - 1)) != 0) {
1950             goto do_unaligned_access;
1951         }
1952 
1953         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1954 
1955         /* Handle watchpoints.  */
1956         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1957             /* On watchpoint hit, this will longjmp out.  */
1958             cpu_check_watchpoint(env_cpu(env), addr, size,
1959                                  iotlbentry->attrs, BP_MEM_READ, retaddr);
1960         }
1961 
1962         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1963 
1964         /* Handle I/O access.  */
1965         if (likely(tlb_addr & TLB_MMIO)) {
1966             return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1967                             access_type, op ^ (need_swap * MO_BSWAP));
1968         }
1969 
1970         haddr = (void *)((uintptr_t)addr + entry->addend);
1971 
1972         /*
1973          * Keep these two load_memop separate to ensure that the compiler
1974          * is able to fold the entire function to a single instruction.
1975          * There is a build-time assert inside to remind you of this.  ;-)
1976          */
1977         if (unlikely(need_swap)) {
1978             return load_memop(haddr, op ^ MO_BSWAP);
1979         }
1980         return load_memop(haddr, op);
1981     }
1982 
1983     /* Handle slow unaligned access (it spans two pages or IO).  */
1984     if (size > 1
1985         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1986                     >= TARGET_PAGE_SIZE)) {
1987         target_ulong addr1, addr2;
1988         uint64_t r1, r2;
1989         unsigned shift;
1990     do_unaligned_access:
1991         addr1 = addr & ~((target_ulong)size - 1);
1992         addr2 = addr1 + size;
1993         r1 = full_load(env, addr1, oi, retaddr);
1994         r2 = full_load(env, addr2, oi, retaddr);
1995         shift = (addr & (size - 1)) * 8;
1996 
1997         if (memop_big_endian(op)) {
1998             /* Big-endian combine.  */
1999             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
2000         } else {
2001             /* Little-endian combine.  */
2002             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
2003         }
2004         return res & MAKE_64BIT_MASK(0, size * 8);
2005     }
2006 
2007     haddr = (void *)((uintptr_t)addr + entry->addend);
2008     return load_memop(haddr, op);
2009 }
2010 
2011 /*
2012  * For the benefit of TCG generated code, we want to avoid the
2013  * complication of ABI-specific return type promotion and always
2014  * return a value extended to the register size of the host. This is
2015  * tcg_target_long, except in the case of a 32-bit host and 64-bit
2016  * data, and for that we always have uint64_t.
2017  *
2018  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2019  */
2020 
2021 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
2022                               MemOpIdx oi, uintptr_t retaddr)
2023 {
2024     validate_memop(oi, MO_UB);
2025     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2026 }
2027 
2028 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2029                                      MemOpIdx oi, uintptr_t retaddr)
2030 {
2031     return full_ldub_mmu(env, addr, oi, retaddr);
2032 }
2033 
2034 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2035                                  MemOpIdx oi, uintptr_t retaddr)
2036 {
2037     validate_memop(oi, MO_LEUW);
2038     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2039                        full_le_lduw_mmu);
2040 }
2041 
2042 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2043                                     MemOpIdx oi, uintptr_t retaddr)
2044 {
2045     return full_le_lduw_mmu(env, addr, oi, retaddr);
2046 }
2047 
2048 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2049                                  MemOpIdx oi, uintptr_t retaddr)
2050 {
2051     validate_memop(oi, MO_BEUW);
2052     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2053                        full_be_lduw_mmu);
2054 }
2055 
2056 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2057                                     MemOpIdx oi, uintptr_t retaddr)
2058 {
2059     return full_be_lduw_mmu(env, addr, oi, retaddr);
2060 }
2061 
2062 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2063                                  MemOpIdx oi, uintptr_t retaddr)
2064 {
2065     validate_memop(oi, MO_LEUL);
2066     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2067                        full_le_ldul_mmu);
2068 }
2069 
2070 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2071                                     MemOpIdx oi, uintptr_t retaddr)
2072 {
2073     return full_le_ldul_mmu(env, addr, oi, retaddr);
2074 }
2075 
2076 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2077                                  MemOpIdx oi, uintptr_t retaddr)
2078 {
2079     validate_memop(oi, MO_BEUL);
2080     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2081                        full_be_ldul_mmu);
2082 }
2083 
2084 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2085                                     MemOpIdx oi, uintptr_t retaddr)
2086 {
2087     return full_be_ldul_mmu(env, addr, oi, retaddr);
2088 }
2089 
2090 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2091                            MemOpIdx oi, uintptr_t retaddr)
2092 {
2093     validate_memop(oi, MO_LEUQ);
2094     return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
2095                        helper_le_ldq_mmu);
2096 }
2097 
2098 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2099                            MemOpIdx oi, uintptr_t retaddr)
2100 {
2101     validate_memop(oi, MO_BEUQ);
2102     return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
2103                        helper_be_ldq_mmu);
2104 }
2105 
2106 /*
2107  * Provide signed versions of the load routines as well.  We can of course
2108  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2109  */
2110 
2111 
2112 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2113                                      MemOpIdx oi, uintptr_t retaddr)
2114 {
2115     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2116 }
2117 
2118 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2119                                     MemOpIdx oi, uintptr_t retaddr)
2120 {
2121     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2122 }
2123 
2124 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2125                                     MemOpIdx oi, uintptr_t retaddr)
2126 {
2127     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2128 }
2129 
2130 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2131                                     MemOpIdx oi, uintptr_t retaddr)
2132 {
2133     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2134 }
2135 
2136 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2137                                     MemOpIdx oi, uintptr_t retaddr)
2138 {
2139     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2140 }
2141 
2142 /*
2143  * Load helpers for cpu_ldst.h.
2144  */
2145 
2146 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2147                                        MemOpIdx oi, uintptr_t retaddr,
2148                                        FullLoadHelper *full_load)
2149 {
2150     uint64_t ret;
2151 
2152     ret = full_load(env, addr, oi, retaddr);
2153     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2154     return ret;
2155 }
2156 
2157 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2158 {
2159     return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
2160 }
2161 
2162 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2163                         MemOpIdx oi, uintptr_t ra)
2164 {
2165     return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
2166 }
2167 
2168 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2169                         MemOpIdx oi, uintptr_t ra)
2170 {
2171     return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
2172 }
2173 
2174 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2175                         MemOpIdx oi, uintptr_t ra)
2176 {
2177     return cpu_load_helper(env, addr, oi, MO_BEUQ, helper_be_ldq_mmu);
2178 }
2179 
2180 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2181                         MemOpIdx oi, uintptr_t ra)
2182 {
2183     return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
2184 }
2185 
2186 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2187                         MemOpIdx oi, uintptr_t ra)
2188 {
2189     return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
2190 }
2191 
2192 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2193                         MemOpIdx oi, uintptr_t ra)
2194 {
2195     return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
2196 }
2197 
2198 /*
2199  * Store Helpers
2200  */
2201 
2202 static inline void QEMU_ALWAYS_INLINE
2203 store_memop(void *haddr, uint64_t val, MemOp op)
2204 {
2205     switch (op) {
2206     case MO_UB:
2207         stb_p(haddr, val);
2208         break;
2209     case MO_BEUW:
2210         stw_be_p(haddr, val);
2211         break;
2212     case MO_LEUW:
2213         stw_le_p(haddr, val);
2214         break;
2215     case MO_BEUL:
2216         stl_be_p(haddr, val);
2217         break;
2218     case MO_LEUL:
2219         stl_le_p(haddr, val);
2220         break;
2221     case MO_BEUQ:
2222         stq_be_p(haddr, val);
2223         break;
2224     case MO_LEUQ:
2225         stq_le_p(haddr, val);
2226         break;
2227     default:
2228         qemu_build_not_reached();
2229     }
2230 }
2231 
2232 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2233                          MemOpIdx oi, uintptr_t retaddr);
2234 
2235 static void __attribute__((noinline))
2236 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2237                        uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2238                        bool big_endian)
2239 {
2240     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2241     uintptr_t index, index2;
2242     CPUTLBEntry *entry, *entry2;
2243     target_ulong page2, tlb_addr, tlb_addr2;
2244     MemOpIdx oi;
2245     size_t size2;
2246     int i;
2247 
2248     /*
2249      * Ensure the second page is in the TLB.  Note that the first page
2250      * is already guaranteed to be filled, and that the second page
2251      * cannot evict the first.
2252      */
2253     page2 = (addr + size) & TARGET_PAGE_MASK;
2254     size2 = (addr + size) & ~TARGET_PAGE_MASK;
2255     index2 = tlb_index(env, mmu_idx, page2);
2256     entry2 = tlb_entry(env, mmu_idx, page2);
2257 
2258     tlb_addr2 = tlb_addr_write(entry2);
2259     if (!tlb_hit_page(tlb_addr2, page2)) {
2260         if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2261             tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2262                      mmu_idx, retaddr);
2263             index2 = tlb_index(env, mmu_idx, page2);
2264             entry2 = tlb_entry(env, mmu_idx, page2);
2265         }
2266         tlb_addr2 = tlb_addr_write(entry2);
2267     }
2268 
2269     index = tlb_index(env, mmu_idx, addr);
2270     entry = tlb_entry(env, mmu_idx, addr);
2271     tlb_addr = tlb_addr_write(entry);
2272 
2273     /*
2274      * Handle watchpoints.  Since this may trap, all checks
2275      * must happen before any store.
2276      */
2277     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2278         cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2279                              env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2280                              BP_MEM_WRITE, retaddr);
2281     }
2282     if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2283         cpu_check_watchpoint(env_cpu(env), page2, size2,
2284                              env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2285                              BP_MEM_WRITE, retaddr);
2286     }
2287 
2288     /*
2289      * XXX: not efficient, but simple.
2290      * This loop must go in the forward direction to avoid issues
2291      * with self-modifying code in Windows 64-bit.
2292      */
2293     oi = make_memop_idx(MO_UB, mmu_idx);
2294     if (big_endian) {
2295         for (i = 0; i < size; ++i) {
2296             /* Big-endian extract.  */
2297             uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2298             full_stb_mmu(env, addr + i, val8, oi, retaddr);
2299         }
2300     } else {
2301         for (i = 0; i < size; ++i) {
2302             /* Little-endian extract.  */
2303             uint8_t val8 = val >> (i * 8);
2304             full_stb_mmu(env, addr + i, val8, oi, retaddr);
2305         }
2306     }
2307 }
2308 
2309 static inline void QEMU_ALWAYS_INLINE
2310 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2311              MemOpIdx oi, uintptr_t retaddr, MemOp op)
2312 {
2313     uintptr_t mmu_idx = get_mmuidx(oi);
2314     uintptr_t index = tlb_index(env, mmu_idx, addr);
2315     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2316     target_ulong tlb_addr = tlb_addr_write(entry);
2317     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2318     unsigned a_bits = get_alignment_bits(get_memop(oi));
2319     void *haddr;
2320     size_t size = memop_size(op);
2321 
2322     /* Handle CPU specific unaligned behaviour */
2323     if (addr & ((1 << a_bits) - 1)) {
2324         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2325                              mmu_idx, retaddr);
2326     }
2327 
2328     /* If the TLB entry is for a different page, reload and try again.  */
2329     if (!tlb_hit(tlb_addr, addr)) {
2330         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2331             addr & TARGET_PAGE_MASK)) {
2332             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2333                      mmu_idx, retaddr);
2334             index = tlb_index(env, mmu_idx, addr);
2335             entry = tlb_entry(env, mmu_idx, addr);
2336         }
2337         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2338     }
2339 
2340     /* Handle anything that isn't just a straight memory access.  */
2341     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2342         CPUIOTLBEntry *iotlbentry;
2343         bool need_swap;
2344 
2345         /* For anything that is unaligned, recurse through byte stores.  */
2346         if ((addr & (size - 1)) != 0) {
2347             goto do_unaligned_access;
2348         }
2349 
2350         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2351 
2352         /* Handle watchpoints.  */
2353         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2354             /* On watchpoint hit, this will longjmp out.  */
2355             cpu_check_watchpoint(env_cpu(env), addr, size,
2356                                  iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2357         }
2358 
2359         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2360 
2361         /* Handle I/O access.  */
2362         if (tlb_addr & TLB_MMIO) {
2363             io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2364                       op ^ (need_swap * MO_BSWAP));
2365             return;
2366         }
2367 
2368         /* Ignore writes to ROM.  */
2369         if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2370             return;
2371         }
2372 
2373         /* Handle clean RAM pages.  */
2374         if (tlb_addr & TLB_NOTDIRTY) {
2375             notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2376         }
2377 
2378         haddr = (void *)((uintptr_t)addr + entry->addend);
2379 
2380         /*
2381          * Keep these two store_memop separate to ensure that the compiler
2382          * is able to fold the entire function to a single instruction.
2383          * There is a build-time assert inside to remind you of this.  ;-)
2384          */
2385         if (unlikely(need_swap)) {
2386             store_memop(haddr, val, op ^ MO_BSWAP);
2387         } else {
2388             store_memop(haddr, val, op);
2389         }
2390         return;
2391     }
2392 
2393     /* Handle slow unaligned access (it spans two pages or IO).  */
2394     if (size > 1
2395         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2396                      >= TARGET_PAGE_SIZE)) {
2397     do_unaligned_access:
2398         store_helper_unaligned(env, addr, val, retaddr, size,
2399                                mmu_idx, memop_big_endian(op));
2400         return;
2401     }
2402 
2403     haddr = (void *)((uintptr_t)addr + entry->addend);
2404     store_memop(haddr, val, op);
2405 }
2406 
2407 static void __attribute__((noinline))
2408 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2409              MemOpIdx oi, uintptr_t retaddr)
2410 {
2411     validate_memop(oi, MO_UB);
2412     store_helper(env, addr, val, oi, retaddr, MO_UB);
2413 }
2414 
2415 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2416                         MemOpIdx oi, uintptr_t retaddr)
2417 {
2418     full_stb_mmu(env, addr, val, oi, retaddr);
2419 }
2420 
2421 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2422                             MemOpIdx oi, uintptr_t retaddr)
2423 {
2424     validate_memop(oi, MO_LEUW);
2425     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2426 }
2427 
2428 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2429                        MemOpIdx oi, uintptr_t retaddr)
2430 {
2431     full_le_stw_mmu(env, addr, val, oi, retaddr);
2432 }
2433 
2434 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2435                             MemOpIdx oi, uintptr_t retaddr)
2436 {
2437     validate_memop(oi, MO_BEUW);
2438     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2439 }
2440 
2441 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2442                        MemOpIdx oi, uintptr_t retaddr)
2443 {
2444     full_be_stw_mmu(env, addr, val, oi, retaddr);
2445 }
2446 
2447 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2448                             MemOpIdx oi, uintptr_t retaddr)
2449 {
2450     validate_memop(oi, MO_LEUL);
2451     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2452 }
2453 
2454 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2455                        MemOpIdx oi, uintptr_t retaddr)
2456 {
2457     full_le_stl_mmu(env, addr, val, oi, retaddr);
2458 }
2459 
2460 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2461                             MemOpIdx oi, uintptr_t retaddr)
2462 {
2463     validate_memop(oi, MO_BEUL);
2464     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2465 }
2466 
2467 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2468                        MemOpIdx oi, uintptr_t retaddr)
2469 {
2470     full_be_stl_mmu(env, addr, val, oi, retaddr);
2471 }
2472 
2473 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2474                        MemOpIdx oi, uintptr_t retaddr)
2475 {
2476     validate_memop(oi, MO_LEUQ);
2477     store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
2478 }
2479 
2480 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2481                        MemOpIdx oi, uintptr_t retaddr)
2482 {
2483     validate_memop(oi, MO_BEUQ);
2484     store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
2485 }
2486 
2487 /*
2488  * Store Helpers for cpu_ldst.h
2489  */
2490 
2491 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2492                              uint64_t val, MemOpIdx oi, uintptr_t retaddr);
2493 
2494 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2495                                     uint64_t val, MemOpIdx oi, uintptr_t ra,
2496                                     FullStoreHelper *full_store)
2497 {
2498     full_store(env, addr, val, oi, ra);
2499     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2500 }
2501 
2502 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2503                  MemOpIdx oi, uintptr_t retaddr)
2504 {
2505     cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
2506 }
2507 
2508 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2509                     MemOpIdx oi, uintptr_t retaddr)
2510 {
2511     cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
2512 }
2513 
2514 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2515                     MemOpIdx oi, uintptr_t retaddr)
2516 {
2517     cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
2518 }
2519 
2520 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2521                     MemOpIdx oi, uintptr_t retaddr)
2522 {
2523     cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
2524 }
2525 
2526 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2527                     MemOpIdx oi, uintptr_t retaddr)
2528 {
2529     cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
2530 }
2531 
2532 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2533                     MemOpIdx oi, uintptr_t retaddr)
2534 {
2535     cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
2536 }
2537 
2538 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2539                     MemOpIdx oi, uintptr_t retaddr)
2540 {
2541     cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
2542 }
2543 
2544 #include "ldst_common.c.inc"
2545 
2546 /*
2547  * First set of functions passes in OI and RETADDR.
2548  * This makes them callable from other helpers.
2549  */
2550 
2551 #define ATOMIC_NAME(X) \
2552     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2553 
2554 #define ATOMIC_MMU_CLEANUP
2555 #define ATOMIC_MMU_IDX   get_mmuidx(oi)
2556 
2557 #include "atomic_common.c.inc"
2558 
2559 #define DATA_SIZE 1
2560 #include "atomic_template.h"
2561 
2562 #define DATA_SIZE 2
2563 #include "atomic_template.h"
2564 
2565 #define DATA_SIZE 4
2566 #include "atomic_template.h"
2567 
2568 #ifdef CONFIG_ATOMIC64
2569 #define DATA_SIZE 8
2570 #include "atomic_template.h"
2571 #endif
2572 
2573 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2574 #define DATA_SIZE 16
2575 #include "atomic_template.h"
2576 #endif
2577 
2578 /* Code access functions.  */
2579 
2580 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2581                                MemOpIdx oi, uintptr_t retaddr)
2582 {
2583     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2584 }
2585 
2586 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2587 {
2588     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2589     return full_ldub_code(env, addr, oi, 0);
2590 }
2591 
2592 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2593                                MemOpIdx oi, uintptr_t retaddr)
2594 {
2595     return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2596 }
2597 
2598 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2599 {
2600     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2601     return full_lduw_code(env, addr, oi, 0);
2602 }
2603 
2604 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2605                               MemOpIdx oi, uintptr_t retaddr)
2606 {
2607     return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2608 }
2609 
2610 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2611 {
2612     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2613     return full_ldl_code(env, addr, oi, 0);
2614 }
2615 
2616 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2617                               MemOpIdx oi, uintptr_t retaddr)
2618 {
2619     return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
2620 }
2621 
2622 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2623 {
2624     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
2625     return full_ldq_code(env, addr, oi, 0);
2626 }
2627