1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto-common.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 #include "tcg/oversized-guest.h" 44 45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 46 /* #define DEBUG_TLB */ 47 /* #define DEBUG_TLB_LOG */ 48 49 #ifdef DEBUG_TLB 50 # define DEBUG_TLB_GATE 1 51 # ifdef DEBUG_TLB_LOG 52 # define DEBUG_TLB_LOG_GATE 1 53 # else 54 # define DEBUG_TLB_LOG_GATE 0 55 # endif 56 #else 57 # define DEBUG_TLB_GATE 0 58 # define DEBUG_TLB_LOG_GATE 0 59 #endif 60 61 #define tlb_debug(fmt, ...) do { \ 62 if (DEBUG_TLB_LOG_GATE) { \ 63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 64 ## __VA_ARGS__); \ 65 } else if (DEBUG_TLB_GATE) { \ 66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 67 } \ 68 } while (0) 69 70 #define assert_cpu_is_self(cpu) do { \ 71 if (DEBUG_TLB_GATE) { \ 72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 73 } \ 74 } while (0) 75 76 /* run_on_cpu_data.target_ptr should always be big enough for a 77 * target_ulong even on 32 bit builds */ 78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 79 80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 81 */ 82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 84 85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 86 { 87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 88 } 89 90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 91 { 92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 93 } 94 95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 96 size_t max_entries) 97 { 98 desc->window_begin_ns = ns; 99 desc->window_max_entries = max_entries; 100 } 101 102 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 103 { 104 CPUJumpCache *jc = cpu->tb_jmp_cache; 105 int i, i0; 106 107 if (unlikely(!jc)) { 108 return; 109 } 110 111 i0 = tb_jmp_cache_hash_page(page_addr); 112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 113 qatomic_set(&jc->array[i0 + i].tb, NULL); 114 } 115 } 116 117 /** 118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 119 * @desc: The CPUTLBDesc portion of the TLB 120 * @fast: The CPUTLBDescFast portion of the same TLB 121 * 122 * Called with tlb_lock_held. 123 * 124 * We have two main constraints when resizing a TLB: (1) we only resize it 125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 126 * the array or unnecessarily flushing it), which means we do not control how 127 * frequently the resizing can occur; (2) we don't have access to the guest's 128 * future scheduling decisions, and therefore have to decide the magnitude of 129 * the resize based on past observations. 130 * 131 * In general, a memory-hungry process can benefit greatly from an appropriately 132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 133 * we just have to make the TLB as large as possible; while an oversized TLB 134 * results in minimal TLB miss rates, it also takes longer to be flushed 135 * (flushes can be _very_ frequent), and the reduced locality can also hurt 136 * performance. 137 * 138 * To achieve near-optimal performance for all kinds of workloads, we: 139 * 140 * 1. Aggressively increase the size of the TLB when the use rate of the 141 * TLB being flushed is high, since it is likely that in the near future this 142 * memory-hungry process will execute again, and its memory hungriness will 143 * probably be similar. 144 * 145 * 2. Slowly reduce the size of the TLB as the use rate declines over a 146 * reasonably large time window. The rationale is that if in such a time window 147 * we have not observed a high TLB use rate, it is likely that we won't observe 148 * it in the near future. In that case, once a time window expires we downsize 149 * the TLB to match the maximum use rate observed in the window. 150 * 151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 152 * since in that range performance is likely near-optimal. Recall that the TLB 153 * is direct mapped, so we want the use rate to be low (or at least not too 154 * high), since otherwise we are likely to have a significant amount of 155 * conflict misses. 156 */ 157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 158 int64_t now) 159 { 160 size_t old_size = tlb_n_entries(fast); 161 size_t rate; 162 size_t new_size = old_size; 163 int64_t window_len_ms = 100; 164 int64_t window_len_ns = window_len_ms * 1000 * 1000; 165 bool window_expired = now > desc->window_begin_ns + window_len_ns; 166 167 if (desc->n_used_entries > desc->window_max_entries) { 168 desc->window_max_entries = desc->n_used_entries; 169 } 170 rate = desc->window_max_entries * 100 / old_size; 171 172 if (rate > 70) { 173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 174 } else if (rate < 30 && window_expired) { 175 size_t ceil = pow2ceil(desc->window_max_entries); 176 size_t expected_rate = desc->window_max_entries * 100 / ceil; 177 178 /* 179 * Avoid undersizing when the max number of entries seen is just below 180 * a pow2. For instance, if max_entries == 1025, the expected use rate 181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 183 * later. Thus, make sure that the expected use rate remains below 70%. 184 * (and since we double the size, that means the lowest rate we'd 185 * expect to get is 35%, which is still in the 30-70% range where 186 * we consider that the size is appropriate.) 187 */ 188 if (expected_rate > 70) { 189 ceil *= 2; 190 } 191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 192 } 193 194 if (new_size == old_size) { 195 if (window_expired) { 196 tlb_window_reset(desc, now, desc->n_used_entries); 197 } 198 return; 199 } 200 201 g_free(fast->table); 202 g_free(desc->fulltlb); 203 204 tlb_window_reset(desc, now, 0); 205 /* desc->n_used_entries is cleared by the caller */ 206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 207 fast->table = g_try_new(CPUTLBEntry, new_size); 208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 209 210 /* 211 * If the allocations fail, try smaller sizes. We just freed some 212 * memory, so going back to half of new_size has a good chance of working. 213 * Increased memory pressure elsewhere in the system might cause the 214 * allocations to fail though, so we progressively reduce the allocation 215 * size, aborting if we cannot even allocate the smallest TLB we support. 216 */ 217 while (fast->table == NULL || desc->fulltlb == NULL) { 218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 219 error_report("%s: %s", __func__, strerror(errno)); 220 abort(); 221 } 222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 224 225 g_free(fast->table); 226 g_free(desc->fulltlb); 227 fast->table = g_try_new(CPUTLBEntry, new_size); 228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 229 } 230 } 231 232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 233 { 234 desc->n_used_entries = 0; 235 desc->large_page_addr = -1; 236 desc->large_page_mask = -1; 237 desc->vindex = 0; 238 memset(fast->table, -1, sizeof_tlb(fast)); 239 memset(desc->vtable, -1, sizeof(desc->vtable)); 240 } 241 242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 243 int64_t now) 244 { 245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 247 248 tlb_mmu_resize_locked(desc, fast, now); 249 tlb_mmu_flush_locked(desc, fast); 250 } 251 252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 253 { 254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 255 256 tlb_window_reset(desc, now, 0); 257 desc->n_used_entries = 0; 258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 259 fast->table = g_new(CPUTLBEntry, n_entries); 260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 261 tlb_mmu_flush_locked(desc, fast); 262 } 263 264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 265 { 266 env_tlb(env)->d[mmu_idx].n_used_entries++; 267 } 268 269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 270 { 271 env_tlb(env)->d[mmu_idx].n_used_entries--; 272 } 273 274 void tlb_init(CPUState *cpu) 275 { 276 CPUArchState *env = cpu->env_ptr; 277 int64_t now = get_clock_realtime(); 278 int i; 279 280 qemu_spin_init(&env_tlb(env)->c.lock); 281 282 /* All tlbs are initialized flushed. */ 283 env_tlb(env)->c.dirty = 0; 284 285 for (i = 0; i < NB_MMU_MODES; i++) { 286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 287 } 288 } 289 290 void tlb_destroy(CPUState *cpu) 291 { 292 CPUArchState *env = cpu->env_ptr; 293 int i; 294 295 qemu_spin_destroy(&env_tlb(env)->c.lock); 296 for (i = 0; i < NB_MMU_MODES; i++) { 297 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 298 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 299 300 g_free(fast->table); 301 g_free(desc->fulltlb); 302 } 303 } 304 305 /* flush_all_helper: run fn across all cpus 306 * 307 * If the wait flag is set then the src cpu's helper will be queued as 308 * "safe" work and the loop exited creating a synchronisation point 309 * where all queued work will be finished before execution starts 310 * again. 311 */ 312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 313 run_on_cpu_data d) 314 { 315 CPUState *cpu; 316 317 CPU_FOREACH(cpu) { 318 if (cpu != src) { 319 async_run_on_cpu(cpu, fn, d); 320 } 321 } 322 } 323 324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 325 { 326 CPUState *cpu; 327 size_t full = 0, part = 0, elide = 0; 328 329 CPU_FOREACH(cpu) { 330 CPUArchState *env = cpu->env_ptr; 331 332 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 333 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 335 } 336 *pfull = full; 337 *ppart = part; 338 *pelide = elide; 339 } 340 341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 342 { 343 CPUArchState *env = cpu->env_ptr; 344 uint16_t asked = data.host_int; 345 uint16_t all_dirty, work, to_clean; 346 int64_t now = get_clock_realtime(); 347 348 assert_cpu_is_self(cpu); 349 350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 351 352 qemu_spin_lock(&env_tlb(env)->c.lock); 353 354 all_dirty = env_tlb(env)->c.dirty; 355 to_clean = asked & all_dirty; 356 all_dirty &= ~to_clean; 357 env_tlb(env)->c.dirty = all_dirty; 358 359 for (work = to_clean; work != 0; work &= work - 1) { 360 int mmu_idx = ctz32(work); 361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 362 } 363 364 qemu_spin_unlock(&env_tlb(env)->c.lock); 365 366 tcg_flush_jmp_cache(cpu); 367 368 if (to_clean == ALL_MMUIDX_BITS) { 369 qatomic_set(&env_tlb(env)->c.full_flush_count, 370 env_tlb(env)->c.full_flush_count + 1); 371 } else { 372 qatomic_set(&env_tlb(env)->c.part_flush_count, 373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 374 if (to_clean != asked) { 375 qatomic_set(&env_tlb(env)->c.elide_flush_count, 376 env_tlb(env)->c.elide_flush_count + 377 ctpop16(asked & ~to_clean)); 378 } 379 } 380 } 381 382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 383 { 384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 385 386 if (cpu->created && !qemu_cpu_is_self(cpu)) { 387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 388 RUN_ON_CPU_HOST_INT(idxmap)); 389 } else { 390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 391 } 392 } 393 394 void tlb_flush(CPUState *cpu) 395 { 396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 397 } 398 399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 400 { 401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 402 403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 404 405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 407 } 408 409 void tlb_flush_all_cpus(CPUState *src_cpu) 410 { 411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 412 } 413 414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 415 { 416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 417 418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 419 420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 } 423 424 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 425 { 426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 427 } 428 429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 430 target_ulong page, target_ulong mask) 431 { 432 page &= mask; 433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 434 435 return (page == (tlb_entry->addr_read & mask) || 436 page == (tlb_addr_write(tlb_entry) & mask) || 437 page == (tlb_entry->addr_code & mask)); 438 } 439 440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 441 target_ulong page) 442 { 443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 444 } 445 446 /** 447 * tlb_entry_is_empty - return true if the entry is not in use 448 * @te: pointer to CPUTLBEntry 449 */ 450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 451 { 452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 453 } 454 455 /* Called with tlb_c.lock held */ 456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 457 target_ulong page, 458 target_ulong mask) 459 { 460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 461 memset(tlb_entry, -1, sizeof(*tlb_entry)); 462 return true; 463 } 464 return false; 465 } 466 467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 468 target_ulong page) 469 { 470 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 471 } 472 473 /* Called with tlb_c.lock held */ 474 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 475 target_ulong page, 476 target_ulong mask) 477 { 478 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 479 int k; 480 481 assert_cpu_is_self(env_cpu(env)); 482 for (k = 0; k < CPU_VTLB_SIZE; k++) { 483 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 484 tlb_n_used_entries_dec(env, mmu_idx); 485 } 486 } 487 } 488 489 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 490 target_ulong page) 491 { 492 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 493 } 494 495 static void tlb_flush_page_locked(CPUArchState *env, int midx, 496 target_ulong page) 497 { 498 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 499 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 500 501 /* Check if we need to flush due to large pages. */ 502 if ((page & lp_mask) == lp_addr) { 503 tlb_debug("forcing full flush midx %d (" 504 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 505 midx, lp_addr, lp_mask); 506 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 507 } else { 508 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 509 tlb_n_used_entries_dec(env, midx); 510 } 511 tlb_flush_vtlb_page_locked(env, midx, page); 512 } 513 } 514 515 /** 516 * tlb_flush_page_by_mmuidx_async_0: 517 * @cpu: cpu on which to flush 518 * @addr: page of virtual address to flush 519 * @idxmap: set of mmu_idx to flush 520 * 521 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 522 * at @addr from the tlbs indicated by @idxmap from @cpu. 523 */ 524 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 525 target_ulong addr, 526 uint16_t idxmap) 527 { 528 CPUArchState *env = cpu->env_ptr; 529 int mmu_idx; 530 531 assert_cpu_is_self(cpu); 532 533 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 534 535 qemu_spin_lock(&env_tlb(env)->c.lock); 536 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 537 if ((idxmap >> mmu_idx) & 1) { 538 tlb_flush_page_locked(env, mmu_idx, addr); 539 } 540 } 541 qemu_spin_unlock(&env_tlb(env)->c.lock); 542 543 /* 544 * Discard jump cache entries for any tb which might potentially 545 * overlap the flushed page, which includes the previous. 546 */ 547 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 548 tb_jmp_cache_clear_page(cpu, addr); 549 } 550 551 /** 552 * tlb_flush_page_by_mmuidx_async_1: 553 * @cpu: cpu on which to flush 554 * @data: encoded addr + idxmap 555 * 556 * Helper for tlb_flush_page_by_mmuidx and friends, called through 557 * async_run_on_cpu. The idxmap parameter is encoded in the page 558 * offset of the target_ptr field. This limits the set of mmu_idx 559 * that can be passed via this method. 560 */ 561 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 562 run_on_cpu_data data) 563 { 564 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 565 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 566 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 567 568 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 569 } 570 571 typedef struct { 572 target_ulong addr; 573 uint16_t idxmap; 574 } TLBFlushPageByMMUIdxData; 575 576 /** 577 * tlb_flush_page_by_mmuidx_async_2: 578 * @cpu: cpu on which to flush 579 * @data: allocated addr + idxmap 580 * 581 * Helper for tlb_flush_page_by_mmuidx and friends, called through 582 * async_run_on_cpu. The addr+idxmap parameters are stored in a 583 * TLBFlushPageByMMUIdxData structure that has been allocated 584 * specifically for this helper. Free the structure when done. 585 */ 586 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 587 run_on_cpu_data data) 588 { 589 TLBFlushPageByMMUIdxData *d = data.host_ptr; 590 591 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 592 g_free(d); 593 } 594 595 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 596 { 597 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 598 599 /* This should already be page aligned */ 600 addr &= TARGET_PAGE_MASK; 601 602 if (qemu_cpu_is_self(cpu)) { 603 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 604 } else if (idxmap < TARGET_PAGE_SIZE) { 605 /* 606 * Most targets have only a few mmu_idx. In the case where 607 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 608 * allocating memory for this operation. 609 */ 610 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 611 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 612 } else { 613 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 614 615 /* Otherwise allocate a structure, freed by the worker. */ 616 d->addr = addr; 617 d->idxmap = idxmap; 618 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 619 RUN_ON_CPU_HOST_PTR(d)); 620 } 621 } 622 623 void tlb_flush_page(CPUState *cpu, target_ulong addr) 624 { 625 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 626 } 627 628 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 629 uint16_t idxmap) 630 { 631 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 632 633 /* This should already be page aligned */ 634 addr &= TARGET_PAGE_MASK; 635 636 /* 637 * Allocate memory to hold addr+idxmap only when needed. 638 * See tlb_flush_page_by_mmuidx for details. 639 */ 640 if (idxmap < TARGET_PAGE_SIZE) { 641 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 642 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 643 } else { 644 CPUState *dst_cpu; 645 646 /* Allocate a separate data block for each destination cpu. */ 647 CPU_FOREACH(dst_cpu) { 648 if (dst_cpu != src_cpu) { 649 TLBFlushPageByMMUIdxData *d 650 = g_new(TLBFlushPageByMMUIdxData, 1); 651 652 d->addr = addr; 653 d->idxmap = idxmap; 654 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 655 RUN_ON_CPU_HOST_PTR(d)); 656 } 657 } 658 } 659 660 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 661 } 662 663 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 664 { 665 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 666 } 667 668 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 669 target_ulong addr, 670 uint16_t idxmap) 671 { 672 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 673 674 /* This should already be page aligned */ 675 addr &= TARGET_PAGE_MASK; 676 677 /* 678 * Allocate memory to hold addr+idxmap only when needed. 679 * See tlb_flush_page_by_mmuidx for details. 680 */ 681 if (idxmap < TARGET_PAGE_SIZE) { 682 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 683 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 684 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 685 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 686 } else { 687 CPUState *dst_cpu; 688 TLBFlushPageByMMUIdxData *d; 689 690 /* Allocate a separate data block for each destination cpu. */ 691 CPU_FOREACH(dst_cpu) { 692 if (dst_cpu != src_cpu) { 693 d = g_new(TLBFlushPageByMMUIdxData, 1); 694 d->addr = addr; 695 d->idxmap = idxmap; 696 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 697 RUN_ON_CPU_HOST_PTR(d)); 698 } 699 } 700 701 d = g_new(TLBFlushPageByMMUIdxData, 1); 702 d->addr = addr; 703 d->idxmap = idxmap; 704 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 705 RUN_ON_CPU_HOST_PTR(d)); 706 } 707 } 708 709 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 710 { 711 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 712 } 713 714 static void tlb_flush_range_locked(CPUArchState *env, int midx, 715 target_ulong addr, target_ulong len, 716 unsigned bits) 717 { 718 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 719 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 720 target_ulong mask = MAKE_64BIT_MASK(0, bits); 721 722 /* 723 * If @bits is smaller than the tlb size, there may be multiple entries 724 * within the TLB; otherwise all addresses that match under @mask hit 725 * the same TLB entry. 726 * TODO: Perhaps allow bits to be a few bits less than the size. 727 * For now, just flush the entire TLB. 728 * 729 * If @len is larger than the tlb size, then it will take longer to 730 * test all of the entries in the TLB than it will to flush it all. 731 */ 732 if (mask < f->mask || len > f->mask) { 733 tlb_debug("forcing full flush midx %d (" 734 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 735 midx, addr, mask, len); 736 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 737 return; 738 } 739 740 /* 741 * Check if we need to flush due to large pages. 742 * Because large_page_mask contains all 1's from the msb, 743 * we only need to test the end of the range. 744 */ 745 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 746 tlb_debug("forcing full flush midx %d (" 747 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 748 midx, d->large_page_addr, d->large_page_mask); 749 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 750 return; 751 } 752 753 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 754 target_ulong page = addr + i; 755 CPUTLBEntry *entry = tlb_entry(env, midx, page); 756 757 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 758 tlb_n_used_entries_dec(env, midx); 759 } 760 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 761 } 762 } 763 764 typedef struct { 765 target_ulong addr; 766 target_ulong len; 767 uint16_t idxmap; 768 uint16_t bits; 769 } TLBFlushRangeData; 770 771 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 772 TLBFlushRangeData d) 773 { 774 CPUArchState *env = cpu->env_ptr; 775 int mmu_idx; 776 777 assert_cpu_is_self(cpu); 778 779 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 780 d.addr, d.bits, d.len, d.idxmap); 781 782 qemu_spin_lock(&env_tlb(env)->c.lock); 783 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 784 if ((d.idxmap >> mmu_idx) & 1) { 785 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 786 } 787 } 788 qemu_spin_unlock(&env_tlb(env)->c.lock); 789 790 /* 791 * If the length is larger than the jump cache size, then it will take 792 * longer to clear each entry individually than it will to clear it all. 793 */ 794 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 795 tcg_flush_jmp_cache(cpu); 796 return; 797 } 798 799 /* 800 * Discard jump cache entries for any tb which might potentially 801 * overlap the flushed pages, which includes the previous. 802 */ 803 d.addr -= TARGET_PAGE_SIZE; 804 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 805 tb_jmp_cache_clear_page(cpu, d.addr); 806 d.addr += TARGET_PAGE_SIZE; 807 } 808 } 809 810 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 811 run_on_cpu_data data) 812 { 813 TLBFlushRangeData *d = data.host_ptr; 814 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 815 g_free(d); 816 } 817 818 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 819 target_ulong len, uint16_t idxmap, 820 unsigned bits) 821 { 822 TLBFlushRangeData d; 823 824 /* 825 * If all bits are significant, and len is small, 826 * this devolves to tlb_flush_page. 827 */ 828 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 829 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 830 return; 831 } 832 /* If no page bits are significant, this devolves to tlb_flush. */ 833 if (bits < TARGET_PAGE_BITS) { 834 tlb_flush_by_mmuidx(cpu, idxmap); 835 return; 836 } 837 838 /* This should already be page aligned */ 839 d.addr = addr & TARGET_PAGE_MASK; 840 d.len = len; 841 d.idxmap = idxmap; 842 d.bits = bits; 843 844 if (qemu_cpu_is_self(cpu)) { 845 tlb_flush_range_by_mmuidx_async_0(cpu, d); 846 } else { 847 /* Otherwise allocate a structure, freed by the worker. */ 848 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 849 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 850 RUN_ON_CPU_HOST_PTR(p)); 851 } 852 } 853 854 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 855 uint16_t idxmap, unsigned bits) 856 { 857 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 858 } 859 860 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 861 target_ulong addr, target_ulong len, 862 uint16_t idxmap, unsigned bits) 863 { 864 TLBFlushRangeData d; 865 CPUState *dst_cpu; 866 867 /* 868 * If all bits are significant, and len is small, 869 * this devolves to tlb_flush_page. 870 */ 871 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 872 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 873 return; 874 } 875 /* If no page bits are significant, this devolves to tlb_flush. */ 876 if (bits < TARGET_PAGE_BITS) { 877 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 878 return; 879 } 880 881 /* This should already be page aligned */ 882 d.addr = addr & TARGET_PAGE_MASK; 883 d.len = len; 884 d.idxmap = idxmap; 885 d.bits = bits; 886 887 /* Allocate a separate data block for each destination cpu. */ 888 CPU_FOREACH(dst_cpu) { 889 if (dst_cpu != src_cpu) { 890 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 891 async_run_on_cpu(dst_cpu, 892 tlb_flush_range_by_mmuidx_async_1, 893 RUN_ON_CPU_HOST_PTR(p)); 894 } 895 } 896 897 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 898 } 899 900 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 901 target_ulong addr, 902 uint16_t idxmap, unsigned bits) 903 { 904 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 905 idxmap, bits); 906 } 907 908 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 909 target_ulong addr, 910 target_ulong len, 911 uint16_t idxmap, 912 unsigned bits) 913 { 914 TLBFlushRangeData d, *p; 915 CPUState *dst_cpu; 916 917 /* 918 * If all bits are significant, and len is small, 919 * this devolves to tlb_flush_page. 920 */ 921 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 922 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 923 return; 924 } 925 /* If no page bits are significant, this devolves to tlb_flush. */ 926 if (bits < TARGET_PAGE_BITS) { 927 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 928 return; 929 } 930 931 /* This should already be page aligned */ 932 d.addr = addr & TARGET_PAGE_MASK; 933 d.len = len; 934 d.idxmap = idxmap; 935 d.bits = bits; 936 937 /* Allocate a separate data block for each destination cpu. */ 938 CPU_FOREACH(dst_cpu) { 939 if (dst_cpu != src_cpu) { 940 p = g_memdup(&d, sizeof(d)); 941 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 942 RUN_ON_CPU_HOST_PTR(p)); 943 } 944 } 945 946 p = g_memdup(&d, sizeof(d)); 947 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 948 RUN_ON_CPU_HOST_PTR(p)); 949 } 950 951 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 952 target_ulong addr, 953 uint16_t idxmap, 954 unsigned bits) 955 { 956 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 957 idxmap, bits); 958 } 959 960 /* update the TLBs so that writes to code in the virtual page 'addr' 961 can be detected */ 962 void tlb_protect_code(ram_addr_t ram_addr) 963 { 964 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 965 TARGET_PAGE_SIZE, 966 DIRTY_MEMORY_CODE); 967 } 968 969 /* update the TLB so that writes in physical page 'phys_addr' are no longer 970 tested for self modifying code */ 971 void tlb_unprotect_code(ram_addr_t ram_addr) 972 { 973 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 974 } 975 976 977 /* 978 * Dirty write flag handling 979 * 980 * When the TCG code writes to a location it looks up the address in 981 * the TLB and uses that data to compute the final address. If any of 982 * the lower bits of the address are set then the slow path is forced. 983 * There are a number of reasons to do this but for normal RAM the 984 * most usual is detecting writes to code regions which may invalidate 985 * generated code. 986 * 987 * Other vCPUs might be reading their TLBs during guest execution, so we update 988 * te->addr_write with qatomic_set. We don't need to worry about this for 989 * oversized guests as MTTCG is disabled for them. 990 * 991 * Called with tlb_c.lock held. 992 */ 993 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 994 uintptr_t start, uintptr_t length) 995 { 996 uintptr_t addr = tlb_entry->addr_write; 997 998 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 999 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 1000 addr &= TARGET_PAGE_MASK; 1001 addr += tlb_entry->addend; 1002 if ((addr - start) < length) { 1003 #if TARGET_LONG_BITS == 32 1004 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1005 ptr_write += HOST_BIG_ENDIAN; 1006 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1007 #elif TCG_OVERSIZED_GUEST 1008 tlb_entry->addr_write |= TLB_NOTDIRTY; 1009 #else 1010 qatomic_set(&tlb_entry->addr_write, 1011 tlb_entry->addr_write | TLB_NOTDIRTY); 1012 #endif 1013 } 1014 } 1015 } 1016 1017 /* 1018 * Called with tlb_c.lock held. 1019 * Called only from the vCPU context, i.e. the TLB's owner thread. 1020 */ 1021 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1022 { 1023 *d = *s; 1024 } 1025 1026 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1027 * the target vCPU). 1028 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1029 * thing actually updated is the target TLB entry ->addr_write flags. 1030 */ 1031 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1032 { 1033 CPUArchState *env; 1034 1035 int mmu_idx; 1036 1037 env = cpu->env_ptr; 1038 qemu_spin_lock(&env_tlb(env)->c.lock); 1039 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1040 unsigned int i; 1041 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1042 1043 for (i = 0; i < n; i++) { 1044 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1045 start1, length); 1046 } 1047 1048 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1049 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1050 start1, length); 1051 } 1052 } 1053 qemu_spin_unlock(&env_tlb(env)->c.lock); 1054 } 1055 1056 /* Called with tlb_c.lock held */ 1057 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1058 target_ulong vaddr) 1059 { 1060 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1061 tlb_entry->addr_write = vaddr; 1062 } 1063 } 1064 1065 /* update the TLB corresponding to virtual page vaddr 1066 so that it is no longer dirty */ 1067 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1068 { 1069 CPUArchState *env = cpu->env_ptr; 1070 int mmu_idx; 1071 1072 assert_cpu_is_self(cpu); 1073 1074 vaddr &= TARGET_PAGE_MASK; 1075 qemu_spin_lock(&env_tlb(env)->c.lock); 1076 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1077 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1078 } 1079 1080 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1081 int k; 1082 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1083 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1084 } 1085 } 1086 qemu_spin_unlock(&env_tlb(env)->c.lock); 1087 } 1088 1089 /* Our TLB does not support large pages, so remember the area covered by 1090 large pages and trigger a full TLB flush if these are invalidated. */ 1091 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1092 target_ulong vaddr, target_ulong size) 1093 { 1094 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1095 target_ulong lp_mask = ~(size - 1); 1096 1097 if (lp_addr == (target_ulong)-1) { 1098 /* No previous large page. */ 1099 lp_addr = vaddr; 1100 } else { 1101 /* Extend the existing region to include the new page. 1102 This is a compromise between unnecessary flushes and 1103 the cost of maintaining a full variable size TLB. */ 1104 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1105 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1106 lp_mask <<= 1; 1107 } 1108 } 1109 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1110 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1111 } 1112 1113 /* 1114 * Add a new TLB entry. At most one entry for a given virtual address 1115 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1116 * supplied size is only used by tlb_flush_page. 1117 * 1118 * Called from TCG-generated code, which is under an RCU read-side 1119 * critical section. 1120 */ 1121 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1122 target_ulong vaddr, CPUTLBEntryFull *full) 1123 { 1124 CPUArchState *env = cpu->env_ptr; 1125 CPUTLB *tlb = env_tlb(env); 1126 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1127 MemoryRegionSection *section; 1128 unsigned int index; 1129 target_ulong address; 1130 target_ulong write_address; 1131 uintptr_t addend; 1132 CPUTLBEntry *te, tn; 1133 hwaddr iotlb, xlat, sz, paddr_page; 1134 target_ulong vaddr_page; 1135 int asidx, wp_flags, prot; 1136 bool is_ram, is_romd; 1137 1138 assert_cpu_is_self(cpu); 1139 1140 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1141 sz = TARGET_PAGE_SIZE; 1142 } else { 1143 sz = (hwaddr)1 << full->lg_page_size; 1144 tlb_add_large_page(env, mmu_idx, vaddr, sz); 1145 } 1146 vaddr_page = vaddr & TARGET_PAGE_MASK; 1147 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1148 1149 prot = full->prot; 1150 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1151 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1152 &xlat, &sz, full->attrs, &prot); 1153 assert(sz >= TARGET_PAGE_SIZE); 1154 1155 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx 1156 " prot=%x idx=%d\n", 1157 vaddr, full->phys_addr, prot, mmu_idx); 1158 1159 address = vaddr_page; 1160 if (full->lg_page_size < TARGET_PAGE_BITS) { 1161 /* Repeat the MMU check and TLB fill on every access. */ 1162 address |= TLB_INVALID_MASK; 1163 } 1164 if (full->attrs.byte_swap) { 1165 address |= TLB_BSWAP; 1166 } 1167 1168 is_ram = memory_region_is_ram(section->mr); 1169 is_romd = memory_region_is_romd(section->mr); 1170 1171 if (is_ram || is_romd) { 1172 /* RAM and ROMD both have associated host memory. */ 1173 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1174 } else { 1175 /* I/O does not; force the host address to NULL. */ 1176 addend = 0; 1177 } 1178 1179 write_address = address; 1180 if (is_ram) { 1181 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1182 /* 1183 * Computing is_clean is expensive; avoid all that unless 1184 * the page is actually writable. 1185 */ 1186 if (prot & PAGE_WRITE) { 1187 if (section->readonly) { 1188 write_address |= TLB_DISCARD_WRITE; 1189 } else if (cpu_physical_memory_is_clean(iotlb)) { 1190 write_address |= TLB_NOTDIRTY; 1191 } 1192 } 1193 } else { 1194 /* I/O or ROMD */ 1195 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1196 /* 1197 * Writes to romd devices must go through MMIO to enable write. 1198 * Reads to romd devices go through the ram_ptr found above, 1199 * but of course reads to I/O must go through MMIO. 1200 */ 1201 write_address |= TLB_MMIO; 1202 if (!is_romd) { 1203 address = write_address; 1204 } 1205 } 1206 1207 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1208 TARGET_PAGE_SIZE); 1209 1210 index = tlb_index(env, mmu_idx, vaddr_page); 1211 te = tlb_entry(env, mmu_idx, vaddr_page); 1212 1213 /* 1214 * Hold the TLB lock for the rest of the function. We could acquire/release 1215 * the lock several times in the function, but it is faster to amortize the 1216 * acquisition cost by acquiring it just once. Note that this leads to 1217 * a longer critical section, but this is not a concern since the TLB lock 1218 * is unlikely to be contended. 1219 */ 1220 qemu_spin_lock(&tlb->c.lock); 1221 1222 /* Note that the tlb is no longer clean. */ 1223 tlb->c.dirty |= 1 << mmu_idx; 1224 1225 /* Make sure there's no cached translation for the new page. */ 1226 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1227 1228 /* 1229 * Only evict the old entry to the victim tlb if it's for a 1230 * different page; otherwise just overwrite the stale data. 1231 */ 1232 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1233 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1234 CPUTLBEntry *tv = &desc->vtable[vidx]; 1235 1236 /* Evict the old entry into the victim tlb. */ 1237 copy_tlb_helper_locked(tv, te); 1238 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1239 tlb_n_used_entries_dec(env, mmu_idx); 1240 } 1241 1242 /* refill the tlb */ 1243 /* 1244 * At this point iotlb contains a physical section number in the lower 1245 * TARGET_PAGE_BITS, and either 1246 * + the ram_addr_t of the page base of the target RAM (RAM) 1247 * + the offset within section->mr of the page base (I/O, ROMD) 1248 * We subtract the vaddr_page (which is page aligned and thus won't 1249 * disturb the low bits) to give an offset which can be added to the 1250 * (non-page-aligned) vaddr of the eventual memory access to get 1251 * the MemoryRegion offset for the access. Note that the vaddr we 1252 * subtract here is that of the page base, and not the same as the 1253 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1254 */ 1255 desc->fulltlb[index] = *full; 1256 desc->fulltlb[index].xlat_section = iotlb - vaddr_page; 1257 desc->fulltlb[index].phys_addr = paddr_page; 1258 1259 /* Now calculate the new entry */ 1260 tn.addend = addend - vaddr_page; 1261 if (prot & PAGE_READ) { 1262 tn.addr_read = address; 1263 if (wp_flags & BP_MEM_READ) { 1264 tn.addr_read |= TLB_WATCHPOINT; 1265 } 1266 } else { 1267 tn.addr_read = -1; 1268 } 1269 1270 if (prot & PAGE_EXEC) { 1271 tn.addr_code = address; 1272 } else { 1273 tn.addr_code = -1; 1274 } 1275 1276 tn.addr_write = -1; 1277 if (prot & PAGE_WRITE) { 1278 tn.addr_write = write_address; 1279 if (prot & PAGE_WRITE_INV) { 1280 tn.addr_write |= TLB_INVALID_MASK; 1281 } 1282 if (wp_flags & BP_MEM_WRITE) { 1283 tn.addr_write |= TLB_WATCHPOINT; 1284 } 1285 } 1286 1287 copy_tlb_helper_locked(te, &tn); 1288 tlb_n_used_entries_inc(env, mmu_idx); 1289 qemu_spin_unlock(&tlb->c.lock); 1290 } 1291 1292 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1293 hwaddr paddr, MemTxAttrs attrs, int prot, 1294 int mmu_idx, target_ulong size) 1295 { 1296 CPUTLBEntryFull full = { 1297 .phys_addr = paddr, 1298 .attrs = attrs, 1299 .prot = prot, 1300 .lg_page_size = ctz64(size) 1301 }; 1302 1303 assert(is_power_of_2(size)); 1304 tlb_set_page_full(cpu, mmu_idx, vaddr, &full); 1305 } 1306 1307 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1308 hwaddr paddr, int prot, 1309 int mmu_idx, target_ulong size) 1310 { 1311 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1312 prot, mmu_idx, size); 1313 } 1314 1315 /* 1316 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1317 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1318 * be discarded and looked up again (e.g. via tlb_entry()). 1319 */ 1320 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1321 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1322 { 1323 bool ok; 1324 1325 /* 1326 * This is not a probe, so only valid return is success; failure 1327 * should result in exception + longjmp to the cpu loop. 1328 */ 1329 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1330 access_type, mmu_idx, false, retaddr); 1331 assert(ok); 1332 } 1333 1334 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1335 MMUAccessType access_type, 1336 int mmu_idx, uintptr_t retaddr) 1337 { 1338 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1339 mmu_idx, retaddr); 1340 } 1341 1342 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1343 vaddr addr, unsigned size, 1344 MMUAccessType access_type, 1345 int mmu_idx, MemTxAttrs attrs, 1346 MemTxResult response, 1347 uintptr_t retaddr) 1348 { 1349 CPUClass *cc = CPU_GET_CLASS(cpu); 1350 1351 if (!cpu->ignore_memory_transaction_failures && 1352 cc->tcg_ops->do_transaction_failed) { 1353 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1354 access_type, mmu_idx, attrs, 1355 response, retaddr); 1356 } 1357 } 1358 1359 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1360 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1361 MMUAccessType access_type, MemOp op) 1362 { 1363 CPUState *cpu = env_cpu(env); 1364 hwaddr mr_offset; 1365 MemoryRegionSection *section; 1366 MemoryRegion *mr; 1367 uint64_t val; 1368 MemTxResult r; 1369 1370 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1371 mr = section->mr; 1372 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1373 cpu->mem_io_pc = retaddr; 1374 if (!cpu->can_do_io) { 1375 cpu_io_recompile(cpu, retaddr); 1376 } 1377 1378 { 1379 QEMU_IOTHREAD_LOCK_GUARD(); 1380 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1381 } 1382 1383 if (r != MEMTX_OK) { 1384 hwaddr physaddr = mr_offset + 1385 section->offset_within_address_space - 1386 section->offset_within_region; 1387 1388 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1389 mmu_idx, full->attrs, r, retaddr); 1390 } 1391 return val; 1392 } 1393 1394 /* 1395 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1396 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1397 * because of the side effect of io_writex changing memory layout. 1398 */ 1399 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1400 hwaddr mr_offset) 1401 { 1402 #ifdef CONFIG_PLUGIN 1403 SavedIOTLB *saved = &cs->saved_iotlb; 1404 saved->section = section; 1405 saved->mr_offset = mr_offset; 1406 #endif 1407 } 1408 1409 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1410 int mmu_idx, uint64_t val, target_ulong addr, 1411 uintptr_t retaddr, MemOp op) 1412 { 1413 CPUState *cpu = env_cpu(env); 1414 hwaddr mr_offset; 1415 MemoryRegionSection *section; 1416 MemoryRegion *mr; 1417 MemTxResult r; 1418 1419 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1420 mr = section->mr; 1421 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1422 if (!cpu->can_do_io) { 1423 cpu_io_recompile(cpu, retaddr); 1424 } 1425 cpu->mem_io_pc = retaddr; 1426 1427 /* 1428 * The memory_region_dispatch may trigger a flush/resize 1429 * so for plugins we save the iotlb_data just in case. 1430 */ 1431 save_iotlb_data(cpu, section, mr_offset); 1432 1433 { 1434 QEMU_IOTHREAD_LOCK_GUARD(); 1435 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1436 } 1437 1438 if (r != MEMTX_OK) { 1439 hwaddr physaddr = mr_offset + 1440 section->offset_within_address_space - 1441 section->offset_within_region; 1442 1443 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1444 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1445 retaddr); 1446 } 1447 } 1448 1449 /* Return true if ADDR is present in the victim tlb, and has been copied 1450 back to the main tlb. */ 1451 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1452 MMUAccessType access_type, target_ulong page) 1453 { 1454 size_t vidx; 1455 1456 assert_cpu_is_self(env_cpu(env)); 1457 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1458 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1459 target_ulong cmp = tlb_read_idx(vtlb, access_type); 1460 1461 if (cmp == page) { 1462 /* Found entry in victim tlb, swap tlb and iotlb. */ 1463 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1464 1465 qemu_spin_lock(&env_tlb(env)->c.lock); 1466 copy_tlb_helper_locked(&tmptlb, tlb); 1467 copy_tlb_helper_locked(tlb, vtlb); 1468 copy_tlb_helper_locked(vtlb, &tmptlb); 1469 qemu_spin_unlock(&env_tlb(env)->c.lock); 1470 1471 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1472 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1473 CPUTLBEntryFull tmpf; 1474 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1475 return true; 1476 } 1477 } 1478 return false; 1479 } 1480 1481 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1482 CPUTLBEntryFull *full, uintptr_t retaddr) 1483 { 1484 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1485 1486 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1487 1488 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1489 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1490 } 1491 1492 /* 1493 * Set both VGA and migration bits for simplicity and to remove 1494 * the notdirty callback faster. 1495 */ 1496 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1497 1498 /* We remove the notdirty callback only if the code has been flushed. */ 1499 if (!cpu_physical_memory_is_clean(ram_addr)) { 1500 trace_memory_notdirty_set_dirty(mem_vaddr); 1501 tlb_set_dirty(cpu, mem_vaddr); 1502 } 1503 } 1504 1505 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1506 int fault_size, MMUAccessType access_type, 1507 int mmu_idx, bool nonfault, 1508 void **phost, CPUTLBEntryFull **pfull, 1509 uintptr_t retaddr) 1510 { 1511 uintptr_t index = tlb_index(env, mmu_idx, addr); 1512 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1513 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1514 target_ulong page_addr = addr & TARGET_PAGE_MASK; 1515 int flags = TLB_FLAGS_MASK; 1516 1517 if (!tlb_hit_page(tlb_addr, page_addr)) { 1518 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1519 CPUState *cs = env_cpu(env); 1520 1521 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1522 mmu_idx, nonfault, retaddr)) { 1523 /* Non-faulting page table read failed. */ 1524 *phost = NULL; 1525 *pfull = NULL; 1526 return TLB_INVALID_MASK; 1527 } 1528 1529 /* TLB resize via tlb_fill may have moved the entry. */ 1530 index = tlb_index(env, mmu_idx, addr); 1531 entry = tlb_entry(env, mmu_idx, addr); 1532 1533 /* 1534 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1535 * to force the next access through tlb_fill. We've just 1536 * called tlb_fill, so we know that this entry *is* valid. 1537 */ 1538 flags &= ~TLB_INVALID_MASK; 1539 } 1540 tlb_addr = tlb_read_idx(entry, access_type); 1541 } 1542 flags &= tlb_addr; 1543 1544 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1545 1546 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1547 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1548 *phost = NULL; 1549 return TLB_MMIO; 1550 } 1551 1552 /* Everything else is RAM. */ 1553 *phost = (void *)((uintptr_t)addr + entry->addend); 1554 return flags; 1555 } 1556 1557 int probe_access_full(CPUArchState *env, target_ulong addr, int size, 1558 MMUAccessType access_type, int mmu_idx, 1559 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1560 uintptr_t retaddr) 1561 { 1562 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1563 nonfault, phost, pfull, retaddr); 1564 1565 /* Handle clean RAM pages. */ 1566 if (unlikely(flags & TLB_NOTDIRTY)) { 1567 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1568 flags &= ~TLB_NOTDIRTY; 1569 } 1570 1571 return flags; 1572 } 1573 1574 int probe_access_flags(CPUArchState *env, target_ulong addr, int size, 1575 MMUAccessType access_type, int mmu_idx, 1576 bool nonfault, void **phost, uintptr_t retaddr) 1577 { 1578 CPUTLBEntryFull *full; 1579 int flags; 1580 1581 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1582 1583 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1584 nonfault, phost, &full, retaddr); 1585 1586 /* Handle clean RAM pages. */ 1587 if (unlikely(flags & TLB_NOTDIRTY)) { 1588 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1589 flags &= ~TLB_NOTDIRTY; 1590 } 1591 1592 return flags; 1593 } 1594 1595 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1596 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1597 { 1598 CPUTLBEntryFull *full; 1599 void *host; 1600 int flags; 1601 1602 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1603 1604 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1605 false, &host, &full, retaddr); 1606 1607 /* Per the interface, size == 0 merely faults the access. */ 1608 if (size == 0) { 1609 return NULL; 1610 } 1611 1612 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1613 /* Handle watchpoints. */ 1614 if (flags & TLB_WATCHPOINT) { 1615 int wp_access = (access_type == MMU_DATA_STORE 1616 ? BP_MEM_WRITE : BP_MEM_READ); 1617 cpu_check_watchpoint(env_cpu(env), addr, size, 1618 full->attrs, wp_access, retaddr); 1619 } 1620 1621 /* Handle clean RAM pages. */ 1622 if (flags & TLB_NOTDIRTY) { 1623 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1624 } 1625 } 1626 1627 return host; 1628 } 1629 1630 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1631 MMUAccessType access_type, int mmu_idx) 1632 { 1633 CPUTLBEntryFull *full; 1634 void *host; 1635 int flags; 1636 1637 flags = probe_access_internal(env, addr, 0, access_type, 1638 mmu_idx, true, &host, &full, 0); 1639 1640 /* No combination of flags are expected by the caller. */ 1641 return flags ? NULL : host; 1642 } 1643 1644 /* 1645 * Return a ram_addr_t for the virtual address for execution. 1646 * 1647 * Return -1 if we can't translate and execute from an entire page 1648 * of RAM. This will force us to execute by loading and translating 1649 * one insn at a time, without caching. 1650 * 1651 * NOTE: This function will trigger an exception if the page is 1652 * not executable. 1653 */ 1654 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1655 void **hostp) 1656 { 1657 CPUTLBEntryFull *full; 1658 void *p; 1659 1660 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1661 cpu_mmu_index(env, true), false, &p, &full, 0); 1662 if (p == NULL) { 1663 return -1; 1664 } 1665 1666 if (full->lg_page_size < TARGET_PAGE_BITS) { 1667 return -1; 1668 } 1669 1670 if (hostp) { 1671 *hostp = p; 1672 } 1673 return qemu_ram_addr_from_host_nofail(p); 1674 } 1675 1676 /* Load/store with atomicity primitives. */ 1677 #include "ldst_atomicity.c.inc" 1678 1679 #ifdef CONFIG_PLUGIN 1680 /* 1681 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1682 * This should be a hot path as we will have just looked this path up 1683 * in the softmmu lookup code (or helper). We don't handle re-fills or 1684 * checking the victim table. This is purely informational. 1685 * 1686 * This almost never fails as the memory access being instrumented 1687 * should have just filled the TLB. The one corner case is io_writex 1688 * which can cause TLB flushes and potential resizing of the TLBs 1689 * losing the information we need. In those cases we need to recover 1690 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1691 * from the same thread (which a mem callback will be) this is safe. 1692 */ 1693 1694 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1695 bool is_store, struct qemu_plugin_hwaddr *data) 1696 { 1697 CPUArchState *env = cpu->env_ptr; 1698 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1699 uintptr_t index = tlb_index(env, mmu_idx, addr); 1700 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1701 1702 if (likely(tlb_hit(tlb_addr, addr))) { 1703 /* We must have an iotlb entry for MMIO */ 1704 if (tlb_addr & TLB_MMIO) { 1705 CPUTLBEntryFull *full; 1706 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1707 data->is_io = true; 1708 data->v.io.section = 1709 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1710 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1711 } else { 1712 data->is_io = false; 1713 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1714 } 1715 return true; 1716 } else { 1717 SavedIOTLB *saved = &cpu->saved_iotlb; 1718 data->is_io = true; 1719 data->v.io.section = saved->section; 1720 data->v.io.offset = saved->mr_offset; 1721 return true; 1722 } 1723 } 1724 1725 #endif 1726 1727 /* 1728 * Probe for a load/store operation. 1729 * Return the host address and into @flags. 1730 */ 1731 1732 typedef struct MMULookupPageData { 1733 CPUTLBEntryFull *full; 1734 void *haddr; 1735 target_ulong addr; 1736 int flags; 1737 int size; 1738 } MMULookupPageData; 1739 1740 typedef struct MMULookupLocals { 1741 MMULookupPageData page[2]; 1742 MemOp memop; 1743 int mmu_idx; 1744 } MMULookupLocals; 1745 1746 /** 1747 * mmu_lookup1: translate one page 1748 * @env: cpu context 1749 * @data: lookup parameters 1750 * @mmu_idx: virtual address context 1751 * @access_type: load/store/code 1752 * @ra: return address into tcg generated code, or 0 1753 * 1754 * Resolve the translation for the one page at @data.addr, filling in 1755 * the rest of @data with the results. If the translation fails, 1756 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1757 * @mmu_idx may have resized. 1758 */ 1759 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1760 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1761 { 1762 target_ulong addr = data->addr; 1763 uintptr_t index = tlb_index(env, mmu_idx, addr); 1764 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1765 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1766 bool maybe_resized = false; 1767 1768 /* If the TLB entry is for a different page, reload and try again. */ 1769 if (!tlb_hit(tlb_addr, addr)) { 1770 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1771 addr & TARGET_PAGE_MASK)) { 1772 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1773 maybe_resized = true; 1774 index = tlb_index(env, mmu_idx, addr); 1775 entry = tlb_entry(env, mmu_idx, addr); 1776 } 1777 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1778 } 1779 1780 data->flags = tlb_addr & TLB_FLAGS_MASK; 1781 data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1782 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1783 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1784 1785 return maybe_resized; 1786 } 1787 1788 /** 1789 * mmu_watch_or_dirty 1790 * @env: cpu context 1791 * @data: lookup parameters 1792 * @access_type: load/store/code 1793 * @ra: return address into tcg generated code, or 0 1794 * 1795 * Trigger watchpoints for @data.addr:@data.size; 1796 * record writes to protected clean pages. 1797 */ 1798 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1799 MMUAccessType access_type, uintptr_t ra) 1800 { 1801 CPUTLBEntryFull *full = data->full; 1802 target_ulong addr = data->addr; 1803 int flags = data->flags; 1804 int size = data->size; 1805 1806 /* On watchpoint hit, this will longjmp out. */ 1807 if (flags & TLB_WATCHPOINT) { 1808 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1809 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1810 flags &= ~TLB_WATCHPOINT; 1811 } 1812 1813 /* Note that notdirty is only set for writes. */ 1814 if (flags & TLB_NOTDIRTY) { 1815 notdirty_write(env_cpu(env), addr, size, full, ra); 1816 flags &= ~TLB_NOTDIRTY; 1817 } 1818 data->flags = flags; 1819 } 1820 1821 /** 1822 * mmu_lookup: translate page(s) 1823 * @env: cpu context 1824 * @addr: virtual address 1825 * @oi: combined mmu_idx and MemOp 1826 * @ra: return address into tcg generated code, or 0 1827 * @access_type: load/store/code 1828 * @l: output result 1829 * 1830 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1831 * bytes. Return true if the lookup crosses a page boundary. 1832 */ 1833 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1834 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1835 { 1836 unsigned a_bits; 1837 bool crosspage; 1838 int flags; 1839 1840 l->memop = get_memop(oi); 1841 l->mmu_idx = get_mmuidx(oi); 1842 1843 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1844 1845 /* Handle CPU specific unaligned behaviour */ 1846 a_bits = get_alignment_bits(l->memop); 1847 if (addr & ((1 << a_bits) - 1)) { 1848 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1849 } 1850 1851 l->page[0].addr = addr; 1852 l->page[0].size = memop_size(l->memop); 1853 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1854 l->page[1].size = 0; 1855 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1856 1857 if (likely(!crosspage)) { 1858 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1859 1860 flags = l->page[0].flags; 1861 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1862 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1863 } 1864 if (unlikely(flags & TLB_BSWAP)) { 1865 l->memop ^= MO_BSWAP; 1866 } 1867 } else { 1868 /* Finish compute of page crossing. */ 1869 int size0 = l->page[1].addr - addr; 1870 l->page[1].size = l->page[0].size - size0; 1871 l->page[0].size = size0; 1872 1873 /* 1874 * Lookup both pages, recognizing exceptions from either. If the 1875 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1876 */ 1877 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1878 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1879 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1880 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1881 } 1882 1883 flags = l->page[0].flags | l->page[1].flags; 1884 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1885 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1886 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1887 } 1888 1889 /* 1890 * Since target/sparc is the only user of TLB_BSWAP, and all 1891 * Sparc accesses are aligned, any treatment across two pages 1892 * would be arbitrary. Refuse it until there's a use. 1893 */ 1894 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1895 } 1896 1897 return crosspage; 1898 } 1899 1900 /* 1901 * Probe for an atomic operation. Do not allow unaligned operations, 1902 * or io operations to proceed. Return the host address. 1903 */ 1904 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1905 MemOpIdx oi, int size, uintptr_t retaddr) 1906 { 1907 uintptr_t mmu_idx = get_mmuidx(oi); 1908 MemOp mop = get_memop(oi); 1909 int a_bits = get_alignment_bits(mop); 1910 uintptr_t index; 1911 CPUTLBEntry *tlbe; 1912 target_ulong tlb_addr; 1913 void *hostaddr; 1914 CPUTLBEntryFull *full; 1915 1916 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1917 1918 /* Adjust the given return address. */ 1919 retaddr -= GETPC_ADJ; 1920 1921 /* Enforce guest required alignment. */ 1922 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1923 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1924 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1925 mmu_idx, retaddr); 1926 } 1927 1928 /* Enforce qemu required alignment. */ 1929 if (unlikely(addr & (size - 1))) { 1930 /* We get here if guest alignment was not requested, 1931 or was not enforced by cpu_unaligned_access above. 1932 We might widen the access and emulate, but for now 1933 mark an exception and exit the cpu loop. */ 1934 goto stop_the_world; 1935 } 1936 1937 index = tlb_index(env, mmu_idx, addr); 1938 tlbe = tlb_entry(env, mmu_idx, addr); 1939 1940 /* Check TLB entry and enforce page permissions. */ 1941 tlb_addr = tlb_addr_write(tlbe); 1942 if (!tlb_hit(tlb_addr, addr)) { 1943 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1944 addr & TARGET_PAGE_MASK)) { 1945 tlb_fill(env_cpu(env), addr, size, 1946 MMU_DATA_STORE, mmu_idx, retaddr); 1947 index = tlb_index(env, mmu_idx, addr); 1948 tlbe = tlb_entry(env, mmu_idx, addr); 1949 } 1950 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1951 } 1952 1953 /* 1954 * Let the guest notice RMW on a write-only page. 1955 * We have just verified that the page is writable. 1956 * Subpage lookups may have left TLB_INVALID_MASK set, 1957 * but addr_read will only be -1 if PAGE_READ was unset. 1958 */ 1959 if (unlikely(tlbe->addr_read == -1)) { 1960 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1961 /* 1962 * Since we don't support reads and writes to different 1963 * addresses, and we do have the proper page loaded for 1964 * write, this shouldn't ever return. But just in case, 1965 * handle via stop-the-world. 1966 */ 1967 goto stop_the_world; 1968 } 1969 /* Collect TLB_WATCHPOINT for read. */ 1970 tlb_addr |= tlbe->addr_read; 1971 1972 /* Notice an IO access or a needs-MMU-lookup access */ 1973 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1974 /* There's really nothing that can be done to 1975 support this apart from stop-the-world. */ 1976 goto stop_the_world; 1977 } 1978 1979 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1980 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1981 1982 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1983 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1984 } 1985 1986 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1987 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, 1988 BP_MEM_READ | BP_MEM_WRITE, retaddr); 1989 } 1990 1991 return hostaddr; 1992 1993 stop_the_world: 1994 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1995 } 1996 1997 /* 1998 * Load Helpers 1999 * 2000 * We support two different access types. SOFTMMU_CODE_ACCESS is 2001 * specifically for reading instructions from system memory. It is 2002 * called by the translation loop and in some helpers where the code 2003 * is disassembled. It shouldn't be called directly by guest code. 2004 * 2005 * For the benefit of TCG generated code, we want to avoid the 2006 * complication of ABI-specific return type promotion and always 2007 * return a value extended to the register size of the host. This is 2008 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2009 * data, and for that we always have uint64_t. 2010 * 2011 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2012 */ 2013 2014 /** 2015 * do_ld_mmio_beN: 2016 * @env: cpu context 2017 * @p: translation parameters 2018 * @ret_be: accumulated data 2019 * @mmu_idx: virtual address context 2020 * @ra: return address into tcg generated code, or 0 2021 * 2022 * Load @p->size bytes from @p->addr, which is memory-mapped i/o. 2023 * The bytes are concatenated in big-endian order with @ret_be. 2024 */ 2025 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p, 2026 uint64_t ret_be, int mmu_idx, 2027 MMUAccessType type, uintptr_t ra) 2028 { 2029 CPUTLBEntryFull *full = p->full; 2030 target_ulong addr = p->addr; 2031 int i, size = p->size; 2032 2033 QEMU_IOTHREAD_LOCK_GUARD(); 2034 for (i = 0; i < size; i++) { 2035 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB); 2036 ret_be = (ret_be << 8) | x; 2037 } 2038 return ret_be; 2039 } 2040 2041 /** 2042 * do_ld_bytes_beN 2043 * @p: translation parameters 2044 * @ret_be: accumulated data 2045 * 2046 * Load @p->size bytes from @p->haddr, which is RAM. 2047 * The bytes to concatenated in big-endian order with @ret_be. 2048 */ 2049 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2050 { 2051 uint8_t *haddr = p->haddr; 2052 int i, size = p->size; 2053 2054 for (i = 0; i < size; i++) { 2055 ret_be = (ret_be << 8) | haddr[i]; 2056 } 2057 return ret_be; 2058 } 2059 2060 /** 2061 * do_ld_parts_beN 2062 * @p: translation parameters 2063 * @ret_be: accumulated data 2064 * 2065 * As do_ld_bytes_beN, but atomically on each aligned part. 2066 */ 2067 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2068 { 2069 void *haddr = p->haddr; 2070 int size = p->size; 2071 2072 do { 2073 uint64_t x; 2074 int n; 2075 2076 /* 2077 * Find minimum of alignment and size. 2078 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2079 * would have only checked the low bits of addr|size once at the start, 2080 * but is just as easy. 2081 */ 2082 switch (((uintptr_t)haddr | size) & 7) { 2083 case 4: 2084 x = cpu_to_be32(load_atomic4(haddr)); 2085 ret_be = (ret_be << 32) | x; 2086 n = 4; 2087 break; 2088 case 2: 2089 case 6: 2090 x = cpu_to_be16(load_atomic2(haddr)); 2091 ret_be = (ret_be << 16) | x; 2092 n = 2; 2093 break; 2094 default: 2095 x = *(uint8_t *)haddr; 2096 ret_be = (ret_be << 8) | x; 2097 n = 1; 2098 break; 2099 case 0: 2100 g_assert_not_reached(); 2101 } 2102 haddr += n; 2103 size -= n; 2104 } while (size != 0); 2105 return ret_be; 2106 } 2107 2108 /** 2109 * do_ld_parts_be4 2110 * @p: translation parameters 2111 * @ret_be: accumulated data 2112 * 2113 * As do_ld_bytes_beN, but with one atomic load. 2114 * Four aligned bytes are guaranteed to cover the load. 2115 */ 2116 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2117 { 2118 int o = p->addr & 3; 2119 uint32_t x = load_atomic4(p->haddr - o); 2120 2121 x = cpu_to_be32(x); 2122 x <<= o * 8; 2123 x >>= (4 - p->size) * 8; 2124 return (ret_be << (p->size * 8)) | x; 2125 } 2126 2127 /** 2128 * do_ld_parts_be8 2129 * @p: translation parameters 2130 * @ret_be: accumulated data 2131 * 2132 * As do_ld_bytes_beN, but with one atomic load. 2133 * Eight aligned bytes are guaranteed to cover the load. 2134 */ 2135 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2136 MMULookupPageData *p, uint64_t ret_be) 2137 { 2138 int o = p->addr & 7; 2139 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2140 2141 x = cpu_to_be64(x); 2142 x <<= o * 8; 2143 x >>= (8 - p->size) * 8; 2144 return (ret_be << (p->size * 8)) | x; 2145 } 2146 2147 /** 2148 * do_ld_parts_be16 2149 * @p: translation parameters 2150 * @ret_be: accumulated data 2151 * 2152 * As do_ld_bytes_beN, but with one atomic load. 2153 * 16 aligned bytes are guaranteed to cover the load. 2154 */ 2155 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, 2156 MMULookupPageData *p, uint64_t ret_be) 2157 { 2158 int o = p->addr & 15; 2159 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); 2160 int size = p->size; 2161 2162 if (!HOST_BIG_ENDIAN) { 2163 y = bswap128(y); 2164 } 2165 y = int128_lshift(y, o * 8); 2166 y = int128_urshift(y, (16 - size) * 8); 2167 x = int128_make64(ret_be); 2168 x = int128_lshift(x, size * 8); 2169 return int128_or(x, y); 2170 } 2171 2172 /* 2173 * Wrapper for the above. 2174 */ 2175 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2176 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2177 MemOp mop, uintptr_t ra) 2178 { 2179 MemOp atom; 2180 unsigned tmp, half_size; 2181 2182 if (unlikely(p->flags & TLB_MMIO)) { 2183 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra); 2184 } 2185 2186 /* 2187 * It is a given that we cross a page and therefore there is no 2188 * atomicity for the load as a whole, but subobjects may need attention. 2189 */ 2190 atom = mop & MO_ATOM_MASK; 2191 switch (atom) { 2192 case MO_ATOM_SUBALIGN: 2193 return do_ld_parts_beN(p, ret_be); 2194 2195 case MO_ATOM_IFALIGN_PAIR: 2196 case MO_ATOM_WITHIN16_PAIR: 2197 tmp = mop & MO_SIZE; 2198 tmp = tmp ? tmp - 1 : 0; 2199 half_size = 1 << tmp; 2200 if (atom == MO_ATOM_IFALIGN_PAIR 2201 ? p->size == half_size 2202 : p->size >= half_size) { 2203 if (!HAVE_al8_fast && p->size < 4) { 2204 return do_ld_whole_be4(p, ret_be); 2205 } else { 2206 return do_ld_whole_be8(env, ra, p, ret_be); 2207 } 2208 } 2209 /* fall through */ 2210 2211 case MO_ATOM_IFALIGN: 2212 case MO_ATOM_WITHIN16: 2213 case MO_ATOM_NONE: 2214 return do_ld_bytes_beN(p, ret_be); 2215 2216 default: 2217 g_assert_not_reached(); 2218 } 2219 } 2220 2221 /* 2222 * Wrapper for the above, for 8 < size < 16. 2223 */ 2224 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, 2225 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2226 { 2227 int size = p->size; 2228 uint64_t b; 2229 MemOp atom; 2230 2231 if (unlikely(p->flags & TLB_MMIO)) { 2232 p->size = size - 8; 2233 a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra); 2234 p->addr += p->size; 2235 p->size = 8; 2236 b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra); 2237 return int128_make128(b, a); 2238 } 2239 2240 /* 2241 * It is a given that we cross a page and therefore there is no 2242 * atomicity for the load as a whole, but subobjects may need attention. 2243 */ 2244 atom = mop & MO_ATOM_MASK; 2245 switch (atom) { 2246 case MO_ATOM_SUBALIGN: 2247 p->size = size - 8; 2248 a = do_ld_parts_beN(p, a); 2249 p->haddr += size - 8; 2250 p->size = 8; 2251 b = do_ld_parts_beN(p, 0); 2252 break; 2253 2254 case MO_ATOM_WITHIN16_PAIR: 2255 /* Since size > 8, this is the half that must be atomic. */ 2256 return do_ld_whole_be16(env, ra, p, a); 2257 2258 case MO_ATOM_IFALIGN_PAIR: 2259 /* 2260 * Since size > 8, both halves are misaligned, 2261 * and so neither is atomic. 2262 */ 2263 case MO_ATOM_IFALIGN: 2264 case MO_ATOM_WITHIN16: 2265 case MO_ATOM_NONE: 2266 p->size = size - 8; 2267 a = do_ld_bytes_beN(p, a); 2268 b = ldq_be_p(p->haddr + size - 8); 2269 break; 2270 2271 default: 2272 g_assert_not_reached(); 2273 } 2274 2275 return int128_make128(b, a); 2276 } 2277 2278 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2279 MMUAccessType type, uintptr_t ra) 2280 { 2281 if (unlikely(p->flags & TLB_MMIO)) { 2282 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2283 } else { 2284 return *(uint8_t *)p->haddr; 2285 } 2286 } 2287 2288 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2289 MMUAccessType type, MemOp memop, uintptr_t ra) 2290 { 2291 uint64_t ret; 2292 2293 if (unlikely(p->flags & TLB_MMIO)) { 2294 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2295 } 2296 2297 /* Perform the load host endian, then swap if necessary. */ 2298 ret = load_atom_2(env, ra, p->haddr, memop); 2299 if (memop & MO_BSWAP) { 2300 ret = bswap16(ret); 2301 } 2302 return ret; 2303 } 2304 2305 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2306 MMUAccessType type, MemOp memop, uintptr_t ra) 2307 { 2308 uint32_t ret; 2309 2310 if (unlikely(p->flags & TLB_MMIO)) { 2311 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2312 } 2313 2314 /* Perform the load host endian. */ 2315 ret = load_atom_4(env, ra, p->haddr, memop); 2316 if (memop & MO_BSWAP) { 2317 ret = bswap32(ret); 2318 } 2319 return ret; 2320 } 2321 2322 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2323 MMUAccessType type, MemOp memop, uintptr_t ra) 2324 { 2325 uint64_t ret; 2326 2327 if (unlikely(p->flags & TLB_MMIO)) { 2328 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2329 } 2330 2331 /* Perform the load host endian. */ 2332 ret = load_atom_8(env, ra, p->haddr, memop); 2333 if (memop & MO_BSWAP) { 2334 ret = bswap64(ret); 2335 } 2336 return ret; 2337 } 2338 2339 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2340 uintptr_t ra, MMUAccessType access_type) 2341 { 2342 MMULookupLocals l; 2343 bool crosspage; 2344 2345 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2346 tcg_debug_assert(!crosspage); 2347 2348 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2349 } 2350 2351 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 2352 MemOpIdx oi, uintptr_t retaddr) 2353 { 2354 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2355 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2356 } 2357 2358 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2359 uintptr_t ra, MMUAccessType access_type) 2360 { 2361 MMULookupLocals l; 2362 bool crosspage; 2363 uint16_t ret; 2364 uint8_t a, b; 2365 2366 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2367 if (likely(!crosspage)) { 2368 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2369 } 2370 2371 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2372 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2373 2374 if ((l.memop & MO_BSWAP) == MO_LE) { 2375 ret = a | (b << 8); 2376 } else { 2377 ret = b | (a << 8); 2378 } 2379 return ret; 2380 } 2381 2382 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 2383 MemOpIdx oi, uintptr_t retaddr) 2384 { 2385 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2386 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2387 } 2388 2389 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2390 uintptr_t ra, MMUAccessType access_type) 2391 { 2392 MMULookupLocals l; 2393 bool crosspage; 2394 uint32_t ret; 2395 2396 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2397 if (likely(!crosspage)) { 2398 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2399 } 2400 2401 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2402 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2403 if ((l.memop & MO_BSWAP) == MO_LE) { 2404 ret = bswap32(ret); 2405 } 2406 return ret; 2407 } 2408 2409 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 2410 MemOpIdx oi, uintptr_t retaddr) 2411 { 2412 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2413 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2414 } 2415 2416 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2417 uintptr_t ra, MMUAccessType access_type) 2418 { 2419 MMULookupLocals l; 2420 bool crosspage; 2421 uint64_t ret; 2422 2423 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2424 if (likely(!crosspage)) { 2425 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2426 } 2427 2428 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2429 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2430 if ((l.memop & MO_BSWAP) == MO_LE) { 2431 ret = bswap64(ret); 2432 } 2433 return ret; 2434 } 2435 2436 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 2437 MemOpIdx oi, uintptr_t retaddr) 2438 { 2439 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2440 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2441 } 2442 2443 /* 2444 * Provide signed versions of the load routines as well. We can of course 2445 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2446 */ 2447 2448 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 2449 MemOpIdx oi, uintptr_t retaddr) 2450 { 2451 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2452 } 2453 2454 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 2455 MemOpIdx oi, uintptr_t retaddr) 2456 { 2457 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2458 } 2459 2460 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 2461 MemOpIdx oi, uintptr_t retaddr) 2462 { 2463 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2464 } 2465 2466 static Int128 do_ld16_mmu(CPUArchState *env, target_ulong addr, 2467 MemOpIdx oi, uintptr_t ra) 2468 { 2469 MMULookupLocals l; 2470 bool crosspage; 2471 uint64_t a, b; 2472 Int128 ret; 2473 int first; 2474 2475 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); 2476 if (likely(!crosspage)) { 2477 /* Perform the load host endian. */ 2478 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2479 QEMU_IOTHREAD_LOCK_GUARD(); 2480 a = io_readx(env, l.page[0].full, l.mmu_idx, addr, 2481 ra, MMU_DATA_LOAD, MO_64); 2482 b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8, 2483 ra, MMU_DATA_LOAD, MO_64); 2484 ret = int128_make128(HOST_BIG_ENDIAN ? b : a, 2485 HOST_BIG_ENDIAN ? a : b); 2486 } else { 2487 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); 2488 } 2489 if (l.memop & MO_BSWAP) { 2490 ret = bswap128(ret); 2491 } 2492 return ret; 2493 } 2494 2495 first = l.page[0].size; 2496 if (first == 8) { 2497 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2498 2499 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2500 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2501 if ((mop8 & MO_BSWAP) == MO_LE) { 2502 ret = int128_make128(a, b); 2503 } else { 2504 ret = int128_make128(b, a); 2505 } 2506 return ret; 2507 } 2508 2509 if (first < 8) { 2510 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, 2511 MMU_DATA_LOAD, l.memop, ra); 2512 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); 2513 } else { 2514 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2515 b = int128_getlo(ret); 2516 ret = int128_lshift(ret, l.page[1].size * 8); 2517 a = int128_gethi(ret); 2518 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, 2519 MMU_DATA_LOAD, l.memop, ra); 2520 ret = int128_make128(b, a); 2521 } 2522 if ((l.memop & MO_BSWAP) == MO_LE) { 2523 ret = bswap128(ret); 2524 } 2525 return ret; 2526 } 2527 2528 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 2529 uint32_t oi, uintptr_t retaddr) 2530 { 2531 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2532 return do_ld16_mmu(env, addr, oi, retaddr); 2533 } 2534 2535 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) 2536 { 2537 return helper_ld16_mmu(env, addr, oi, GETPC()); 2538 } 2539 2540 /* 2541 * Load helpers for cpu_ldst.h. 2542 */ 2543 2544 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2545 { 2546 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2547 } 2548 2549 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2550 { 2551 uint8_t ret; 2552 2553 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2554 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2555 plugin_load_cb(env, addr, oi); 2556 return ret; 2557 } 2558 2559 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 2560 MemOpIdx oi, uintptr_t ra) 2561 { 2562 uint16_t ret; 2563 2564 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2565 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2566 plugin_load_cb(env, addr, oi); 2567 return ret; 2568 } 2569 2570 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 2571 MemOpIdx oi, uintptr_t ra) 2572 { 2573 uint32_t ret; 2574 2575 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2576 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2577 plugin_load_cb(env, addr, oi); 2578 return ret; 2579 } 2580 2581 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 2582 MemOpIdx oi, uintptr_t ra) 2583 { 2584 uint64_t ret; 2585 2586 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2587 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2588 plugin_load_cb(env, addr, oi); 2589 return ret; 2590 } 2591 2592 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 2593 MemOpIdx oi, uintptr_t ra) 2594 { 2595 Int128 ret; 2596 2597 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2598 ret = do_ld16_mmu(env, addr, oi, ra); 2599 plugin_load_cb(env, addr, oi); 2600 return ret; 2601 } 2602 2603 /* 2604 * Store Helpers 2605 */ 2606 2607 /** 2608 * do_st_mmio_leN: 2609 * @env: cpu context 2610 * @p: translation parameters 2611 * @val_le: data to store 2612 * @mmu_idx: virtual address context 2613 * @ra: return address into tcg generated code, or 0 2614 * 2615 * Store @p->size bytes at @p->addr, which is memory-mapped i/o. 2616 * The bytes to store are extracted in little-endian order from @val_le; 2617 * return the bytes of @val_le beyond @p->size that have not been stored. 2618 */ 2619 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p, 2620 uint64_t val_le, int mmu_idx, uintptr_t ra) 2621 { 2622 CPUTLBEntryFull *full = p->full; 2623 target_ulong addr = p->addr; 2624 int i, size = p->size; 2625 2626 QEMU_IOTHREAD_LOCK_GUARD(); 2627 for (i = 0; i < size; i++, val_le >>= 8) { 2628 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB); 2629 } 2630 return val_le; 2631 } 2632 2633 /* 2634 * Wrapper for the above. 2635 */ 2636 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2637 uint64_t val_le, int mmu_idx, 2638 MemOp mop, uintptr_t ra) 2639 { 2640 MemOp atom; 2641 unsigned tmp, half_size; 2642 2643 if (unlikely(p->flags & TLB_MMIO)) { 2644 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra); 2645 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2646 return val_le >> (p->size * 8); 2647 } 2648 2649 /* 2650 * It is a given that we cross a page and therefore there is no atomicity 2651 * for the store as a whole, but subobjects may need attention. 2652 */ 2653 atom = mop & MO_ATOM_MASK; 2654 switch (atom) { 2655 case MO_ATOM_SUBALIGN: 2656 return store_parts_leN(p->haddr, p->size, val_le); 2657 2658 case MO_ATOM_IFALIGN_PAIR: 2659 case MO_ATOM_WITHIN16_PAIR: 2660 tmp = mop & MO_SIZE; 2661 tmp = tmp ? tmp - 1 : 0; 2662 half_size = 1 << tmp; 2663 if (atom == MO_ATOM_IFALIGN_PAIR 2664 ? p->size == half_size 2665 : p->size >= half_size) { 2666 if (!HAVE_al8_fast && p->size <= 4) { 2667 return store_whole_le4(p->haddr, p->size, val_le); 2668 } else if (HAVE_al8) { 2669 return store_whole_le8(p->haddr, p->size, val_le); 2670 } else { 2671 cpu_loop_exit_atomic(env_cpu(env), ra); 2672 } 2673 } 2674 /* fall through */ 2675 2676 case MO_ATOM_IFALIGN: 2677 case MO_ATOM_WITHIN16: 2678 case MO_ATOM_NONE: 2679 return store_bytes_leN(p->haddr, p->size, val_le); 2680 2681 default: 2682 g_assert_not_reached(); 2683 } 2684 } 2685 2686 /* 2687 * Wrapper for the above, for 8 < size < 16. 2688 */ 2689 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, 2690 Int128 val_le, int mmu_idx, 2691 MemOp mop, uintptr_t ra) 2692 { 2693 int size = p->size; 2694 MemOp atom; 2695 2696 if (unlikely(p->flags & TLB_MMIO)) { 2697 p->size = 8; 2698 do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra); 2699 p->size = size - 8; 2700 p->addr += 8; 2701 return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra); 2702 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2703 return int128_gethi(val_le) >> ((size - 8) * 8); 2704 } 2705 2706 /* 2707 * It is a given that we cross a page and therefore there is no atomicity 2708 * for the store as a whole, but subobjects may need attention. 2709 */ 2710 atom = mop & MO_ATOM_MASK; 2711 switch (atom) { 2712 case MO_ATOM_SUBALIGN: 2713 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2714 return store_parts_leN(p->haddr + 8, p->size - 8, 2715 int128_gethi(val_le)); 2716 2717 case MO_ATOM_WITHIN16_PAIR: 2718 /* Since size > 8, this is the half that must be atomic. */ 2719 if (!HAVE_ATOMIC128_RW) { 2720 cpu_loop_exit_atomic(env_cpu(env), ra); 2721 } 2722 return store_whole_le16(p->haddr, p->size, val_le); 2723 2724 case MO_ATOM_IFALIGN_PAIR: 2725 /* 2726 * Since size > 8, both halves are misaligned, 2727 * and so neither is atomic. 2728 */ 2729 case MO_ATOM_IFALIGN: 2730 case MO_ATOM_WITHIN16: 2731 case MO_ATOM_NONE: 2732 stq_le_p(p->haddr, int128_getlo(val_le)); 2733 return store_bytes_leN(p->haddr + 8, p->size - 8, 2734 int128_gethi(val_le)); 2735 2736 default: 2737 g_assert_not_reached(); 2738 } 2739 } 2740 2741 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2742 int mmu_idx, uintptr_t ra) 2743 { 2744 if (unlikely(p->flags & TLB_MMIO)) { 2745 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2746 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2747 /* nothing */ 2748 } else { 2749 *(uint8_t *)p->haddr = val; 2750 } 2751 } 2752 2753 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2754 int mmu_idx, MemOp memop, uintptr_t ra) 2755 { 2756 if (unlikely(p->flags & TLB_MMIO)) { 2757 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2758 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2759 /* nothing */ 2760 } else { 2761 /* Swap to host endian if necessary, then store. */ 2762 if (memop & MO_BSWAP) { 2763 val = bswap16(val); 2764 } 2765 store_atom_2(env, ra, p->haddr, memop, val); 2766 } 2767 } 2768 2769 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2770 int mmu_idx, MemOp memop, uintptr_t ra) 2771 { 2772 if (unlikely(p->flags & TLB_MMIO)) { 2773 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2774 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2775 /* nothing */ 2776 } else { 2777 /* Swap to host endian if necessary, then store. */ 2778 if (memop & MO_BSWAP) { 2779 val = bswap32(val); 2780 } 2781 store_atom_4(env, ra, p->haddr, memop, val); 2782 } 2783 } 2784 2785 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2786 int mmu_idx, MemOp memop, uintptr_t ra) 2787 { 2788 if (unlikely(p->flags & TLB_MMIO)) { 2789 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2790 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2791 /* nothing */ 2792 } else { 2793 /* Swap to host endian if necessary, then store. */ 2794 if (memop & MO_BSWAP) { 2795 val = bswap64(val); 2796 } 2797 store_atom_8(env, ra, p->haddr, memop, val); 2798 } 2799 } 2800 2801 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2802 MemOpIdx oi, uintptr_t ra) 2803 { 2804 MMULookupLocals l; 2805 bool crosspage; 2806 2807 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2808 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2809 tcg_debug_assert(!crosspage); 2810 2811 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2812 } 2813 2814 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2815 MemOpIdx oi, uintptr_t ra) 2816 { 2817 MMULookupLocals l; 2818 bool crosspage; 2819 uint8_t a, b; 2820 2821 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2822 if (likely(!crosspage)) { 2823 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2824 return; 2825 } 2826 2827 if ((l.memop & MO_BSWAP) == MO_LE) { 2828 a = val, b = val >> 8; 2829 } else { 2830 b = val, a = val >> 8; 2831 } 2832 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2833 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2834 } 2835 2836 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2837 MemOpIdx oi, uintptr_t retaddr) 2838 { 2839 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2840 do_st2_mmu(env, addr, val, oi, retaddr); 2841 } 2842 2843 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2844 MemOpIdx oi, uintptr_t ra) 2845 { 2846 MMULookupLocals l; 2847 bool crosspage; 2848 2849 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2850 if (likely(!crosspage)) { 2851 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2852 return; 2853 } 2854 2855 /* Swap to little endian for simplicity, then store by bytes. */ 2856 if ((l.memop & MO_BSWAP) != MO_LE) { 2857 val = bswap32(val); 2858 } 2859 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2860 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2861 } 2862 2863 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2864 MemOpIdx oi, uintptr_t retaddr) 2865 { 2866 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2867 do_st4_mmu(env, addr, val, oi, retaddr); 2868 } 2869 2870 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2871 MemOpIdx oi, uintptr_t ra) 2872 { 2873 MMULookupLocals l; 2874 bool crosspage; 2875 2876 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2877 if (likely(!crosspage)) { 2878 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2879 return; 2880 } 2881 2882 /* Swap to little endian for simplicity, then store by bytes. */ 2883 if ((l.memop & MO_BSWAP) != MO_LE) { 2884 val = bswap64(val); 2885 } 2886 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2887 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2888 } 2889 2890 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 2891 MemOpIdx oi, uintptr_t retaddr) 2892 { 2893 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2894 do_st8_mmu(env, addr, val, oi, retaddr); 2895 } 2896 2897 static void do_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val, 2898 MemOpIdx oi, uintptr_t ra) 2899 { 2900 MMULookupLocals l; 2901 bool crosspage; 2902 uint64_t a, b; 2903 int first; 2904 2905 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2906 if (likely(!crosspage)) { 2907 /* Swap to host endian if necessary, then store. */ 2908 if (l.memop & MO_BSWAP) { 2909 val = bswap128(val); 2910 } 2911 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2912 QEMU_IOTHREAD_LOCK_GUARD(); 2913 if (HOST_BIG_ENDIAN) { 2914 b = int128_getlo(val), a = int128_gethi(val); 2915 } else { 2916 a = int128_getlo(val), b = int128_gethi(val); 2917 } 2918 io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64); 2919 io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64); 2920 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2921 /* nothing */ 2922 } else { 2923 store_atom_16(env, ra, l.page[0].haddr, l.memop, val); 2924 } 2925 return; 2926 } 2927 2928 first = l.page[0].size; 2929 if (first == 8) { 2930 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2931 2932 if (l.memop & MO_BSWAP) { 2933 val = bswap128(val); 2934 } 2935 if (HOST_BIG_ENDIAN) { 2936 b = int128_getlo(val), a = int128_gethi(val); 2937 } else { 2938 a = int128_getlo(val), b = int128_gethi(val); 2939 } 2940 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); 2941 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); 2942 return; 2943 } 2944 2945 if ((l.memop & MO_BSWAP) != MO_LE) { 2946 val = bswap128(val); 2947 } 2948 if (first < 8) { 2949 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2950 val = int128_urshift(val, first * 8); 2951 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2952 } else { 2953 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2954 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); 2955 } 2956 } 2957 2958 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 2959 MemOpIdx oi, uintptr_t retaddr) 2960 { 2961 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2962 do_st16_mmu(env, addr, val, oi, retaddr); 2963 } 2964 2965 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 2966 { 2967 helper_st16_mmu(env, addr, val, oi, GETPC()); 2968 } 2969 2970 /* 2971 * Store Helpers for cpu_ldst.h 2972 */ 2973 2974 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2975 { 2976 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2977 } 2978 2979 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2980 MemOpIdx oi, uintptr_t retaddr) 2981 { 2982 helper_stb_mmu(env, addr, val, oi, retaddr); 2983 plugin_store_cb(env, addr, oi); 2984 } 2985 2986 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2987 MemOpIdx oi, uintptr_t retaddr) 2988 { 2989 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2990 do_st2_mmu(env, addr, val, oi, retaddr); 2991 plugin_store_cb(env, addr, oi); 2992 } 2993 2994 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2995 MemOpIdx oi, uintptr_t retaddr) 2996 { 2997 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2998 do_st4_mmu(env, addr, val, oi, retaddr); 2999 plugin_store_cb(env, addr, oi); 3000 } 3001 3002 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 3003 MemOpIdx oi, uintptr_t retaddr) 3004 { 3005 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3006 do_st8_mmu(env, addr, val, oi, retaddr); 3007 plugin_store_cb(env, addr, oi); 3008 } 3009 3010 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val, 3011 MemOpIdx oi, uintptr_t retaddr) 3012 { 3013 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3014 do_st16_mmu(env, addr, val, oi, retaddr); 3015 plugin_store_cb(env, addr, oi); 3016 } 3017 3018 #include "ldst_common.c.inc" 3019 3020 /* 3021 * First set of functions passes in OI and RETADDR. 3022 * This makes them callable from other helpers. 3023 */ 3024 3025 #define ATOMIC_NAME(X) \ 3026 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 3027 3028 #define ATOMIC_MMU_CLEANUP 3029 3030 #include "atomic_common.c.inc" 3031 3032 #define DATA_SIZE 1 3033 #include "atomic_template.h" 3034 3035 #define DATA_SIZE 2 3036 #include "atomic_template.h" 3037 3038 #define DATA_SIZE 4 3039 #include "atomic_template.h" 3040 3041 #ifdef CONFIG_ATOMIC64 3042 #define DATA_SIZE 8 3043 #include "atomic_template.h" 3044 #endif 3045 3046 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128) 3047 #define DATA_SIZE 16 3048 #include "atomic_template.h" 3049 #endif 3050 3051 /* Code access functions. */ 3052 3053 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3054 { 3055 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 3056 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3057 } 3058 3059 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3060 { 3061 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 3062 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3063 } 3064 3065 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3066 { 3067 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 3068 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3069 } 3070 3071 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3072 { 3073 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 3074 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3075 } 3076 3077 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3078 MemOpIdx oi, uintptr_t retaddr) 3079 { 3080 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3081 } 3082 3083 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3084 MemOpIdx oi, uintptr_t retaddr) 3085 { 3086 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3087 } 3088 3089 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3090 MemOpIdx oi, uintptr_t retaddr) 3091 { 3092 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3093 } 3094 3095 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3096 MemOpIdx oi, uintptr_t retaddr) 3097 { 3098 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3099 } 3100