xref: /openbmc/qemu/accel/tcg/cputlb.c (revision c85cad81)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44 
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48 
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 #  define DEBUG_TLB_LOG_GATE 1
53 # else
54 #  define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60 
61 #define tlb_debug(fmt, ...) do { \
62     if (DEBUG_TLB_LOG_GATE) { \
63         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64                       ## __VA_ARGS__); \
65     } else if (DEBUG_TLB_GATE) { \
66         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67     } \
68 } while (0)
69 
70 #define assert_cpu_is_self(cpu) do {                              \
71         if (DEBUG_TLB_GATE) {                                     \
72             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
73         }                                                         \
74     } while (0)
75 
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77  * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79 
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81  */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84 
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89 
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94 
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96                              size_t max_entries)
97 {
98     desc->window_begin_ns = ns;
99     desc->window_max_entries = max_entries;
100 }
101 
102 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
103 {
104     CPUJumpCache *jc = cpu->tb_jmp_cache;
105     int i, i0;
106 
107     if (unlikely(!jc)) {
108         return;
109     }
110 
111     i0 = tb_jmp_cache_hash_page(page_addr);
112     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113         qatomic_set(&jc->array[i0 + i].tb, NULL);
114     }
115 }
116 
117 /**
118  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119  * @desc: The CPUTLBDesc portion of the TLB
120  * @fast: The CPUTLBDescFast portion of the same TLB
121  *
122  * Called with tlb_lock_held.
123  *
124  * We have two main constraints when resizing a TLB: (1) we only resize it
125  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126  * the array or unnecessarily flushing it), which means we do not control how
127  * frequently the resizing can occur; (2) we don't have access to the guest's
128  * future scheduling decisions, and therefore have to decide the magnitude of
129  * the resize based on past observations.
130  *
131  * In general, a memory-hungry process can benefit greatly from an appropriately
132  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133  * we just have to make the TLB as large as possible; while an oversized TLB
134  * results in minimal TLB miss rates, it also takes longer to be flushed
135  * (flushes can be _very_ frequent), and the reduced locality can also hurt
136  * performance.
137  *
138  * To achieve near-optimal performance for all kinds of workloads, we:
139  *
140  * 1. Aggressively increase the size of the TLB when the use rate of the
141  * TLB being flushed is high, since it is likely that in the near future this
142  * memory-hungry process will execute again, and its memory hungriness will
143  * probably be similar.
144  *
145  * 2. Slowly reduce the size of the TLB as the use rate declines over a
146  * reasonably large time window. The rationale is that if in such a time window
147  * we have not observed a high TLB use rate, it is likely that we won't observe
148  * it in the near future. In that case, once a time window expires we downsize
149  * the TLB to match the maximum use rate observed in the window.
150  *
151  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152  * since in that range performance is likely near-optimal. Recall that the TLB
153  * is direct mapped, so we want the use rate to be low (or at least not too
154  * high), since otherwise we are likely to have a significant amount of
155  * conflict misses.
156  */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158                                   int64_t now)
159 {
160     size_t old_size = tlb_n_entries(fast);
161     size_t rate;
162     size_t new_size = old_size;
163     int64_t window_len_ms = 100;
164     int64_t window_len_ns = window_len_ms * 1000 * 1000;
165     bool window_expired = now > desc->window_begin_ns + window_len_ns;
166 
167     if (desc->n_used_entries > desc->window_max_entries) {
168         desc->window_max_entries = desc->n_used_entries;
169     }
170     rate = desc->window_max_entries * 100 / old_size;
171 
172     if (rate > 70) {
173         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174     } else if (rate < 30 && window_expired) {
175         size_t ceil = pow2ceil(desc->window_max_entries);
176         size_t expected_rate = desc->window_max_entries * 100 / ceil;
177 
178         /*
179          * Avoid undersizing when the max number of entries seen is just below
180          * a pow2. For instance, if max_entries == 1025, the expected use rate
181          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183          * later. Thus, make sure that the expected use rate remains below 70%.
184          * (and since we double the size, that means the lowest rate we'd
185          * expect to get is 35%, which is still in the 30-70% range where
186          * we consider that the size is appropriate.)
187          */
188         if (expected_rate > 70) {
189             ceil *= 2;
190         }
191         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192     }
193 
194     if (new_size == old_size) {
195         if (window_expired) {
196             tlb_window_reset(desc, now, desc->n_used_entries);
197         }
198         return;
199     }
200 
201     g_free(fast->table);
202     g_free(desc->fulltlb);
203 
204     tlb_window_reset(desc, now, 0);
205     /* desc->n_used_entries is cleared by the caller */
206     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207     fast->table = g_try_new(CPUTLBEntry, new_size);
208     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209 
210     /*
211      * If the allocations fail, try smaller sizes. We just freed some
212      * memory, so going back to half of new_size has a good chance of working.
213      * Increased memory pressure elsewhere in the system might cause the
214      * allocations to fail though, so we progressively reduce the allocation
215      * size, aborting if we cannot even allocate the smallest TLB we support.
216      */
217     while (fast->table == NULL || desc->fulltlb == NULL) {
218         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219             error_report("%s: %s", __func__, strerror(errno));
220             abort();
221         }
222         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224 
225         g_free(fast->table);
226         g_free(desc->fulltlb);
227         fast->table = g_try_new(CPUTLBEntry, new_size);
228         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229     }
230 }
231 
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234     desc->n_used_entries = 0;
235     desc->large_page_addr = -1;
236     desc->large_page_mask = -1;
237     desc->vindex = 0;
238     memset(fast->table, -1, sizeof_tlb(fast));
239     memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241 
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243                                         int64_t now)
244 {
245     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247 
248     tlb_mmu_resize_locked(desc, fast, now);
249     tlb_mmu_flush_locked(desc, fast);
250 }
251 
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255 
256     tlb_window_reset(desc, now, 0);
257     desc->n_used_entries = 0;
258     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259     fast->table = g_new(CPUTLBEntry, n_entries);
260     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261     tlb_mmu_flush_locked(desc, fast);
262 }
263 
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266     env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268 
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271     env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273 
274 void tlb_init(CPUState *cpu)
275 {
276     CPUArchState *env = cpu->env_ptr;
277     int64_t now = get_clock_realtime();
278     int i;
279 
280     qemu_spin_init(&env_tlb(env)->c.lock);
281 
282     /* All tlbs are initialized flushed. */
283     env_tlb(env)->c.dirty = 0;
284 
285     for (i = 0; i < NB_MMU_MODES; i++) {
286         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287     }
288 }
289 
290 void tlb_destroy(CPUState *cpu)
291 {
292     CPUArchState *env = cpu->env_ptr;
293     int i;
294 
295     qemu_spin_destroy(&env_tlb(env)->c.lock);
296     for (i = 0; i < NB_MMU_MODES; i++) {
297         CPUTLBDesc *desc = &env_tlb(env)->d[i];
298         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299 
300         g_free(fast->table);
301         g_free(desc->fulltlb);
302     }
303 }
304 
305 /* flush_all_helper: run fn across all cpus
306  *
307  * If the wait flag is set then the src cpu's helper will be queued as
308  * "safe" work and the loop exited creating a synchronisation point
309  * where all queued work will be finished before execution starts
310  * again.
311  */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313                              run_on_cpu_data d)
314 {
315     CPUState *cpu;
316 
317     CPU_FOREACH(cpu) {
318         if (cpu != src) {
319             async_run_on_cpu(cpu, fn, d);
320         }
321     }
322 }
323 
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326     CPUState *cpu;
327     size_t full = 0, part = 0, elide = 0;
328 
329     CPU_FOREACH(cpu) {
330         CPUArchState *env = cpu->env_ptr;
331 
332         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335     }
336     *pfull = full;
337     *ppart = part;
338     *pelide = elide;
339 }
340 
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343     CPUArchState *env = cpu->env_ptr;
344     uint16_t asked = data.host_int;
345     uint16_t all_dirty, work, to_clean;
346     int64_t now = get_clock_realtime();
347 
348     assert_cpu_is_self(cpu);
349 
350     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351 
352     qemu_spin_lock(&env_tlb(env)->c.lock);
353 
354     all_dirty = env_tlb(env)->c.dirty;
355     to_clean = asked & all_dirty;
356     all_dirty &= ~to_clean;
357     env_tlb(env)->c.dirty = all_dirty;
358 
359     for (work = to_clean; work != 0; work &= work - 1) {
360         int mmu_idx = ctz32(work);
361         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362     }
363 
364     qemu_spin_unlock(&env_tlb(env)->c.lock);
365 
366     tcg_flush_jmp_cache(cpu);
367 
368     if (to_clean == ALL_MMUIDX_BITS) {
369         qatomic_set(&env_tlb(env)->c.full_flush_count,
370                    env_tlb(env)->c.full_flush_count + 1);
371     } else {
372         qatomic_set(&env_tlb(env)->c.part_flush_count,
373                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374         if (to_clean != asked) {
375             qatomic_set(&env_tlb(env)->c.elide_flush_count,
376                        env_tlb(env)->c.elide_flush_count +
377                        ctpop16(asked & ~to_clean));
378         }
379     }
380 }
381 
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385 
386     if (cpu->created && !qemu_cpu_is_self(cpu)) {
387         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388                          RUN_ON_CPU_HOST_INT(idxmap));
389     } else {
390         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391     }
392 }
393 
394 void tlb_flush(CPUState *cpu)
395 {
396     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398 
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402 
403     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404 
405     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408 
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413 
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417 
418     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419 
420     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423 
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428 
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430                                       target_ulong page, target_ulong mask)
431 {
432     page &= mask;
433     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434 
435     return (page == (tlb_entry->addr_read & mask) ||
436             page == (tlb_addr_write(tlb_entry) & mask) ||
437             page == (tlb_entry->addr_code & mask));
438 }
439 
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
441                                         target_ulong page)
442 {
443     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445 
446 /**
447  * tlb_entry_is_empty - return true if the entry is not in use
448  * @te: pointer to CPUTLBEntry
449  */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454 
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457                                         target_ulong page,
458                                         target_ulong mask)
459 {
460     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461         memset(tlb_entry, -1, sizeof(*tlb_entry));
462         return true;
463     }
464     return false;
465 }
466 
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
468                                           target_ulong page)
469 {
470     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
471 }
472 
473 /* Called with tlb_c.lock held */
474 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
475                                             target_ulong page,
476                                             target_ulong mask)
477 {
478     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
479     int k;
480 
481     assert_cpu_is_self(env_cpu(env));
482     for (k = 0; k < CPU_VTLB_SIZE; k++) {
483         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
484             tlb_n_used_entries_dec(env, mmu_idx);
485         }
486     }
487 }
488 
489 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
490                                               target_ulong page)
491 {
492     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
493 }
494 
495 static void tlb_flush_page_locked(CPUArchState *env, int midx,
496                                   target_ulong page)
497 {
498     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
499     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
500 
501     /* Check if we need to flush due to large pages.  */
502     if ((page & lp_mask) == lp_addr) {
503         tlb_debug("forcing full flush midx %d ("
504                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
505                   midx, lp_addr, lp_mask);
506         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
507     } else {
508         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
509             tlb_n_used_entries_dec(env, midx);
510         }
511         tlb_flush_vtlb_page_locked(env, midx, page);
512     }
513 }
514 
515 /**
516  * tlb_flush_page_by_mmuidx_async_0:
517  * @cpu: cpu on which to flush
518  * @addr: page of virtual address to flush
519  * @idxmap: set of mmu_idx to flush
520  *
521  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
522  * at @addr from the tlbs indicated by @idxmap from @cpu.
523  */
524 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
525                                              target_ulong addr,
526                                              uint16_t idxmap)
527 {
528     CPUArchState *env = cpu->env_ptr;
529     int mmu_idx;
530 
531     assert_cpu_is_self(cpu);
532 
533     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
534 
535     qemu_spin_lock(&env_tlb(env)->c.lock);
536     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
537         if ((idxmap >> mmu_idx) & 1) {
538             tlb_flush_page_locked(env, mmu_idx, addr);
539         }
540     }
541     qemu_spin_unlock(&env_tlb(env)->c.lock);
542 
543     /*
544      * Discard jump cache entries for any tb which might potentially
545      * overlap the flushed page, which includes the previous.
546      */
547     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
548     tb_jmp_cache_clear_page(cpu, addr);
549 }
550 
551 /**
552  * tlb_flush_page_by_mmuidx_async_1:
553  * @cpu: cpu on which to flush
554  * @data: encoded addr + idxmap
555  *
556  * Helper for tlb_flush_page_by_mmuidx and friends, called through
557  * async_run_on_cpu.  The idxmap parameter is encoded in the page
558  * offset of the target_ptr field.  This limits the set of mmu_idx
559  * that can be passed via this method.
560  */
561 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
562                                              run_on_cpu_data data)
563 {
564     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
565     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
566     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
567 
568     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
569 }
570 
571 typedef struct {
572     target_ulong addr;
573     uint16_t idxmap;
574 } TLBFlushPageByMMUIdxData;
575 
576 /**
577  * tlb_flush_page_by_mmuidx_async_2:
578  * @cpu: cpu on which to flush
579  * @data: allocated addr + idxmap
580  *
581  * Helper for tlb_flush_page_by_mmuidx and friends, called through
582  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
583  * TLBFlushPageByMMUIdxData structure that has been allocated
584  * specifically for this helper.  Free the structure when done.
585  */
586 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
587                                              run_on_cpu_data data)
588 {
589     TLBFlushPageByMMUIdxData *d = data.host_ptr;
590 
591     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
592     g_free(d);
593 }
594 
595 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
596 {
597     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
598 
599     /* This should already be page aligned */
600     addr &= TARGET_PAGE_MASK;
601 
602     if (qemu_cpu_is_self(cpu)) {
603         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
604     } else if (idxmap < TARGET_PAGE_SIZE) {
605         /*
606          * Most targets have only a few mmu_idx.  In the case where
607          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
608          * allocating memory for this operation.
609          */
610         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
611                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
612     } else {
613         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
614 
615         /* Otherwise allocate a structure, freed by the worker.  */
616         d->addr = addr;
617         d->idxmap = idxmap;
618         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
619                          RUN_ON_CPU_HOST_PTR(d));
620     }
621 }
622 
623 void tlb_flush_page(CPUState *cpu, target_ulong addr)
624 {
625     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
626 }
627 
628 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
629                                        uint16_t idxmap)
630 {
631     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
632 
633     /* This should already be page aligned */
634     addr &= TARGET_PAGE_MASK;
635 
636     /*
637      * Allocate memory to hold addr+idxmap only when needed.
638      * See tlb_flush_page_by_mmuidx for details.
639      */
640     if (idxmap < TARGET_PAGE_SIZE) {
641         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
642                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
643     } else {
644         CPUState *dst_cpu;
645 
646         /* Allocate a separate data block for each destination cpu.  */
647         CPU_FOREACH(dst_cpu) {
648             if (dst_cpu != src_cpu) {
649                 TLBFlushPageByMMUIdxData *d
650                     = g_new(TLBFlushPageByMMUIdxData, 1);
651 
652                 d->addr = addr;
653                 d->idxmap = idxmap;
654                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
655                                  RUN_ON_CPU_HOST_PTR(d));
656             }
657         }
658     }
659 
660     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
661 }
662 
663 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
664 {
665     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
666 }
667 
668 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
669                                               target_ulong addr,
670                                               uint16_t idxmap)
671 {
672     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
673 
674     /* This should already be page aligned */
675     addr &= TARGET_PAGE_MASK;
676 
677     /*
678      * Allocate memory to hold addr+idxmap only when needed.
679      * See tlb_flush_page_by_mmuidx for details.
680      */
681     if (idxmap < TARGET_PAGE_SIZE) {
682         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
685                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
686     } else {
687         CPUState *dst_cpu;
688         TLBFlushPageByMMUIdxData *d;
689 
690         /* Allocate a separate data block for each destination cpu.  */
691         CPU_FOREACH(dst_cpu) {
692             if (dst_cpu != src_cpu) {
693                 d = g_new(TLBFlushPageByMMUIdxData, 1);
694                 d->addr = addr;
695                 d->idxmap = idxmap;
696                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
697                                  RUN_ON_CPU_HOST_PTR(d));
698             }
699         }
700 
701         d = g_new(TLBFlushPageByMMUIdxData, 1);
702         d->addr = addr;
703         d->idxmap = idxmap;
704         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
705                               RUN_ON_CPU_HOST_PTR(d));
706     }
707 }
708 
709 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
710 {
711     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
712 }
713 
714 static void tlb_flush_range_locked(CPUArchState *env, int midx,
715                                    target_ulong addr, target_ulong len,
716                                    unsigned bits)
717 {
718     CPUTLBDesc *d = &env_tlb(env)->d[midx];
719     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
720     target_ulong mask = MAKE_64BIT_MASK(0, bits);
721 
722     /*
723      * If @bits is smaller than the tlb size, there may be multiple entries
724      * within the TLB; otherwise all addresses that match under @mask hit
725      * the same TLB entry.
726      * TODO: Perhaps allow bits to be a few bits less than the size.
727      * For now, just flush the entire TLB.
728      *
729      * If @len is larger than the tlb size, then it will take longer to
730      * test all of the entries in the TLB than it will to flush it all.
731      */
732     if (mask < f->mask || len > f->mask) {
733         tlb_debug("forcing full flush midx %d ("
734                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
735                   midx, addr, mask, len);
736         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
737         return;
738     }
739 
740     /*
741      * Check if we need to flush due to large pages.
742      * Because large_page_mask contains all 1's from the msb,
743      * we only need to test the end of the range.
744      */
745     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
746         tlb_debug("forcing full flush midx %d ("
747                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
748                   midx, d->large_page_addr, d->large_page_mask);
749         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
750         return;
751     }
752 
753     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
754         target_ulong page = addr + i;
755         CPUTLBEntry *entry = tlb_entry(env, midx, page);
756 
757         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
758             tlb_n_used_entries_dec(env, midx);
759         }
760         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
761     }
762 }
763 
764 typedef struct {
765     target_ulong addr;
766     target_ulong len;
767     uint16_t idxmap;
768     uint16_t bits;
769 } TLBFlushRangeData;
770 
771 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
772                                               TLBFlushRangeData d)
773 {
774     CPUArchState *env = cpu->env_ptr;
775     int mmu_idx;
776 
777     assert_cpu_is_self(cpu);
778 
779     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
780               d.addr, d.bits, d.len, d.idxmap);
781 
782     qemu_spin_lock(&env_tlb(env)->c.lock);
783     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
784         if ((d.idxmap >> mmu_idx) & 1) {
785             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
786         }
787     }
788     qemu_spin_unlock(&env_tlb(env)->c.lock);
789 
790     /*
791      * If the length is larger than the jump cache size, then it will take
792      * longer to clear each entry individually than it will to clear it all.
793      */
794     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
795         tcg_flush_jmp_cache(cpu);
796         return;
797     }
798 
799     /*
800      * Discard jump cache entries for any tb which might potentially
801      * overlap the flushed pages, which includes the previous.
802      */
803     d.addr -= TARGET_PAGE_SIZE;
804     for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
805         tb_jmp_cache_clear_page(cpu, d.addr);
806         d.addr += TARGET_PAGE_SIZE;
807     }
808 }
809 
810 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
811                                               run_on_cpu_data data)
812 {
813     TLBFlushRangeData *d = data.host_ptr;
814     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
815     g_free(d);
816 }
817 
818 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
819                                target_ulong len, uint16_t idxmap,
820                                unsigned bits)
821 {
822     TLBFlushRangeData d;
823 
824     /*
825      * If all bits are significant, and len is small,
826      * this devolves to tlb_flush_page.
827      */
828     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
829         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
830         return;
831     }
832     /* If no page bits are significant, this devolves to tlb_flush. */
833     if (bits < TARGET_PAGE_BITS) {
834         tlb_flush_by_mmuidx(cpu, idxmap);
835         return;
836     }
837 
838     /* This should already be page aligned */
839     d.addr = addr & TARGET_PAGE_MASK;
840     d.len = len;
841     d.idxmap = idxmap;
842     d.bits = bits;
843 
844     if (qemu_cpu_is_self(cpu)) {
845         tlb_flush_range_by_mmuidx_async_0(cpu, d);
846     } else {
847         /* Otherwise allocate a structure, freed by the worker.  */
848         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
849         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
850                          RUN_ON_CPU_HOST_PTR(p));
851     }
852 }
853 
854 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
855                                    uint16_t idxmap, unsigned bits)
856 {
857     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
858 }
859 
860 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
861                                         target_ulong addr, target_ulong len,
862                                         uint16_t idxmap, unsigned bits)
863 {
864     TLBFlushRangeData d;
865     CPUState *dst_cpu;
866 
867     /*
868      * If all bits are significant, and len is small,
869      * this devolves to tlb_flush_page.
870      */
871     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
872         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
873         return;
874     }
875     /* If no page bits are significant, this devolves to tlb_flush. */
876     if (bits < TARGET_PAGE_BITS) {
877         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
878         return;
879     }
880 
881     /* This should already be page aligned */
882     d.addr = addr & TARGET_PAGE_MASK;
883     d.len = len;
884     d.idxmap = idxmap;
885     d.bits = bits;
886 
887     /* Allocate a separate data block for each destination cpu.  */
888     CPU_FOREACH(dst_cpu) {
889         if (dst_cpu != src_cpu) {
890             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
891             async_run_on_cpu(dst_cpu,
892                              tlb_flush_range_by_mmuidx_async_1,
893                              RUN_ON_CPU_HOST_PTR(p));
894         }
895     }
896 
897     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
898 }
899 
900 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
901                                             target_ulong addr,
902                                             uint16_t idxmap, unsigned bits)
903 {
904     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
905                                        idxmap, bits);
906 }
907 
908 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
909                                                target_ulong addr,
910                                                target_ulong len,
911                                                uint16_t idxmap,
912                                                unsigned bits)
913 {
914     TLBFlushRangeData d, *p;
915     CPUState *dst_cpu;
916 
917     /*
918      * If all bits are significant, and len is small,
919      * this devolves to tlb_flush_page.
920      */
921     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
922         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
923         return;
924     }
925     /* If no page bits are significant, this devolves to tlb_flush. */
926     if (bits < TARGET_PAGE_BITS) {
927         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
928         return;
929     }
930 
931     /* This should already be page aligned */
932     d.addr = addr & TARGET_PAGE_MASK;
933     d.len = len;
934     d.idxmap = idxmap;
935     d.bits = bits;
936 
937     /* Allocate a separate data block for each destination cpu.  */
938     CPU_FOREACH(dst_cpu) {
939         if (dst_cpu != src_cpu) {
940             p = g_memdup(&d, sizeof(d));
941             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
942                              RUN_ON_CPU_HOST_PTR(p));
943         }
944     }
945 
946     p = g_memdup(&d, sizeof(d));
947     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
948                           RUN_ON_CPU_HOST_PTR(p));
949 }
950 
951 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
952                                                    target_ulong addr,
953                                                    uint16_t idxmap,
954                                                    unsigned bits)
955 {
956     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
957                                               idxmap, bits);
958 }
959 
960 /* update the TLBs so that writes to code in the virtual page 'addr'
961    can be detected */
962 void tlb_protect_code(ram_addr_t ram_addr)
963 {
964     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
965                                              TARGET_PAGE_SIZE,
966                                              DIRTY_MEMORY_CODE);
967 }
968 
969 /* update the TLB so that writes in physical page 'phys_addr' are no longer
970    tested for self modifying code */
971 void tlb_unprotect_code(ram_addr_t ram_addr)
972 {
973     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
974 }
975 
976 
977 /*
978  * Dirty write flag handling
979  *
980  * When the TCG code writes to a location it looks up the address in
981  * the TLB and uses that data to compute the final address. If any of
982  * the lower bits of the address are set then the slow path is forced.
983  * There are a number of reasons to do this but for normal RAM the
984  * most usual is detecting writes to code regions which may invalidate
985  * generated code.
986  *
987  * Other vCPUs might be reading their TLBs during guest execution, so we update
988  * te->addr_write with qatomic_set. We don't need to worry about this for
989  * oversized guests as MTTCG is disabled for them.
990  *
991  * Called with tlb_c.lock held.
992  */
993 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
994                                          uintptr_t start, uintptr_t length)
995 {
996     uintptr_t addr = tlb_entry->addr_write;
997 
998     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
999                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
1000         addr &= TARGET_PAGE_MASK;
1001         addr += tlb_entry->addend;
1002         if ((addr - start) < length) {
1003 #if TARGET_LONG_BITS == 32
1004             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1005             ptr_write += HOST_BIG_ENDIAN;
1006             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1007 #elif TCG_OVERSIZED_GUEST
1008             tlb_entry->addr_write |= TLB_NOTDIRTY;
1009 #else
1010             qatomic_set(&tlb_entry->addr_write,
1011                         tlb_entry->addr_write | TLB_NOTDIRTY);
1012 #endif
1013         }
1014     }
1015 }
1016 
1017 /*
1018  * Called with tlb_c.lock held.
1019  * Called only from the vCPU context, i.e. the TLB's owner thread.
1020  */
1021 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1022 {
1023     *d = *s;
1024 }
1025 
1026 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1027  * the target vCPU).
1028  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1029  * thing actually updated is the target TLB entry ->addr_write flags.
1030  */
1031 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1032 {
1033     CPUArchState *env;
1034 
1035     int mmu_idx;
1036 
1037     env = cpu->env_ptr;
1038     qemu_spin_lock(&env_tlb(env)->c.lock);
1039     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1040         unsigned int i;
1041         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1042 
1043         for (i = 0; i < n; i++) {
1044             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1045                                          start1, length);
1046         }
1047 
1048         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1049             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1050                                          start1, length);
1051         }
1052     }
1053     qemu_spin_unlock(&env_tlb(env)->c.lock);
1054 }
1055 
1056 /* Called with tlb_c.lock held */
1057 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1058                                          target_ulong vaddr)
1059 {
1060     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1061         tlb_entry->addr_write = vaddr;
1062     }
1063 }
1064 
1065 /* update the TLB corresponding to virtual page vaddr
1066    so that it is no longer dirty */
1067 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1068 {
1069     CPUArchState *env = cpu->env_ptr;
1070     int mmu_idx;
1071 
1072     assert_cpu_is_self(cpu);
1073 
1074     vaddr &= TARGET_PAGE_MASK;
1075     qemu_spin_lock(&env_tlb(env)->c.lock);
1076     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1077         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1078     }
1079 
1080     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1081         int k;
1082         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1083             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1084         }
1085     }
1086     qemu_spin_unlock(&env_tlb(env)->c.lock);
1087 }
1088 
1089 /* Our TLB does not support large pages, so remember the area covered by
1090    large pages and trigger a full TLB flush if these are invalidated.  */
1091 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1092                                target_ulong vaddr, target_ulong size)
1093 {
1094     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1095     target_ulong lp_mask = ~(size - 1);
1096 
1097     if (lp_addr == (target_ulong)-1) {
1098         /* No previous large page.  */
1099         lp_addr = vaddr;
1100     } else {
1101         /* Extend the existing region to include the new page.
1102            This is a compromise between unnecessary flushes and
1103            the cost of maintaining a full variable size TLB.  */
1104         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1105         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1106             lp_mask <<= 1;
1107         }
1108     }
1109     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1110     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1111 }
1112 
1113 /*
1114  * Add a new TLB entry. At most one entry for a given virtual address
1115  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1116  * supplied size is only used by tlb_flush_page.
1117  *
1118  * Called from TCG-generated code, which is under an RCU read-side
1119  * critical section.
1120  */
1121 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1122                        target_ulong vaddr, CPUTLBEntryFull *full)
1123 {
1124     CPUArchState *env = cpu->env_ptr;
1125     CPUTLB *tlb = env_tlb(env);
1126     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1127     MemoryRegionSection *section;
1128     unsigned int index;
1129     target_ulong address;
1130     target_ulong write_address;
1131     uintptr_t addend;
1132     CPUTLBEntry *te, tn;
1133     hwaddr iotlb, xlat, sz, paddr_page;
1134     target_ulong vaddr_page;
1135     int asidx, wp_flags, prot;
1136     bool is_ram, is_romd;
1137 
1138     assert_cpu_is_self(cpu);
1139 
1140     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1141         sz = TARGET_PAGE_SIZE;
1142     } else {
1143         sz = (hwaddr)1 << full->lg_page_size;
1144         tlb_add_large_page(env, mmu_idx, vaddr, sz);
1145     }
1146     vaddr_page = vaddr & TARGET_PAGE_MASK;
1147     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1148 
1149     prot = full->prot;
1150     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1151     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1152                                                 &xlat, &sz, full->attrs, &prot);
1153     assert(sz >= TARGET_PAGE_SIZE);
1154 
1155     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx
1156               " prot=%x idx=%d\n",
1157               vaddr, full->phys_addr, prot, mmu_idx);
1158 
1159     address = vaddr_page;
1160     if (full->lg_page_size < TARGET_PAGE_BITS) {
1161         /* Repeat the MMU check and TLB fill on every access.  */
1162         address |= TLB_INVALID_MASK;
1163     }
1164     if (full->attrs.byte_swap) {
1165         address |= TLB_BSWAP;
1166     }
1167 
1168     is_ram = memory_region_is_ram(section->mr);
1169     is_romd = memory_region_is_romd(section->mr);
1170 
1171     if (is_ram || is_romd) {
1172         /* RAM and ROMD both have associated host memory. */
1173         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1174     } else {
1175         /* I/O does not; force the host address to NULL. */
1176         addend = 0;
1177     }
1178 
1179     write_address = address;
1180     if (is_ram) {
1181         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1182         /*
1183          * Computing is_clean is expensive; avoid all that unless
1184          * the page is actually writable.
1185          */
1186         if (prot & PAGE_WRITE) {
1187             if (section->readonly) {
1188                 write_address |= TLB_DISCARD_WRITE;
1189             } else if (cpu_physical_memory_is_clean(iotlb)) {
1190                 write_address |= TLB_NOTDIRTY;
1191             }
1192         }
1193     } else {
1194         /* I/O or ROMD */
1195         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1196         /*
1197          * Writes to romd devices must go through MMIO to enable write.
1198          * Reads to romd devices go through the ram_ptr found above,
1199          * but of course reads to I/O must go through MMIO.
1200          */
1201         write_address |= TLB_MMIO;
1202         if (!is_romd) {
1203             address = write_address;
1204         }
1205     }
1206 
1207     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1208                                               TARGET_PAGE_SIZE);
1209 
1210     index = tlb_index(env, mmu_idx, vaddr_page);
1211     te = tlb_entry(env, mmu_idx, vaddr_page);
1212 
1213     /*
1214      * Hold the TLB lock for the rest of the function. We could acquire/release
1215      * the lock several times in the function, but it is faster to amortize the
1216      * acquisition cost by acquiring it just once. Note that this leads to
1217      * a longer critical section, but this is not a concern since the TLB lock
1218      * is unlikely to be contended.
1219      */
1220     qemu_spin_lock(&tlb->c.lock);
1221 
1222     /* Note that the tlb is no longer clean.  */
1223     tlb->c.dirty |= 1 << mmu_idx;
1224 
1225     /* Make sure there's no cached translation for the new page.  */
1226     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1227 
1228     /*
1229      * Only evict the old entry to the victim tlb if it's for a
1230      * different page; otherwise just overwrite the stale data.
1231      */
1232     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1233         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1234         CPUTLBEntry *tv = &desc->vtable[vidx];
1235 
1236         /* Evict the old entry into the victim tlb.  */
1237         copy_tlb_helper_locked(tv, te);
1238         desc->vfulltlb[vidx] = desc->fulltlb[index];
1239         tlb_n_used_entries_dec(env, mmu_idx);
1240     }
1241 
1242     /* refill the tlb */
1243     /*
1244      * At this point iotlb contains a physical section number in the lower
1245      * TARGET_PAGE_BITS, and either
1246      *  + the ram_addr_t of the page base of the target RAM (RAM)
1247      *  + the offset within section->mr of the page base (I/O, ROMD)
1248      * We subtract the vaddr_page (which is page aligned and thus won't
1249      * disturb the low bits) to give an offset which can be added to the
1250      * (non-page-aligned) vaddr of the eventual memory access to get
1251      * the MemoryRegion offset for the access. Note that the vaddr we
1252      * subtract here is that of the page base, and not the same as the
1253      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1254      */
1255     desc->fulltlb[index] = *full;
1256     desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
1257     desc->fulltlb[index].phys_addr = paddr_page;
1258 
1259     /* Now calculate the new entry */
1260     tn.addend = addend - vaddr_page;
1261     if (prot & PAGE_READ) {
1262         tn.addr_read = address;
1263         if (wp_flags & BP_MEM_READ) {
1264             tn.addr_read |= TLB_WATCHPOINT;
1265         }
1266     } else {
1267         tn.addr_read = -1;
1268     }
1269 
1270     if (prot & PAGE_EXEC) {
1271         tn.addr_code = address;
1272     } else {
1273         tn.addr_code = -1;
1274     }
1275 
1276     tn.addr_write = -1;
1277     if (prot & PAGE_WRITE) {
1278         tn.addr_write = write_address;
1279         if (prot & PAGE_WRITE_INV) {
1280             tn.addr_write |= TLB_INVALID_MASK;
1281         }
1282         if (wp_flags & BP_MEM_WRITE) {
1283             tn.addr_write |= TLB_WATCHPOINT;
1284         }
1285     }
1286 
1287     copy_tlb_helper_locked(te, &tn);
1288     tlb_n_used_entries_inc(env, mmu_idx);
1289     qemu_spin_unlock(&tlb->c.lock);
1290 }
1291 
1292 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1293                              hwaddr paddr, MemTxAttrs attrs, int prot,
1294                              int mmu_idx, target_ulong size)
1295 {
1296     CPUTLBEntryFull full = {
1297         .phys_addr = paddr,
1298         .attrs = attrs,
1299         .prot = prot,
1300         .lg_page_size = ctz64(size)
1301     };
1302 
1303     assert(is_power_of_2(size));
1304     tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
1305 }
1306 
1307 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1308                   hwaddr paddr, int prot,
1309                   int mmu_idx, target_ulong size)
1310 {
1311     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1312                             prot, mmu_idx, size);
1313 }
1314 
1315 /*
1316  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1317  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1318  * be discarded and looked up again (e.g. via tlb_entry()).
1319  */
1320 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1321                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1322 {
1323     bool ok;
1324 
1325     /*
1326      * This is not a probe, so only valid return is success; failure
1327      * should result in exception + longjmp to the cpu loop.
1328      */
1329     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1330                                     access_type, mmu_idx, false, retaddr);
1331     assert(ok);
1332 }
1333 
1334 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1335                                         MMUAccessType access_type,
1336                                         int mmu_idx, uintptr_t retaddr)
1337 {
1338     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1339                                           mmu_idx, retaddr);
1340 }
1341 
1342 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1343                                           vaddr addr, unsigned size,
1344                                           MMUAccessType access_type,
1345                                           int mmu_idx, MemTxAttrs attrs,
1346                                           MemTxResult response,
1347                                           uintptr_t retaddr)
1348 {
1349     CPUClass *cc = CPU_GET_CLASS(cpu);
1350 
1351     if (!cpu->ignore_memory_transaction_failures &&
1352         cc->tcg_ops->do_transaction_failed) {
1353         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1354                                            access_type, mmu_idx, attrs,
1355                                            response, retaddr);
1356     }
1357 }
1358 
1359 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1360                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
1361                          MMUAccessType access_type, MemOp op)
1362 {
1363     CPUState *cpu = env_cpu(env);
1364     hwaddr mr_offset;
1365     MemoryRegionSection *section;
1366     MemoryRegion *mr;
1367     uint64_t val;
1368     MemTxResult r;
1369 
1370     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1371     mr = section->mr;
1372     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1373     cpu->mem_io_pc = retaddr;
1374     if (!cpu->can_do_io) {
1375         cpu_io_recompile(cpu, retaddr);
1376     }
1377 
1378     {
1379         QEMU_IOTHREAD_LOCK_GUARD();
1380         r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1381     }
1382 
1383     if (r != MEMTX_OK) {
1384         hwaddr physaddr = mr_offset +
1385             section->offset_within_address_space -
1386             section->offset_within_region;
1387 
1388         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1389                                mmu_idx, full->attrs, r, retaddr);
1390     }
1391     return val;
1392 }
1393 
1394 /*
1395  * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1396  * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1397  * because of the side effect of io_writex changing memory layout.
1398  */
1399 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1400                             hwaddr mr_offset)
1401 {
1402 #ifdef CONFIG_PLUGIN
1403     SavedIOTLB *saved = &cs->saved_iotlb;
1404     saved->section = section;
1405     saved->mr_offset = mr_offset;
1406 #endif
1407 }
1408 
1409 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1410                       int mmu_idx, uint64_t val, target_ulong addr,
1411                       uintptr_t retaddr, MemOp op)
1412 {
1413     CPUState *cpu = env_cpu(env);
1414     hwaddr mr_offset;
1415     MemoryRegionSection *section;
1416     MemoryRegion *mr;
1417     MemTxResult r;
1418 
1419     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1420     mr = section->mr;
1421     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1422     if (!cpu->can_do_io) {
1423         cpu_io_recompile(cpu, retaddr);
1424     }
1425     cpu->mem_io_pc = retaddr;
1426 
1427     /*
1428      * The memory_region_dispatch may trigger a flush/resize
1429      * so for plugins we save the iotlb_data just in case.
1430      */
1431     save_iotlb_data(cpu, section, mr_offset);
1432 
1433     {
1434         QEMU_IOTHREAD_LOCK_GUARD();
1435         r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1436     }
1437 
1438     if (r != MEMTX_OK) {
1439         hwaddr physaddr = mr_offset +
1440             section->offset_within_address_space -
1441             section->offset_within_region;
1442 
1443         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1444                                MMU_DATA_STORE, mmu_idx, full->attrs, r,
1445                                retaddr);
1446     }
1447 }
1448 
1449 /* Return true if ADDR is present in the victim tlb, and has been copied
1450    back to the main tlb.  */
1451 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1452                            MMUAccessType access_type, target_ulong page)
1453 {
1454     size_t vidx;
1455 
1456     assert_cpu_is_self(env_cpu(env));
1457     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1458         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1459         target_ulong cmp = tlb_read_idx(vtlb, access_type);
1460 
1461         if (cmp == page) {
1462             /* Found entry in victim tlb, swap tlb and iotlb.  */
1463             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1464 
1465             qemu_spin_lock(&env_tlb(env)->c.lock);
1466             copy_tlb_helper_locked(&tmptlb, tlb);
1467             copy_tlb_helper_locked(tlb, vtlb);
1468             copy_tlb_helper_locked(vtlb, &tmptlb);
1469             qemu_spin_unlock(&env_tlb(env)->c.lock);
1470 
1471             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1472             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1473             CPUTLBEntryFull tmpf;
1474             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1475             return true;
1476         }
1477     }
1478     return false;
1479 }
1480 
1481 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1482                            CPUTLBEntryFull *full, uintptr_t retaddr)
1483 {
1484     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1485 
1486     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1487 
1488     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1489         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1490     }
1491 
1492     /*
1493      * Set both VGA and migration bits for simplicity and to remove
1494      * the notdirty callback faster.
1495      */
1496     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1497 
1498     /* We remove the notdirty callback only if the code has been flushed. */
1499     if (!cpu_physical_memory_is_clean(ram_addr)) {
1500         trace_memory_notdirty_set_dirty(mem_vaddr);
1501         tlb_set_dirty(cpu, mem_vaddr);
1502     }
1503 }
1504 
1505 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1506                                  int fault_size, MMUAccessType access_type,
1507                                  int mmu_idx, bool nonfault,
1508                                  void **phost, CPUTLBEntryFull **pfull,
1509                                  uintptr_t retaddr)
1510 {
1511     uintptr_t index = tlb_index(env, mmu_idx, addr);
1512     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1513     target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1514     target_ulong page_addr = addr & TARGET_PAGE_MASK;
1515     int flags = TLB_FLAGS_MASK;
1516 
1517     if (!tlb_hit_page(tlb_addr, page_addr)) {
1518         if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1519             CPUState *cs = env_cpu(env);
1520 
1521             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1522                                            mmu_idx, nonfault, retaddr)) {
1523                 /* Non-faulting page table read failed.  */
1524                 *phost = NULL;
1525                 *pfull = NULL;
1526                 return TLB_INVALID_MASK;
1527             }
1528 
1529             /* TLB resize via tlb_fill may have moved the entry.  */
1530             index = tlb_index(env, mmu_idx, addr);
1531             entry = tlb_entry(env, mmu_idx, addr);
1532 
1533             /*
1534              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1535              * to force the next access through tlb_fill.  We've just
1536              * called tlb_fill, so we know that this entry *is* valid.
1537              */
1538             flags &= ~TLB_INVALID_MASK;
1539         }
1540         tlb_addr = tlb_read_idx(entry, access_type);
1541     }
1542     flags &= tlb_addr;
1543 
1544     *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1545 
1546     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1547     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1548         *phost = NULL;
1549         return TLB_MMIO;
1550     }
1551 
1552     /* Everything else is RAM. */
1553     *phost = (void *)((uintptr_t)addr + entry->addend);
1554     return flags;
1555 }
1556 
1557 int probe_access_full(CPUArchState *env, target_ulong addr, int size,
1558                       MMUAccessType access_type, int mmu_idx,
1559                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1560                       uintptr_t retaddr)
1561 {
1562     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1563                                       nonfault, phost, pfull, retaddr);
1564 
1565     /* Handle clean RAM pages.  */
1566     if (unlikely(flags & TLB_NOTDIRTY)) {
1567         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1568         flags &= ~TLB_NOTDIRTY;
1569     }
1570 
1571     return flags;
1572 }
1573 
1574 int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
1575                        MMUAccessType access_type, int mmu_idx,
1576                        bool nonfault, void **phost, uintptr_t retaddr)
1577 {
1578     CPUTLBEntryFull *full;
1579     int flags;
1580 
1581     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1582 
1583     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1584                                   nonfault, phost, &full, retaddr);
1585 
1586     /* Handle clean RAM pages. */
1587     if (unlikely(flags & TLB_NOTDIRTY)) {
1588         notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1589         flags &= ~TLB_NOTDIRTY;
1590     }
1591 
1592     return flags;
1593 }
1594 
1595 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1596                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1597 {
1598     CPUTLBEntryFull *full;
1599     void *host;
1600     int flags;
1601 
1602     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1603 
1604     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1605                                   false, &host, &full, retaddr);
1606 
1607     /* Per the interface, size == 0 merely faults the access. */
1608     if (size == 0) {
1609         return NULL;
1610     }
1611 
1612     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1613         /* Handle watchpoints.  */
1614         if (flags & TLB_WATCHPOINT) {
1615             int wp_access = (access_type == MMU_DATA_STORE
1616                              ? BP_MEM_WRITE : BP_MEM_READ);
1617             cpu_check_watchpoint(env_cpu(env), addr, size,
1618                                  full->attrs, wp_access, retaddr);
1619         }
1620 
1621         /* Handle clean RAM pages.  */
1622         if (flags & TLB_NOTDIRTY) {
1623             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1624         }
1625     }
1626 
1627     return host;
1628 }
1629 
1630 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1631                         MMUAccessType access_type, int mmu_idx)
1632 {
1633     CPUTLBEntryFull *full;
1634     void *host;
1635     int flags;
1636 
1637     flags = probe_access_internal(env, addr, 0, access_type,
1638                                   mmu_idx, true, &host, &full, 0);
1639 
1640     /* No combination of flags are expected by the caller. */
1641     return flags ? NULL : host;
1642 }
1643 
1644 /*
1645  * Return a ram_addr_t for the virtual address for execution.
1646  *
1647  * Return -1 if we can't translate and execute from an entire page
1648  * of RAM.  This will force us to execute by loading and translating
1649  * one insn at a time, without caching.
1650  *
1651  * NOTE: This function will trigger an exception if the page is
1652  * not executable.
1653  */
1654 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1655                                         void **hostp)
1656 {
1657     CPUTLBEntryFull *full;
1658     void *p;
1659 
1660     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1661                                 cpu_mmu_index(env, true), false, &p, &full, 0);
1662     if (p == NULL) {
1663         return -1;
1664     }
1665 
1666     if (full->lg_page_size < TARGET_PAGE_BITS) {
1667         return -1;
1668     }
1669 
1670     if (hostp) {
1671         *hostp = p;
1672     }
1673     return qemu_ram_addr_from_host_nofail(p);
1674 }
1675 
1676 /* Load/store with atomicity primitives. */
1677 #include "ldst_atomicity.c.inc"
1678 
1679 #ifdef CONFIG_PLUGIN
1680 /*
1681  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1682  * This should be a hot path as we will have just looked this path up
1683  * in the softmmu lookup code (or helper). We don't handle re-fills or
1684  * checking the victim table. This is purely informational.
1685  *
1686  * This almost never fails as the memory access being instrumented
1687  * should have just filled the TLB. The one corner case is io_writex
1688  * which can cause TLB flushes and potential resizing of the TLBs
1689  * losing the information we need. In those cases we need to recover
1690  * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1691  * from the same thread (which a mem callback will be) this is safe.
1692  */
1693 
1694 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1695                        bool is_store, struct qemu_plugin_hwaddr *data)
1696 {
1697     CPUArchState *env = cpu->env_ptr;
1698     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1699     uintptr_t index = tlb_index(env, mmu_idx, addr);
1700     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1701 
1702     if (likely(tlb_hit(tlb_addr, addr))) {
1703         /* We must have an iotlb entry for MMIO */
1704         if (tlb_addr & TLB_MMIO) {
1705             CPUTLBEntryFull *full;
1706             full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1707             data->is_io = true;
1708             data->v.io.section =
1709                 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1710             data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1711         } else {
1712             data->is_io = false;
1713             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1714         }
1715         return true;
1716     } else {
1717         SavedIOTLB *saved = &cpu->saved_iotlb;
1718         data->is_io = true;
1719         data->v.io.section = saved->section;
1720         data->v.io.offset = saved->mr_offset;
1721         return true;
1722     }
1723 }
1724 
1725 #endif
1726 
1727 /*
1728  * Probe for a load/store operation.
1729  * Return the host address and into @flags.
1730  */
1731 
1732 typedef struct MMULookupPageData {
1733     CPUTLBEntryFull *full;
1734     void *haddr;
1735     target_ulong addr;
1736     int flags;
1737     int size;
1738 } MMULookupPageData;
1739 
1740 typedef struct MMULookupLocals {
1741     MMULookupPageData page[2];
1742     MemOp memop;
1743     int mmu_idx;
1744 } MMULookupLocals;
1745 
1746 /**
1747  * mmu_lookup1: translate one page
1748  * @env: cpu context
1749  * @data: lookup parameters
1750  * @mmu_idx: virtual address context
1751  * @access_type: load/store/code
1752  * @ra: return address into tcg generated code, or 0
1753  *
1754  * Resolve the translation for the one page at @data.addr, filling in
1755  * the rest of @data with the results.  If the translation fails,
1756  * tlb_fill will longjmp out.  Return true if the softmmu tlb for
1757  * @mmu_idx may have resized.
1758  */
1759 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1760                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1761 {
1762     target_ulong addr = data->addr;
1763     uintptr_t index = tlb_index(env, mmu_idx, addr);
1764     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1765     target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1766     bool maybe_resized = false;
1767 
1768     /* If the TLB entry is for a different page, reload and try again.  */
1769     if (!tlb_hit(tlb_addr, addr)) {
1770         if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1771                             addr & TARGET_PAGE_MASK)) {
1772             tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1773             maybe_resized = true;
1774             index = tlb_index(env, mmu_idx, addr);
1775             entry = tlb_entry(env, mmu_idx, addr);
1776         }
1777         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1778     }
1779 
1780     data->flags = tlb_addr & TLB_FLAGS_MASK;
1781     data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1782     /* Compute haddr speculatively; depending on flags it might be invalid. */
1783     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1784 
1785     return maybe_resized;
1786 }
1787 
1788 /**
1789  * mmu_watch_or_dirty
1790  * @env: cpu context
1791  * @data: lookup parameters
1792  * @access_type: load/store/code
1793  * @ra: return address into tcg generated code, or 0
1794  *
1795  * Trigger watchpoints for @data.addr:@data.size;
1796  * record writes to protected clean pages.
1797  */
1798 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1799                                MMUAccessType access_type, uintptr_t ra)
1800 {
1801     CPUTLBEntryFull *full = data->full;
1802     target_ulong addr = data->addr;
1803     int flags = data->flags;
1804     int size = data->size;
1805 
1806     /* On watchpoint hit, this will longjmp out.  */
1807     if (flags & TLB_WATCHPOINT) {
1808         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1809         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1810         flags &= ~TLB_WATCHPOINT;
1811     }
1812 
1813     /* Note that notdirty is only set for writes. */
1814     if (flags & TLB_NOTDIRTY) {
1815         notdirty_write(env_cpu(env), addr, size, full, ra);
1816         flags &= ~TLB_NOTDIRTY;
1817     }
1818     data->flags = flags;
1819 }
1820 
1821 /**
1822  * mmu_lookup: translate page(s)
1823  * @env: cpu context
1824  * @addr: virtual address
1825  * @oi: combined mmu_idx and MemOp
1826  * @ra: return address into tcg generated code, or 0
1827  * @access_type: load/store/code
1828  * @l: output result
1829  *
1830  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1831  * bytes.  Return true if the lookup crosses a page boundary.
1832  */
1833 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1834                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1835 {
1836     unsigned a_bits;
1837     bool crosspage;
1838     int flags;
1839 
1840     l->memop = get_memop(oi);
1841     l->mmu_idx = get_mmuidx(oi);
1842 
1843     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1844 
1845     /* Handle CPU specific unaligned behaviour */
1846     a_bits = get_alignment_bits(l->memop);
1847     if (addr & ((1 << a_bits) - 1)) {
1848         cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1849     }
1850 
1851     l->page[0].addr = addr;
1852     l->page[0].size = memop_size(l->memop);
1853     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1854     l->page[1].size = 0;
1855     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1856 
1857     if (likely(!crosspage)) {
1858         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1859 
1860         flags = l->page[0].flags;
1861         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1862             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1863         }
1864         if (unlikely(flags & TLB_BSWAP)) {
1865             l->memop ^= MO_BSWAP;
1866         }
1867     } else {
1868         /* Finish compute of page crossing. */
1869         int size0 = l->page[1].addr - addr;
1870         l->page[1].size = l->page[0].size - size0;
1871         l->page[0].size = size0;
1872 
1873         /*
1874          * Lookup both pages, recognizing exceptions from either.  If the
1875          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1876          */
1877         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1878         if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1879             uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1880             l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1881         }
1882 
1883         flags = l->page[0].flags | l->page[1].flags;
1884         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1885             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1886             mmu_watch_or_dirty(env, &l->page[1], type, ra);
1887         }
1888 
1889         /*
1890          * Since target/sparc is the only user of TLB_BSWAP, and all
1891          * Sparc accesses are aligned, any treatment across two pages
1892          * would be arbitrary.  Refuse it until there's a use.
1893          */
1894         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1895     }
1896 
1897     return crosspage;
1898 }
1899 
1900 /*
1901  * Probe for an atomic operation.  Do not allow unaligned operations,
1902  * or io operations to proceed.  Return the host address.
1903  */
1904 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1905                                MemOpIdx oi, int size, uintptr_t retaddr)
1906 {
1907     uintptr_t mmu_idx = get_mmuidx(oi);
1908     MemOp mop = get_memop(oi);
1909     int a_bits = get_alignment_bits(mop);
1910     uintptr_t index;
1911     CPUTLBEntry *tlbe;
1912     target_ulong tlb_addr;
1913     void *hostaddr;
1914     CPUTLBEntryFull *full;
1915 
1916     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1917 
1918     /* Adjust the given return address.  */
1919     retaddr -= GETPC_ADJ;
1920 
1921     /* Enforce guest required alignment.  */
1922     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1923         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1924         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1925                              mmu_idx, retaddr);
1926     }
1927 
1928     /* Enforce qemu required alignment.  */
1929     if (unlikely(addr & (size - 1))) {
1930         /* We get here if guest alignment was not requested,
1931            or was not enforced by cpu_unaligned_access above.
1932            We might widen the access and emulate, but for now
1933            mark an exception and exit the cpu loop.  */
1934         goto stop_the_world;
1935     }
1936 
1937     index = tlb_index(env, mmu_idx, addr);
1938     tlbe = tlb_entry(env, mmu_idx, addr);
1939 
1940     /* Check TLB entry and enforce page permissions.  */
1941     tlb_addr = tlb_addr_write(tlbe);
1942     if (!tlb_hit(tlb_addr, addr)) {
1943         if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1944                             addr & TARGET_PAGE_MASK)) {
1945             tlb_fill(env_cpu(env), addr, size,
1946                      MMU_DATA_STORE, mmu_idx, retaddr);
1947             index = tlb_index(env, mmu_idx, addr);
1948             tlbe = tlb_entry(env, mmu_idx, addr);
1949         }
1950         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1951     }
1952 
1953     /*
1954      * Let the guest notice RMW on a write-only page.
1955      * We have just verified that the page is writable.
1956      * Subpage lookups may have left TLB_INVALID_MASK set,
1957      * but addr_read will only be -1 if PAGE_READ was unset.
1958      */
1959     if (unlikely(tlbe->addr_read == -1)) {
1960         tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1961         /*
1962          * Since we don't support reads and writes to different
1963          * addresses, and we do have the proper page loaded for
1964          * write, this shouldn't ever return.  But just in case,
1965          * handle via stop-the-world.
1966          */
1967         goto stop_the_world;
1968     }
1969     /* Collect TLB_WATCHPOINT for read. */
1970     tlb_addr |= tlbe->addr_read;
1971 
1972     /* Notice an IO access or a needs-MMU-lookup access */
1973     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1974         /* There's really nothing that can be done to
1975            support this apart from stop-the-world.  */
1976         goto stop_the_world;
1977     }
1978 
1979     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1980     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1981 
1982     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1983         notdirty_write(env_cpu(env), addr, size, full, retaddr);
1984     }
1985 
1986     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1987         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs,
1988                              BP_MEM_READ | BP_MEM_WRITE, retaddr);
1989     }
1990 
1991     return hostaddr;
1992 
1993  stop_the_world:
1994     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1995 }
1996 
1997 /*
1998  * Load Helpers
1999  *
2000  * We support two different access types. SOFTMMU_CODE_ACCESS is
2001  * specifically for reading instructions from system memory. It is
2002  * called by the translation loop and in some helpers where the code
2003  * is disassembled. It shouldn't be called directly by guest code.
2004  *
2005  * For the benefit of TCG generated code, we want to avoid the
2006  * complication of ABI-specific return type promotion and always
2007  * return a value extended to the register size of the host. This is
2008  * tcg_target_long, except in the case of a 32-bit host and 64-bit
2009  * data, and for that we always have uint64_t.
2010  *
2011  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2012  */
2013 
2014 /**
2015  * do_ld_mmio_beN:
2016  * @env: cpu context
2017  * @p: translation parameters
2018  * @ret_be: accumulated data
2019  * @mmu_idx: virtual address context
2020  * @ra: return address into tcg generated code, or 0
2021  *
2022  * Load @p->size bytes from @p->addr, which is memory-mapped i/o.
2023  * The bytes are concatenated in big-endian order with @ret_be.
2024  */
2025 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p,
2026                                uint64_t ret_be, int mmu_idx,
2027                                MMUAccessType type, uintptr_t ra)
2028 {
2029     CPUTLBEntryFull *full = p->full;
2030     target_ulong addr = p->addr;
2031     int i, size = p->size;
2032 
2033     QEMU_IOTHREAD_LOCK_GUARD();
2034     for (i = 0; i < size; i++) {
2035         uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB);
2036         ret_be = (ret_be << 8) | x;
2037     }
2038     return ret_be;
2039 }
2040 
2041 /**
2042  * do_ld_bytes_beN
2043  * @p: translation parameters
2044  * @ret_be: accumulated data
2045  *
2046  * Load @p->size bytes from @p->haddr, which is RAM.
2047  * The bytes to concatenated in big-endian order with @ret_be.
2048  */
2049 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2050 {
2051     uint8_t *haddr = p->haddr;
2052     int i, size = p->size;
2053 
2054     for (i = 0; i < size; i++) {
2055         ret_be = (ret_be << 8) | haddr[i];
2056     }
2057     return ret_be;
2058 }
2059 
2060 /**
2061  * do_ld_parts_beN
2062  * @p: translation parameters
2063  * @ret_be: accumulated data
2064  *
2065  * As do_ld_bytes_beN, but atomically on each aligned part.
2066  */
2067 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2068 {
2069     void *haddr = p->haddr;
2070     int size = p->size;
2071 
2072     do {
2073         uint64_t x;
2074         int n;
2075 
2076         /*
2077          * Find minimum of alignment and size.
2078          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2079          * would have only checked the low bits of addr|size once at the start,
2080          * but is just as easy.
2081          */
2082         switch (((uintptr_t)haddr | size) & 7) {
2083         case 4:
2084             x = cpu_to_be32(load_atomic4(haddr));
2085             ret_be = (ret_be << 32) | x;
2086             n = 4;
2087             break;
2088         case 2:
2089         case 6:
2090             x = cpu_to_be16(load_atomic2(haddr));
2091             ret_be = (ret_be << 16) | x;
2092             n = 2;
2093             break;
2094         default:
2095             x = *(uint8_t *)haddr;
2096             ret_be = (ret_be << 8) | x;
2097             n = 1;
2098             break;
2099         case 0:
2100             g_assert_not_reached();
2101         }
2102         haddr += n;
2103         size -= n;
2104     } while (size != 0);
2105     return ret_be;
2106 }
2107 
2108 /**
2109  * do_ld_parts_be4
2110  * @p: translation parameters
2111  * @ret_be: accumulated data
2112  *
2113  * As do_ld_bytes_beN, but with one atomic load.
2114  * Four aligned bytes are guaranteed to cover the load.
2115  */
2116 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2117 {
2118     int o = p->addr & 3;
2119     uint32_t x = load_atomic4(p->haddr - o);
2120 
2121     x = cpu_to_be32(x);
2122     x <<= o * 8;
2123     x >>= (4 - p->size) * 8;
2124     return (ret_be << (p->size * 8)) | x;
2125 }
2126 
2127 /**
2128  * do_ld_parts_be8
2129  * @p: translation parameters
2130  * @ret_be: accumulated data
2131  *
2132  * As do_ld_bytes_beN, but with one atomic load.
2133  * Eight aligned bytes are guaranteed to cover the load.
2134  */
2135 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2136                                 MMULookupPageData *p, uint64_t ret_be)
2137 {
2138     int o = p->addr & 7;
2139     uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2140 
2141     x = cpu_to_be64(x);
2142     x <<= o * 8;
2143     x >>= (8 - p->size) * 8;
2144     return (ret_be << (p->size * 8)) | x;
2145 }
2146 
2147 /**
2148  * do_ld_parts_be16
2149  * @p: translation parameters
2150  * @ret_be: accumulated data
2151  *
2152  * As do_ld_bytes_beN, but with one atomic load.
2153  * 16 aligned bytes are guaranteed to cover the load.
2154  */
2155 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2156                                MMULookupPageData *p, uint64_t ret_be)
2157 {
2158     int o = p->addr & 15;
2159     Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2160     int size = p->size;
2161 
2162     if (!HOST_BIG_ENDIAN) {
2163         y = bswap128(y);
2164     }
2165     y = int128_lshift(y, o * 8);
2166     y = int128_urshift(y, (16 - size) * 8);
2167     x = int128_make64(ret_be);
2168     x = int128_lshift(x, size * 8);
2169     return int128_or(x, y);
2170 }
2171 
2172 /*
2173  * Wrapper for the above.
2174  */
2175 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2176                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2177                           MemOp mop, uintptr_t ra)
2178 {
2179     MemOp atom;
2180     unsigned tmp, half_size;
2181 
2182     if (unlikely(p->flags & TLB_MMIO)) {
2183         return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
2184     }
2185 
2186     /*
2187      * It is a given that we cross a page and therefore there is no
2188      * atomicity for the load as a whole, but subobjects may need attention.
2189      */
2190     atom = mop & MO_ATOM_MASK;
2191     switch (atom) {
2192     case MO_ATOM_SUBALIGN:
2193         return do_ld_parts_beN(p, ret_be);
2194 
2195     case MO_ATOM_IFALIGN_PAIR:
2196     case MO_ATOM_WITHIN16_PAIR:
2197         tmp = mop & MO_SIZE;
2198         tmp = tmp ? tmp - 1 : 0;
2199         half_size = 1 << tmp;
2200         if (atom == MO_ATOM_IFALIGN_PAIR
2201             ? p->size == half_size
2202             : p->size >= half_size) {
2203             if (!HAVE_al8_fast && p->size < 4) {
2204                 return do_ld_whole_be4(p, ret_be);
2205             } else {
2206                 return do_ld_whole_be8(env, ra, p, ret_be);
2207             }
2208         }
2209         /* fall through */
2210 
2211     case MO_ATOM_IFALIGN:
2212     case MO_ATOM_WITHIN16:
2213     case MO_ATOM_NONE:
2214         return do_ld_bytes_beN(p, ret_be);
2215 
2216     default:
2217         g_assert_not_reached();
2218     }
2219 }
2220 
2221 /*
2222  * Wrapper for the above, for 8 < size < 16.
2223  */
2224 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2225                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2226 {
2227     int size = p->size;
2228     uint64_t b;
2229     MemOp atom;
2230 
2231     if (unlikely(p->flags & TLB_MMIO)) {
2232         p->size = size - 8;
2233         a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra);
2234         p->addr += p->size;
2235         p->size = 8;
2236         b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra);
2237         return int128_make128(b, a);
2238     }
2239 
2240     /*
2241      * It is a given that we cross a page and therefore there is no
2242      * atomicity for the load as a whole, but subobjects may need attention.
2243      */
2244     atom = mop & MO_ATOM_MASK;
2245     switch (atom) {
2246     case MO_ATOM_SUBALIGN:
2247         p->size = size - 8;
2248         a = do_ld_parts_beN(p, a);
2249         p->haddr += size - 8;
2250         p->size = 8;
2251         b = do_ld_parts_beN(p, 0);
2252         break;
2253 
2254     case MO_ATOM_WITHIN16_PAIR:
2255         /* Since size > 8, this is the half that must be atomic. */
2256         return do_ld_whole_be16(env, ra, p, a);
2257 
2258     case MO_ATOM_IFALIGN_PAIR:
2259         /*
2260          * Since size > 8, both halves are misaligned,
2261          * and so neither is atomic.
2262          */
2263     case MO_ATOM_IFALIGN:
2264     case MO_ATOM_WITHIN16:
2265     case MO_ATOM_NONE:
2266         p->size = size - 8;
2267         a = do_ld_bytes_beN(p, a);
2268         b = ldq_be_p(p->haddr + size - 8);
2269         break;
2270 
2271     default:
2272         g_assert_not_reached();
2273     }
2274 
2275     return int128_make128(b, a);
2276 }
2277 
2278 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2279                        MMUAccessType type, uintptr_t ra)
2280 {
2281     if (unlikely(p->flags & TLB_MMIO)) {
2282         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2283     } else {
2284         return *(uint8_t *)p->haddr;
2285     }
2286 }
2287 
2288 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2289                         MMUAccessType type, MemOp memop, uintptr_t ra)
2290 {
2291     uint64_t ret;
2292 
2293     if (unlikely(p->flags & TLB_MMIO)) {
2294         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2295     }
2296 
2297     /* Perform the load host endian, then swap if necessary. */
2298     ret = load_atom_2(env, ra, p->haddr, memop);
2299     if (memop & MO_BSWAP) {
2300         ret = bswap16(ret);
2301     }
2302     return ret;
2303 }
2304 
2305 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2306                         MMUAccessType type, MemOp memop, uintptr_t ra)
2307 {
2308     uint32_t ret;
2309 
2310     if (unlikely(p->flags & TLB_MMIO)) {
2311         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2312     }
2313 
2314     /* Perform the load host endian. */
2315     ret = load_atom_4(env, ra, p->haddr, memop);
2316     if (memop & MO_BSWAP) {
2317         ret = bswap32(ret);
2318     }
2319     return ret;
2320 }
2321 
2322 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2323                         MMUAccessType type, MemOp memop, uintptr_t ra)
2324 {
2325     uint64_t ret;
2326 
2327     if (unlikely(p->flags & TLB_MMIO)) {
2328         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2329     }
2330 
2331     /* Perform the load host endian. */
2332     ret = load_atom_8(env, ra, p->haddr, memop);
2333     if (memop & MO_BSWAP) {
2334         ret = bswap64(ret);
2335     }
2336     return ret;
2337 }
2338 
2339 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2340                           uintptr_t ra, MMUAccessType access_type)
2341 {
2342     MMULookupLocals l;
2343     bool crosspage;
2344 
2345     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2346     tcg_debug_assert(!crosspage);
2347 
2348     return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2349 }
2350 
2351 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2352                                  MemOpIdx oi, uintptr_t retaddr)
2353 {
2354     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2355     return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2356 }
2357 
2358 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2359                            uintptr_t ra, MMUAccessType access_type)
2360 {
2361     MMULookupLocals l;
2362     bool crosspage;
2363     uint16_t ret;
2364     uint8_t a, b;
2365 
2366     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2367     if (likely(!crosspage)) {
2368         return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2369     }
2370 
2371     a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2372     b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2373 
2374     if ((l.memop & MO_BSWAP) == MO_LE) {
2375         ret = a | (b << 8);
2376     } else {
2377         ret = b | (a << 8);
2378     }
2379     return ret;
2380 }
2381 
2382 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2383                                  MemOpIdx oi, uintptr_t retaddr)
2384 {
2385     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2386     return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2387 }
2388 
2389 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2390                            uintptr_t ra, MMUAccessType access_type)
2391 {
2392     MMULookupLocals l;
2393     bool crosspage;
2394     uint32_t ret;
2395 
2396     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2397     if (likely(!crosspage)) {
2398         return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2399     }
2400 
2401     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2402     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2403     if ((l.memop & MO_BSWAP) == MO_LE) {
2404         ret = bswap32(ret);
2405     }
2406     return ret;
2407 }
2408 
2409 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2410                                  MemOpIdx oi, uintptr_t retaddr)
2411 {
2412     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2413     return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2414 }
2415 
2416 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2417                            uintptr_t ra, MMUAccessType access_type)
2418 {
2419     MMULookupLocals l;
2420     bool crosspage;
2421     uint64_t ret;
2422 
2423     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2424     if (likely(!crosspage)) {
2425         return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2426     }
2427 
2428     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2429     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2430     if ((l.memop & MO_BSWAP) == MO_LE) {
2431         ret = bswap64(ret);
2432     }
2433     return ret;
2434 }
2435 
2436 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2437                         MemOpIdx oi, uintptr_t retaddr)
2438 {
2439     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2440     return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2441 }
2442 
2443 /*
2444  * Provide signed versions of the load routines as well.  We can of course
2445  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2446  */
2447 
2448 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2449                                  MemOpIdx oi, uintptr_t retaddr)
2450 {
2451     return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2452 }
2453 
2454 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2455                                  MemOpIdx oi, uintptr_t retaddr)
2456 {
2457     return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2458 }
2459 
2460 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2461                                  MemOpIdx oi, uintptr_t retaddr)
2462 {
2463     return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2464 }
2465 
2466 static Int128 do_ld16_mmu(CPUArchState *env, target_ulong addr,
2467                           MemOpIdx oi, uintptr_t ra)
2468 {
2469     MMULookupLocals l;
2470     bool crosspage;
2471     uint64_t a, b;
2472     Int128 ret;
2473     int first;
2474 
2475     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2476     if (likely(!crosspage)) {
2477         /* Perform the load host endian. */
2478         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2479             QEMU_IOTHREAD_LOCK_GUARD();
2480             a = io_readx(env, l.page[0].full, l.mmu_idx, addr,
2481                          ra, MMU_DATA_LOAD, MO_64);
2482             b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8,
2483                          ra, MMU_DATA_LOAD, MO_64);
2484             ret = int128_make128(HOST_BIG_ENDIAN ? b : a,
2485                                  HOST_BIG_ENDIAN ? a : b);
2486         } else {
2487             ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2488         }
2489         if (l.memop & MO_BSWAP) {
2490             ret = bswap128(ret);
2491         }
2492         return ret;
2493     }
2494 
2495     first = l.page[0].size;
2496     if (first == 8) {
2497         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2498 
2499         a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2500         b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2501         if ((mop8 & MO_BSWAP) == MO_LE) {
2502             ret = int128_make128(a, b);
2503         } else {
2504             ret = int128_make128(b, a);
2505         }
2506         return ret;
2507     }
2508 
2509     if (first < 8) {
2510         a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2511                       MMU_DATA_LOAD, l.memop, ra);
2512         ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2513     } else {
2514         ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2515         b = int128_getlo(ret);
2516         ret = int128_lshift(ret, l.page[1].size * 8);
2517         a = int128_gethi(ret);
2518         b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2519                       MMU_DATA_LOAD, l.memop, ra);
2520         ret = int128_make128(b, a);
2521     }
2522     if ((l.memop & MO_BSWAP) == MO_LE) {
2523         ret = bswap128(ret);
2524     }
2525     return ret;
2526 }
2527 
2528 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2529                        uint32_t oi, uintptr_t retaddr)
2530 {
2531     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2532     return do_ld16_mmu(env, addr, oi, retaddr);
2533 }
2534 
2535 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2536 {
2537     return helper_ld16_mmu(env, addr, oi, GETPC());
2538 }
2539 
2540 /*
2541  * Load helpers for cpu_ldst.h.
2542  */
2543 
2544 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2545 {
2546     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2547 }
2548 
2549 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2550 {
2551     uint8_t ret;
2552 
2553     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2554     ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2555     plugin_load_cb(env, addr, oi);
2556     return ret;
2557 }
2558 
2559 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2560                      MemOpIdx oi, uintptr_t ra)
2561 {
2562     uint16_t ret;
2563 
2564     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2565     ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2566     plugin_load_cb(env, addr, oi);
2567     return ret;
2568 }
2569 
2570 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2571                      MemOpIdx oi, uintptr_t ra)
2572 {
2573     uint32_t ret;
2574 
2575     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2576     ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2577     plugin_load_cb(env, addr, oi);
2578     return ret;
2579 }
2580 
2581 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2582                      MemOpIdx oi, uintptr_t ra)
2583 {
2584     uint64_t ret;
2585 
2586     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2587     ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2588     plugin_load_cb(env, addr, oi);
2589     return ret;
2590 }
2591 
2592 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2593                     MemOpIdx oi, uintptr_t ra)
2594 {
2595     Int128 ret;
2596 
2597     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2598     ret = do_ld16_mmu(env, addr, oi, ra);
2599     plugin_load_cb(env, addr, oi);
2600     return ret;
2601 }
2602 
2603 /*
2604  * Store Helpers
2605  */
2606 
2607 /**
2608  * do_st_mmio_leN:
2609  * @env: cpu context
2610  * @p: translation parameters
2611  * @val_le: data to store
2612  * @mmu_idx: virtual address context
2613  * @ra: return address into tcg generated code, or 0
2614  *
2615  * Store @p->size bytes at @p->addr, which is memory-mapped i/o.
2616  * The bytes to store are extracted in little-endian order from @val_le;
2617  * return the bytes of @val_le beyond @p->size that have not been stored.
2618  */
2619 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p,
2620                                uint64_t val_le, int mmu_idx, uintptr_t ra)
2621 {
2622     CPUTLBEntryFull *full = p->full;
2623     target_ulong addr = p->addr;
2624     int i, size = p->size;
2625 
2626     QEMU_IOTHREAD_LOCK_GUARD();
2627     for (i = 0; i < size; i++, val_le >>= 8) {
2628         io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB);
2629     }
2630     return val_le;
2631 }
2632 
2633 /*
2634  * Wrapper for the above.
2635  */
2636 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2637                           uint64_t val_le, int mmu_idx,
2638                           MemOp mop, uintptr_t ra)
2639 {
2640     MemOp atom;
2641     unsigned tmp, half_size;
2642 
2643     if (unlikely(p->flags & TLB_MMIO)) {
2644         return do_st_mmio_leN(env, p, val_le, mmu_idx, ra);
2645     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2646         return val_le >> (p->size * 8);
2647     }
2648 
2649     /*
2650      * It is a given that we cross a page and therefore there is no atomicity
2651      * for the store as a whole, but subobjects may need attention.
2652      */
2653     atom = mop & MO_ATOM_MASK;
2654     switch (atom) {
2655     case MO_ATOM_SUBALIGN:
2656         return store_parts_leN(p->haddr, p->size, val_le);
2657 
2658     case MO_ATOM_IFALIGN_PAIR:
2659     case MO_ATOM_WITHIN16_PAIR:
2660         tmp = mop & MO_SIZE;
2661         tmp = tmp ? tmp - 1 : 0;
2662         half_size = 1 << tmp;
2663         if (atom == MO_ATOM_IFALIGN_PAIR
2664             ? p->size == half_size
2665             : p->size >= half_size) {
2666             if (!HAVE_al8_fast && p->size <= 4) {
2667                 return store_whole_le4(p->haddr, p->size, val_le);
2668             } else if (HAVE_al8) {
2669                 return store_whole_le8(p->haddr, p->size, val_le);
2670             } else {
2671                 cpu_loop_exit_atomic(env_cpu(env), ra);
2672             }
2673         }
2674         /* fall through */
2675 
2676     case MO_ATOM_IFALIGN:
2677     case MO_ATOM_WITHIN16:
2678     case MO_ATOM_NONE:
2679         return store_bytes_leN(p->haddr, p->size, val_le);
2680 
2681     default:
2682         g_assert_not_reached();
2683     }
2684 }
2685 
2686 /*
2687  * Wrapper for the above, for 8 < size < 16.
2688  */
2689 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2690                             Int128 val_le, int mmu_idx,
2691                             MemOp mop, uintptr_t ra)
2692 {
2693     int size = p->size;
2694     MemOp atom;
2695 
2696     if (unlikely(p->flags & TLB_MMIO)) {
2697         p->size = 8;
2698         do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra);
2699         p->size = size - 8;
2700         p->addr += 8;
2701         return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra);
2702     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2703         return int128_gethi(val_le) >> ((size - 8) * 8);
2704     }
2705 
2706     /*
2707      * It is a given that we cross a page and therefore there is no atomicity
2708      * for the store as a whole, but subobjects may need attention.
2709      */
2710     atom = mop & MO_ATOM_MASK;
2711     switch (atom) {
2712     case MO_ATOM_SUBALIGN:
2713         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2714         return store_parts_leN(p->haddr + 8, p->size - 8,
2715                                int128_gethi(val_le));
2716 
2717     case MO_ATOM_WITHIN16_PAIR:
2718         /* Since size > 8, this is the half that must be atomic. */
2719         if (!HAVE_ATOMIC128_RW) {
2720             cpu_loop_exit_atomic(env_cpu(env), ra);
2721         }
2722         return store_whole_le16(p->haddr, p->size, val_le);
2723 
2724     case MO_ATOM_IFALIGN_PAIR:
2725         /*
2726          * Since size > 8, both halves are misaligned,
2727          * and so neither is atomic.
2728          */
2729     case MO_ATOM_IFALIGN:
2730     case MO_ATOM_WITHIN16:
2731     case MO_ATOM_NONE:
2732         stq_le_p(p->haddr, int128_getlo(val_le));
2733         return store_bytes_leN(p->haddr + 8, p->size - 8,
2734                                int128_gethi(val_le));
2735 
2736     default:
2737         g_assert_not_reached();
2738     }
2739 }
2740 
2741 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2742                     int mmu_idx, uintptr_t ra)
2743 {
2744     if (unlikely(p->flags & TLB_MMIO)) {
2745         io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2746     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2747         /* nothing */
2748     } else {
2749         *(uint8_t *)p->haddr = val;
2750     }
2751 }
2752 
2753 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2754                     int mmu_idx, MemOp memop, uintptr_t ra)
2755 {
2756     if (unlikely(p->flags & TLB_MMIO)) {
2757         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2758     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2759         /* nothing */
2760     } else {
2761         /* Swap to host endian if necessary, then store. */
2762         if (memop & MO_BSWAP) {
2763             val = bswap16(val);
2764         }
2765         store_atom_2(env, ra, p->haddr, memop, val);
2766     }
2767 }
2768 
2769 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2770                     int mmu_idx, MemOp memop, uintptr_t ra)
2771 {
2772     if (unlikely(p->flags & TLB_MMIO)) {
2773         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2774     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2775         /* nothing */
2776     } else {
2777         /* Swap to host endian if necessary, then store. */
2778         if (memop & MO_BSWAP) {
2779             val = bswap32(val);
2780         }
2781         store_atom_4(env, ra, p->haddr, memop, val);
2782     }
2783 }
2784 
2785 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2786                     int mmu_idx, MemOp memop, uintptr_t ra)
2787 {
2788     if (unlikely(p->flags & TLB_MMIO)) {
2789         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2790     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2791         /* nothing */
2792     } else {
2793         /* Swap to host endian if necessary, then store. */
2794         if (memop & MO_BSWAP) {
2795             val = bswap64(val);
2796         }
2797         store_atom_8(env, ra, p->haddr, memop, val);
2798     }
2799 }
2800 
2801 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2802                     MemOpIdx oi, uintptr_t ra)
2803 {
2804     MMULookupLocals l;
2805     bool crosspage;
2806 
2807     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2808     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2809     tcg_debug_assert(!crosspage);
2810 
2811     do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2812 }
2813 
2814 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2815                        MemOpIdx oi, uintptr_t ra)
2816 {
2817     MMULookupLocals l;
2818     bool crosspage;
2819     uint8_t a, b;
2820 
2821     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2822     if (likely(!crosspage)) {
2823         do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2824         return;
2825     }
2826 
2827     if ((l.memop & MO_BSWAP) == MO_LE) {
2828         a = val, b = val >> 8;
2829     } else {
2830         b = val, a = val >> 8;
2831     }
2832     do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2833     do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2834 }
2835 
2836 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2837                     MemOpIdx oi, uintptr_t retaddr)
2838 {
2839     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2840     do_st2_mmu(env, addr, val, oi, retaddr);
2841 }
2842 
2843 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2844                        MemOpIdx oi, uintptr_t ra)
2845 {
2846     MMULookupLocals l;
2847     bool crosspage;
2848 
2849     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2850     if (likely(!crosspage)) {
2851         do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2852         return;
2853     }
2854 
2855     /* Swap to little endian for simplicity, then store by bytes. */
2856     if ((l.memop & MO_BSWAP) != MO_LE) {
2857         val = bswap32(val);
2858     }
2859     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2860     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2861 }
2862 
2863 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2864                     MemOpIdx oi, uintptr_t retaddr)
2865 {
2866     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2867     do_st4_mmu(env, addr, val, oi, retaddr);
2868 }
2869 
2870 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2871                        MemOpIdx oi, uintptr_t ra)
2872 {
2873     MMULookupLocals l;
2874     bool crosspage;
2875 
2876     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2877     if (likely(!crosspage)) {
2878         do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2879         return;
2880     }
2881 
2882     /* Swap to little endian for simplicity, then store by bytes. */
2883     if ((l.memop & MO_BSWAP) != MO_LE) {
2884         val = bswap64(val);
2885     }
2886     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2887     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2888 }
2889 
2890 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
2891                     MemOpIdx oi, uintptr_t retaddr)
2892 {
2893     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2894     do_st8_mmu(env, addr, val, oi, retaddr);
2895 }
2896 
2897 static void do_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
2898                         MemOpIdx oi, uintptr_t ra)
2899 {
2900     MMULookupLocals l;
2901     bool crosspage;
2902     uint64_t a, b;
2903     int first;
2904 
2905     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2906     if (likely(!crosspage)) {
2907         /* Swap to host endian if necessary, then store. */
2908         if (l.memop & MO_BSWAP) {
2909             val = bswap128(val);
2910         }
2911         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2912             QEMU_IOTHREAD_LOCK_GUARD();
2913             if (HOST_BIG_ENDIAN) {
2914                 b = int128_getlo(val), a = int128_gethi(val);
2915             } else {
2916                 a = int128_getlo(val), b = int128_gethi(val);
2917             }
2918             io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64);
2919             io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64);
2920         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2921             /* nothing */
2922         } else {
2923             store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
2924         }
2925         return;
2926     }
2927 
2928     first = l.page[0].size;
2929     if (first == 8) {
2930         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2931 
2932         if (l.memop & MO_BSWAP) {
2933             val = bswap128(val);
2934         }
2935         if (HOST_BIG_ENDIAN) {
2936             b = int128_getlo(val), a = int128_gethi(val);
2937         } else {
2938             a = int128_getlo(val), b = int128_gethi(val);
2939         }
2940         do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
2941         do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
2942         return;
2943     }
2944 
2945     if ((l.memop & MO_BSWAP) != MO_LE) {
2946         val = bswap128(val);
2947     }
2948     if (first < 8) {
2949         do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2950         val = int128_urshift(val, first * 8);
2951         do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2952     } else {
2953         b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2954         do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
2955     }
2956 }
2957 
2958 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
2959                      MemOpIdx oi, uintptr_t retaddr)
2960 {
2961     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2962     do_st16_mmu(env, addr, val, oi, retaddr);
2963 }
2964 
2965 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
2966 {
2967     helper_st16_mmu(env, addr, val, oi, GETPC());
2968 }
2969 
2970 /*
2971  * Store Helpers for cpu_ldst.h
2972  */
2973 
2974 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2975 {
2976     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2977 }
2978 
2979 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2980                  MemOpIdx oi, uintptr_t retaddr)
2981 {
2982     helper_stb_mmu(env, addr, val, oi, retaddr);
2983     plugin_store_cb(env, addr, oi);
2984 }
2985 
2986 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2987                  MemOpIdx oi, uintptr_t retaddr)
2988 {
2989     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2990     do_st2_mmu(env, addr, val, oi, retaddr);
2991     plugin_store_cb(env, addr, oi);
2992 }
2993 
2994 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2995                     MemOpIdx oi, uintptr_t retaddr)
2996 {
2997     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2998     do_st4_mmu(env, addr, val, oi, retaddr);
2999     plugin_store_cb(env, addr, oi);
3000 }
3001 
3002 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
3003                  MemOpIdx oi, uintptr_t retaddr)
3004 {
3005     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3006     do_st8_mmu(env, addr, val, oi, retaddr);
3007     plugin_store_cb(env, addr, oi);
3008 }
3009 
3010 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
3011                   MemOpIdx oi, uintptr_t retaddr)
3012 {
3013     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3014     do_st16_mmu(env, addr, val, oi, retaddr);
3015     plugin_store_cb(env, addr, oi);
3016 }
3017 
3018 #include "ldst_common.c.inc"
3019 
3020 /*
3021  * First set of functions passes in OI and RETADDR.
3022  * This makes them callable from other helpers.
3023  */
3024 
3025 #define ATOMIC_NAME(X) \
3026     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3027 
3028 #define ATOMIC_MMU_CLEANUP
3029 
3030 #include "atomic_common.c.inc"
3031 
3032 #define DATA_SIZE 1
3033 #include "atomic_template.h"
3034 
3035 #define DATA_SIZE 2
3036 #include "atomic_template.h"
3037 
3038 #define DATA_SIZE 4
3039 #include "atomic_template.h"
3040 
3041 #ifdef CONFIG_ATOMIC64
3042 #define DATA_SIZE 8
3043 #include "atomic_template.h"
3044 #endif
3045 
3046 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128)
3047 #define DATA_SIZE 16
3048 #include "atomic_template.h"
3049 #endif
3050 
3051 /* Code access functions.  */
3052 
3053 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3054 {
3055     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3056     return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3057 }
3058 
3059 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3060 {
3061     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3062     return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3063 }
3064 
3065 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3066 {
3067     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3068     return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3069 }
3070 
3071 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3072 {
3073     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3074     return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3075 }
3076 
3077 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3078                          MemOpIdx oi, uintptr_t retaddr)
3079 {
3080     return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3081 }
3082 
3083 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3084                           MemOpIdx oi, uintptr_t retaddr)
3085 {
3086     return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3087 }
3088 
3089 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3090                           MemOpIdx oi, uintptr_t retaddr)
3091 {
3092     return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3093 }
3094 
3095 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3096                           MemOpIdx oi, uintptr_t retaddr)
3097 {
3098     return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3099 }
3100