xref: /openbmc/qemu/accel/tcg/cputlb.c (revision eed56642)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 
37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
38 /* #define DEBUG_TLB */
39 /* #define DEBUG_TLB_LOG */
40 
41 #ifdef DEBUG_TLB
42 # define DEBUG_TLB_GATE 1
43 # ifdef DEBUG_TLB_LOG
44 #  define DEBUG_TLB_LOG_GATE 1
45 # else
46 #  define DEBUG_TLB_LOG_GATE 0
47 # endif
48 #else
49 # define DEBUG_TLB_GATE 0
50 # define DEBUG_TLB_LOG_GATE 0
51 #endif
52 
53 #define tlb_debug(fmt, ...) do { \
54     if (DEBUG_TLB_LOG_GATE) { \
55         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
56                       ## __VA_ARGS__); \
57     } else if (DEBUG_TLB_GATE) { \
58         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
59     } \
60 } while (0)
61 
62 #define assert_cpu_is_self(cpu) do {                              \
63         if (DEBUG_TLB_GATE) {                                     \
64             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
65         }                                                         \
66     } while (0)
67 
68 /* run_on_cpu_data.target_ptr should always be big enough for a
69  * target_ulong even on 32 bit builds */
70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
71 
72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
73  */
74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
76 
77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx)
78 {
79     return env->tlb_mask[mmu_idx] + (1 << CPU_TLB_ENTRY_BITS);
80 }
81 
82 static void tlb_window_reset(CPUTLBWindow *window, int64_t ns,
83                              size_t max_entries)
84 {
85     window->begin_ns = ns;
86     window->max_entries = max_entries;
87 }
88 
89 static void tlb_dyn_init(CPUArchState *env)
90 {
91     int i;
92 
93     for (i = 0; i < NB_MMU_MODES; i++) {
94         CPUTLBDesc *desc = &env->tlb_d[i];
95         size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
96 
97         tlb_window_reset(&desc->window, get_clock_realtime(), 0);
98         desc->n_used_entries = 0;
99         env->tlb_mask[i] = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
100         env->tlb_table[i] = g_new(CPUTLBEntry, n_entries);
101         env->iotlb[i] = g_new(CPUIOTLBEntry, n_entries);
102     }
103 }
104 
105 /**
106  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
107  * @env: CPU that owns the TLB
108  * @mmu_idx: MMU index of the TLB
109  *
110  * Called with tlb_lock_held.
111  *
112  * We have two main constraints when resizing a TLB: (1) we only resize it
113  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
114  * the array or unnecessarily flushing it), which means we do not control how
115  * frequently the resizing can occur; (2) we don't have access to the guest's
116  * future scheduling decisions, and therefore have to decide the magnitude of
117  * the resize based on past observations.
118  *
119  * In general, a memory-hungry process can benefit greatly from an appropriately
120  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
121  * we just have to make the TLB as large as possible; while an oversized TLB
122  * results in minimal TLB miss rates, it also takes longer to be flushed
123  * (flushes can be _very_ frequent), and the reduced locality can also hurt
124  * performance.
125  *
126  * To achieve near-optimal performance for all kinds of workloads, we:
127  *
128  * 1. Aggressively increase the size of the TLB when the use rate of the
129  * TLB being flushed is high, since it is likely that in the near future this
130  * memory-hungry process will execute again, and its memory hungriness will
131  * probably be similar.
132  *
133  * 2. Slowly reduce the size of the TLB as the use rate declines over a
134  * reasonably large time window. The rationale is that if in such a time window
135  * we have not observed a high TLB use rate, it is likely that we won't observe
136  * it in the near future. In that case, once a time window expires we downsize
137  * the TLB to match the maximum use rate observed in the window.
138  *
139  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
140  * since in that range performance is likely near-optimal. Recall that the TLB
141  * is direct mapped, so we want the use rate to be low (or at least not too
142  * high), since otherwise we are likely to have a significant amount of
143  * conflict misses.
144  */
145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx)
146 {
147     CPUTLBDesc *desc = &env->tlb_d[mmu_idx];
148     size_t old_size = tlb_n_entries(env, mmu_idx);
149     size_t rate;
150     size_t new_size = old_size;
151     int64_t now = get_clock_realtime();
152     int64_t window_len_ms = 100;
153     int64_t window_len_ns = window_len_ms * 1000 * 1000;
154     bool window_expired = now > desc->window.begin_ns + window_len_ns;
155 
156     if (desc->n_used_entries > desc->window.max_entries) {
157         desc->window.max_entries = desc->n_used_entries;
158     }
159     rate = desc->window.max_entries * 100 / old_size;
160 
161     if (rate > 70) {
162         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
163     } else if (rate < 30 && window_expired) {
164         size_t ceil = pow2ceil(desc->window.max_entries);
165         size_t expected_rate = desc->window.max_entries * 100 / ceil;
166 
167         /*
168          * Avoid undersizing when the max number of entries seen is just below
169          * a pow2. For instance, if max_entries == 1025, the expected use rate
170          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
171          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
172          * later. Thus, make sure that the expected use rate remains below 70%.
173          * (and since we double the size, that means the lowest rate we'd
174          * expect to get is 35%, which is still in the 30-70% range where
175          * we consider that the size is appropriate.)
176          */
177         if (expected_rate > 70) {
178             ceil *= 2;
179         }
180         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
181     }
182 
183     if (new_size == old_size) {
184         if (window_expired) {
185             tlb_window_reset(&desc->window, now, desc->n_used_entries);
186         }
187         return;
188     }
189 
190     g_free(env->tlb_table[mmu_idx]);
191     g_free(env->iotlb[mmu_idx]);
192 
193     tlb_window_reset(&desc->window, now, 0);
194     /* desc->n_used_entries is cleared by the caller */
195     env->tlb_mask[mmu_idx] = (new_size - 1) << CPU_TLB_ENTRY_BITS;
196     env->tlb_table[mmu_idx] = g_try_new(CPUTLBEntry, new_size);
197     env->iotlb[mmu_idx] = g_try_new(CPUIOTLBEntry, new_size);
198     /*
199      * If the allocations fail, try smaller sizes. We just freed some
200      * memory, so going back to half of new_size has a good chance of working.
201      * Increased memory pressure elsewhere in the system might cause the
202      * allocations to fail though, so we progressively reduce the allocation
203      * size, aborting if we cannot even allocate the smallest TLB we support.
204      */
205     while (env->tlb_table[mmu_idx] == NULL || env->iotlb[mmu_idx] == NULL) {
206         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
207             error_report("%s: %s", __func__, strerror(errno));
208             abort();
209         }
210         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
211         env->tlb_mask[mmu_idx] = (new_size - 1) << CPU_TLB_ENTRY_BITS;
212 
213         g_free(env->tlb_table[mmu_idx]);
214         g_free(env->iotlb[mmu_idx]);
215         env->tlb_table[mmu_idx] = g_try_new(CPUTLBEntry, new_size);
216         env->iotlb[mmu_idx] = g_try_new(CPUIOTLBEntry, new_size);
217     }
218 }
219 
220 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx)
221 {
222     tlb_mmu_resize_locked(env, mmu_idx);
223     memset(env->tlb_table[mmu_idx], -1, sizeof_tlb(env, mmu_idx));
224     env->tlb_d[mmu_idx].n_used_entries = 0;
225 }
226 
227 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
228 {
229     env->tlb_d[mmu_idx].n_used_entries++;
230 }
231 
232 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
233 {
234     env->tlb_d[mmu_idx].n_used_entries--;
235 }
236 
237 void tlb_init(CPUState *cpu)
238 {
239     CPUArchState *env = cpu->env_ptr;
240 
241     qemu_spin_init(&env->tlb_c.lock);
242 
243     /* Ensure that cpu_reset performs a full flush.  */
244     env->tlb_c.dirty = ALL_MMUIDX_BITS;
245 
246     tlb_dyn_init(env);
247 }
248 
249 /* flush_all_helper: run fn across all cpus
250  *
251  * If the wait flag is set then the src cpu's helper will be queued as
252  * "safe" work and the loop exited creating a synchronisation point
253  * where all queued work will be finished before execution starts
254  * again.
255  */
256 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
257                              run_on_cpu_data d)
258 {
259     CPUState *cpu;
260 
261     CPU_FOREACH(cpu) {
262         if (cpu != src) {
263             async_run_on_cpu(cpu, fn, d);
264         }
265     }
266 }
267 
268 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
269 {
270     CPUState *cpu;
271     size_t full = 0, part = 0, elide = 0;
272 
273     CPU_FOREACH(cpu) {
274         CPUArchState *env = cpu->env_ptr;
275 
276         full += atomic_read(&env->tlb_c.full_flush_count);
277         part += atomic_read(&env->tlb_c.part_flush_count);
278         elide += atomic_read(&env->tlb_c.elide_flush_count);
279     }
280     *pfull = full;
281     *ppart = part;
282     *pelide = elide;
283 }
284 
285 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
286 {
287     tlb_table_flush_by_mmuidx(env, mmu_idx);
288     memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
289     env->tlb_d[mmu_idx].large_page_addr = -1;
290     env->tlb_d[mmu_idx].large_page_mask = -1;
291     env->tlb_d[mmu_idx].vindex = 0;
292 }
293 
294 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
295 {
296     CPUArchState *env = cpu->env_ptr;
297     uint16_t asked = data.host_int;
298     uint16_t all_dirty, work, to_clean;
299 
300     assert_cpu_is_self(cpu);
301 
302     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
303 
304     qemu_spin_lock(&env->tlb_c.lock);
305 
306     all_dirty = env->tlb_c.dirty;
307     to_clean = asked & all_dirty;
308     all_dirty &= ~to_clean;
309     env->tlb_c.dirty = all_dirty;
310 
311     for (work = to_clean; work != 0; work &= work - 1) {
312         int mmu_idx = ctz32(work);
313         tlb_flush_one_mmuidx_locked(env, mmu_idx);
314     }
315 
316     qemu_spin_unlock(&env->tlb_c.lock);
317 
318     cpu_tb_jmp_cache_clear(cpu);
319 
320     if (to_clean == ALL_MMUIDX_BITS) {
321         atomic_set(&env->tlb_c.full_flush_count,
322                    env->tlb_c.full_flush_count + 1);
323     } else {
324         atomic_set(&env->tlb_c.part_flush_count,
325                    env->tlb_c.part_flush_count + ctpop16(to_clean));
326         if (to_clean != asked) {
327             atomic_set(&env->tlb_c.elide_flush_count,
328                        env->tlb_c.elide_flush_count +
329                        ctpop16(asked & ~to_clean));
330         }
331     }
332 }
333 
334 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
335 {
336     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
337 
338     if (cpu->created && !qemu_cpu_is_self(cpu)) {
339         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
340                          RUN_ON_CPU_HOST_INT(idxmap));
341     } else {
342         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
343     }
344 }
345 
346 void tlb_flush(CPUState *cpu)
347 {
348     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
349 }
350 
351 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
352 {
353     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
354 
355     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
356 
357     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
358     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
359 }
360 
361 void tlb_flush_all_cpus(CPUState *src_cpu)
362 {
363     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
364 }
365 
366 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
367 {
368     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
369 
370     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
371 
372     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
373     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
374 }
375 
376 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
377 {
378     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
379 }
380 
381 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
382                                         target_ulong page)
383 {
384     return tlb_hit_page(tlb_entry->addr_read, page) ||
385            tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
386            tlb_hit_page(tlb_entry->addr_code, page);
387 }
388 
389 /**
390  * tlb_entry_is_empty - return true if the entry is not in use
391  * @te: pointer to CPUTLBEntry
392  */
393 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
394 {
395     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
396 }
397 
398 /* Called with tlb_c.lock held */
399 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
400                                           target_ulong page)
401 {
402     if (tlb_hit_page_anyprot(tlb_entry, page)) {
403         memset(tlb_entry, -1, sizeof(*tlb_entry));
404         return true;
405     }
406     return false;
407 }
408 
409 /* Called with tlb_c.lock held */
410 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
411                                               target_ulong page)
412 {
413     int k;
414 
415     assert_cpu_is_self(ENV_GET_CPU(env));
416     for (k = 0; k < CPU_VTLB_SIZE; k++) {
417         if (tlb_flush_entry_locked(&env->tlb_v_table[mmu_idx][k], page)) {
418             tlb_n_used_entries_dec(env, mmu_idx);
419         }
420     }
421 }
422 
423 static void tlb_flush_page_locked(CPUArchState *env, int midx,
424                                   target_ulong page)
425 {
426     target_ulong lp_addr = env->tlb_d[midx].large_page_addr;
427     target_ulong lp_mask = env->tlb_d[midx].large_page_mask;
428 
429     /* Check if we need to flush due to large pages.  */
430     if ((page & lp_mask) == lp_addr) {
431         tlb_debug("forcing full flush midx %d ("
432                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
433                   midx, lp_addr, lp_mask);
434         tlb_flush_one_mmuidx_locked(env, midx);
435     } else {
436         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
437             tlb_n_used_entries_dec(env, midx);
438         }
439         tlb_flush_vtlb_page_locked(env, midx, page);
440     }
441 }
442 
443 /* As we are going to hijack the bottom bits of the page address for a
444  * mmuidx bit mask we need to fail to build if we can't do that
445  */
446 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
447 
448 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
449                                                 run_on_cpu_data data)
450 {
451     CPUArchState *env = cpu->env_ptr;
452     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
453     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
454     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
455     int mmu_idx;
456 
457     assert_cpu_is_self(cpu);
458 
459     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
460               addr, mmu_idx_bitmap);
461 
462     qemu_spin_lock(&env->tlb_c.lock);
463     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
464         if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
465             tlb_flush_page_locked(env, mmu_idx, addr);
466         }
467     }
468     qemu_spin_unlock(&env->tlb_c.lock);
469 
470     tb_flush_jmp_cache(cpu, addr);
471 }
472 
473 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
474 {
475     target_ulong addr_and_mmu_idx;
476 
477     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
478 
479     /* This should already be page aligned */
480     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
481     addr_and_mmu_idx |= idxmap;
482 
483     if (!qemu_cpu_is_self(cpu)) {
484         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
485                          RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
486     } else {
487         tlb_flush_page_by_mmuidx_async_work(
488             cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
489     }
490 }
491 
492 void tlb_flush_page(CPUState *cpu, target_ulong addr)
493 {
494     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
495 }
496 
497 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
498                                        uint16_t idxmap)
499 {
500     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
501     target_ulong addr_and_mmu_idx;
502 
503     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
504 
505     /* This should already be page aligned */
506     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
507     addr_and_mmu_idx |= idxmap;
508 
509     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
510     fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
511 }
512 
513 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
514 {
515     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
516 }
517 
518 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
519                                               target_ulong addr,
520                                               uint16_t idxmap)
521 {
522     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
523     target_ulong addr_and_mmu_idx;
524 
525     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
526 
527     /* This should already be page aligned */
528     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
529     addr_and_mmu_idx |= idxmap;
530 
531     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
532     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
533 }
534 
535 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
536 {
537     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
538 }
539 
540 /* update the TLBs so that writes to code in the virtual page 'addr'
541    can be detected */
542 void tlb_protect_code(ram_addr_t ram_addr)
543 {
544     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
545                                              DIRTY_MEMORY_CODE);
546 }
547 
548 /* update the TLB so that writes in physical page 'phys_addr' are no longer
549    tested for self modifying code */
550 void tlb_unprotect_code(ram_addr_t ram_addr)
551 {
552     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
553 }
554 
555 
556 /*
557  * Dirty write flag handling
558  *
559  * When the TCG code writes to a location it looks up the address in
560  * the TLB and uses that data to compute the final address. If any of
561  * the lower bits of the address are set then the slow path is forced.
562  * There are a number of reasons to do this but for normal RAM the
563  * most usual is detecting writes to code regions which may invalidate
564  * generated code.
565  *
566  * Other vCPUs might be reading their TLBs during guest execution, so we update
567  * te->addr_write with atomic_set. We don't need to worry about this for
568  * oversized guests as MTTCG is disabled for them.
569  *
570  * Called with tlb_c.lock held.
571  */
572 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
573                                          uintptr_t start, uintptr_t length)
574 {
575     uintptr_t addr = tlb_entry->addr_write;
576 
577     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
578         addr &= TARGET_PAGE_MASK;
579         addr += tlb_entry->addend;
580         if ((addr - start) < length) {
581 #if TCG_OVERSIZED_GUEST
582             tlb_entry->addr_write |= TLB_NOTDIRTY;
583 #else
584             atomic_set(&tlb_entry->addr_write,
585                        tlb_entry->addr_write | TLB_NOTDIRTY);
586 #endif
587         }
588     }
589 }
590 
591 /*
592  * Called with tlb_c.lock held.
593  * Called only from the vCPU context, i.e. the TLB's owner thread.
594  */
595 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
596 {
597     *d = *s;
598 }
599 
600 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
601  * the target vCPU).
602  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
603  * thing actually updated is the target TLB entry ->addr_write flags.
604  */
605 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
606 {
607     CPUArchState *env;
608 
609     int mmu_idx;
610 
611     env = cpu->env_ptr;
612     qemu_spin_lock(&env->tlb_c.lock);
613     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
614         unsigned int i;
615         unsigned int n = tlb_n_entries(env, mmu_idx);
616 
617         for (i = 0; i < n; i++) {
618             tlb_reset_dirty_range_locked(&env->tlb_table[mmu_idx][i], start1,
619                                          length);
620         }
621 
622         for (i = 0; i < CPU_VTLB_SIZE; i++) {
623             tlb_reset_dirty_range_locked(&env->tlb_v_table[mmu_idx][i], start1,
624                                          length);
625         }
626     }
627     qemu_spin_unlock(&env->tlb_c.lock);
628 }
629 
630 /* Called with tlb_c.lock held */
631 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
632                                          target_ulong vaddr)
633 {
634     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
635         tlb_entry->addr_write = vaddr;
636     }
637 }
638 
639 /* update the TLB corresponding to virtual page vaddr
640    so that it is no longer dirty */
641 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
642 {
643     CPUArchState *env = cpu->env_ptr;
644     int mmu_idx;
645 
646     assert_cpu_is_self(cpu);
647 
648     vaddr &= TARGET_PAGE_MASK;
649     qemu_spin_lock(&env->tlb_c.lock);
650     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
651         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
652     }
653 
654     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
655         int k;
656         for (k = 0; k < CPU_VTLB_SIZE; k++) {
657             tlb_set_dirty1_locked(&env->tlb_v_table[mmu_idx][k], vaddr);
658         }
659     }
660     qemu_spin_unlock(&env->tlb_c.lock);
661 }
662 
663 /* Our TLB does not support large pages, so remember the area covered by
664    large pages and trigger a full TLB flush if these are invalidated.  */
665 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
666                                target_ulong vaddr, target_ulong size)
667 {
668     target_ulong lp_addr = env->tlb_d[mmu_idx].large_page_addr;
669     target_ulong lp_mask = ~(size - 1);
670 
671     if (lp_addr == (target_ulong)-1) {
672         /* No previous large page.  */
673         lp_addr = vaddr;
674     } else {
675         /* Extend the existing region to include the new page.
676            This is a compromise between unnecessary flushes and
677            the cost of maintaining a full variable size TLB.  */
678         lp_mask &= env->tlb_d[mmu_idx].large_page_mask;
679         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
680             lp_mask <<= 1;
681         }
682     }
683     env->tlb_d[mmu_idx].large_page_addr = lp_addr & lp_mask;
684     env->tlb_d[mmu_idx].large_page_mask = lp_mask;
685 }
686 
687 /* Add a new TLB entry. At most one entry for a given virtual address
688  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
689  * supplied size is only used by tlb_flush_page.
690  *
691  * Called from TCG-generated code, which is under an RCU read-side
692  * critical section.
693  */
694 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
695                              hwaddr paddr, MemTxAttrs attrs, int prot,
696                              int mmu_idx, target_ulong size)
697 {
698     CPUArchState *env = cpu->env_ptr;
699     MemoryRegionSection *section;
700     unsigned int index;
701     target_ulong address;
702     target_ulong code_address;
703     uintptr_t addend;
704     CPUTLBEntry *te, tn;
705     hwaddr iotlb, xlat, sz, paddr_page;
706     target_ulong vaddr_page;
707     int asidx = cpu_asidx_from_attrs(cpu, attrs);
708 
709     assert_cpu_is_self(cpu);
710 
711     if (size <= TARGET_PAGE_SIZE) {
712         sz = TARGET_PAGE_SIZE;
713     } else {
714         tlb_add_large_page(env, mmu_idx, vaddr, size);
715         sz = size;
716     }
717     vaddr_page = vaddr & TARGET_PAGE_MASK;
718     paddr_page = paddr & TARGET_PAGE_MASK;
719 
720     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
721                                                 &xlat, &sz, attrs, &prot);
722     assert(sz >= TARGET_PAGE_SIZE);
723 
724     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
725               " prot=%x idx=%d\n",
726               vaddr, paddr, prot, mmu_idx);
727 
728     address = vaddr_page;
729     if (size < TARGET_PAGE_SIZE) {
730         /*
731          * Slow-path the TLB entries; we will repeat the MMU check and TLB
732          * fill on every access.
733          */
734         address |= TLB_RECHECK;
735     }
736     if (!memory_region_is_ram(section->mr) &&
737         !memory_region_is_romd(section->mr)) {
738         /* IO memory case */
739         address |= TLB_MMIO;
740         addend = 0;
741     } else {
742         /* TLB_MMIO for rom/romd handled below */
743         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
744     }
745 
746     code_address = address;
747     iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
748                                             paddr_page, xlat, prot, &address);
749 
750     index = tlb_index(env, mmu_idx, vaddr_page);
751     te = tlb_entry(env, mmu_idx, vaddr_page);
752 
753     /*
754      * Hold the TLB lock for the rest of the function. We could acquire/release
755      * the lock several times in the function, but it is faster to amortize the
756      * acquisition cost by acquiring it just once. Note that this leads to
757      * a longer critical section, but this is not a concern since the TLB lock
758      * is unlikely to be contended.
759      */
760     qemu_spin_lock(&env->tlb_c.lock);
761 
762     /* Note that the tlb is no longer clean.  */
763     env->tlb_c.dirty |= 1 << mmu_idx;
764 
765     /* Make sure there's no cached translation for the new page.  */
766     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
767 
768     /*
769      * Only evict the old entry to the victim tlb if it's for a
770      * different page; otherwise just overwrite the stale data.
771      */
772     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
773         unsigned vidx = env->tlb_d[mmu_idx].vindex++ % CPU_VTLB_SIZE;
774         CPUTLBEntry *tv = &env->tlb_v_table[mmu_idx][vidx];
775 
776         /* Evict the old entry into the victim tlb.  */
777         copy_tlb_helper_locked(tv, te);
778         env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
779         tlb_n_used_entries_dec(env, mmu_idx);
780     }
781 
782     /* refill the tlb */
783     /*
784      * At this point iotlb contains a physical section number in the lower
785      * TARGET_PAGE_BITS, and either
786      *  + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
787      *  + the offset within section->mr of the page base (otherwise)
788      * We subtract the vaddr_page (which is page aligned and thus won't
789      * disturb the low bits) to give an offset which can be added to the
790      * (non-page-aligned) vaddr of the eventual memory access to get
791      * the MemoryRegion offset for the access. Note that the vaddr we
792      * subtract here is that of the page base, and not the same as the
793      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
794      */
795     env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page;
796     env->iotlb[mmu_idx][index].attrs = attrs;
797 
798     /* Now calculate the new entry */
799     tn.addend = addend - vaddr_page;
800     if (prot & PAGE_READ) {
801         tn.addr_read = address;
802     } else {
803         tn.addr_read = -1;
804     }
805 
806     if (prot & PAGE_EXEC) {
807         tn.addr_code = code_address;
808     } else {
809         tn.addr_code = -1;
810     }
811 
812     tn.addr_write = -1;
813     if (prot & PAGE_WRITE) {
814         if ((memory_region_is_ram(section->mr) && section->readonly)
815             || memory_region_is_romd(section->mr)) {
816             /* Write access calls the I/O callback.  */
817             tn.addr_write = address | TLB_MMIO;
818         } else if (memory_region_is_ram(section->mr)
819                    && cpu_physical_memory_is_clean(
820                        memory_region_get_ram_addr(section->mr) + xlat)) {
821             tn.addr_write = address | TLB_NOTDIRTY;
822         } else {
823             tn.addr_write = address;
824         }
825         if (prot & PAGE_WRITE_INV) {
826             tn.addr_write |= TLB_INVALID_MASK;
827         }
828     }
829 
830     copy_tlb_helper_locked(te, &tn);
831     tlb_n_used_entries_inc(env, mmu_idx);
832     qemu_spin_unlock(&env->tlb_c.lock);
833 }
834 
835 /* Add a new TLB entry, but without specifying the memory
836  * transaction attributes to be used.
837  */
838 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
839                   hwaddr paddr, int prot,
840                   int mmu_idx, target_ulong size)
841 {
842     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
843                             prot, mmu_idx, size);
844 }
845 
846 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
847 {
848     ram_addr_t ram_addr;
849 
850     ram_addr = qemu_ram_addr_from_host(ptr);
851     if (ram_addr == RAM_ADDR_INVALID) {
852         error_report("Bad ram pointer %p", ptr);
853         abort();
854     }
855     return ram_addr;
856 }
857 
858 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
859                          int mmu_idx,
860                          target_ulong addr, uintptr_t retaddr,
861                          bool recheck, MMUAccessType access_type, int size)
862 {
863     CPUState *cpu = ENV_GET_CPU(env);
864     hwaddr mr_offset;
865     MemoryRegionSection *section;
866     MemoryRegion *mr;
867     uint64_t val;
868     bool locked = false;
869     MemTxResult r;
870 
871     if (recheck) {
872         /*
873          * This is a TLB_RECHECK access, where the MMU protection
874          * covers a smaller range than a target page, and we must
875          * repeat the MMU check here. This tlb_fill() call might
876          * longjump out if this access should cause a guest exception.
877          */
878         CPUTLBEntry *entry;
879         target_ulong tlb_addr;
880 
881         tlb_fill(cpu, addr, size, access_type, mmu_idx, retaddr);
882 
883         entry = tlb_entry(env, mmu_idx, addr);
884         tlb_addr = (access_type == MMU_DATA_LOAD ?
885                     entry->addr_read : entry->addr_code);
886         if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
887             /* RAM access */
888             uintptr_t haddr = addr + entry->addend;
889 
890             return ldn_p((void *)haddr, size);
891         }
892         /* Fall through for handling IO accesses */
893     }
894 
895     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
896     mr = section->mr;
897     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
898     cpu->mem_io_pc = retaddr;
899     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
900         cpu_io_recompile(cpu, retaddr);
901     }
902 
903     cpu->mem_io_vaddr = addr;
904     cpu->mem_io_access_type = access_type;
905 
906     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
907         qemu_mutex_lock_iothread();
908         locked = true;
909     }
910     r = memory_region_dispatch_read(mr, mr_offset,
911                                     &val, size, iotlbentry->attrs);
912     if (r != MEMTX_OK) {
913         hwaddr physaddr = mr_offset +
914             section->offset_within_address_space -
915             section->offset_within_region;
916 
917         cpu_transaction_failed(cpu, physaddr, addr, size, access_type,
918                                mmu_idx, iotlbentry->attrs, r, retaddr);
919     }
920     if (locked) {
921         qemu_mutex_unlock_iothread();
922     }
923 
924     return val;
925 }
926 
927 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
928                       int mmu_idx,
929                       uint64_t val, target_ulong addr,
930                       uintptr_t retaddr, bool recheck, int size)
931 {
932     CPUState *cpu = ENV_GET_CPU(env);
933     hwaddr mr_offset;
934     MemoryRegionSection *section;
935     MemoryRegion *mr;
936     bool locked = false;
937     MemTxResult r;
938 
939     if (recheck) {
940         /*
941          * This is a TLB_RECHECK access, where the MMU protection
942          * covers a smaller range than a target page, and we must
943          * repeat the MMU check here. This tlb_fill() call might
944          * longjump out if this access should cause a guest exception.
945          */
946         CPUTLBEntry *entry;
947         target_ulong tlb_addr;
948 
949         tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
950 
951         entry = tlb_entry(env, mmu_idx, addr);
952         tlb_addr = tlb_addr_write(entry);
953         if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
954             /* RAM access */
955             uintptr_t haddr = addr + entry->addend;
956 
957             stn_p((void *)haddr, size, val);
958             return;
959         }
960         /* Fall through for handling IO accesses */
961     }
962 
963     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
964     mr = section->mr;
965     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
966     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
967         cpu_io_recompile(cpu, retaddr);
968     }
969     cpu->mem_io_vaddr = addr;
970     cpu->mem_io_pc = retaddr;
971 
972     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
973         qemu_mutex_lock_iothread();
974         locked = true;
975     }
976     r = memory_region_dispatch_write(mr, mr_offset,
977                                      val, size, iotlbentry->attrs);
978     if (r != MEMTX_OK) {
979         hwaddr physaddr = mr_offset +
980             section->offset_within_address_space -
981             section->offset_within_region;
982 
983         cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
984                                mmu_idx, iotlbentry->attrs, r, retaddr);
985     }
986     if (locked) {
987         qemu_mutex_unlock_iothread();
988     }
989 }
990 
991 /* Return true if ADDR is present in the victim tlb, and has been copied
992    back to the main tlb.  */
993 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
994                            size_t elt_ofs, target_ulong page)
995 {
996     size_t vidx;
997 
998     assert_cpu_is_self(ENV_GET_CPU(env));
999     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1000         CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
1001         target_ulong cmp;
1002 
1003         /* elt_ofs might correspond to .addr_write, so use atomic_read */
1004 #if TCG_OVERSIZED_GUEST
1005         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1006 #else
1007         cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1008 #endif
1009 
1010         if (cmp == page) {
1011             /* Found entry in victim tlb, swap tlb and iotlb.  */
1012             CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
1013 
1014             qemu_spin_lock(&env->tlb_c.lock);
1015             copy_tlb_helper_locked(&tmptlb, tlb);
1016             copy_tlb_helper_locked(tlb, vtlb);
1017             copy_tlb_helper_locked(vtlb, &tmptlb);
1018             qemu_spin_unlock(&env->tlb_c.lock);
1019 
1020             CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
1021             CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
1022             tmpio = *io; *io = *vio; *vio = tmpio;
1023             return true;
1024         }
1025     }
1026     return false;
1027 }
1028 
1029 /* Macro to call the above, with local variables from the use context.  */
1030 #define VICTIM_TLB_HIT(TY, ADDR) \
1031   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1032                  (ADDR) & TARGET_PAGE_MASK)
1033 
1034 /* NOTE: this function can trigger an exception */
1035 /* NOTE2: the returned address is not exactly the physical address: it
1036  * is actually a ram_addr_t (in system mode; the user mode emulation
1037  * version of this function returns a guest virtual address).
1038  */
1039 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1040 {
1041     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1042     uintptr_t index = tlb_index(env, mmu_idx, addr);
1043     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1044     void *p;
1045 
1046     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1047         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1048             tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1049             index = tlb_index(env, mmu_idx, addr);
1050             entry = tlb_entry(env, mmu_idx, addr);
1051         }
1052         assert(tlb_hit(entry->addr_code, addr));
1053     }
1054 
1055     if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) {
1056         /*
1057          * Return -1 if we can't translate and execute from an entire
1058          * page of RAM here, which will cause us to execute by loading
1059          * and translating one insn at a time, without caching:
1060          *  - TLB_RECHECK: means the MMU protection covers a smaller range
1061          *    than a target page, so we must redo the MMU check every insn
1062          *  - TLB_MMIO: region is not backed by RAM
1063          */
1064         return -1;
1065     }
1066 
1067     p = (void *)((uintptr_t)addr + entry->addend);
1068     return qemu_ram_addr_from_host_nofail(p);
1069 }
1070 
1071 /* Probe for whether the specified guest write access is permitted.
1072  * If it is not permitted then an exception will be taken in the same
1073  * way as if this were a real write access (and we will not return).
1074  * Otherwise the function will return, and there will be a valid
1075  * entry in the TLB for this access.
1076  */
1077 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
1078                  uintptr_t retaddr)
1079 {
1080     uintptr_t index = tlb_index(env, mmu_idx, addr);
1081     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1082 
1083     if (!tlb_hit(tlb_addr_write(entry), addr)) {
1084         /* TLB entry is for a different page */
1085         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1086             tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
1087                      mmu_idx, retaddr);
1088         }
1089     }
1090 }
1091 
1092 /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
1093  * operations, or io operations to proceed.  Return the host address.  */
1094 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1095                                TCGMemOpIdx oi, uintptr_t retaddr,
1096                                NotDirtyInfo *ndi)
1097 {
1098     size_t mmu_idx = get_mmuidx(oi);
1099     uintptr_t index = tlb_index(env, mmu_idx, addr);
1100     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1101     target_ulong tlb_addr = tlb_addr_write(tlbe);
1102     TCGMemOp mop = get_memop(oi);
1103     int a_bits = get_alignment_bits(mop);
1104     int s_bits = mop & MO_SIZE;
1105     void *hostaddr;
1106 
1107     /* Adjust the given return address.  */
1108     retaddr -= GETPC_ADJ;
1109 
1110     /* Enforce guest required alignment.  */
1111     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1112         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1113         cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
1114                              mmu_idx, retaddr);
1115     }
1116 
1117     /* Enforce qemu required alignment.  */
1118     if (unlikely(addr & ((1 << s_bits) - 1))) {
1119         /* We get here if guest alignment was not requested,
1120            or was not enforced by cpu_unaligned_access above.
1121            We might widen the access and emulate, but for now
1122            mark an exception and exit the cpu loop.  */
1123         goto stop_the_world;
1124     }
1125 
1126     /* Check TLB entry and enforce page permissions.  */
1127     if (!tlb_hit(tlb_addr, addr)) {
1128         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1129             tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
1130                      mmu_idx, retaddr);
1131             index = tlb_index(env, mmu_idx, addr);
1132             tlbe = tlb_entry(env, mmu_idx, addr);
1133         }
1134         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1135     }
1136 
1137     /* Notice an IO access or a needs-MMU-lookup access */
1138     if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
1139         /* There's really nothing that can be done to
1140            support this apart from stop-the-world.  */
1141         goto stop_the_world;
1142     }
1143 
1144     /* Let the guest notice RMW on a write-only page.  */
1145     if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1146         tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1147                  mmu_idx, retaddr);
1148         /* Since we don't support reads and writes to different addresses,
1149            and we do have the proper page loaded for write, this shouldn't
1150            ever return.  But just in case, handle via stop-the-world.  */
1151         goto stop_the_world;
1152     }
1153 
1154     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1155 
1156     ndi->active = false;
1157     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1158         ndi->active = true;
1159         memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr,
1160                                       qemu_ram_addr_from_host_nofail(hostaddr),
1161                                       1 << s_bits);
1162     }
1163 
1164     return hostaddr;
1165 
1166  stop_the_world:
1167     cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
1168 }
1169 
1170 #ifdef TARGET_WORDS_BIGENDIAN
1171 #define NEED_BE_BSWAP 0
1172 #define NEED_LE_BSWAP 1
1173 #else
1174 #define NEED_BE_BSWAP 1
1175 #define NEED_LE_BSWAP 0
1176 #endif
1177 
1178 /*
1179  * Byte Swap Helper
1180  *
1181  * This should all dead code away depending on the build host and
1182  * access type.
1183  */
1184 
1185 static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian)
1186 {
1187     if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) {
1188         switch (size) {
1189         case 1: return val;
1190         case 2: return bswap16(val);
1191         case 4: return bswap32(val);
1192         case 8: return bswap64(val);
1193         default:
1194             g_assert_not_reached();
1195         }
1196     } else {
1197         return val;
1198     }
1199 }
1200 
1201 /*
1202  * Load Helpers
1203  *
1204  * We support two different access types. SOFTMMU_CODE_ACCESS is
1205  * specifically for reading instructions from system memory. It is
1206  * called by the translation loop and in some helpers where the code
1207  * is disassembled. It shouldn't be called directly by guest code.
1208  */
1209 
1210 static uint64_t load_helper(CPUArchState *env, target_ulong addr,
1211                             TCGMemOpIdx oi, uintptr_t retaddr,
1212                             size_t size, bool big_endian,
1213                             bool code_read)
1214 {
1215     uintptr_t mmu_idx = get_mmuidx(oi);
1216     uintptr_t index = tlb_index(env, mmu_idx, addr);
1217     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1218     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1219     const size_t tlb_off = code_read ?
1220         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1221     unsigned a_bits = get_alignment_bits(get_memop(oi));
1222     void *haddr;
1223     uint64_t res;
1224 
1225     /* Handle CPU specific unaligned behaviour */
1226     if (addr & ((1 << a_bits) - 1)) {
1227         cpu_unaligned_access(ENV_GET_CPU(env), addr,
1228                              code_read ? MMU_INST_FETCH : MMU_DATA_LOAD,
1229                              mmu_idx, retaddr);
1230     }
1231 
1232     /* If the TLB entry is for a different page, reload and try again.  */
1233     if (!tlb_hit(tlb_addr, addr)) {
1234         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1235                             addr & TARGET_PAGE_MASK)) {
1236             tlb_fill(ENV_GET_CPU(env), addr, size,
1237                      code_read ? MMU_INST_FETCH : MMU_DATA_LOAD,
1238                      mmu_idx, retaddr);
1239             index = tlb_index(env, mmu_idx, addr);
1240             entry = tlb_entry(env, mmu_idx, addr);
1241         }
1242         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1243     }
1244 
1245     /* Handle an IO access.  */
1246     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1247         CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
1248         uint64_t tmp;
1249 
1250         if ((addr & (size - 1)) != 0) {
1251             goto do_unaligned_access;
1252         }
1253 
1254         tmp = io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1255                        tlb_addr & TLB_RECHECK,
1256                        code_read ? MMU_INST_FETCH : MMU_DATA_LOAD, size);
1257         return handle_bswap(tmp, size, big_endian);
1258     }
1259 
1260     /* Handle slow unaligned access (it spans two pages or IO).  */
1261     if (size > 1
1262         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1263                     >= TARGET_PAGE_SIZE)) {
1264         target_ulong addr1, addr2;
1265         tcg_target_ulong r1, r2;
1266         unsigned shift;
1267     do_unaligned_access:
1268         addr1 = addr & ~(size - 1);
1269         addr2 = addr1 + size;
1270         r1 = load_helper(env, addr1, oi, retaddr, size, big_endian, code_read);
1271         r2 = load_helper(env, addr2, oi, retaddr, size, big_endian, code_read);
1272         shift = (addr & (size - 1)) * 8;
1273 
1274         if (big_endian) {
1275             /* Big-endian combine.  */
1276             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1277         } else {
1278             /* Little-endian combine.  */
1279             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1280         }
1281         return res & MAKE_64BIT_MASK(0, size * 8);
1282     }
1283 
1284     haddr = (void *)((uintptr_t)addr + entry->addend);
1285 
1286     switch (size) {
1287     case 1:
1288         res = ldub_p(haddr);
1289         break;
1290     case 2:
1291         if (big_endian) {
1292             res = lduw_be_p(haddr);
1293         } else {
1294             res = lduw_le_p(haddr);
1295         }
1296         break;
1297     case 4:
1298         if (big_endian) {
1299             res = (uint32_t)ldl_be_p(haddr);
1300         } else {
1301             res = (uint32_t)ldl_le_p(haddr);
1302         }
1303         break;
1304     case 8:
1305         if (big_endian) {
1306             res = ldq_be_p(haddr);
1307         } else {
1308             res = ldq_le_p(haddr);
1309         }
1310         break;
1311     default:
1312         g_assert_not_reached();
1313     }
1314 
1315     return res;
1316 }
1317 
1318 /*
1319  * For the benefit of TCG generated code, we want to avoid the
1320  * complication of ABI-specific return type promotion and always
1321  * return a value extended to the register size of the host. This is
1322  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1323  * data, and for that we always have uint64_t.
1324  *
1325  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1326  */
1327 
1328 tcg_target_ulong __attribute__((flatten))
1329 helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1330                     uintptr_t retaddr)
1331 {
1332     return load_helper(env, addr, oi, retaddr, 1, false, false);
1333 }
1334 
1335 tcg_target_ulong __attribute__((flatten))
1336 helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1337                    uintptr_t retaddr)
1338 {
1339     return load_helper(env, addr, oi, retaddr, 2, false, false);
1340 }
1341 
1342 tcg_target_ulong __attribute__((flatten))
1343 helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1344                    uintptr_t retaddr)
1345 {
1346     return load_helper(env, addr, oi, retaddr, 2, true, false);
1347 }
1348 
1349 tcg_target_ulong __attribute__((flatten))
1350 helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1351                    uintptr_t retaddr)
1352 {
1353     return load_helper(env, addr, oi, retaddr, 4, false, false);
1354 }
1355 
1356 tcg_target_ulong __attribute__((flatten))
1357 helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1358                    uintptr_t retaddr)
1359 {
1360     return load_helper(env, addr, oi, retaddr, 4, true, false);
1361 }
1362 
1363 uint64_t __attribute__((flatten))
1364 helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1365                   uintptr_t retaddr)
1366 {
1367     return load_helper(env, addr, oi, retaddr, 8, false, false);
1368 }
1369 
1370 uint64_t __attribute__((flatten))
1371 helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1372                   uintptr_t retaddr)
1373 {
1374     return load_helper(env, addr, oi, retaddr, 8, true, false);
1375 }
1376 
1377 /*
1378  * Provide signed versions of the load routines as well.  We can of course
1379  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
1380  */
1381 
1382 
1383 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
1384                                      TCGMemOpIdx oi, uintptr_t retaddr)
1385 {
1386     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
1387 }
1388 
1389 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
1390                                     TCGMemOpIdx oi, uintptr_t retaddr)
1391 {
1392     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
1393 }
1394 
1395 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
1396                                     TCGMemOpIdx oi, uintptr_t retaddr)
1397 {
1398     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
1399 }
1400 
1401 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
1402                                     TCGMemOpIdx oi, uintptr_t retaddr)
1403 {
1404     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
1405 }
1406 
1407 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
1408                                     TCGMemOpIdx oi, uintptr_t retaddr)
1409 {
1410     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
1411 }
1412 
1413 /*
1414  * Store Helpers
1415  */
1416 
1417 static void store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
1418                          TCGMemOpIdx oi, uintptr_t retaddr, size_t size,
1419                          bool big_endian)
1420 {
1421     uintptr_t mmu_idx = get_mmuidx(oi);
1422     uintptr_t index = tlb_index(env, mmu_idx, addr);
1423     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1424     target_ulong tlb_addr = tlb_addr_write(entry);
1425     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
1426     unsigned a_bits = get_alignment_bits(get_memop(oi));
1427     void *haddr;
1428 
1429     /* Handle CPU specific unaligned behaviour */
1430     if (addr & ((1 << a_bits) - 1)) {
1431         cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
1432                              mmu_idx, retaddr);
1433     }
1434 
1435     /* If the TLB entry is for a different page, reload and try again.  */
1436     if (!tlb_hit(tlb_addr, addr)) {
1437         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1438             addr & TARGET_PAGE_MASK)) {
1439             tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
1440                      mmu_idx, retaddr);
1441             index = tlb_index(env, mmu_idx, addr);
1442             entry = tlb_entry(env, mmu_idx, addr);
1443         }
1444         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
1445     }
1446 
1447     /* Handle an IO access.  */
1448     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1449         CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
1450 
1451         if ((addr & (size - 1)) != 0) {
1452             goto do_unaligned_access;
1453         }
1454 
1455         io_writex(env, iotlbentry, mmu_idx,
1456                   handle_bswap(val, size, big_endian),
1457                   addr, retaddr, tlb_addr & TLB_RECHECK, size);
1458         return;
1459     }
1460 
1461     /* Handle slow unaligned access (it spans two pages or IO).  */
1462     if (size > 1
1463         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1464                      >= TARGET_PAGE_SIZE)) {
1465         int i;
1466         uintptr_t index2;
1467         CPUTLBEntry *entry2;
1468         target_ulong page2, tlb_addr2;
1469     do_unaligned_access:
1470         /*
1471          * Ensure the second page is in the TLB.  Note that the first page
1472          * is already guaranteed to be filled, and that the second page
1473          * cannot evict the first.
1474          */
1475         page2 = (addr + size) & TARGET_PAGE_MASK;
1476         index2 = tlb_index(env, mmu_idx, page2);
1477         entry2 = tlb_entry(env, mmu_idx, page2);
1478         tlb_addr2 = tlb_addr_write(entry2);
1479         if (!tlb_hit_page(tlb_addr2, page2)
1480             && !victim_tlb_hit(env, mmu_idx, index2, tlb_off,
1481                                page2 & TARGET_PAGE_MASK)) {
1482             tlb_fill(ENV_GET_CPU(env), page2, size, MMU_DATA_STORE,
1483                      mmu_idx, retaddr);
1484         }
1485 
1486         /*
1487          * XXX: not efficient, but simple.
1488          * This loop must go in the forward direction to avoid issues
1489          * with self-modifying code in Windows 64-bit.
1490          */
1491         for (i = 0; i < size; ++i) {
1492             uint8_t val8;
1493             if (big_endian) {
1494                 /* Big-endian extract.  */
1495                 val8 = val >> (((size - 1) * 8) - (i * 8));
1496             } else {
1497                 /* Little-endian extract.  */
1498                 val8 = val >> (i * 8);
1499             }
1500             store_helper(env, addr + i, val8, oi, retaddr, 1, big_endian);
1501         }
1502         return;
1503     }
1504 
1505     haddr = (void *)((uintptr_t)addr + entry->addend);
1506 
1507     switch (size) {
1508     case 1:
1509         stb_p(haddr, val);
1510         break;
1511     case 2:
1512         if (big_endian) {
1513             stw_be_p(haddr, val);
1514         } else {
1515             stw_le_p(haddr, val);
1516         }
1517         break;
1518     case 4:
1519         if (big_endian) {
1520             stl_be_p(haddr, val);
1521         } else {
1522             stl_le_p(haddr, val);
1523         }
1524         break;
1525     case 8:
1526         if (big_endian) {
1527             stq_be_p(haddr, val);
1528         } else {
1529             stq_le_p(haddr, val);
1530         }
1531         break;
1532     default:
1533         g_assert_not_reached();
1534         break;
1535     }
1536 }
1537 
1538 void __attribute__((flatten))
1539 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
1540                    TCGMemOpIdx oi, uintptr_t retaddr)
1541 {
1542     store_helper(env, addr, val, oi, retaddr, 1, false);
1543 }
1544 
1545 void __attribute__((flatten))
1546 helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1547                   TCGMemOpIdx oi, uintptr_t retaddr)
1548 {
1549     store_helper(env, addr, val, oi, retaddr, 2, false);
1550 }
1551 
1552 void __attribute__((flatten))
1553 helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1554                   TCGMemOpIdx oi, uintptr_t retaddr)
1555 {
1556     store_helper(env, addr, val, oi, retaddr, 2, true);
1557 }
1558 
1559 void __attribute__((flatten))
1560 helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1561                   TCGMemOpIdx oi, uintptr_t retaddr)
1562 {
1563     store_helper(env, addr, val, oi, retaddr, 4, false);
1564 }
1565 
1566 void __attribute__((flatten))
1567 helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1568                   TCGMemOpIdx oi, uintptr_t retaddr)
1569 {
1570     store_helper(env, addr, val, oi, retaddr, 4, true);
1571 }
1572 
1573 void __attribute__((flatten))
1574 helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1575                   TCGMemOpIdx oi, uintptr_t retaddr)
1576 {
1577     store_helper(env, addr, val, oi, retaddr, 8, false);
1578 }
1579 
1580 void __attribute__((flatten))
1581 helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1582                   TCGMemOpIdx oi, uintptr_t retaddr)
1583 {
1584     store_helper(env, addr, val, oi, retaddr, 8, true);
1585 }
1586 
1587 /* First set of helpers allows passing in of OI and RETADDR.  This makes
1588    them callable from other helpers.  */
1589 
1590 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1591 #define ATOMIC_NAME(X) \
1592     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1593 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1594 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1595 #define ATOMIC_MMU_CLEANUP                              \
1596     do {                                                \
1597         if (unlikely(ndi.active)) {                     \
1598             memory_notdirty_write_complete(&ndi);       \
1599         }                                               \
1600     } while (0)
1601 
1602 #define DATA_SIZE 1
1603 #include "atomic_template.h"
1604 
1605 #define DATA_SIZE 2
1606 #include "atomic_template.h"
1607 
1608 #define DATA_SIZE 4
1609 #include "atomic_template.h"
1610 
1611 #ifdef CONFIG_ATOMIC64
1612 #define DATA_SIZE 8
1613 #include "atomic_template.h"
1614 #endif
1615 
1616 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
1617 #define DATA_SIZE 16
1618 #include "atomic_template.h"
1619 #endif
1620 
1621 /* Second set of helpers are directly callable from TCG as helpers.  */
1622 
1623 #undef EXTRA_ARGS
1624 #undef ATOMIC_NAME
1625 #undef ATOMIC_MMU_LOOKUP
1626 #define EXTRA_ARGS         , TCGMemOpIdx oi
1627 #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1628 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1629 
1630 #define DATA_SIZE 1
1631 #include "atomic_template.h"
1632 
1633 #define DATA_SIZE 2
1634 #include "atomic_template.h"
1635 
1636 #define DATA_SIZE 4
1637 #include "atomic_template.h"
1638 
1639 #ifdef CONFIG_ATOMIC64
1640 #define DATA_SIZE 8
1641 #include "atomic_template.h"
1642 #endif
1643 
1644 /* Code access functions.  */
1645 
1646 uint8_t __attribute__((flatten))
1647 helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1648                     uintptr_t retaddr)
1649 {
1650     return load_helper(env, addr, oi, retaddr, 1, false, true);
1651 }
1652 
1653 uint16_t __attribute__((flatten))
1654 helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1655                    uintptr_t retaddr)
1656 {
1657     return load_helper(env, addr, oi, retaddr, 2, false, true);
1658 }
1659 
1660 uint16_t __attribute__((flatten))
1661 helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1662                    uintptr_t retaddr)
1663 {
1664     return load_helper(env, addr, oi, retaddr, 2, true, true);
1665 }
1666 
1667 uint32_t __attribute__((flatten))
1668 helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1669                    uintptr_t retaddr)
1670 {
1671     return load_helper(env, addr, oi, retaddr, 4, false, true);
1672 }
1673 
1674 uint32_t __attribute__((flatten))
1675 helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1676                    uintptr_t retaddr)
1677 {
1678     return load_helper(env, addr, oi, retaddr, 4, true, true);
1679 }
1680 
1681 uint64_t __attribute__((flatten))
1682 helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1683                    uintptr_t retaddr)
1684 {
1685     return load_helper(env, addr, oi, retaddr, 8, false, true);
1686 }
1687 
1688 uint64_t __attribute__((flatten))
1689 helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1690                    uintptr_t retaddr)
1691 {
1692     return load_helper(env, addr, oi, retaddr, 8, true, true);
1693 }
1694