1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/address-spaces.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "tcg/tcg.h" 31 #include "qemu/error-report.h" 32 #include "exec/log.h" 33 #include "exec/helper-proto.h" 34 #include "qemu/atomic.h" 35 #include "qemu/atomic128.h" 36 37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 38 /* #define DEBUG_TLB */ 39 /* #define DEBUG_TLB_LOG */ 40 41 #ifdef DEBUG_TLB 42 # define DEBUG_TLB_GATE 1 43 # ifdef DEBUG_TLB_LOG 44 # define DEBUG_TLB_LOG_GATE 1 45 # else 46 # define DEBUG_TLB_LOG_GATE 0 47 # endif 48 #else 49 # define DEBUG_TLB_GATE 0 50 # define DEBUG_TLB_LOG_GATE 0 51 #endif 52 53 #define tlb_debug(fmt, ...) do { \ 54 if (DEBUG_TLB_LOG_GATE) { \ 55 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 56 ## __VA_ARGS__); \ 57 } else if (DEBUG_TLB_GATE) { \ 58 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 59 } \ 60 } while (0) 61 62 #define assert_cpu_is_self(cpu) do { \ 63 if (DEBUG_TLB_GATE) { \ 64 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 65 } \ 66 } while (0) 67 68 /* run_on_cpu_data.target_ptr should always be big enough for a 69 * target_ulong even on 32 bit builds */ 70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 71 72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 73 */ 74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 76 77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx) 78 { 79 return env->tlb_mask[mmu_idx] + (1 << CPU_TLB_ENTRY_BITS); 80 } 81 82 static void tlb_window_reset(CPUTLBWindow *window, int64_t ns, 83 size_t max_entries) 84 { 85 window->begin_ns = ns; 86 window->max_entries = max_entries; 87 } 88 89 static void tlb_dyn_init(CPUArchState *env) 90 { 91 int i; 92 93 for (i = 0; i < NB_MMU_MODES; i++) { 94 CPUTLBDesc *desc = &env->tlb_d[i]; 95 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 96 97 tlb_window_reset(&desc->window, get_clock_realtime(), 0); 98 desc->n_used_entries = 0; 99 env->tlb_mask[i] = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 100 env->tlb_table[i] = g_new(CPUTLBEntry, n_entries); 101 env->iotlb[i] = g_new(CPUIOTLBEntry, n_entries); 102 } 103 } 104 105 /** 106 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 107 * @env: CPU that owns the TLB 108 * @mmu_idx: MMU index of the TLB 109 * 110 * Called with tlb_lock_held. 111 * 112 * We have two main constraints when resizing a TLB: (1) we only resize it 113 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 114 * the array or unnecessarily flushing it), which means we do not control how 115 * frequently the resizing can occur; (2) we don't have access to the guest's 116 * future scheduling decisions, and therefore have to decide the magnitude of 117 * the resize based on past observations. 118 * 119 * In general, a memory-hungry process can benefit greatly from an appropriately 120 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 121 * we just have to make the TLB as large as possible; while an oversized TLB 122 * results in minimal TLB miss rates, it also takes longer to be flushed 123 * (flushes can be _very_ frequent), and the reduced locality can also hurt 124 * performance. 125 * 126 * To achieve near-optimal performance for all kinds of workloads, we: 127 * 128 * 1. Aggressively increase the size of the TLB when the use rate of the 129 * TLB being flushed is high, since it is likely that in the near future this 130 * memory-hungry process will execute again, and its memory hungriness will 131 * probably be similar. 132 * 133 * 2. Slowly reduce the size of the TLB as the use rate declines over a 134 * reasonably large time window. The rationale is that if in such a time window 135 * we have not observed a high TLB use rate, it is likely that we won't observe 136 * it in the near future. In that case, once a time window expires we downsize 137 * the TLB to match the maximum use rate observed in the window. 138 * 139 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 140 * since in that range performance is likely near-optimal. Recall that the TLB 141 * is direct mapped, so we want the use rate to be low (or at least not too 142 * high), since otherwise we are likely to have a significant amount of 143 * conflict misses. 144 */ 145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx) 146 { 147 CPUTLBDesc *desc = &env->tlb_d[mmu_idx]; 148 size_t old_size = tlb_n_entries(env, mmu_idx); 149 size_t rate; 150 size_t new_size = old_size; 151 int64_t now = get_clock_realtime(); 152 int64_t window_len_ms = 100; 153 int64_t window_len_ns = window_len_ms * 1000 * 1000; 154 bool window_expired = now > desc->window.begin_ns + window_len_ns; 155 156 if (desc->n_used_entries > desc->window.max_entries) { 157 desc->window.max_entries = desc->n_used_entries; 158 } 159 rate = desc->window.max_entries * 100 / old_size; 160 161 if (rate > 70) { 162 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 163 } else if (rate < 30 && window_expired) { 164 size_t ceil = pow2ceil(desc->window.max_entries); 165 size_t expected_rate = desc->window.max_entries * 100 / ceil; 166 167 /* 168 * Avoid undersizing when the max number of entries seen is just below 169 * a pow2. For instance, if max_entries == 1025, the expected use rate 170 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 171 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 172 * later. Thus, make sure that the expected use rate remains below 70%. 173 * (and since we double the size, that means the lowest rate we'd 174 * expect to get is 35%, which is still in the 30-70% range where 175 * we consider that the size is appropriate.) 176 */ 177 if (expected_rate > 70) { 178 ceil *= 2; 179 } 180 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 181 } 182 183 if (new_size == old_size) { 184 if (window_expired) { 185 tlb_window_reset(&desc->window, now, desc->n_used_entries); 186 } 187 return; 188 } 189 190 g_free(env->tlb_table[mmu_idx]); 191 g_free(env->iotlb[mmu_idx]); 192 193 tlb_window_reset(&desc->window, now, 0); 194 /* desc->n_used_entries is cleared by the caller */ 195 env->tlb_mask[mmu_idx] = (new_size - 1) << CPU_TLB_ENTRY_BITS; 196 env->tlb_table[mmu_idx] = g_try_new(CPUTLBEntry, new_size); 197 env->iotlb[mmu_idx] = g_try_new(CPUIOTLBEntry, new_size); 198 /* 199 * If the allocations fail, try smaller sizes. We just freed some 200 * memory, so going back to half of new_size has a good chance of working. 201 * Increased memory pressure elsewhere in the system might cause the 202 * allocations to fail though, so we progressively reduce the allocation 203 * size, aborting if we cannot even allocate the smallest TLB we support. 204 */ 205 while (env->tlb_table[mmu_idx] == NULL || env->iotlb[mmu_idx] == NULL) { 206 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 207 error_report("%s: %s", __func__, strerror(errno)); 208 abort(); 209 } 210 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 211 env->tlb_mask[mmu_idx] = (new_size - 1) << CPU_TLB_ENTRY_BITS; 212 213 g_free(env->tlb_table[mmu_idx]); 214 g_free(env->iotlb[mmu_idx]); 215 env->tlb_table[mmu_idx] = g_try_new(CPUTLBEntry, new_size); 216 env->iotlb[mmu_idx] = g_try_new(CPUIOTLBEntry, new_size); 217 } 218 } 219 220 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx) 221 { 222 tlb_mmu_resize_locked(env, mmu_idx); 223 memset(env->tlb_table[mmu_idx], -1, sizeof_tlb(env, mmu_idx)); 224 env->tlb_d[mmu_idx].n_used_entries = 0; 225 } 226 227 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 228 { 229 env->tlb_d[mmu_idx].n_used_entries++; 230 } 231 232 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 233 { 234 env->tlb_d[mmu_idx].n_used_entries--; 235 } 236 237 void tlb_init(CPUState *cpu) 238 { 239 CPUArchState *env = cpu->env_ptr; 240 241 qemu_spin_init(&env->tlb_c.lock); 242 243 /* Ensure that cpu_reset performs a full flush. */ 244 env->tlb_c.dirty = ALL_MMUIDX_BITS; 245 246 tlb_dyn_init(env); 247 } 248 249 /* flush_all_helper: run fn across all cpus 250 * 251 * If the wait flag is set then the src cpu's helper will be queued as 252 * "safe" work and the loop exited creating a synchronisation point 253 * where all queued work will be finished before execution starts 254 * again. 255 */ 256 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 257 run_on_cpu_data d) 258 { 259 CPUState *cpu; 260 261 CPU_FOREACH(cpu) { 262 if (cpu != src) { 263 async_run_on_cpu(cpu, fn, d); 264 } 265 } 266 } 267 268 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 269 { 270 CPUState *cpu; 271 size_t full = 0, part = 0, elide = 0; 272 273 CPU_FOREACH(cpu) { 274 CPUArchState *env = cpu->env_ptr; 275 276 full += atomic_read(&env->tlb_c.full_flush_count); 277 part += atomic_read(&env->tlb_c.part_flush_count); 278 elide += atomic_read(&env->tlb_c.elide_flush_count); 279 } 280 *pfull = full; 281 *ppart = part; 282 *pelide = elide; 283 } 284 285 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx) 286 { 287 tlb_table_flush_by_mmuidx(env, mmu_idx); 288 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); 289 env->tlb_d[mmu_idx].large_page_addr = -1; 290 env->tlb_d[mmu_idx].large_page_mask = -1; 291 env->tlb_d[mmu_idx].vindex = 0; 292 } 293 294 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 295 { 296 CPUArchState *env = cpu->env_ptr; 297 uint16_t asked = data.host_int; 298 uint16_t all_dirty, work, to_clean; 299 300 assert_cpu_is_self(cpu); 301 302 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 303 304 qemu_spin_lock(&env->tlb_c.lock); 305 306 all_dirty = env->tlb_c.dirty; 307 to_clean = asked & all_dirty; 308 all_dirty &= ~to_clean; 309 env->tlb_c.dirty = all_dirty; 310 311 for (work = to_clean; work != 0; work &= work - 1) { 312 int mmu_idx = ctz32(work); 313 tlb_flush_one_mmuidx_locked(env, mmu_idx); 314 } 315 316 qemu_spin_unlock(&env->tlb_c.lock); 317 318 cpu_tb_jmp_cache_clear(cpu); 319 320 if (to_clean == ALL_MMUIDX_BITS) { 321 atomic_set(&env->tlb_c.full_flush_count, 322 env->tlb_c.full_flush_count + 1); 323 } else { 324 atomic_set(&env->tlb_c.part_flush_count, 325 env->tlb_c.part_flush_count + ctpop16(to_clean)); 326 if (to_clean != asked) { 327 atomic_set(&env->tlb_c.elide_flush_count, 328 env->tlb_c.elide_flush_count + 329 ctpop16(asked & ~to_clean)); 330 } 331 } 332 } 333 334 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 335 { 336 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 337 338 if (cpu->created && !qemu_cpu_is_self(cpu)) { 339 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 340 RUN_ON_CPU_HOST_INT(idxmap)); 341 } else { 342 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 343 } 344 } 345 346 void tlb_flush(CPUState *cpu) 347 { 348 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 349 } 350 351 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 352 { 353 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 354 355 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 356 357 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 358 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 359 } 360 361 void tlb_flush_all_cpus(CPUState *src_cpu) 362 { 363 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 364 } 365 366 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 367 { 368 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 369 370 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 371 372 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 373 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 374 } 375 376 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 377 { 378 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 379 } 380 381 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 382 target_ulong page) 383 { 384 return tlb_hit_page(tlb_entry->addr_read, page) || 385 tlb_hit_page(tlb_addr_write(tlb_entry), page) || 386 tlb_hit_page(tlb_entry->addr_code, page); 387 } 388 389 /** 390 * tlb_entry_is_empty - return true if the entry is not in use 391 * @te: pointer to CPUTLBEntry 392 */ 393 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 394 { 395 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 396 } 397 398 /* Called with tlb_c.lock held */ 399 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 400 target_ulong page) 401 { 402 if (tlb_hit_page_anyprot(tlb_entry, page)) { 403 memset(tlb_entry, -1, sizeof(*tlb_entry)); 404 return true; 405 } 406 return false; 407 } 408 409 /* Called with tlb_c.lock held */ 410 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 411 target_ulong page) 412 { 413 int k; 414 415 assert_cpu_is_self(ENV_GET_CPU(env)); 416 for (k = 0; k < CPU_VTLB_SIZE; k++) { 417 if (tlb_flush_entry_locked(&env->tlb_v_table[mmu_idx][k], page)) { 418 tlb_n_used_entries_dec(env, mmu_idx); 419 } 420 } 421 } 422 423 static void tlb_flush_page_locked(CPUArchState *env, int midx, 424 target_ulong page) 425 { 426 target_ulong lp_addr = env->tlb_d[midx].large_page_addr; 427 target_ulong lp_mask = env->tlb_d[midx].large_page_mask; 428 429 /* Check if we need to flush due to large pages. */ 430 if ((page & lp_mask) == lp_addr) { 431 tlb_debug("forcing full flush midx %d (" 432 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 433 midx, lp_addr, lp_mask); 434 tlb_flush_one_mmuidx_locked(env, midx); 435 } else { 436 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 437 tlb_n_used_entries_dec(env, midx); 438 } 439 tlb_flush_vtlb_page_locked(env, midx, page); 440 } 441 } 442 443 /* As we are going to hijack the bottom bits of the page address for a 444 * mmuidx bit mask we need to fail to build if we can't do that 445 */ 446 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); 447 448 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, 449 run_on_cpu_data data) 450 { 451 CPUArchState *env = cpu->env_ptr; 452 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 453 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 454 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 455 int mmu_idx; 456 457 assert_cpu_is_self(cpu); 458 459 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n", 460 addr, mmu_idx_bitmap); 461 462 qemu_spin_lock(&env->tlb_c.lock); 463 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 464 if (test_bit(mmu_idx, &mmu_idx_bitmap)) { 465 tlb_flush_page_locked(env, mmu_idx, addr); 466 } 467 } 468 qemu_spin_unlock(&env->tlb_c.lock); 469 470 tb_flush_jmp_cache(cpu, addr); 471 } 472 473 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 474 { 475 target_ulong addr_and_mmu_idx; 476 477 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 478 479 /* This should already be page aligned */ 480 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 481 addr_and_mmu_idx |= idxmap; 482 483 if (!qemu_cpu_is_self(cpu)) { 484 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work, 485 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 486 } else { 487 tlb_flush_page_by_mmuidx_async_work( 488 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 489 } 490 } 491 492 void tlb_flush_page(CPUState *cpu, target_ulong addr) 493 { 494 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 495 } 496 497 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 498 uint16_t idxmap) 499 { 500 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 501 target_ulong addr_and_mmu_idx; 502 503 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 504 505 /* This should already be page aligned */ 506 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 507 addr_and_mmu_idx |= idxmap; 508 509 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 510 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 511 } 512 513 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 514 { 515 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 516 } 517 518 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 519 target_ulong addr, 520 uint16_t idxmap) 521 { 522 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 523 target_ulong addr_and_mmu_idx; 524 525 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 526 527 /* This should already be page aligned */ 528 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 529 addr_and_mmu_idx |= idxmap; 530 531 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 532 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 533 } 534 535 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 536 { 537 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 538 } 539 540 /* update the TLBs so that writes to code in the virtual page 'addr' 541 can be detected */ 542 void tlb_protect_code(ram_addr_t ram_addr) 543 { 544 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 545 DIRTY_MEMORY_CODE); 546 } 547 548 /* update the TLB so that writes in physical page 'phys_addr' are no longer 549 tested for self modifying code */ 550 void tlb_unprotect_code(ram_addr_t ram_addr) 551 { 552 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 553 } 554 555 556 /* 557 * Dirty write flag handling 558 * 559 * When the TCG code writes to a location it looks up the address in 560 * the TLB and uses that data to compute the final address. If any of 561 * the lower bits of the address are set then the slow path is forced. 562 * There are a number of reasons to do this but for normal RAM the 563 * most usual is detecting writes to code regions which may invalidate 564 * generated code. 565 * 566 * Other vCPUs might be reading their TLBs during guest execution, so we update 567 * te->addr_write with atomic_set. We don't need to worry about this for 568 * oversized guests as MTTCG is disabled for them. 569 * 570 * Called with tlb_c.lock held. 571 */ 572 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 573 uintptr_t start, uintptr_t length) 574 { 575 uintptr_t addr = tlb_entry->addr_write; 576 577 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 578 addr &= TARGET_PAGE_MASK; 579 addr += tlb_entry->addend; 580 if ((addr - start) < length) { 581 #if TCG_OVERSIZED_GUEST 582 tlb_entry->addr_write |= TLB_NOTDIRTY; 583 #else 584 atomic_set(&tlb_entry->addr_write, 585 tlb_entry->addr_write | TLB_NOTDIRTY); 586 #endif 587 } 588 } 589 } 590 591 /* 592 * Called with tlb_c.lock held. 593 * Called only from the vCPU context, i.e. the TLB's owner thread. 594 */ 595 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 596 { 597 *d = *s; 598 } 599 600 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 601 * the target vCPU). 602 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 603 * thing actually updated is the target TLB entry ->addr_write flags. 604 */ 605 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 606 { 607 CPUArchState *env; 608 609 int mmu_idx; 610 611 env = cpu->env_ptr; 612 qemu_spin_lock(&env->tlb_c.lock); 613 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 614 unsigned int i; 615 unsigned int n = tlb_n_entries(env, mmu_idx); 616 617 for (i = 0; i < n; i++) { 618 tlb_reset_dirty_range_locked(&env->tlb_table[mmu_idx][i], start1, 619 length); 620 } 621 622 for (i = 0; i < CPU_VTLB_SIZE; i++) { 623 tlb_reset_dirty_range_locked(&env->tlb_v_table[mmu_idx][i], start1, 624 length); 625 } 626 } 627 qemu_spin_unlock(&env->tlb_c.lock); 628 } 629 630 /* Called with tlb_c.lock held */ 631 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 632 target_ulong vaddr) 633 { 634 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 635 tlb_entry->addr_write = vaddr; 636 } 637 } 638 639 /* update the TLB corresponding to virtual page vaddr 640 so that it is no longer dirty */ 641 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 642 { 643 CPUArchState *env = cpu->env_ptr; 644 int mmu_idx; 645 646 assert_cpu_is_self(cpu); 647 648 vaddr &= TARGET_PAGE_MASK; 649 qemu_spin_lock(&env->tlb_c.lock); 650 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 651 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 652 } 653 654 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 655 int k; 656 for (k = 0; k < CPU_VTLB_SIZE; k++) { 657 tlb_set_dirty1_locked(&env->tlb_v_table[mmu_idx][k], vaddr); 658 } 659 } 660 qemu_spin_unlock(&env->tlb_c.lock); 661 } 662 663 /* Our TLB does not support large pages, so remember the area covered by 664 large pages and trigger a full TLB flush if these are invalidated. */ 665 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 666 target_ulong vaddr, target_ulong size) 667 { 668 target_ulong lp_addr = env->tlb_d[mmu_idx].large_page_addr; 669 target_ulong lp_mask = ~(size - 1); 670 671 if (lp_addr == (target_ulong)-1) { 672 /* No previous large page. */ 673 lp_addr = vaddr; 674 } else { 675 /* Extend the existing region to include the new page. 676 This is a compromise between unnecessary flushes and 677 the cost of maintaining a full variable size TLB. */ 678 lp_mask &= env->tlb_d[mmu_idx].large_page_mask; 679 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 680 lp_mask <<= 1; 681 } 682 } 683 env->tlb_d[mmu_idx].large_page_addr = lp_addr & lp_mask; 684 env->tlb_d[mmu_idx].large_page_mask = lp_mask; 685 } 686 687 /* Add a new TLB entry. At most one entry for a given virtual address 688 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 689 * supplied size is only used by tlb_flush_page. 690 * 691 * Called from TCG-generated code, which is under an RCU read-side 692 * critical section. 693 */ 694 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 695 hwaddr paddr, MemTxAttrs attrs, int prot, 696 int mmu_idx, target_ulong size) 697 { 698 CPUArchState *env = cpu->env_ptr; 699 MemoryRegionSection *section; 700 unsigned int index; 701 target_ulong address; 702 target_ulong code_address; 703 uintptr_t addend; 704 CPUTLBEntry *te, tn; 705 hwaddr iotlb, xlat, sz, paddr_page; 706 target_ulong vaddr_page; 707 int asidx = cpu_asidx_from_attrs(cpu, attrs); 708 709 assert_cpu_is_self(cpu); 710 711 if (size <= TARGET_PAGE_SIZE) { 712 sz = TARGET_PAGE_SIZE; 713 } else { 714 tlb_add_large_page(env, mmu_idx, vaddr, size); 715 sz = size; 716 } 717 vaddr_page = vaddr & TARGET_PAGE_MASK; 718 paddr_page = paddr & TARGET_PAGE_MASK; 719 720 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 721 &xlat, &sz, attrs, &prot); 722 assert(sz >= TARGET_PAGE_SIZE); 723 724 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 725 " prot=%x idx=%d\n", 726 vaddr, paddr, prot, mmu_idx); 727 728 address = vaddr_page; 729 if (size < TARGET_PAGE_SIZE) { 730 /* 731 * Slow-path the TLB entries; we will repeat the MMU check and TLB 732 * fill on every access. 733 */ 734 address |= TLB_RECHECK; 735 } 736 if (!memory_region_is_ram(section->mr) && 737 !memory_region_is_romd(section->mr)) { 738 /* IO memory case */ 739 address |= TLB_MMIO; 740 addend = 0; 741 } else { 742 /* TLB_MMIO for rom/romd handled below */ 743 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 744 } 745 746 code_address = address; 747 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page, 748 paddr_page, xlat, prot, &address); 749 750 index = tlb_index(env, mmu_idx, vaddr_page); 751 te = tlb_entry(env, mmu_idx, vaddr_page); 752 753 /* 754 * Hold the TLB lock for the rest of the function. We could acquire/release 755 * the lock several times in the function, but it is faster to amortize the 756 * acquisition cost by acquiring it just once. Note that this leads to 757 * a longer critical section, but this is not a concern since the TLB lock 758 * is unlikely to be contended. 759 */ 760 qemu_spin_lock(&env->tlb_c.lock); 761 762 /* Note that the tlb is no longer clean. */ 763 env->tlb_c.dirty |= 1 << mmu_idx; 764 765 /* Make sure there's no cached translation for the new page. */ 766 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 767 768 /* 769 * Only evict the old entry to the victim tlb if it's for a 770 * different page; otherwise just overwrite the stale data. 771 */ 772 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 773 unsigned vidx = env->tlb_d[mmu_idx].vindex++ % CPU_VTLB_SIZE; 774 CPUTLBEntry *tv = &env->tlb_v_table[mmu_idx][vidx]; 775 776 /* Evict the old entry into the victim tlb. */ 777 copy_tlb_helper_locked(tv, te); 778 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; 779 tlb_n_used_entries_dec(env, mmu_idx); 780 } 781 782 /* refill the tlb */ 783 /* 784 * At this point iotlb contains a physical section number in the lower 785 * TARGET_PAGE_BITS, and either 786 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM) 787 * + the offset within section->mr of the page base (otherwise) 788 * We subtract the vaddr_page (which is page aligned and thus won't 789 * disturb the low bits) to give an offset which can be added to the 790 * (non-page-aligned) vaddr of the eventual memory access to get 791 * the MemoryRegion offset for the access. Note that the vaddr we 792 * subtract here is that of the page base, and not the same as the 793 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 794 */ 795 env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page; 796 env->iotlb[mmu_idx][index].attrs = attrs; 797 798 /* Now calculate the new entry */ 799 tn.addend = addend - vaddr_page; 800 if (prot & PAGE_READ) { 801 tn.addr_read = address; 802 } else { 803 tn.addr_read = -1; 804 } 805 806 if (prot & PAGE_EXEC) { 807 tn.addr_code = code_address; 808 } else { 809 tn.addr_code = -1; 810 } 811 812 tn.addr_write = -1; 813 if (prot & PAGE_WRITE) { 814 if ((memory_region_is_ram(section->mr) && section->readonly) 815 || memory_region_is_romd(section->mr)) { 816 /* Write access calls the I/O callback. */ 817 tn.addr_write = address | TLB_MMIO; 818 } else if (memory_region_is_ram(section->mr) 819 && cpu_physical_memory_is_clean( 820 memory_region_get_ram_addr(section->mr) + xlat)) { 821 tn.addr_write = address | TLB_NOTDIRTY; 822 } else { 823 tn.addr_write = address; 824 } 825 if (prot & PAGE_WRITE_INV) { 826 tn.addr_write |= TLB_INVALID_MASK; 827 } 828 } 829 830 copy_tlb_helper_locked(te, &tn); 831 tlb_n_used_entries_inc(env, mmu_idx); 832 qemu_spin_unlock(&env->tlb_c.lock); 833 } 834 835 /* Add a new TLB entry, but without specifying the memory 836 * transaction attributes to be used. 837 */ 838 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 839 hwaddr paddr, int prot, 840 int mmu_idx, target_ulong size) 841 { 842 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 843 prot, mmu_idx, size); 844 } 845 846 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 847 { 848 ram_addr_t ram_addr; 849 850 ram_addr = qemu_ram_addr_from_host(ptr); 851 if (ram_addr == RAM_ADDR_INVALID) { 852 error_report("Bad ram pointer %p", ptr); 853 abort(); 854 } 855 return ram_addr; 856 } 857 858 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 859 int mmu_idx, 860 target_ulong addr, uintptr_t retaddr, 861 bool recheck, MMUAccessType access_type, int size) 862 { 863 CPUState *cpu = ENV_GET_CPU(env); 864 hwaddr mr_offset; 865 MemoryRegionSection *section; 866 MemoryRegion *mr; 867 uint64_t val; 868 bool locked = false; 869 MemTxResult r; 870 871 if (recheck) { 872 /* 873 * This is a TLB_RECHECK access, where the MMU protection 874 * covers a smaller range than a target page, and we must 875 * repeat the MMU check here. This tlb_fill() call might 876 * longjump out if this access should cause a guest exception. 877 */ 878 CPUTLBEntry *entry; 879 target_ulong tlb_addr; 880 881 tlb_fill(cpu, addr, size, access_type, mmu_idx, retaddr); 882 883 entry = tlb_entry(env, mmu_idx, addr); 884 tlb_addr = (access_type == MMU_DATA_LOAD ? 885 entry->addr_read : entry->addr_code); 886 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) { 887 /* RAM access */ 888 uintptr_t haddr = addr + entry->addend; 889 890 return ldn_p((void *)haddr, size); 891 } 892 /* Fall through for handling IO accesses */ 893 } 894 895 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 896 mr = section->mr; 897 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 898 cpu->mem_io_pc = retaddr; 899 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 900 cpu_io_recompile(cpu, retaddr); 901 } 902 903 cpu->mem_io_vaddr = addr; 904 cpu->mem_io_access_type = access_type; 905 906 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 907 qemu_mutex_lock_iothread(); 908 locked = true; 909 } 910 r = memory_region_dispatch_read(mr, mr_offset, 911 &val, size, iotlbentry->attrs); 912 if (r != MEMTX_OK) { 913 hwaddr physaddr = mr_offset + 914 section->offset_within_address_space - 915 section->offset_within_region; 916 917 cpu_transaction_failed(cpu, physaddr, addr, size, access_type, 918 mmu_idx, iotlbentry->attrs, r, retaddr); 919 } 920 if (locked) { 921 qemu_mutex_unlock_iothread(); 922 } 923 924 return val; 925 } 926 927 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 928 int mmu_idx, 929 uint64_t val, target_ulong addr, 930 uintptr_t retaddr, bool recheck, int size) 931 { 932 CPUState *cpu = ENV_GET_CPU(env); 933 hwaddr mr_offset; 934 MemoryRegionSection *section; 935 MemoryRegion *mr; 936 bool locked = false; 937 MemTxResult r; 938 939 if (recheck) { 940 /* 941 * This is a TLB_RECHECK access, where the MMU protection 942 * covers a smaller range than a target page, and we must 943 * repeat the MMU check here. This tlb_fill() call might 944 * longjump out if this access should cause a guest exception. 945 */ 946 CPUTLBEntry *entry; 947 target_ulong tlb_addr; 948 949 tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr); 950 951 entry = tlb_entry(env, mmu_idx, addr); 952 tlb_addr = tlb_addr_write(entry); 953 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) { 954 /* RAM access */ 955 uintptr_t haddr = addr + entry->addend; 956 957 stn_p((void *)haddr, size, val); 958 return; 959 } 960 /* Fall through for handling IO accesses */ 961 } 962 963 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 964 mr = section->mr; 965 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 966 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 967 cpu_io_recompile(cpu, retaddr); 968 } 969 cpu->mem_io_vaddr = addr; 970 cpu->mem_io_pc = retaddr; 971 972 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 973 qemu_mutex_lock_iothread(); 974 locked = true; 975 } 976 r = memory_region_dispatch_write(mr, mr_offset, 977 val, size, iotlbentry->attrs); 978 if (r != MEMTX_OK) { 979 hwaddr physaddr = mr_offset + 980 section->offset_within_address_space - 981 section->offset_within_region; 982 983 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE, 984 mmu_idx, iotlbentry->attrs, r, retaddr); 985 } 986 if (locked) { 987 qemu_mutex_unlock_iothread(); 988 } 989 } 990 991 /* Return true if ADDR is present in the victim tlb, and has been copied 992 back to the main tlb. */ 993 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 994 size_t elt_ofs, target_ulong page) 995 { 996 size_t vidx; 997 998 assert_cpu_is_self(ENV_GET_CPU(env)); 999 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1000 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx]; 1001 target_ulong cmp; 1002 1003 /* elt_ofs might correspond to .addr_write, so use atomic_read */ 1004 #if TCG_OVERSIZED_GUEST 1005 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1006 #else 1007 cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1008 #endif 1009 1010 if (cmp == page) { 1011 /* Found entry in victim tlb, swap tlb and iotlb. */ 1012 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; 1013 1014 qemu_spin_lock(&env->tlb_c.lock); 1015 copy_tlb_helper_locked(&tmptlb, tlb); 1016 copy_tlb_helper_locked(tlb, vtlb); 1017 copy_tlb_helper_locked(vtlb, &tmptlb); 1018 qemu_spin_unlock(&env->tlb_c.lock); 1019 1020 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; 1021 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; 1022 tmpio = *io; *io = *vio; *vio = tmpio; 1023 return true; 1024 } 1025 } 1026 return false; 1027 } 1028 1029 /* Macro to call the above, with local variables from the use context. */ 1030 #define VICTIM_TLB_HIT(TY, ADDR) \ 1031 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1032 (ADDR) & TARGET_PAGE_MASK) 1033 1034 /* NOTE: this function can trigger an exception */ 1035 /* NOTE2: the returned address is not exactly the physical address: it 1036 * is actually a ram_addr_t (in system mode; the user mode emulation 1037 * version of this function returns a guest virtual address). 1038 */ 1039 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 1040 { 1041 uintptr_t mmu_idx = cpu_mmu_index(env, true); 1042 uintptr_t index = tlb_index(env, mmu_idx, addr); 1043 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1044 void *p; 1045 1046 if (unlikely(!tlb_hit(entry->addr_code, addr))) { 1047 if (!VICTIM_TLB_HIT(addr_code, addr)) { 1048 tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); 1049 index = tlb_index(env, mmu_idx, addr); 1050 entry = tlb_entry(env, mmu_idx, addr); 1051 } 1052 assert(tlb_hit(entry->addr_code, addr)); 1053 } 1054 1055 if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) { 1056 /* 1057 * Return -1 if we can't translate and execute from an entire 1058 * page of RAM here, which will cause us to execute by loading 1059 * and translating one insn at a time, without caching: 1060 * - TLB_RECHECK: means the MMU protection covers a smaller range 1061 * than a target page, so we must redo the MMU check every insn 1062 * - TLB_MMIO: region is not backed by RAM 1063 */ 1064 return -1; 1065 } 1066 1067 p = (void *)((uintptr_t)addr + entry->addend); 1068 return qemu_ram_addr_from_host_nofail(p); 1069 } 1070 1071 /* Probe for whether the specified guest write access is permitted. 1072 * If it is not permitted then an exception will be taken in the same 1073 * way as if this were a real write access (and we will not return). 1074 * Otherwise the function will return, and there will be a valid 1075 * entry in the TLB for this access. 1076 */ 1077 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx, 1078 uintptr_t retaddr) 1079 { 1080 uintptr_t index = tlb_index(env, mmu_idx, addr); 1081 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1082 1083 if (!tlb_hit(tlb_addr_write(entry), addr)) { 1084 /* TLB entry is for a different page */ 1085 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1086 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE, 1087 mmu_idx, retaddr); 1088 } 1089 } 1090 } 1091 1092 /* Probe for a read-modify-write atomic operation. Do not allow unaligned 1093 * operations, or io operations to proceed. Return the host address. */ 1094 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1095 TCGMemOpIdx oi, uintptr_t retaddr, 1096 NotDirtyInfo *ndi) 1097 { 1098 size_t mmu_idx = get_mmuidx(oi); 1099 uintptr_t index = tlb_index(env, mmu_idx, addr); 1100 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1101 target_ulong tlb_addr = tlb_addr_write(tlbe); 1102 TCGMemOp mop = get_memop(oi); 1103 int a_bits = get_alignment_bits(mop); 1104 int s_bits = mop & MO_SIZE; 1105 void *hostaddr; 1106 1107 /* Adjust the given return address. */ 1108 retaddr -= GETPC_ADJ; 1109 1110 /* Enforce guest required alignment. */ 1111 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1112 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1113 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, 1114 mmu_idx, retaddr); 1115 } 1116 1117 /* Enforce qemu required alignment. */ 1118 if (unlikely(addr & ((1 << s_bits) - 1))) { 1119 /* We get here if guest alignment was not requested, 1120 or was not enforced by cpu_unaligned_access above. 1121 We might widen the access and emulate, but for now 1122 mark an exception and exit the cpu loop. */ 1123 goto stop_the_world; 1124 } 1125 1126 /* Check TLB entry and enforce page permissions. */ 1127 if (!tlb_hit(tlb_addr, addr)) { 1128 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1129 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE, 1130 mmu_idx, retaddr); 1131 index = tlb_index(env, mmu_idx, addr); 1132 tlbe = tlb_entry(env, mmu_idx, addr); 1133 } 1134 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1135 } 1136 1137 /* Notice an IO access or a needs-MMU-lookup access */ 1138 if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) { 1139 /* There's really nothing that can be done to 1140 support this apart from stop-the-world. */ 1141 goto stop_the_world; 1142 } 1143 1144 /* Let the guest notice RMW on a write-only page. */ 1145 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1146 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD, 1147 mmu_idx, retaddr); 1148 /* Since we don't support reads and writes to different addresses, 1149 and we do have the proper page loaded for write, this shouldn't 1150 ever return. But just in case, handle via stop-the-world. */ 1151 goto stop_the_world; 1152 } 1153 1154 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1155 1156 ndi->active = false; 1157 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1158 ndi->active = true; 1159 memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr, 1160 qemu_ram_addr_from_host_nofail(hostaddr), 1161 1 << s_bits); 1162 } 1163 1164 return hostaddr; 1165 1166 stop_the_world: 1167 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr); 1168 } 1169 1170 #ifdef TARGET_WORDS_BIGENDIAN 1171 #define NEED_BE_BSWAP 0 1172 #define NEED_LE_BSWAP 1 1173 #else 1174 #define NEED_BE_BSWAP 1 1175 #define NEED_LE_BSWAP 0 1176 #endif 1177 1178 /* 1179 * Byte Swap Helper 1180 * 1181 * This should all dead code away depending on the build host and 1182 * access type. 1183 */ 1184 1185 static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian) 1186 { 1187 if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) { 1188 switch (size) { 1189 case 1: return val; 1190 case 2: return bswap16(val); 1191 case 4: return bswap32(val); 1192 case 8: return bswap64(val); 1193 default: 1194 g_assert_not_reached(); 1195 } 1196 } else { 1197 return val; 1198 } 1199 } 1200 1201 /* 1202 * Load Helpers 1203 * 1204 * We support two different access types. SOFTMMU_CODE_ACCESS is 1205 * specifically for reading instructions from system memory. It is 1206 * called by the translation loop and in some helpers where the code 1207 * is disassembled. It shouldn't be called directly by guest code. 1208 */ 1209 1210 static uint64_t load_helper(CPUArchState *env, target_ulong addr, 1211 TCGMemOpIdx oi, uintptr_t retaddr, 1212 size_t size, bool big_endian, 1213 bool code_read) 1214 { 1215 uintptr_t mmu_idx = get_mmuidx(oi); 1216 uintptr_t index = tlb_index(env, mmu_idx, addr); 1217 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1218 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1219 const size_t tlb_off = code_read ? 1220 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1221 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1222 void *haddr; 1223 uint64_t res; 1224 1225 /* Handle CPU specific unaligned behaviour */ 1226 if (addr & ((1 << a_bits) - 1)) { 1227 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1228 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD, 1229 mmu_idx, retaddr); 1230 } 1231 1232 /* If the TLB entry is for a different page, reload and try again. */ 1233 if (!tlb_hit(tlb_addr, addr)) { 1234 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1235 addr & TARGET_PAGE_MASK)) { 1236 tlb_fill(ENV_GET_CPU(env), addr, size, 1237 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD, 1238 mmu_idx, retaddr); 1239 index = tlb_index(env, mmu_idx, addr); 1240 entry = tlb_entry(env, mmu_idx, addr); 1241 } 1242 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1243 } 1244 1245 /* Handle an IO access. */ 1246 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1247 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; 1248 uint64_t tmp; 1249 1250 if ((addr & (size - 1)) != 0) { 1251 goto do_unaligned_access; 1252 } 1253 1254 tmp = io_readx(env, iotlbentry, mmu_idx, addr, retaddr, 1255 tlb_addr & TLB_RECHECK, 1256 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD, size); 1257 return handle_bswap(tmp, size, big_endian); 1258 } 1259 1260 /* Handle slow unaligned access (it spans two pages or IO). */ 1261 if (size > 1 1262 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1263 >= TARGET_PAGE_SIZE)) { 1264 target_ulong addr1, addr2; 1265 tcg_target_ulong r1, r2; 1266 unsigned shift; 1267 do_unaligned_access: 1268 addr1 = addr & ~(size - 1); 1269 addr2 = addr1 + size; 1270 r1 = load_helper(env, addr1, oi, retaddr, size, big_endian, code_read); 1271 r2 = load_helper(env, addr2, oi, retaddr, size, big_endian, code_read); 1272 shift = (addr & (size - 1)) * 8; 1273 1274 if (big_endian) { 1275 /* Big-endian combine. */ 1276 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1277 } else { 1278 /* Little-endian combine. */ 1279 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1280 } 1281 return res & MAKE_64BIT_MASK(0, size * 8); 1282 } 1283 1284 haddr = (void *)((uintptr_t)addr + entry->addend); 1285 1286 switch (size) { 1287 case 1: 1288 res = ldub_p(haddr); 1289 break; 1290 case 2: 1291 if (big_endian) { 1292 res = lduw_be_p(haddr); 1293 } else { 1294 res = lduw_le_p(haddr); 1295 } 1296 break; 1297 case 4: 1298 if (big_endian) { 1299 res = (uint32_t)ldl_be_p(haddr); 1300 } else { 1301 res = (uint32_t)ldl_le_p(haddr); 1302 } 1303 break; 1304 case 8: 1305 if (big_endian) { 1306 res = ldq_be_p(haddr); 1307 } else { 1308 res = ldq_le_p(haddr); 1309 } 1310 break; 1311 default: 1312 g_assert_not_reached(); 1313 } 1314 1315 return res; 1316 } 1317 1318 /* 1319 * For the benefit of TCG generated code, we want to avoid the 1320 * complication of ABI-specific return type promotion and always 1321 * return a value extended to the register size of the host. This is 1322 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1323 * data, and for that we always have uint64_t. 1324 * 1325 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1326 */ 1327 1328 tcg_target_ulong __attribute__((flatten)) 1329 helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1330 uintptr_t retaddr) 1331 { 1332 return load_helper(env, addr, oi, retaddr, 1, false, false); 1333 } 1334 1335 tcg_target_ulong __attribute__((flatten)) 1336 helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1337 uintptr_t retaddr) 1338 { 1339 return load_helper(env, addr, oi, retaddr, 2, false, false); 1340 } 1341 1342 tcg_target_ulong __attribute__((flatten)) 1343 helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1344 uintptr_t retaddr) 1345 { 1346 return load_helper(env, addr, oi, retaddr, 2, true, false); 1347 } 1348 1349 tcg_target_ulong __attribute__((flatten)) 1350 helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1351 uintptr_t retaddr) 1352 { 1353 return load_helper(env, addr, oi, retaddr, 4, false, false); 1354 } 1355 1356 tcg_target_ulong __attribute__((flatten)) 1357 helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1358 uintptr_t retaddr) 1359 { 1360 return load_helper(env, addr, oi, retaddr, 4, true, false); 1361 } 1362 1363 uint64_t __attribute__((flatten)) 1364 helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1365 uintptr_t retaddr) 1366 { 1367 return load_helper(env, addr, oi, retaddr, 8, false, false); 1368 } 1369 1370 uint64_t __attribute__((flatten)) 1371 helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1372 uintptr_t retaddr) 1373 { 1374 return load_helper(env, addr, oi, retaddr, 8, true, false); 1375 } 1376 1377 /* 1378 * Provide signed versions of the load routines as well. We can of course 1379 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 1380 */ 1381 1382 1383 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 1384 TCGMemOpIdx oi, uintptr_t retaddr) 1385 { 1386 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 1387 } 1388 1389 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 1390 TCGMemOpIdx oi, uintptr_t retaddr) 1391 { 1392 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 1393 } 1394 1395 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 1396 TCGMemOpIdx oi, uintptr_t retaddr) 1397 { 1398 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 1399 } 1400 1401 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 1402 TCGMemOpIdx oi, uintptr_t retaddr) 1403 { 1404 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 1405 } 1406 1407 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 1408 TCGMemOpIdx oi, uintptr_t retaddr) 1409 { 1410 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 1411 } 1412 1413 /* 1414 * Store Helpers 1415 */ 1416 1417 static void store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 1418 TCGMemOpIdx oi, uintptr_t retaddr, size_t size, 1419 bool big_endian) 1420 { 1421 uintptr_t mmu_idx = get_mmuidx(oi); 1422 uintptr_t index = tlb_index(env, mmu_idx, addr); 1423 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1424 target_ulong tlb_addr = tlb_addr_write(entry); 1425 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 1426 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1427 void *haddr; 1428 1429 /* Handle CPU specific unaligned behaviour */ 1430 if (addr & ((1 << a_bits) - 1)) { 1431 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, 1432 mmu_idx, retaddr); 1433 } 1434 1435 /* If the TLB entry is for a different page, reload and try again. */ 1436 if (!tlb_hit(tlb_addr, addr)) { 1437 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1438 addr & TARGET_PAGE_MASK)) { 1439 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE, 1440 mmu_idx, retaddr); 1441 index = tlb_index(env, mmu_idx, addr); 1442 entry = tlb_entry(env, mmu_idx, addr); 1443 } 1444 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 1445 } 1446 1447 /* Handle an IO access. */ 1448 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1449 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; 1450 1451 if ((addr & (size - 1)) != 0) { 1452 goto do_unaligned_access; 1453 } 1454 1455 io_writex(env, iotlbentry, mmu_idx, 1456 handle_bswap(val, size, big_endian), 1457 addr, retaddr, tlb_addr & TLB_RECHECK, size); 1458 return; 1459 } 1460 1461 /* Handle slow unaligned access (it spans two pages or IO). */ 1462 if (size > 1 1463 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1464 >= TARGET_PAGE_SIZE)) { 1465 int i; 1466 uintptr_t index2; 1467 CPUTLBEntry *entry2; 1468 target_ulong page2, tlb_addr2; 1469 do_unaligned_access: 1470 /* 1471 * Ensure the second page is in the TLB. Note that the first page 1472 * is already guaranteed to be filled, and that the second page 1473 * cannot evict the first. 1474 */ 1475 page2 = (addr + size) & TARGET_PAGE_MASK; 1476 index2 = tlb_index(env, mmu_idx, page2); 1477 entry2 = tlb_entry(env, mmu_idx, page2); 1478 tlb_addr2 = tlb_addr_write(entry2); 1479 if (!tlb_hit_page(tlb_addr2, page2) 1480 && !victim_tlb_hit(env, mmu_idx, index2, tlb_off, 1481 page2 & TARGET_PAGE_MASK)) { 1482 tlb_fill(ENV_GET_CPU(env), page2, size, MMU_DATA_STORE, 1483 mmu_idx, retaddr); 1484 } 1485 1486 /* 1487 * XXX: not efficient, but simple. 1488 * This loop must go in the forward direction to avoid issues 1489 * with self-modifying code in Windows 64-bit. 1490 */ 1491 for (i = 0; i < size; ++i) { 1492 uint8_t val8; 1493 if (big_endian) { 1494 /* Big-endian extract. */ 1495 val8 = val >> (((size - 1) * 8) - (i * 8)); 1496 } else { 1497 /* Little-endian extract. */ 1498 val8 = val >> (i * 8); 1499 } 1500 store_helper(env, addr + i, val8, oi, retaddr, 1, big_endian); 1501 } 1502 return; 1503 } 1504 1505 haddr = (void *)((uintptr_t)addr + entry->addend); 1506 1507 switch (size) { 1508 case 1: 1509 stb_p(haddr, val); 1510 break; 1511 case 2: 1512 if (big_endian) { 1513 stw_be_p(haddr, val); 1514 } else { 1515 stw_le_p(haddr, val); 1516 } 1517 break; 1518 case 4: 1519 if (big_endian) { 1520 stl_be_p(haddr, val); 1521 } else { 1522 stl_le_p(haddr, val); 1523 } 1524 break; 1525 case 8: 1526 if (big_endian) { 1527 stq_be_p(haddr, val); 1528 } else { 1529 stq_le_p(haddr, val); 1530 } 1531 break; 1532 default: 1533 g_assert_not_reached(); 1534 break; 1535 } 1536 } 1537 1538 void __attribute__((flatten)) 1539 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 1540 TCGMemOpIdx oi, uintptr_t retaddr) 1541 { 1542 store_helper(env, addr, val, oi, retaddr, 1, false); 1543 } 1544 1545 void __attribute__((flatten)) 1546 helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1547 TCGMemOpIdx oi, uintptr_t retaddr) 1548 { 1549 store_helper(env, addr, val, oi, retaddr, 2, false); 1550 } 1551 1552 void __attribute__((flatten)) 1553 helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1554 TCGMemOpIdx oi, uintptr_t retaddr) 1555 { 1556 store_helper(env, addr, val, oi, retaddr, 2, true); 1557 } 1558 1559 void __attribute__((flatten)) 1560 helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1561 TCGMemOpIdx oi, uintptr_t retaddr) 1562 { 1563 store_helper(env, addr, val, oi, retaddr, 4, false); 1564 } 1565 1566 void __attribute__((flatten)) 1567 helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1568 TCGMemOpIdx oi, uintptr_t retaddr) 1569 { 1570 store_helper(env, addr, val, oi, retaddr, 4, true); 1571 } 1572 1573 void __attribute__((flatten)) 1574 helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1575 TCGMemOpIdx oi, uintptr_t retaddr) 1576 { 1577 store_helper(env, addr, val, oi, retaddr, 8, false); 1578 } 1579 1580 void __attribute__((flatten)) 1581 helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1582 TCGMemOpIdx oi, uintptr_t retaddr) 1583 { 1584 store_helper(env, addr, val, oi, retaddr, 8, true); 1585 } 1586 1587 /* First set of helpers allows passing in of OI and RETADDR. This makes 1588 them callable from other helpers. */ 1589 1590 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 1591 #define ATOMIC_NAME(X) \ 1592 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 1593 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi 1594 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi) 1595 #define ATOMIC_MMU_CLEANUP \ 1596 do { \ 1597 if (unlikely(ndi.active)) { \ 1598 memory_notdirty_write_complete(&ndi); \ 1599 } \ 1600 } while (0) 1601 1602 #define DATA_SIZE 1 1603 #include "atomic_template.h" 1604 1605 #define DATA_SIZE 2 1606 #include "atomic_template.h" 1607 1608 #define DATA_SIZE 4 1609 #include "atomic_template.h" 1610 1611 #ifdef CONFIG_ATOMIC64 1612 #define DATA_SIZE 8 1613 #include "atomic_template.h" 1614 #endif 1615 1616 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 1617 #define DATA_SIZE 16 1618 #include "atomic_template.h" 1619 #endif 1620 1621 /* Second set of helpers are directly callable from TCG as helpers. */ 1622 1623 #undef EXTRA_ARGS 1624 #undef ATOMIC_NAME 1625 #undef ATOMIC_MMU_LOOKUP 1626 #define EXTRA_ARGS , TCGMemOpIdx oi 1627 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 1628 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi) 1629 1630 #define DATA_SIZE 1 1631 #include "atomic_template.h" 1632 1633 #define DATA_SIZE 2 1634 #include "atomic_template.h" 1635 1636 #define DATA_SIZE 4 1637 #include "atomic_template.h" 1638 1639 #ifdef CONFIG_ATOMIC64 1640 #define DATA_SIZE 8 1641 #include "atomic_template.h" 1642 #endif 1643 1644 /* Code access functions. */ 1645 1646 uint8_t __attribute__((flatten)) 1647 helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1648 uintptr_t retaddr) 1649 { 1650 return load_helper(env, addr, oi, retaddr, 1, false, true); 1651 } 1652 1653 uint16_t __attribute__((flatten)) 1654 helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1655 uintptr_t retaddr) 1656 { 1657 return load_helper(env, addr, oi, retaddr, 2, false, true); 1658 } 1659 1660 uint16_t __attribute__((flatten)) 1661 helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1662 uintptr_t retaddr) 1663 { 1664 return load_helper(env, addr, oi, retaddr, 2, true, true); 1665 } 1666 1667 uint32_t __attribute__((flatten)) 1668 helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1669 uintptr_t retaddr) 1670 { 1671 return load_helper(env, addr, oi, retaddr, 4, false, true); 1672 } 1673 1674 uint32_t __attribute__((flatten)) 1675 helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1676 uintptr_t retaddr) 1677 { 1678 return load_helper(env, addr, oi, retaddr, 4, true, true); 1679 } 1680 1681 uint64_t __attribute__((flatten)) 1682 helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1683 uintptr_t retaddr) 1684 { 1685 return load_helper(env, addr, oi, retaddr, 8, false, true); 1686 } 1687 1688 uint64_t __attribute__((flatten)) 1689 helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1690 uintptr_t retaddr) 1691 { 1692 return load_helper(env, addr, oi, retaddr, 8, true, true); 1693 } 1694