1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/address-spaces.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "tcg/tcg.h" 31 #include "qemu/error-report.h" 32 #include "exec/log.h" 33 #include "exec/helper-proto.h" 34 #include "qemu/atomic.h" 35 36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 37 /* #define DEBUG_TLB */ 38 /* #define DEBUG_TLB_LOG */ 39 40 #ifdef DEBUG_TLB 41 # define DEBUG_TLB_GATE 1 42 # ifdef DEBUG_TLB_LOG 43 # define DEBUG_TLB_LOG_GATE 1 44 # else 45 # define DEBUG_TLB_LOG_GATE 0 46 # endif 47 #else 48 # define DEBUG_TLB_GATE 0 49 # define DEBUG_TLB_LOG_GATE 0 50 #endif 51 52 #define tlb_debug(fmt, ...) do { \ 53 if (DEBUG_TLB_LOG_GATE) { \ 54 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 55 ## __VA_ARGS__); \ 56 } else if (DEBUG_TLB_GATE) { \ 57 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 58 } \ 59 } while (0) 60 61 #define assert_cpu_is_self(this_cpu) do { \ 62 if (DEBUG_TLB_GATE) { \ 63 g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \ 64 } \ 65 } while (0) 66 67 /* run_on_cpu_data.target_ptr should always be big enough for a 68 * target_ulong even on 32 bit builds */ 69 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 70 71 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 72 */ 73 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 74 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 75 76 /* flush_all_helper: run fn across all cpus 77 * 78 * If the wait flag is set then the src cpu's helper will be queued as 79 * "safe" work and the loop exited creating a synchronisation point 80 * where all queued work will be finished before execution starts 81 * again. 82 */ 83 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 84 run_on_cpu_data d) 85 { 86 CPUState *cpu; 87 88 CPU_FOREACH(cpu) { 89 if (cpu != src) { 90 async_run_on_cpu(cpu, fn, d); 91 } 92 } 93 } 94 95 /* statistics */ 96 int tlb_flush_count; 97 98 /* This is OK because CPU architectures generally permit an 99 * implementation to drop entries from the TLB at any time, so 100 * flushing more entries than required is only an efficiency issue, 101 * not a correctness issue. 102 */ 103 static void tlb_flush_nocheck(CPUState *cpu) 104 { 105 CPUArchState *env = cpu->env_ptr; 106 107 /* The QOM tests will trigger tlb_flushes without setting up TCG 108 * so we bug out here in that case. 109 */ 110 if (!tcg_enabled()) { 111 return; 112 } 113 114 assert_cpu_is_self(cpu); 115 tlb_debug("(count: %d)\n", tlb_flush_count++); 116 117 tb_lock(); 118 119 memset(env->tlb_table, -1, sizeof(env->tlb_table)); 120 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); 121 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); 122 123 env->vtlb_index = 0; 124 env->tlb_flush_addr = -1; 125 env->tlb_flush_mask = 0; 126 127 tb_unlock(); 128 129 atomic_mb_set(&cpu->pending_tlb_flush, 0); 130 } 131 132 static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data) 133 { 134 tlb_flush_nocheck(cpu); 135 } 136 137 void tlb_flush(CPUState *cpu) 138 { 139 if (cpu->created && !qemu_cpu_is_self(cpu)) { 140 if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) { 141 atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS); 142 async_run_on_cpu(cpu, tlb_flush_global_async_work, 143 RUN_ON_CPU_NULL); 144 } 145 } else { 146 tlb_flush_nocheck(cpu); 147 } 148 } 149 150 void tlb_flush_all_cpus(CPUState *src_cpu) 151 { 152 const run_on_cpu_func fn = tlb_flush_global_async_work; 153 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); 154 fn(src_cpu, RUN_ON_CPU_NULL); 155 } 156 157 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 158 { 159 const run_on_cpu_func fn = tlb_flush_global_async_work; 160 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); 161 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL); 162 } 163 164 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 165 { 166 CPUArchState *env = cpu->env_ptr; 167 unsigned long mmu_idx_bitmask = data.host_int; 168 int mmu_idx; 169 170 assert_cpu_is_self(cpu); 171 172 tb_lock(); 173 174 tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask); 175 176 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 177 178 if (test_bit(mmu_idx, &mmu_idx_bitmask)) { 179 tlb_debug("%d\n", mmu_idx); 180 181 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); 182 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); 183 } 184 } 185 186 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); 187 188 tlb_debug("done\n"); 189 190 tb_unlock(); 191 } 192 193 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 194 { 195 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 196 197 if (!qemu_cpu_is_self(cpu)) { 198 uint16_t pending_flushes = idxmap; 199 pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush); 200 201 if (pending_flushes) { 202 tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes); 203 204 atomic_or(&cpu->pending_tlb_flush, pending_flushes); 205 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 206 RUN_ON_CPU_HOST_INT(pending_flushes)); 207 } 208 } else { 209 tlb_flush_by_mmuidx_async_work(cpu, 210 RUN_ON_CPU_HOST_INT(idxmap)); 211 } 212 } 213 214 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 215 { 216 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 217 218 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 219 220 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 221 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 222 } 223 224 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 225 uint16_t idxmap) 226 { 227 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 228 229 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 230 231 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 232 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 233 } 234 235 236 237 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) 238 { 239 if (addr == (tlb_entry->addr_read & 240 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || 241 addr == (tlb_entry->addr_write & 242 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || 243 addr == (tlb_entry->addr_code & 244 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { 245 memset(tlb_entry, -1, sizeof(*tlb_entry)); 246 } 247 } 248 249 static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data) 250 { 251 CPUArchState *env = cpu->env_ptr; 252 target_ulong addr = (target_ulong) data.target_ptr; 253 int i; 254 int mmu_idx; 255 256 assert_cpu_is_self(cpu); 257 258 tlb_debug("page :" TARGET_FMT_lx "\n", addr); 259 260 /* Check if we need to flush due to large pages. */ 261 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { 262 tlb_debug("forcing full flush (" 263 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 264 env->tlb_flush_addr, env->tlb_flush_mask); 265 266 tlb_flush(cpu); 267 return; 268 } 269 270 addr &= TARGET_PAGE_MASK; 271 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 272 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 273 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); 274 } 275 276 /* check whether there are entries that need to be flushed in the vtlb */ 277 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 278 int k; 279 for (k = 0; k < CPU_VTLB_SIZE; k++) { 280 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); 281 } 282 } 283 284 tb_flush_jmp_cache(cpu, addr); 285 } 286 287 void tlb_flush_page(CPUState *cpu, target_ulong addr) 288 { 289 tlb_debug("page :" TARGET_FMT_lx "\n", addr); 290 291 if (!qemu_cpu_is_self(cpu)) { 292 async_run_on_cpu(cpu, tlb_flush_page_async_work, 293 RUN_ON_CPU_TARGET_PTR(addr)); 294 } else { 295 tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr)); 296 } 297 } 298 299 /* As we are going to hijack the bottom bits of the page address for a 300 * mmuidx bit mask we need to fail to build if we can't do that 301 */ 302 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); 303 304 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, 305 run_on_cpu_data data) 306 { 307 CPUArchState *env = cpu->env_ptr; 308 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 309 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 310 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 311 int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 312 int mmu_idx; 313 int i; 314 315 assert_cpu_is_self(cpu); 316 317 tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n", 318 page, addr, mmu_idx_bitmap); 319 320 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 321 if (test_bit(mmu_idx, &mmu_idx_bitmap)) { 322 tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr); 323 324 /* check whether there are vltb entries that need to be flushed */ 325 for (i = 0; i < CPU_VTLB_SIZE; i++) { 326 tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr); 327 } 328 } 329 } 330 331 tb_flush_jmp_cache(cpu, addr); 332 } 333 334 static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu, 335 run_on_cpu_data data) 336 { 337 CPUArchState *env = cpu->env_ptr; 338 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 339 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 340 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 341 342 tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap); 343 344 /* Check if we need to flush due to large pages. */ 345 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { 346 tlb_debug("forced full flush (" 347 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 348 env->tlb_flush_addr, env->tlb_flush_mask); 349 350 tlb_flush_by_mmuidx_async_work(cpu, 351 RUN_ON_CPU_HOST_INT(mmu_idx_bitmap)); 352 } else { 353 tlb_flush_page_by_mmuidx_async_work(cpu, data); 354 } 355 } 356 357 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 358 { 359 target_ulong addr_and_mmu_idx; 360 361 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 362 363 /* This should already be page aligned */ 364 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 365 addr_and_mmu_idx |= idxmap; 366 367 if (!qemu_cpu_is_self(cpu)) { 368 async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work, 369 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 370 } else { 371 tlb_check_page_and_flush_by_mmuidx_async_work( 372 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 373 } 374 } 375 376 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 377 uint16_t idxmap) 378 { 379 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; 380 target_ulong addr_and_mmu_idx; 381 382 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 383 384 /* This should already be page aligned */ 385 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 386 addr_and_mmu_idx |= idxmap; 387 388 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 389 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 390 } 391 392 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 393 target_ulong addr, 394 uint16_t idxmap) 395 { 396 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; 397 target_ulong addr_and_mmu_idx; 398 399 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 400 401 /* This should already be page aligned */ 402 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 403 addr_and_mmu_idx |= idxmap; 404 405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 406 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 407 } 408 409 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 410 { 411 const run_on_cpu_func fn = tlb_flush_page_async_work; 412 413 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); 414 fn(src, RUN_ON_CPU_TARGET_PTR(addr)); 415 } 416 417 void tlb_flush_page_all_cpus_synced(CPUState *src, 418 target_ulong addr) 419 { 420 const run_on_cpu_func fn = tlb_flush_page_async_work; 421 422 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); 423 async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); 424 } 425 426 /* update the TLBs so that writes to code in the virtual page 'addr' 427 can be detected */ 428 void tlb_protect_code(ram_addr_t ram_addr) 429 { 430 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 431 DIRTY_MEMORY_CODE); 432 } 433 434 /* update the TLB so that writes in physical page 'phys_addr' are no longer 435 tested for self modifying code */ 436 void tlb_unprotect_code(ram_addr_t ram_addr) 437 { 438 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 439 } 440 441 442 /* 443 * Dirty write flag handling 444 * 445 * When the TCG code writes to a location it looks up the address in 446 * the TLB and uses that data to compute the final address. If any of 447 * the lower bits of the address are set then the slow path is forced. 448 * There are a number of reasons to do this but for normal RAM the 449 * most usual is detecting writes to code regions which may invalidate 450 * generated code. 451 * 452 * Because we want other vCPUs to respond to changes straight away we 453 * update the te->addr_write field atomically. If the TLB entry has 454 * been changed by the vCPU in the mean time we skip the update. 455 * 456 * As this function uses atomic accesses we also need to ensure 457 * updates to tlb_entries follow the same access rules. We don't need 458 * to worry about this for oversized guests as MTTCG is disabled for 459 * them. 460 */ 461 462 static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, 463 uintptr_t length) 464 { 465 #if TCG_OVERSIZED_GUEST 466 uintptr_t addr = tlb_entry->addr_write; 467 468 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 469 addr &= TARGET_PAGE_MASK; 470 addr += tlb_entry->addend; 471 if ((addr - start) < length) { 472 tlb_entry->addr_write |= TLB_NOTDIRTY; 473 } 474 } 475 #else 476 /* paired with atomic_mb_set in tlb_set_page_with_attrs */ 477 uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write); 478 uintptr_t addr = orig_addr; 479 480 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 481 addr &= TARGET_PAGE_MASK; 482 addr += atomic_read(&tlb_entry->addend); 483 if ((addr - start) < length) { 484 uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY; 485 atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr); 486 } 487 } 488 #endif 489 } 490 491 /* For atomic correctness when running MTTCG we need to use the right 492 * primitives when copying entries */ 493 static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s, 494 bool atomic_set) 495 { 496 #if TCG_OVERSIZED_GUEST 497 *d = *s; 498 #else 499 if (atomic_set) { 500 d->addr_read = s->addr_read; 501 d->addr_code = s->addr_code; 502 atomic_set(&d->addend, atomic_read(&s->addend)); 503 /* Pairs with flag setting in tlb_reset_dirty_range */ 504 atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write)); 505 } else { 506 d->addr_read = s->addr_read; 507 d->addr_write = atomic_read(&s->addr_write); 508 d->addr_code = s->addr_code; 509 d->addend = atomic_read(&s->addend); 510 } 511 #endif 512 } 513 514 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 515 * the target vCPU). As such care needs to be taken that we don't 516 * dangerously race with another vCPU update. The only thing actually 517 * updated is the target TLB entry ->addr_write flags. 518 */ 519 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 520 { 521 CPUArchState *env; 522 523 int mmu_idx; 524 525 env = cpu->env_ptr; 526 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 527 unsigned int i; 528 529 for (i = 0; i < CPU_TLB_SIZE; i++) { 530 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], 531 start1, length); 532 } 533 534 for (i = 0; i < CPU_VTLB_SIZE; i++) { 535 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], 536 start1, length); 537 } 538 } 539 } 540 541 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) 542 { 543 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 544 tlb_entry->addr_write = vaddr; 545 } 546 } 547 548 /* update the TLB corresponding to virtual page vaddr 549 so that it is no longer dirty */ 550 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 551 { 552 CPUArchState *env = cpu->env_ptr; 553 int i; 554 int mmu_idx; 555 556 assert_cpu_is_self(cpu); 557 558 vaddr &= TARGET_PAGE_MASK; 559 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 560 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 561 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); 562 } 563 564 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 565 int k; 566 for (k = 0; k < CPU_VTLB_SIZE; k++) { 567 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); 568 } 569 } 570 } 571 572 /* Our TLB does not support large pages, so remember the area covered by 573 large pages and trigger a full TLB flush if these are invalidated. */ 574 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, 575 target_ulong size) 576 { 577 target_ulong mask = ~(size - 1); 578 579 if (env->tlb_flush_addr == (target_ulong)-1) { 580 env->tlb_flush_addr = vaddr & mask; 581 env->tlb_flush_mask = mask; 582 return; 583 } 584 /* Extend the existing region to include the new page. 585 This is a compromise between unnecessary flushes and the cost 586 of maintaining a full variable size TLB. */ 587 mask &= env->tlb_flush_mask; 588 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { 589 mask <<= 1; 590 } 591 env->tlb_flush_addr &= mask; 592 env->tlb_flush_mask = mask; 593 } 594 595 /* Add a new TLB entry. At most one entry for a given virtual address 596 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 597 * supplied size is only used by tlb_flush_page. 598 * 599 * Called from TCG-generated code, which is under an RCU read-side 600 * critical section. 601 */ 602 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 603 hwaddr paddr, MemTxAttrs attrs, int prot, 604 int mmu_idx, target_ulong size) 605 { 606 CPUArchState *env = cpu->env_ptr; 607 MemoryRegionSection *section; 608 unsigned int index; 609 target_ulong address; 610 target_ulong code_address; 611 uintptr_t addend; 612 CPUTLBEntry *te, *tv, tn; 613 hwaddr iotlb, xlat, sz; 614 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; 615 int asidx = cpu_asidx_from_attrs(cpu, attrs); 616 617 assert_cpu_is_self(cpu); 618 assert(size >= TARGET_PAGE_SIZE); 619 if (size != TARGET_PAGE_SIZE) { 620 tlb_add_large_page(env, vaddr, size); 621 } 622 623 sz = size; 624 section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz); 625 assert(sz >= TARGET_PAGE_SIZE); 626 627 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 628 " prot=%x idx=%d\n", 629 vaddr, paddr, prot, mmu_idx); 630 631 address = vaddr; 632 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { 633 /* IO memory case */ 634 address |= TLB_MMIO; 635 addend = 0; 636 } else { 637 /* TLB_MMIO for rom/romd handled below */ 638 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 639 } 640 641 code_address = address; 642 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat, 643 prot, &address); 644 645 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 646 te = &env->tlb_table[mmu_idx][index]; 647 /* do not discard the translation in te, evict it into a victim tlb */ 648 tv = &env->tlb_v_table[mmu_idx][vidx]; 649 650 /* addr_write can race with tlb_reset_dirty_range */ 651 copy_tlb_helper(tv, te, true); 652 653 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; 654 655 /* refill the tlb */ 656 env->iotlb[mmu_idx][index].addr = iotlb - vaddr; 657 env->iotlb[mmu_idx][index].attrs = attrs; 658 659 /* Now calculate the new entry */ 660 tn.addend = addend - vaddr; 661 if (prot & PAGE_READ) { 662 tn.addr_read = address; 663 } else { 664 tn.addr_read = -1; 665 } 666 667 if (prot & PAGE_EXEC) { 668 tn.addr_code = code_address; 669 } else { 670 tn.addr_code = -1; 671 } 672 673 tn.addr_write = -1; 674 if (prot & PAGE_WRITE) { 675 if ((memory_region_is_ram(section->mr) && section->readonly) 676 || memory_region_is_romd(section->mr)) { 677 /* Write access calls the I/O callback. */ 678 tn.addr_write = address | TLB_MMIO; 679 } else if (memory_region_is_ram(section->mr) 680 && cpu_physical_memory_is_clean( 681 memory_region_get_ram_addr(section->mr) + xlat)) { 682 tn.addr_write = address | TLB_NOTDIRTY; 683 } else { 684 tn.addr_write = address; 685 } 686 } 687 688 /* Pairs with flag setting in tlb_reset_dirty_range */ 689 copy_tlb_helper(te, &tn, true); 690 /* atomic_mb_set(&te->addr_write, write_address); */ 691 } 692 693 /* Add a new TLB entry, but without specifying the memory 694 * transaction attributes to be used. 695 */ 696 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 697 hwaddr paddr, int prot, 698 int mmu_idx, target_ulong size) 699 { 700 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 701 prot, mmu_idx, size); 702 } 703 704 static void report_bad_exec(CPUState *cpu, target_ulong addr) 705 { 706 /* Accidentally executing outside RAM or ROM is quite common for 707 * several user-error situations, so report it in a way that 708 * makes it clear that this isn't a QEMU bug and provide suggestions 709 * about what a user could do to fix things. 710 */ 711 error_report("Trying to execute code outside RAM or ROM at 0x" 712 TARGET_FMT_lx, addr); 713 error_printf("This usually means one of the following happened:\n\n" 714 "(1) You told QEMU to execute a kernel for the wrong machine " 715 "type, and it crashed on startup (eg trying to run a " 716 "raspberry pi kernel on a versatilepb QEMU machine)\n" 717 "(2) You didn't give QEMU a kernel or BIOS filename at all, " 718 "and QEMU executed a ROM full of no-op instructions until " 719 "it fell off the end\n" 720 "(3) Your guest kernel has a bug and crashed by jumping " 721 "off into nowhere\n\n" 722 "This is almost always one of the first two, so check your " 723 "command line and that you are using the right type of kernel " 724 "for this machine.\n" 725 "If you think option (3) is likely then you can try debugging " 726 "your guest with the -d debug options; in particular " 727 "-d guest_errors will cause the log to include a dump of the " 728 "guest register state at this point.\n\n" 729 "Execution cannot continue; stopping here.\n\n"); 730 731 /* Report also to the logs, with more detail including register dump */ 732 qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code " 733 "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); 734 log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); 735 } 736 737 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 738 { 739 ram_addr_t ram_addr; 740 741 ram_addr = qemu_ram_addr_from_host(ptr); 742 if (ram_addr == RAM_ADDR_INVALID) { 743 error_report("Bad ram pointer %p", ptr); 744 abort(); 745 } 746 return ram_addr; 747 } 748 749 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 750 target_ulong addr, uintptr_t retaddr, int size) 751 { 752 CPUState *cpu = ENV_GET_CPU(env); 753 hwaddr physaddr = iotlbentry->addr; 754 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); 755 uint64_t val; 756 bool locked = false; 757 758 physaddr = (physaddr & TARGET_PAGE_MASK) + addr; 759 cpu->mem_io_pc = retaddr; 760 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 761 cpu_io_recompile(cpu, retaddr); 762 } 763 764 cpu->mem_io_vaddr = addr; 765 766 if (mr->global_locking) { 767 qemu_mutex_lock_iothread(); 768 locked = true; 769 } 770 memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs); 771 if (locked) { 772 qemu_mutex_unlock_iothread(); 773 } 774 775 return val; 776 } 777 778 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 779 uint64_t val, target_ulong addr, 780 uintptr_t retaddr, int size) 781 { 782 CPUState *cpu = ENV_GET_CPU(env); 783 hwaddr physaddr = iotlbentry->addr; 784 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); 785 bool locked = false; 786 787 physaddr = (physaddr & TARGET_PAGE_MASK) + addr; 788 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 789 cpu_io_recompile(cpu, retaddr); 790 } 791 cpu->mem_io_vaddr = addr; 792 cpu->mem_io_pc = retaddr; 793 794 if (mr->global_locking) { 795 qemu_mutex_lock_iothread(); 796 locked = true; 797 } 798 memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs); 799 if (locked) { 800 qemu_mutex_unlock_iothread(); 801 } 802 } 803 804 /* Return true if ADDR is present in the victim tlb, and has been copied 805 back to the main tlb. */ 806 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 807 size_t elt_ofs, target_ulong page) 808 { 809 size_t vidx; 810 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 811 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx]; 812 target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 813 814 if (cmp == page) { 815 /* Found entry in victim tlb, swap tlb and iotlb. */ 816 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; 817 818 copy_tlb_helper(&tmptlb, tlb, false); 819 copy_tlb_helper(tlb, vtlb, true); 820 copy_tlb_helper(vtlb, &tmptlb, true); 821 822 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; 823 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; 824 tmpio = *io; *io = *vio; *vio = tmpio; 825 return true; 826 } 827 } 828 return false; 829 } 830 831 /* Macro to call the above, with local variables from the use context. */ 832 #define VICTIM_TLB_HIT(TY, ADDR) \ 833 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 834 (ADDR) & TARGET_PAGE_MASK) 835 836 /* NOTE: this function can trigger an exception */ 837 /* NOTE2: the returned address is not exactly the physical address: it 838 * is actually a ram_addr_t (in system mode; the user mode emulation 839 * version of this function returns a guest virtual address). 840 */ 841 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 842 { 843 int mmu_idx, index, pd; 844 void *p; 845 MemoryRegion *mr; 846 CPUState *cpu = ENV_GET_CPU(env); 847 CPUIOTLBEntry *iotlbentry; 848 849 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 850 mmu_idx = cpu_mmu_index(env, true); 851 if (unlikely(env->tlb_table[mmu_idx][index].addr_code != 852 (addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)))) { 853 if (!VICTIM_TLB_HIT(addr_read, addr)) { 854 tlb_fill(ENV_GET_CPU(env), addr, MMU_INST_FETCH, mmu_idx, 0); 855 } 856 } 857 iotlbentry = &env->iotlb[mmu_idx][index]; 858 pd = iotlbentry->addr & ~TARGET_PAGE_MASK; 859 mr = iotlb_to_region(cpu, pd, iotlbentry->attrs); 860 if (memory_region_is_unassigned(mr)) { 861 qemu_mutex_lock_iothread(); 862 if (memory_region_request_mmio_ptr(mr, addr)) { 863 qemu_mutex_unlock_iothread(); 864 /* A MemoryRegion is potentially added so re-run the 865 * get_page_addr_code. 866 */ 867 return get_page_addr_code(env, addr); 868 } 869 qemu_mutex_unlock_iothread(); 870 871 cpu_unassigned_access(cpu, addr, false, true, 0, 4); 872 /* The CPU's unassigned access hook might have longjumped out 873 * with an exception. If it didn't (or there was no hook) then 874 * we can't proceed further. 875 */ 876 report_bad_exec(cpu, addr); 877 exit(1); 878 } 879 p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend); 880 return qemu_ram_addr_from_host_nofail(p); 881 } 882 883 /* Probe for whether the specified guest write access is permitted. 884 * If it is not permitted then an exception will be taken in the same 885 * way as if this were a real write access (and we will not return). 886 * Otherwise the function will return, and there will be a valid 887 * entry in the TLB for this access. 888 */ 889 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, 890 uintptr_t retaddr) 891 { 892 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 893 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; 894 895 if ((addr & TARGET_PAGE_MASK) 896 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { 897 /* TLB entry is for a different page */ 898 if (!VICTIM_TLB_HIT(addr_write, addr)) { 899 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); 900 } 901 } 902 } 903 904 /* Probe for a read-modify-write atomic operation. Do not allow unaligned 905 * operations, or io operations to proceed. Return the host address. */ 906 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 907 TCGMemOpIdx oi, uintptr_t retaddr) 908 { 909 size_t mmu_idx = get_mmuidx(oi); 910 size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 911 CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index]; 912 target_ulong tlb_addr = tlbe->addr_write; 913 TCGMemOp mop = get_memop(oi); 914 int a_bits = get_alignment_bits(mop); 915 int s_bits = mop & MO_SIZE; 916 917 /* Adjust the given return address. */ 918 retaddr -= GETPC_ADJ; 919 920 /* Enforce guest required alignment. */ 921 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 922 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 923 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, 924 mmu_idx, retaddr); 925 } 926 927 /* Enforce qemu required alignment. */ 928 if (unlikely(addr & ((1 << s_bits) - 1))) { 929 /* We get here if guest alignment was not requested, 930 or was not enforced by cpu_unaligned_access above. 931 We might widen the access and emulate, but for now 932 mark an exception and exit the cpu loop. */ 933 goto stop_the_world; 934 } 935 936 /* Check TLB entry and enforce page permissions. */ 937 if ((addr & TARGET_PAGE_MASK) 938 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { 939 if (!VICTIM_TLB_HIT(addr_write, addr)) { 940 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); 941 } 942 tlb_addr = tlbe->addr_write; 943 } 944 945 /* Check notdirty */ 946 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 947 tlb_set_dirty(ENV_GET_CPU(env), addr); 948 tlb_addr = tlb_addr & ~TLB_NOTDIRTY; 949 } 950 951 /* Notice an IO access */ 952 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 953 /* There's really nothing that can be done to 954 support this apart from stop-the-world. */ 955 goto stop_the_world; 956 } 957 958 /* Let the guest notice RMW on a write-only page. */ 959 if (unlikely(tlbe->addr_read != tlb_addr)) { 960 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr); 961 /* Since we don't support reads and writes to different addresses, 962 and we do have the proper page loaded for write, this shouldn't 963 ever return. But just in case, handle via stop-the-world. */ 964 goto stop_the_world; 965 } 966 967 return (void *)((uintptr_t)addr + tlbe->addend); 968 969 stop_the_world: 970 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr); 971 } 972 973 #ifdef TARGET_WORDS_BIGENDIAN 974 # define TGT_BE(X) (X) 975 # define TGT_LE(X) BSWAP(X) 976 #else 977 # define TGT_BE(X) BSWAP(X) 978 # define TGT_LE(X) (X) 979 #endif 980 981 #define MMUSUFFIX _mmu 982 983 #define DATA_SIZE 1 984 #include "softmmu_template.h" 985 986 #define DATA_SIZE 2 987 #include "softmmu_template.h" 988 989 #define DATA_SIZE 4 990 #include "softmmu_template.h" 991 992 #define DATA_SIZE 8 993 #include "softmmu_template.h" 994 995 /* First set of helpers allows passing in of OI and RETADDR. This makes 996 them callable from other helpers. */ 997 998 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 999 #define ATOMIC_NAME(X) \ 1000 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 1001 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr) 1002 1003 #define DATA_SIZE 1 1004 #include "atomic_template.h" 1005 1006 #define DATA_SIZE 2 1007 #include "atomic_template.h" 1008 1009 #define DATA_SIZE 4 1010 #include "atomic_template.h" 1011 1012 #ifdef CONFIG_ATOMIC64 1013 #define DATA_SIZE 8 1014 #include "atomic_template.h" 1015 #endif 1016 1017 #ifdef CONFIG_ATOMIC128 1018 #define DATA_SIZE 16 1019 #include "atomic_template.h" 1020 #endif 1021 1022 /* Second set of helpers are directly callable from TCG as helpers. */ 1023 1024 #undef EXTRA_ARGS 1025 #undef ATOMIC_NAME 1026 #undef ATOMIC_MMU_LOOKUP 1027 #define EXTRA_ARGS , TCGMemOpIdx oi 1028 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 1029 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC()) 1030 1031 #define DATA_SIZE 1 1032 #include "atomic_template.h" 1033 1034 #define DATA_SIZE 2 1035 #include "atomic_template.h" 1036 1037 #define DATA_SIZE 4 1038 #include "atomic_template.h" 1039 1040 #ifdef CONFIG_ATOMIC64 1041 #define DATA_SIZE 8 1042 #include "atomic_template.h" 1043 #endif 1044 1045 /* Code access functions. */ 1046 1047 #undef MMUSUFFIX 1048 #define MMUSUFFIX _cmmu 1049 #undef GETPC 1050 #define GETPC() ((uintptr_t)0) 1051 #define SOFTMMU_CODE_ACCESS 1052 1053 #define DATA_SIZE 1 1054 #include "softmmu_template.h" 1055 1056 #define DATA_SIZE 2 1057 #include "softmmu_template.h" 1058 1059 #define DATA_SIZE 4 1060 #include "softmmu_template.h" 1061 1062 #define DATA_SIZE 8 1063 #include "softmmu_template.h" 1064