1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 45 /* #define DEBUG_TLB */ 46 /* #define DEBUG_TLB_LOG */ 47 48 #ifdef DEBUG_TLB 49 # define DEBUG_TLB_GATE 1 50 # ifdef DEBUG_TLB_LOG 51 # define DEBUG_TLB_LOG_GATE 1 52 # else 53 # define DEBUG_TLB_LOG_GATE 0 54 # endif 55 #else 56 # define DEBUG_TLB_GATE 0 57 # define DEBUG_TLB_LOG_GATE 0 58 #endif 59 60 #define tlb_debug(fmt, ...) do { \ 61 if (DEBUG_TLB_LOG_GATE) { \ 62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 63 ## __VA_ARGS__); \ 64 } else if (DEBUG_TLB_GATE) { \ 65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define assert_cpu_is_self(cpu) do { \ 70 if (DEBUG_TLB_GATE) { \ 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 72 } \ 73 } while (0) 74 75 /* run_on_cpu_data.target_ptr should always be big enough for a 76 * target_ulong even on 32 bit builds */ 77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 78 79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 80 */ 81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 83 84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 85 { 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 87 } 88 89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 90 { 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 92 } 93 94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 95 size_t max_entries) 96 { 97 desc->window_begin_ns = ns; 98 desc->window_max_entries = max_entries; 99 } 100 101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 102 { 103 CPUJumpCache *jc = cpu->tb_jmp_cache; 104 int i, i0; 105 106 if (unlikely(!jc)) { 107 return; 108 } 109 110 i0 = tb_jmp_cache_hash_page(page_addr); 111 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 112 qatomic_set(&jc->array[i0 + i].tb, NULL); 113 } 114 } 115 116 /** 117 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 118 * @desc: The CPUTLBDesc portion of the TLB 119 * @fast: The CPUTLBDescFast portion of the same TLB 120 * 121 * Called with tlb_lock_held. 122 * 123 * We have two main constraints when resizing a TLB: (1) we only resize it 124 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 125 * the array or unnecessarily flushing it), which means we do not control how 126 * frequently the resizing can occur; (2) we don't have access to the guest's 127 * future scheduling decisions, and therefore have to decide the magnitude of 128 * the resize based on past observations. 129 * 130 * In general, a memory-hungry process can benefit greatly from an appropriately 131 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 132 * we just have to make the TLB as large as possible; while an oversized TLB 133 * results in minimal TLB miss rates, it also takes longer to be flushed 134 * (flushes can be _very_ frequent), and the reduced locality can also hurt 135 * performance. 136 * 137 * To achieve near-optimal performance for all kinds of workloads, we: 138 * 139 * 1. Aggressively increase the size of the TLB when the use rate of the 140 * TLB being flushed is high, since it is likely that in the near future this 141 * memory-hungry process will execute again, and its memory hungriness will 142 * probably be similar. 143 * 144 * 2. Slowly reduce the size of the TLB as the use rate declines over a 145 * reasonably large time window. The rationale is that if in such a time window 146 * we have not observed a high TLB use rate, it is likely that we won't observe 147 * it in the near future. In that case, once a time window expires we downsize 148 * the TLB to match the maximum use rate observed in the window. 149 * 150 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 151 * since in that range performance is likely near-optimal. Recall that the TLB 152 * is direct mapped, so we want the use rate to be low (or at least not too 153 * high), since otherwise we are likely to have a significant amount of 154 * conflict misses. 155 */ 156 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 157 int64_t now) 158 { 159 size_t old_size = tlb_n_entries(fast); 160 size_t rate; 161 size_t new_size = old_size; 162 int64_t window_len_ms = 100; 163 int64_t window_len_ns = window_len_ms * 1000 * 1000; 164 bool window_expired = now > desc->window_begin_ns + window_len_ns; 165 166 if (desc->n_used_entries > desc->window_max_entries) { 167 desc->window_max_entries = desc->n_used_entries; 168 } 169 rate = desc->window_max_entries * 100 / old_size; 170 171 if (rate > 70) { 172 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 173 } else if (rate < 30 && window_expired) { 174 size_t ceil = pow2ceil(desc->window_max_entries); 175 size_t expected_rate = desc->window_max_entries * 100 / ceil; 176 177 /* 178 * Avoid undersizing when the max number of entries seen is just below 179 * a pow2. For instance, if max_entries == 1025, the expected use rate 180 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 181 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 182 * later. Thus, make sure that the expected use rate remains below 70%. 183 * (and since we double the size, that means the lowest rate we'd 184 * expect to get is 35%, which is still in the 30-70% range where 185 * we consider that the size is appropriate.) 186 */ 187 if (expected_rate > 70) { 188 ceil *= 2; 189 } 190 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 191 } 192 193 if (new_size == old_size) { 194 if (window_expired) { 195 tlb_window_reset(desc, now, desc->n_used_entries); 196 } 197 return; 198 } 199 200 g_free(fast->table); 201 g_free(desc->fulltlb); 202 203 tlb_window_reset(desc, now, 0); 204 /* desc->n_used_entries is cleared by the caller */ 205 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 206 fast->table = g_try_new(CPUTLBEntry, new_size); 207 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 208 209 /* 210 * If the allocations fail, try smaller sizes. We just freed some 211 * memory, so going back to half of new_size has a good chance of working. 212 * Increased memory pressure elsewhere in the system might cause the 213 * allocations to fail though, so we progressively reduce the allocation 214 * size, aborting if we cannot even allocate the smallest TLB we support. 215 */ 216 while (fast->table == NULL || desc->fulltlb == NULL) { 217 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 218 error_report("%s: %s", __func__, strerror(errno)); 219 abort(); 220 } 221 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 222 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 223 224 g_free(fast->table); 225 g_free(desc->fulltlb); 226 fast->table = g_try_new(CPUTLBEntry, new_size); 227 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 228 } 229 } 230 231 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 232 { 233 desc->n_used_entries = 0; 234 desc->large_page_addr = -1; 235 desc->large_page_mask = -1; 236 desc->vindex = 0; 237 memset(fast->table, -1, sizeof_tlb(fast)); 238 memset(desc->vtable, -1, sizeof(desc->vtable)); 239 } 240 241 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 242 int64_t now) 243 { 244 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 245 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 246 247 tlb_mmu_resize_locked(desc, fast, now); 248 tlb_mmu_flush_locked(desc, fast); 249 } 250 251 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 252 { 253 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 254 255 tlb_window_reset(desc, now, 0); 256 desc->n_used_entries = 0; 257 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 258 fast->table = g_new(CPUTLBEntry, n_entries); 259 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 260 tlb_mmu_flush_locked(desc, fast); 261 } 262 263 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 264 { 265 env_tlb(env)->d[mmu_idx].n_used_entries++; 266 } 267 268 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 269 { 270 env_tlb(env)->d[mmu_idx].n_used_entries--; 271 } 272 273 void tlb_init(CPUState *cpu) 274 { 275 CPUArchState *env = cpu->env_ptr; 276 int64_t now = get_clock_realtime(); 277 int i; 278 279 qemu_spin_init(&env_tlb(env)->c.lock); 280 281 /* All tlbs are initialized flushed. */ 282 env_tlb(env)->c.dirty = 0; 283 284 for (i = 0; i < NB_MMU_MODES; i++) { 285 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 286 } 287 } 288 289 void tlb_destroy(CPUState *cpu) 290 { 291 CPUArchState *env = cpu->env_ptr; 292 int i; 293 294 qemu_spin_destroy(&env_tlb(env)->c.lock); 295 for (i = 0; i < NB_MMU_MODES; i++) { 296 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 297 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 298 299 g_free(fast->table); 300 g_free(desc->fulltlb); 301 } 302 } 303 304 /* flush_all_helper: run fn across all cpus 305 * 306 * If the wait flag is set then the src cpu's helper will be queued as 307 * "safe" work and the loop exited creating a synchronisation point 308 * where all queued work will be finished before execution starts 309 * again. 310 */ 311 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 312 run_on_cpu_data d) 313 { 314 CPUState *cpu; 315 316 CPU_FOREACH(cpu) { 317 if (cpu != src) { 318 async_run_on_cpu(cpu, fn, d); 319 } 320 } 321 } 322 323 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 324 { 325 CPUState *cpu; 326 size_t full = 0, part = 0, elide = 0; 327 328 CPU_FOREACH(cpu) { 329 CPUArchState *env = cpu->env_ptr; 330 331 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 332 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 333 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 334 } 335 *pfull = full; 336 *ppart = part; 337 *pelide = elide; 338 } 339 340 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 341 { 342 CPUArchState *env = cpu->env_ptr; 343 uint16_t asked = data.host_int; 344 uint16_t all_dirty, work, to_clean; 345 int64_t now = get_clock_realtime(); 346 347 assert_cpu_is_self(cpu); 348 349 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 350 351 qemu_spin_lock(&env_tlb(env)->c.lock); 352 353 all_dirty = env_tlb(env)->c.dirty; 354 to_clean = asked & all_dirty; 355 all_dirty &= ~to_clean; 356 env_tlb(env)->c.dirty = all_dirty; 357 358 for (work = to_clean; work != 0; work &= work - 1) { 359 int mmu_idx = ctz32(work); 360 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 361 } 362 363 qemu_spin_unlock(&env_tlb(env)->c.lock); 364 365 tcg_flush_jmp_cache(cpu); 366 367 if (to_clean == ALL_MMUIDX_BITS) { 368 qatomic_set(&env_tlb(env)->c.full_flush_count, 369 env_tlb(env)->c.full_flush_count + 1); 370 } else { 371 qatomic_set(&env_tlb(env)->c.part_flush_count, 372 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 373 if (to_clean != asked) { 374 qatomic_set(&env_tlb(env)->c.elide_flush_count, 375 env_tlb(env)->c.elide_flush_count + 376 ctpop16(asked & ~to_clean)); 377 } 378 } 379 } 380 381 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 382 { 383 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 384 385 if (cpu->created && !qemu_cpu_is_self(cpu)) { 386 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 387 RUN_ON_CPU_HOST_INT(idxmap)); 388 } else { 389 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 390 } 391 } 392 393 void tlb_flush(CPUState *cpu) 394 { 395 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 396 } 397 398 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 399 { 400 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 401 402 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 403 404 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 405 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 406 } 407 408 void tlb_flush_all_cpus(CPUState *src_cpu) 409 { 410 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 411 } 412 413 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 414 { 415 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 416 417 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 418 419 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 420 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 421 } 422 423 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 424 { 425 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 426 } 427 428 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 429 target_ulong page, target_ulong mask) 430 { 431 page &= mask; 432 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 433 434 return (page == (tlb_entry->addr_read & mask) || 435 page == (tlb_addr_write(tlb_entry) & mask) || 436 page == (tlb_entry->addr_code & mask)); 437 } 438 439 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 440 target_ulong page) 441 { 442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 443 } 444 445 /** 446 * tlb_entry_is_empty - return true if the entry is not in use 447 * @te: pointer to CPUTLBEntry 448 */ 449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 450 { 451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 452 } 453 454 /* Called with tlb_c.lock held */ 455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 456 target_ulong page, 457 target_ulong mask) 458 { 459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 460 memset(tlb_entry, -1, sizeof(*tlb_entry)); 461 return true; 462 } 463 return false; 464 } 465 466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 467 target_ulong page) 468 { 469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 470 } 471 472 /* Called with tlb_c.lock held */ 473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 474 target_ulong page, 475 target_ulong mask) 476 { 477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 478 int k; 479 480 assert_cpu_is_self(env_cpu(env)); 481 for (k = 0; k < CPU_VTLB_SIZE; k++) { 482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 483 tlb_n_used_entries_dec(env, mmu_idx); 484 } 485 } 486 } 487 488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 489 target_ulong page) 490 { 491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 492 } 493 494 static void tlb_flush_page_locked(CPUArchState *env, int midx, 495 target_ulong page) 496 { 497 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 498 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 499 500 /* Check if we need to flush due to large pages. */ 501 if ((page & lp_mask) == lp_addr) { 502 tlb_debug("forcing full flush midx %d (" 503 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 504 midx, lp_addr, lp_mask); 505 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 506 } else { 507 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 508 tlb_n_used_entries_dec(env, midx); 509 } 510 tlb_flush_vtlb_page_locked(env, midx, page); 511 } 512 } 513 514 /** 515 * tlb_flush_page_by_mmuidx_async_0: 516 * @cpu: cpu on which to flush 517 * @addr: page of virtual address to flush 518 * @idxmap: set of mmu_idx to flush 519 * 520 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 521 * at @addr from the tlbs indicated by @idxmap from @cpu. 522 */ 523 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 524 target_ulong addr, 525 uint16_t idxmap) 526 { 527 CPUArchState *env = cpu->env_ptr; 528 int mmu_idx; 529 530 assert_cpu_is_self(cpu); 531 532 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 533 534 qemu_spin_lock(&env_tlb(env)->c.lock); 535 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 536 if ((idxmap >> mmu_idx) & 1) { 537 tlb_flush_page_locked(env, mmu_idx, addr); 538 } 539 } 540 qemu_spin_unlock(&env_tlb(env)->c.lock); 541 542 /* 543 * Discard jump cache entries for any tb which might potentially 544 * overlap the flushed page, which includes the previous. 545 */ 546 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 547 tb_jmp_cache_clear_page(cpu, addr); 548 } 549 550 /** 551 * tlb_flush_page_by_mmuidx_async_1: 552 * @cpu: cpu on which to flush 553 * @data: encoded addr + idxmap 554 * 555 * Helper for tlb_flush_page_by_mmuidx and friends, called through 556 * async_run_on_cpu. The idxmap parameter is encoded in the page 557 * offset of the target_ptr field. This limits the set of mmu_idx 558 * that can be passed via this method. 559 */ 560 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 561 run_on_cpu_data data) 562 { 563 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 564 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 565 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 566 567 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 568 } 569 570 typedef struct { 571 target_ulong addr; 572 uint16_t idxmap; 573 } TLBFlushPageByMMUIdxData; 574 575 /** 576 * tlb_flush_page_by_mmuidx_async_2: 577 * @cpu: cpu on which to flush 578 * @data: allocated addr + idxmap 579 * 580 * Helper for tlb_flush_page_by_mmuidx and friends, called through 581 * async_run_on_cpu. The addr+idxmap parameters are stored in a 582 * TLBFlushPageByMMUIdxData structure that has been allocated 583 * specifically for this helper. Free the structure when done. 584 */ 585 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 586 run_on_cpu_data data) 587 { 588 TLBFlushPageByMMUIdxData *d = data.host_ptr; 589 590 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 591 g_free(d); 592 } 593 594 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 595 { 596 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 597 598 /* This should already be page aligned */ 599 addr &= TARGET_PAGE_MASK; 600 601 if (qemu_cpu_is_self(cpu)) { 602 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 603 } else if (idxmap < TARGET_PAGE_SIZE) { 604 /* 605 * Most targets have only a few mmu_idx. In the case where 606 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 607 * allocating memory for this operation. 608 */ 609 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 610 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 611 } else { 612 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 613 614 /* Otherwise allocate a structure, freed by the worker. */ 615 d->addr = addr; 616 d->idxmap = idxmap; 617 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 618 RUN_ON_CPU_HOST_PTR(d)); 619 } 620 } 621 622 void tlb_flush_page(CPUState *cpu, target_ulong addr) 623 { 624 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 625 } 626 627 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 628 uint16_t idxmap) 629 { 630 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 631 632 /* This should already be page aligned */ 633 addr &= TARGET_PAGE_MASK; 634 635 /* 636 * Allocate memory to hold addr+idxmap only when needed. 637 * See tlb_flush_page_by_mmuidx for details. 638 */ 639 if (idxmap < TARGET_PAGE_SIZE) { 640 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 641 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 642 } else { 643 CPUState *dst_cpu; 644 645 /* Allocate a separate data block for each destination cpu. */ 646 CPU_FOREACH(dst_cpu) { 647 if (dst_cpu != src_cpu) { 648 TLBFlushPageByMMUIdxData *d 649 = g_new(TLBFlushPageByMMUIdxData, 1); 650 651 d->addr = addr; 652 d->idxmap = idxmap; 653 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 654 RUN_ON_CPU_HOST_PTR(d)); 655 } 656 } 657 } 658 659 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 660 } 661 662 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 663 { 664 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 665 } 666 667 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 668 target_ulong addr, 669 uint16_t idxmap) 670 { 671 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 672 673 /* This should already be page aligned */ 674 addr &= TARGET_PAGE_MASK; 675 676 /* 677 * Allocate memory to hold addr+idxmap only when needed. 678 * See tlb_flush_page_by_mmuidx for details. 679 */ 680 if (idxmap < TARGET_PAGE_SIZE) { 681 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 682 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 684 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 685 } else { 686 CPUState *dst_cpu; 687 TLBFlushPageByMMUIdxData *d; 688 689 /* Allocate a separate data block for each destination cpu. */ 690 CPU_FOREACH(dst_cpu) { 691 if (dst_cpu != src_cpu) { 692 d = g_new(TLBFlushPageByMMUIdxData, 1); 693 d->addr = addr; 694 d->idxmap = idxmap; 695 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 696 RUN_ON_CPU_HOST_PTR(d)); 697 } 698 } 699 700 d = g_new(TLBFlushPageByMMUIdxData, 1); 701 d->addr = addr; 702 d->idxmap = idxmap; 703 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 704 RUN_ON_CPU_HOST_PTR(d)); 705 } 706 } 707 708 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 709 { 710 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 711 } 712 713 static void tlb_flush_range_locked(CPUArchState *env, int midx, 714 target_ulong addr, target_ulong len, 715 unsigned bits) 716 { 717 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 718 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 719 target_ulong mask = MAKE_64BIT_MASK(0, bits); 720 721 /* 722 * If @bits is smaller than the tlb size, there may be multiple entries 723 * within the TLB; otherwise all addresses that match under @mask hit 724 * the same TLB entry. 725 * TODO: Perhaps allow bits to be a few bits less than the size. 726 * For now, just flush the entire TLB. 727 * 728 * If @len is larger than the tlb size, then it will take longer to 729 * test all of the entries in the TLB than it will to flush it all. 730 */ 731 if (mask < f->mask || len > f->mask) { 732 tlb_debug("forcing full flush midx %d (" 733 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 734 midx, addr, mask, len); 735 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 736 return; 737 } 738 739 /* 740 * Check if we need to flush due to large pages. 741 * Because large_page_mask contains all 1's from the msb, 742 * we only need to test the end of the range. 743 */ 744 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 745 tlb_debug("forcing full flush midx %d (" 746 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 747 midx, d->large_page_addr, d->large_page_mask); 748 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 749 return; 750 } 751 752 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 753 target_ulong page = addr + i; 754 CPUTLBEntry *entry = tlb_entry(env, midx, page); 755 756 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 757 tlb_n_used_entries_dec(env, midx); 758 } 759 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 760 } 761 } 762 763 typedef struct { 764 target_ulong addr; 765 target_ulong len; 766 uint16_t idxmap; 767 uint16_t bits; 768 } TLBFlushRangeData; 769 770 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 771 TLBFlushRangeData d) 772 { 773 CPUArchState *env = cpu->env_ptr; 774 int mmu_idx; 775 776 assert_cpu_is_self(cpu); 777 778 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 779 d.addr, d.bits, d.len, d.idxmap); 780 781 qemu_spin_lock(&env_tlb(env)->c.lock); 782 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 783 if ((d.idxmap >> mmu_idx) & 1) { 784 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 785 } 786 } 787 qemu_spin_unlock(&env_tlb(env)->c.lock); 788 789 /* 790 * If the length is larger than the jump cache size, then it will take 791 * longer to clear each entry individually than it will to clear it all. 792 */ 793 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 794 tcg_flush_jmp_cache(cpu); 795 return; 796 } 797 798 /* 799 * Discard jump cache entries for any tb which might potentially 800 * overlap the flushed pages, which includes the previous. 801 */ 802 d.addr -= TARGET_PAGE_SIZE; 803 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 804 tb_jmp_cache_clear_page(cpu, d.addr); 805 d.addr += TARGET_PAGE_SIZE; 806 } 807 } 808 809 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 810 run_on_cpu_data data) 811 { 812 TLBFlushRangeData *d = data.host_ptr; 813 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 814 g_free(d); 815 } 816 817 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 818 target_ulong len, uint16_t idxmap, 819 unsigned bits) 820 { 821 TLBFlushRangeData d; 822 823 /* 824 * If all bits are significant, and len is small, 825 * this devolves to tlb_flush_page. 826 */ 827 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 828 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 829 return; 830 } 831 /* If no page bits are significant, this devolves to tlb_flush. */ 832 if (bits < TARGET_PAGE_BITS) { 833 tlb_flush_by_mmuidx(cpu, idxmap); 834 return; 835 } 836 837 /* This should already be page aligned */ 838 d.addr = addr & TARGET_PAGE_MASK; 839 d.len = len; 840 d.idxmap = idxmap; 841 d.bits = bits; 842 843 if (qemu_cpu_is_self(cpu)) { 844 tlb_flush_range_by_mmuidx_async_0(cpu, d); 845 } else { 846 /* Otherwise allocate a structure, freed by the worker. */ 847 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 848 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 849 RUN_ON_CPU_HOST_PTR(p)); 850 } 851 } 852 853 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 854 uint16_t idxmap, unsigned bits) 855 { 856 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 857 } 858 859 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 860 target_ulong addr, target_ulong len, 861 uint16_t idxmap, unsigned bits) 862 { 863 TLBFlushRangeData d; 864 CPUState *dst_cpu; 865 866 /* 867 * If all bits are significant, and len is small, 868 * this devolves to tlb_flush_page. 869 */ 870 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 871 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 872 return; 873 } 874 /* If no page bits are significant, this devolves to tlb_flush. */ 875 if (bits < TARGET_PAGE_BITS) { 876 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 877 return; 878 } 879 880 /* This should already be page aligned */ 881 d.addr = addr & TARGET_PAGE_MASK; 882 d.len = len; 883 d.idxmap = idxmap; 884 d.bits = bits; 885 886 /* Allocate a separate data block for each destination cpu. */ 887 CPU_FOREACH(dst_cpu) { 888 if (dst_cpu != src_cpu) { 889 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 890 async_run_on_cpu(dst_cpu, 891 tlb_flush_range_by_mmuidx_async_1, 892 RUN_ON_CPU_HOST_PTR(p)); 893 } 894 } 895 896 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 897 } 898 899 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 900 target_ulong addr, 901 uint16_t idxmap, unsigned bits) 902 { 903 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 904 idxmap, bits); 905 } 906 907 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 908 target_ulong addr, 909 target_ulong len, 910 uint16_t idxmap, 911 unsigned bits) 912 { 913 TLBFlushRangeData d, *p; 914 CPUState *dst_cpu; 915 916 /* 917 * If all bits are significant, and len is small, 918 * this devolves to tlb_flush_page. 919 */ 920 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 921 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 922 return; 923 } 924 /* If no page bits are significant, this devolves to tlb_flush. */ 925 if (bits < TARGET_PAGE_BITS) { 926 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 927 return; 928 } 929 930 /* This should already be page aligned */ 931 d.addr = addr & TARGET_PAGE_MASK; 932 d.len = len; 933 d.idxmap = idxmap; 934 d.bits = bits; 935 936 /* Allocate a separate data block for each destination cpu. */ 937 CPU_FOREACH(dst_cpu) { 938 if (dst_cpu != src_cpu) { 939 p = g_memdup(&d, sizeof(d)); 940 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 941 RUN_ON_CPU_HOST_PTR(p)); 942 } 943 } 944 945 p = g_memdup(&d, sizeof(d)); 946 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 947 RUN_ON_CPU_HOST_PTR(p)); 948 } 949 950 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 951 target_ulong addr, 952 uint16_t idxmap, 953 unsigned bits) 954 { 955 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 956 idxmap, bits); 957 } 958 959 /* update the TLBs so that writes to code in the virtual page 'addr' 960 can be detected */ 961 void tlb_protect_code(ram_addr_t ram_addr) 962 { 963 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 964 TARGET_PAGE_SIZE, 965 DIRTY_MEMORY_CODE); 966 } 967 968 /* update the TLB so that writes in physical page 'phys_addr' are no longer 969 tested for self modifying code */ 970 void tlb_unprotect_code(ram_addr_t ram_addr) 971 { 972 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 973 } 974 975 976 /* 977 * Dirty write flag handling 978 * 979 * When the TCG code writes to a location it looks up the address in 980 * the TLB and uses that data to compute the final address. If any of 981 * the lower bits of the address are set then the slow path is forced. 982 * There are a number of reasons to do this but for normal RAM the 983 * most usual is detecting writes to code regions which may invalidate 984 * generated code. 985 * 986 * Other vCPUs might be reading their TLBs during guest execution, so we update 987 * te->addr_write with qatomic_set. We don't need to worry about this for 988 * oversized guests as MTTCG is disabled for them. 989 * 990 * Called with tlb_c.lock held. 991 */ 992 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 993 uintptr_t start, uintptr_t length) 994 { 995 uintptr_t addr = tlb_entry->addr_write; 996 997 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 998 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 999 addr &= TARGET_PAGE_MASK; 1000 addr += tlb_entry->addend; 1001 if ((addr - start) < length) { 1002 #if TCG_OVERSIZED_GUEST 1003 tlb_entry->addr_write |= TLB_NOTDIRTY; 1004 #else 1005 qatomic_set(&tlb_entry->addr_write, 1006 tlb_entry->addr_write | TLB_NOTDIRTY); 1007 #endif 1008 } 1009 } 1010 } 1011 1012 /* 1013 * Called with tlb_c.lock held. 1014 * Called only from the vCPU context, i.e. the TLB's owner thread. 1015 */ 1016 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1017 { 1018 *d = *s; 1019 } 1020 1021 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1022 * the target vCPU). 1023 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1024 * thing actually updated is the target TLB entry ->addr_write flags. 1025 */ 1026 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1027 { 1028 CPUArchState *env; 1029 1030 int mmu_idx; 1031 1032 env = cpu->env_ptr; 1033 qemu_spin_lock(&env_tlb(env)->c.lock); 1034 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1035 unsigned int i; 1036 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1037 1038 for (i = 0; i < n; i++) { 1039 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1040 start1, length); 1041 } 1042 1043 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1044 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1045 start1, length); 1046 } 1047 } 1048 qemu_spin_unlock(&env_tlb(env)->c.lock); 1049 } 1050 1051 /* Called with tlb_c.lock held */ 1052 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1053 target_ulong vaddr) 1054 { 1055 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1056 tlb_entry->addr_write = vaddr; 1057 } 1058 } 1059 1060 /* update the TLB corresponding to virtual page vaddr 1061 so that it is no longer dirty */ 1062 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1063 { 1064 CPUArchState *env = cpu->env_ptr; 1065 int mmu_idx; 1066 1067 assert_cpu_is_self(cpu); 1068 1069 vaddr &= TARGET_PAGE_MASK; 1070 qemu_spin_lock(&env_tlb(env)->c.lock); 1071 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1072 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1073 } 1074 1075 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1076 int k; 1077 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1078 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1079 } 1080 } 1081 qemu_spin_unlock(&env_tlb(env)->c.lock); 1082 } 1083 1084 /* Our TLB does not support large pages, so remember the area covered by 1085 large pages and trigger a full TLB flush if these are invalidated. */ 1086 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1087 target_ulong vaddr, target_ulong size) 1088 { 1089 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1090 target_ulong lp_mask = ~(size - 1); 1091 1092 if (lp_addr == (target_ulong)-1) { 1093 /* No previous large page. */ 1094 lp_addr = vaddr; 1095 } else { 1096 /* Extend the existing region to include the new page. 1097 This is a compromise between unnecessary flushes and 1098 the cost of maintaining a full variable size TLB. */ 1099 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1100 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1101 lp_mask <<= 1; 1102 } 1103 } 1104 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1105 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1106 } 1107 1108 /* 1109 * Add a new TLB entry. At most one entry for a given virtual address 1110 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1111 * supplied size is only used by tlb_flush_page. 1112 * 1113 * Called from TCG-generated code, which is under an RCU read-side 1114 * critical section. 1115 */ 1116 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1117 target_ulong vaddr, CPUTLBEntryFull *full) 1118 { 1119 CPUArchState *env = cpu->env_ptr; 1120 CPUTLB *tlb = env_tlb(env); 1121 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1122 MemoryRegionSection *section; 1123 unsigned int index; 1124 target_ulong address; 1125 target_ulong write_address; 1126 uintptr_t addend; 1127 CPUTLBEntry *te, tn; 1128 hwaddr iotlb, xlat, sz, paddr_page; 1129 target_ulong vaddr_page; 1130 int asidx, wp_flags, prot; 1131 bool is_ram, is_romd; 1132 1133 assert_cpu_is_self(cpu); 1134 1135 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1136 sz = TARGET_PAGE_SIZE; 1137 } else { 1138 sz = (hwaddr)1 << full->lg_page_size; 1139 tlb_add_large_page(env, mmu_idx, vaddr, sz); 1140 } 1141 vaddr_page = vaddr & TARGET_PAGE_MASK; 1142 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1143 1144 prot = full->prot; 1145 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1146 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1147 &xlat, &sz, full->attrs, &prot); 1148 assert(sz >= TARGET_PAGE_SIZE); 1149 1150 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx 1151 " prot=%x idx=%d\n", 1152 vaddr, full->phys_addr, prot, mmu_idx); 1153 1154 address = vaddr_page; 1155 if (full->lg_page_size < TARGET_PAGE_BITS) { 1156 /* Repeat the MMU check and TLB fill on every access. */ 1157 address |= TLB_INVALID_MASK; 1158 } 1159 if (full->attrs.byte_swap) { 1160 address |= TLB_BSWAP; 1161 } 1162 1163 is_ram = memory_region_is_ram(section->mr); 1164 is_romd = memory_region_is_romd(section->mr); 1165 1166 if (is_ram || is_romd) { 1167 /* RAM and ROMD both have associated host memory. */ 1168 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1169 } else { 1170 /* I/O does not; force the host address to NULL. */ 1171 addend = 0; 1172 } 1173 1174 write_address = address; 1175 if (is_ram) { 1176 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1177 /* 1178 * Computing is_clean is expensive; avoid all that unless 1179 * the page is actually writable. 1180 */ 1181 if (prot & PAGE_WRITE) { 1182 if (section->readonly) { 1183 write_address |= TLB_DISCARD_WRITE; 1184 } else if (cpu_physical_memory_is_clean(iotlb)) { 1185 write_address |= TLB_NOTDIRTY; 1186 } 1187 } 1188 } else { 1189 /* I/O or ROMD */ 1190 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1191 /* 1192 * Writes to romd devices must go through MMIO to enable write. 1193 * Reads to romd devices go through the ram_ptr found above, 1194 * but of course reads to I/O must go through MMIO. 1195 */ 1196 write_address |= TLB_MMIO; 1197 if (!is_romd) { 1198 address = write_address; 1199 } 1200 } 1201 1202 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1203 TARGET_PAGE_SIZE); 1204 1205 index = tlb_index(env, mmu_idx, vaddr_page); 1206 te = tlb_entry(env, mmu_idx, vaddr_page); 1207 1208 /* 1209 * Hold the TLB lock for the rest of the function. We could acquire/release 1210 * the lock several times in the function, but it is faster to amortize the 1211 * acquisition cost by acquiring it just once. Note that this leads to 1212 * a longer critical section, but this is not a concern since the TLB lock 1213 * is unlikely to be contended. 1214 */ 1215 qemu_spin_lock(&tlb->c.lock); 1216 1217 /* Note that the tlb is no longer clean. */ 1218 tlb->c.dirty |= 1 << mmu_idx; 1219 1220 /* Make sure there's no cached translation for the new page. */ 1221 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1222 1223 /* 1224 * Only evict the old entry to the victim tlb if it's for a 1225 * different page; otherwise just overwrite the stale data. 1226 */ 1227 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1228 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1229 CPUTLBEntry *tv = &desc->vtable[vidx]; 1230 1231 /* Evict the old entry into the victim tlb. */ 1232 copy_tlb_helper_locked(tv, te); 1233 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1234 tlb_n_used_entries_dec(env, mmu_idx); 1235 } 1236 1237 /* refill the tlb */ 1238 /* 1239 * At this point iotlb contains a physical section number in the lower 1240 * TARGET_PAGE_BITS, and either 1241 * + the ram_addr_t of the page base of the target RAM (RAM) 1242 * + the offset within section->mr of the page base (I/O, ROMD) 1243 * We subtract the vaddr_page (which is page aligned and thus won't 1244 * disturb the low bits) to give an offset which can be added to the 1245 * (non-page-aligned) vaddr of the eventual memory access to get 1246 * the MemoryRegion offset for the access. Note that the vaddr we 1247 * subtract here is that of the page base, and not the same as the 1248 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1249 */ 1250 desc->fulltlb[index] = *full; 1251 desc->fulltlb[index].xlat_section = iotlb - vaddr_page; 1252 desc->fulltlb[index].phys_addr = paddr_page; 1253 1254 /* Now calculate the new entry */ 1255 tn.addend = addend - vaddr_page; 1256 if (prot & PAGE_READ) { 1257 tn.addr_read = address; 1258 if (wp_flags & BP_MEM_READ) { 1259 tn.addr_read |= TLB_WATCHPOINT; 1260 } 1261 } else { 1262 tn.addr_read = -1; 1263 } 1264 1265 if (prot & PAGE_EXEC) { 1266 tn.addr_code = address; 1267 } else { 1268 tn.addr_code = -1; 1269 } 1270 1271 tn.addr_write = -1; 1272 if (prot & PAGE_WRITE) { 1273 tn.addr_write = write_address; 1274 if (prot & PAGE_WRITE_INV) { 1275 tn.addr_write |= TLB_INVALID_MASK; 1276 } 1277 if (wp_flags & BP_MEM_WRITE) { 1278 tn.addr_write |= TLB_WATCHPOINT; 1279 } 1280 } 1281 1282 copy_tlb_helper_locked(te, &tn); 1283 tlb_n_used_entries_inc(env, mmu_idx); 1284 qemu_spin_unlock(&tlb->c.lock); 1285 } 1286 1287 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1288 hwaddr paddr, MemTxAttrs attrs, int prot, 1289 int mmu_idx, target_ulong size) 1290 { 1291 CPUTLBEntryFull full = { 1292 .phys_addr = paddr, 1293 .attrs = attrs, 1294 .prot = prot, 1295 .lg_page_size = ctz64(size) 1296 }; 1297 1298 assert(is_power_of_2(size)); 1299 tlb_set_page_full(cpu, mmu_idx, vaddr, &full); 1300 } 1301 1302 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1303 hwaddr paddr, int prot, 1304 int mmu_idx, target_ulong size) 1305 { 1306 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1307 prot, mmu_idx, size); 1308 } 1309 1310 /* 1311 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1312 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1313 * be discarded and looked up again (e.g. via tlb_entry()). 1314 */ 1315 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1316 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1317 { 1318 bool ok; 1319 1320 /* 1321 * This is not a probe, so only valid return is success; failure 1322 * should result in exception + longjmp to the cpu loop. 1323 */ 1324 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1325 access_type, mmu_idx, false, retaddr); 1326 assert(ok); 1327 } 1328 1329 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1330 MMUAccessType access_type, 1331 int mmu_idx, uintptr_t retaddr) 1332 { 1333 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1334 mmu_idx, retaddr); 1335 } 1336 1337 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1338 vaddr addr, unsigned size, 1339 MMUAccessType access_type, 1340 int mmu_idx, MemTxAttrs attrs, 1341 MemTxResult response, 1342 uintptr_t retaddr) 1343 { 1344 CPUClass *cc = CPU_GET_CLASS(cpu); 1345 1346 if (!cpu->ignore_memory_transaction_failures && 1347 cc->tcg_ops->do_transaction_failed) { 1348 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1349 access_type, mmu_idx, attrs, 1350 response, retaddr); 1351 } 1352 } 1353 1354 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1355 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1356 MMUAccessType access_type, MemOp op) 1357 { 1358 CPUState *cpu = env_cpu(env); 1359 hwaddr mr_offset; 1360 MemoryRegionSection *section; 1361 MemoryRegion *mr; 1362 uint64_t val; 1363 MemTxResult r; 1364 1365 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1366 mr = section->mr; 1367 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1368 cpu->mem_io_pc = retaddr; 1369 if (!cpu->can_do_io) { 1370 cpu_io_recompile(cpu, retaddr); 1371 } 1372 1373 { 1374 QEMU_IOTHREAD_LOCK_GUARD(); 1375 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1376 } 1377 1378 if (r != MEMTX_OK) { 1379 hwaddr physaddr = mr_offset + 1380 section->offset_within_address_space - 1381 section->offset_within_region; 1382 1383 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1384 mmu_idx, full->attrs, r, retaddr); 1385 } 1386 return val; 1387 } 1388 1389 /* 1390 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1391 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1392 * because of the side effect of io_writex changing memory layout. 1393 */ 1394 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1395 hwaddr mr_offset) 1396 { 1397 #ifdef CONFIG_PLUGIN 1398 SavedIOTLB *saved = &cs->saved_iotlb; 1399 saved->section = section; 1400 saved->mr_offset = mr_offset; 1401 #endif 1402 } 1403 1404 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1405 int mmu_idx, uint64_t val, target_ulong addr, 1406 uintptr_t retaddr, MemOp op) 1407 { 1408 CPUState *cpu = env_cpu(env); 1409 hwaddr mr_offset; 1410 MemoryRegionSection *section; 1411 MemoryRegion *mr; 1412 MemTxResult r; 1413 1414 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1415 mr = section->mr; 1416 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1417 if (!cpu->can_do_io) { 1418 cpu_io_recompile(cpu, retaddr); 1419 } 1420 cpu->mem_io_pc = retaddr; 1421 1422 /* 1423 * The memory_region_dispatch may trigger a flush/resize 1424 * so for plugins we save the iotlb_data just in case. 1425 */ 1426 save_iotlb_data(cpu, section, mr_offset); 1427 1428 { 1429 QEMU_IOTHREAD_LOCK_GUARD(); 1430 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1431 } 1432 1433 if (r != MEMTX_OK) { 1434 hwaddr physaddr = mr_offset + 1435 section->offset_within_address_space - 1436 section->offset_within_region; 1437 1438 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1439 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1440 retaddr); 1441 } 1442 } 1443 1444 /* Return true if ADDR is present in the victim tlb, and has been copied 1445 back to the main tlb. */ 1446 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1447 MMUAccessType access_type, target_ulong page) 1448 { 1449 size_t vidx; 1450 1451 assert_cpu_is_self(env_cpu(env)); 1452 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1453 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1454 target_ulong cmp = tlb_read_idx(vtlb, access_type); 1455 1456 if (cmp == page) { 1457 /* Found entry in victim tlb, swap tlb and iotlb. */ 1458 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1459 1460 qemu_spin_lock(&env_tlb(env)->c.lock); 1461 copy_tlb_helper_locked(&tmptlb, tlb); 1462 copy_tlb_helper_locked(tlb, vtlb); 1463 copy_tlb_helper_locked(vtlb, &tmptlb); 1464 qemu_spin_unlock(&env_tlb(env)->c.lock); 1465 1466 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1467 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1468 CPUTLBEntryFull tmpf; 1469 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1470 return true; 1471 } 1472 } 1473 return false; 1474 } 1475 1476 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1477 CPUTLBEntryFull *full, uintptr_t retaddr) 1478 { 1479 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1480 1481 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1482 1483 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1484 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1485 } 1486 1487 /* 1488 * Set both VGA and migration bits for simplicity and to remove 1489 * the notdirty callback faster. 1490 */ 1491 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1492 1493 /* We remove the notdirty callback only if the code has been flushed. */ 1494 if (!cpu_physical_memory_is_clean(ram_addr)) { 1495 trace_memory_notdirty_set_dirty(mem_vaddr); 1496 tlb_set_dirty(cpu, mem_vaddr); 1497 } 1498 } 1499 1500 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1501 int fault_size, MMUAccessType access_type, 1502 int mmu_idx, bool nonfault, 1503 void **phost, CPUTLBEntryFull **pfull, 1504 uintptr_t retaddr) 1505 { 1506 uintptr_t index = tlb_index(env, mmu_idx, addr); 1507 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1508 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1509 target_ulong page_addr = addr & TARGET_PAGE_MASK; 1510 int flags = TLB_FLAGS_MASK; 1511 1512 if (!tlb_hit_page(tlb_addr, page_addr)) { 1513 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1514 CPUState *cs = env_cpu(env); 1515 1516 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1517 mmu_idx, nonfault, retaddr)) { 1518 /* Non-faulting page table read failed. */ 1519 *phost = NULL; 1520 *pfull = NULL; 1521 return TLB_INVALID_MASK; 1522 } 1523 1524 /* TLB resize via tlb_fill may have moved the entry. */ 1525 index = tlb_index(env, mmu_idx, addr); 1526 entry = tlb_entry(env, mmu_idx, addr); 1527 1528 /* 1529 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1530 * to force the next access through tlb_fill. We've just 1531 * called tlb_fill, so we know that this entry *is* valid. 1532 */ 1533 flags &= ~TLB_INVALID_MASK; 1534 } 1535 tlb_addr = tlb_read_idx(entry, access_type); 1536 } 1537 flags &= tlb_addr; 1538 1539 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1540 1541 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1542 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1543 *phost = NULL; 1544 return TLB_MMIO; 1545 } 1546 1547 /* Everything else is RAM. */ 1548 *phost = (void *)((uintptr_t)addr + entry->addend); 1549 return flags; 1550 } 1551 1552 int probe_access_full(CPUArchState *env, target_ulong addr, int size, 1553 MMUAccessType access_type, int mmu_idx, 1554 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1555 uintptr_t retaddr) 1556 { 1557 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1558 nonfault, phost, pfull, retaddr); 1559 1560 /* Handle clean RAM pages. */ 1561 if (unlikely(flags & TLB_NOTDIRTY)) { 1562 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1563 flags &= ~TLB_NOTDIRTY; 1564 } 1565 1566 return flags; 1567 } 1568 1569 int probe_access_flags(CPUArchState *env, target_ulong addr, int size, 1570 MMUAccessType access_type, int mmu_idx, 1571 bool nonfault, void **phost, uintptr_t retaddr) 1572 { 1573 CPUTLBEntryFull *full; 1574 int flags; 1575 1576 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1577 1578 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1579 nonfault, phost, &full, retaddr); 1580 1581 /* Handle clean RAM pages. */ 1582 if (unlikely(flags & TLB_NOTDIRTY)) { 1583 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1584 flags &= ~TLB_NOTDIRTY; 1585 } 1586 1587 return flags; 1588 } 1589 1590 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1591 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1592 { 1593 CPUTLBEntryFull *full; 1594 void *host; 1595 int flags; 1596 1597 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1598 1599 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1600 false, &host, &full, retaddr); 1601 1602 /* Per the interface, size == 0 merely faults the access. */ 1603 if (size == 0) { 1604 return NULL; 1605 } 1606 1607 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1608 /* Handle watchpoints. */ 1609 if (flags & TLB_WATCHPOINT) { 1610 int wp_access = (access_type == MMU_DATA_STORE 1611 ? BP_MEM_WRITE : BP_MEM_READ); 1612 cpu_check_watchpoint(env_cpu(env), addr, size, 1613 full->attrs, wp_access, retaddr); 1614 } 1615 1616 /* Handle clean RAM pages. */ 1617 if (flags & TLB_NOTDIRTY) { 1618 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1619 } 1620 } 1621 1622 return host; 1623 } 1624 1625 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1626 MMUAccessType access_type, int mmu_idx) 1627 { 1628 CPUTLBEntryFull *full; 1629 void *host; 1630 int flags; 1631 1632 flags = probe_access_internal(env, addr, 0, access_type, 1633 mmu_idx, true, &host, &full, 0); 1634 1635 /* No combination of flags are expected by the caller. */ 1636 return flags ? NULL : host; 1637 } 1638 1639 /* 1640 * Return a ram_addr_t for the virtual address for execution. 1641 * 1642 * Return -1 if we can't translate and execute from an entire page 1643 * of RAM. This will force us to execute by loading and translating 1644 * one insn at a time, without caching. 1645 * 1646 * NOTE: This function will trigger an exception if the page is 1647 * not executable. 1648 */ 1649 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1650 void **hostp) 1651 { 1652 CPUTLBEntryFull *full; 1653 void *p; 1654 1655 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1656 cpu_mmu_index(env, true), false, &p, &full, 0); 1657 if (p == NULL) { 1658 return -1; 1659 } 1660 1661 if (full->lg_page_size < TARGET_PAGE_BITS) { 1662 return -1; 1663 } 1664 1665 if (hostp) { 1666 *hostp = p; 1667 } 1668 return qemu_ram_addr_from_host_nofail(p); 1669 } 1670 1671 #ifdef CONFIG_PLUGIN 1672 /* 1673 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1674 * This should be a hot path as we will have just looked this path up 1675 * in the softmmu lookup code (or helper). We don't handle re-fills or 1676 * checking the victim table. This is purely informational. 1677 * 1678 * This almost never fails as the memory access being instrumented 1679 * should have just filled the TLB. The one corner case is io_writex 1680 * which can cause TLB flushes and potential resizing of the TLBs 1681 * losing the information we need. In those cases we need to recover 1682 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1683 * from the same thread (which a mem callback will be) this is safe. 1684 */ 1685 1686 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1687 bool is_store, struct qemu_plugin_hwaddr *data) 1688 { 1689 CPUArchState *env = cpu->env_ptr; 1690 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1691 uintptr_t index = tlb_index(env, mmu_idx, addr); 1692 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1693 1694 if (likely(tlb_hit(tlb_addr, addr))) { 1695 /* We must have an iotlb entry for MMIO */ 1696 if (tlb_addr & TLB_MMIO) { 1697 CPUTLBEntryFull *full; 1698 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1699 data->is_io = true; 1700 data->v.io.section = 1701 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1702 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1703 } else { 1704 data->is_io = false; 1705 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1706 } 1707 return true; 1708 } else { 1709 SavedIOTLB *saved = &cpu->saved_iotlb; 1710 data->is_io = true; 1711 data->v.io.section = saved->section; 1712 data->v.io.offset = saved->mr_offset; 1713 return true; 1714 } 1715 } 1716 1717 #endif 1718 1719 /* 1720 * Probe for a load/store operation. 1721 * Return the host address and into @flags. 1722 */ 1723 1724 typedef struct MMULookupPageData { 1725 CPUTLBEntryFull *full; 1726 void *haddr; 1727 target_ulong addr; 1728 int flags; 1729 int size; 1730 } MMULookupPageData; 1731 1732 typedef struct MMULookupLocals { 1733 MMULookupPageData page[2]; 1734 MemOp memop; 1735 int mmu_idx; 1736 } MMULookupLocals; 1737 1738 /** 1739 * mmu_lookup1: translate one page 1740 * @env: cpu context 1741 * @data: lookup parameters 1742 * @mmu_idx: virtual address context 1743 * @access_type: load/store/code 1744 * @ra: return address into tcg generated code, or 0 1745 * 1746 * Resolve the translation for the one page at @data.addr, filling in 1747 * the rest of @data with the results. If the translation fails, 1748 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1749 * @mmu_idx may have resized. 1750 */ 1751 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1752 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1753 { 1754 target_ulong addr = data->addr; 1755 uintptr_t index = tlb_index(env, mmu_idx, addr); 1756 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1757 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1758 bool maybe_resized = false; 1759 1760 /* If the TLB entry is for a different page, reload and try again. */ 1761 if (!tlb_hit(tlb_addr, addr)) { 1762 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1763 addr & TARGET_PAGE_MASK)) { 1764 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1765 maybe_resized = true; 1766 index = tlb_index(env, mmu_idx, addr); 1767 entry = tlb_entry(env, mmu_idx, addr); 1768 } 1769 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1770 } 1771 1772 data->flags = tlb_addr & TLB_FLAGS_MASK; 1773 data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1774 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1775 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1776 1777 return maybe_resized; 1778 } 1779 1780 /** 1781 * mmu_watch_or_dirty 1782 * @env: cpu context 1783 * @data: lookup parameters 1784 * @access_type: load/store/code 1785 * @ra: return address into tcg generated code, or 0 1786 * 1787 * Trigger watchpoints for @data.addr:@data.size; 1788 * record writes to protected clean pages. 1789 */ 1790 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1791 MMUAccessType access_type, uintptr_t ra) 1792 { 1793 CPUTLBEntryFull *full = data->full; 1794 target_ulong addr = data->addr; 1795 int flags = data->flags; 1796 int size = data->size; 1797 1798 /* On watchpoint hit, this will longjmp out. */ 1799 if (flags & TLB_WATCHPOINT) { 1800 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1801 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1802 flags &= ~TLB_WATCHPOINT; 1803 } 1804 1805 /* Note that notdirty is only set for writes. */ 1806 if (flags & TLB_NOTDIRTY) { 1807 notdirty_write(env_cpu(env), addr, size, full, ra); 1808 flags &= ~TLB_NOTDIRTY; 1809 } 1810 data->flags = flags; 1811 } 1812 1813 /** 1814 * mmu_lookup: translate page(s) 1815 * @env: cpu context 1816 * @addr: virtual address 1817 * @oi: combined mmu_idx and MemOp 1818 * @ra: return address into tcg generated code, or 0 1819 * @access_type: load/store/code 1820 * @l: output result 1821 * 1822 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1823 * bytes. Return true if the lookup crosses a page boundary. 1824 */ 1825 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1826 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1827 { 1828 unsigned a_bits; 1829 bool crosspage; 1830 int flags; 1831 1832 l->memop = get_memop(oi); 1833 l->mmu_idx = get_mmuidx(oi); 1834 1835 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1836 1837 /* Handle CPU specific unaligned behaviour */ 1838 a_bits = get_alignment_bits(l->memop); 1839 if (addr & ((1 << a_bits) - 1)) { 1840 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1841 } 1842 1843 l->page[0].addr = addr; 1844 l->page[0].size = memop_size(l->memop); 1845 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1846 l->page[1].size = 0; 1847 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1848 1849 if (likely(!crosspage)) { 1850 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1851 1852 flags = l->page[0].flags; 1853 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1854 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1855 } 1856 if (unlikely(flags & TLB_BSWAP)) { 1857 l->memop ^= MO_BSWAP; 1858 } 1859 } else { 1860 /* Finish compute of page crossing. */ 1861 int size0 = l->page[1].addr - addr; 1862 l->page[1].size = l->page[0].size - size0; 1863 l->page[0].size = size0; 1864 1865 /* 1866 * Lookup both pages, recognizing exceptions from either. If the 1867 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1868 */ 1869 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1870 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1871 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1872 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1873 } 1874 1875 flags = l->page[0].flags | l->page[1].flags; 1876 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1877 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1878 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1879 } 1880 1881 /* 1882 * Since target/sparc is the only user of TLB_BSWAP, and all 1883 * Sparc accesses are aligned, any treatment across two pages 1884 * would be arbitrary. Refuse it until there's a use. 1885 */ 1886 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1887 } 1888 1889 return crosspage; 1890 } 1891 1892 /* 1893 * Probe for an atomic operation. Do not allow unaligned operations, 1894 * or io operations to proceed. Return the host address. 1895 * 1896 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1897 */ 1898 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1899 MemOpIdx oi, int size, int prot, 1900 uintptr_t retaddr) 1901 { 1902 uintptr_t mmu_idx = get_mmuidx(oi); 1903 MemOp mop = get_memop(oi); 1904 int a_bits = get_alignment_bits(mop); 1905 uintptr_t index; 1906 CPUTLBEntry *tlbe; 1907 target_ulong tlb_addr; 1908 void *hostaddr; 1909 CPUTLBEntryFull *full; 1910 1911 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1912 1913 /* Adjust the given return address. */ 1914 retaddr -= GETPC_ADJ; 1915 1916 /* Enforce guest required alignment. */ 1917 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1918 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1919 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1920 mmu_idx, retaddr); 1921 } 1922 1923 /* Enforce qemu required alignment. */ 1924 if (unlikely(addr & (size - 1))) { 1925 /* We get here if guest alignment was not requested, 1926 or was not enforced by cpu_unaligned_access above. 1927 We might widen the access and emulate, but for now 1928 mark an exception and exit the cpu loop. */ 1929 goto stop_the_world; 1930 } 1931 1932 index = tlb_index(env, mmu_idx, addr); 1933 tlbe = tlb_entry(env, mmu_idx, addr); 1934 1935 /* Check TLB entry and enforce page permissions. */ 1936 if (prot & PAGE_WRITE) { 1937 tlb_addr = tlb_addr_write(tlbe); 1938 if (!tlb_hit(tlb_addr, addr)) { 1939 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1940 addr & TARGET_PAGE_MASK)) { 1941 tlb_fill(env_cpu(env), addr, size, 1942 MMU_DATA_STORE, mmu_idx, retaddr); 1943 index = tlb_index(env, mmu_idx, addr); 1944 tlbe = tlb_entry(env, mmu_idx, addr); 1945 } 1946 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1947 } 1948 1949 if (prot & PAGE_READ) { 1950 /* 1951 * Let the guest notice RMW on a write-only page. 1952 * We have just verified that the page is writable. 1953 * Subpage lookups may have left TLB_INVALID_MASK set, 1954 * but addr_read will only be -1 if PAGE_READ was unset. 1955 */ 1956 if (unlikely(tlbe->addr_read == -1)) { 1957 tlb_fill(env_cpu(env), addr, size, 1958 MMU_DATA_LOAD, mmu_idx, retaddr); 1959 /* 1960 * Since we don't support reads and writes to different 1961 * addresses, and we do have the proper page loaded for 1962 * write, this shouldn't ever return. But just in case, 1963 * handle via stop-the-world. 1964 */ 1965 goto stop_the_world; 1966 } 1967 /* Collect TLB_WATCHPOINT for read. */ 1968 tlb_addr |= tlbe->addr_read; 1969 } 1970 } else /* if (prot & PAGE_READ) */ { 1971 tlb_addr = tlbe->addr_read; 1972 if (!tlb_hit(tlb_addr, addr)) { 1973 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_LOAD, 1974 addr & TARGET_PAGE_MASK)) { 1975 tlb_fill(env_cpu(env), addr, size, 1976 MMU_DATA_LOAD, mmu_idx, retaddr); 1977 index = tlb_index(env, mmu_idx, addr); 1978 tlbe = tlb_entry(env, mmu_idx, addr); 1979 } 1980 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1981 } 1982 } 1983 1984 /* Notice an IO access or a needs-MMU-lookup access */ 1985 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1986 /* There's really nothing that can be done to 1987 support this apart from stop-the-world. */ 1988 goto stop_the_world; 1989 } 1990 1991 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1992 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1993 1994 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1995 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1996 } 1997 1998 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1999 QEMU_BUILD_BUG_ON(PAGE_READ != BP_MEM_READ); 2000 QEMU_BUILD_BUG_ON(PAGE_WRITE != BP_MEM_WRITE); 2001 /* therefore prot == watchpoint bits */ 2002 cpu_check_watchpoint(env_cpu(env), addr, size, 2003 full->attrs, prot, retaddr); 2004 } 2005 2006 return hostaddr; 2007 2008 stop_the_world: 2009 cpu_loop_exit_atomic(env_cpu(env), retaddr); 2010 } 2011 2012 /* 2013 * Verify that we have passed the correct MemOp to the correct function. 2014 * 2015 * In the case of the helper_*_mmu functions, we will have done this by 2016 * using the MemOp to look up the helper during code generation. 2017 * 2018 * In the case of the cpu_*_mmu functions, this is up to the caller. 2019 * We could present one function to target code, and dispatch based on 2020 * the MemOp, but so far we have worked hard to avoid an indirect function 2021 * call along the memory path. 2022 */ 2023 static void validate_memop(MemOpIdx oi, MemOp expected) 2024 { 2025 #ifdef CONFIG_DEBUG_TCG 2026 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); 2027 assert(have == expected); 2028 #endif 2029 } 2030 2031 /* 2032 * Load Helpers 2033 * 2034 * We support two different access types. SOFTMMU_CODE_ACCESS is 2035 * specifically for reading instructions from system memory. It is 2036 * called by the translation loop and in some helpers where the code 2037 * is disassembled. It shouldn't be called directly by guest code. 2038 */ 2039 2040 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 2041 MemOpIdx oi, uintptr_t retaddr); 2042 2043 static inline uint64_t QEMU_ALWAYS_INLINE 2044 load_memop(const void *haddr, MemOp op) 2045 { 2046 switch (op) { 2047 case MO_UB: 2048 return ldub_p(haddr); 2049 case MO_BEUW: 2050 return lduw_be_p(haddr); 2051 case MO_LEUW: 2052 return lduw_le_p(haddr); 2053 case MO_BEUL: 2054 return (uint32_t)ldl_be_p(haddr); 2055 case MO_LEUL: 2056 return (uint32_t)ldl_le_p(haddr); 2057 case MO_BEUQ: 2058 return ldq_be_p(haddr); 2059 case MO_LEUQ: 2060 return ldq_le_p(haddr); 2061 default: 2062 qemu_build_not_reached(); 2063 } 2064 } 2065 2066 /* 2067 * For the benefit of TCG generated code, we want to avoid the 2068 * complication of ABI-specific return type promotion and always 2069 * return a value extended to the register size of the host. This is 2070 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2071 * data, and for that we always have uint64_t. 2072 * 2073 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2074 */ 2075 2076 /** 2077 * do_ld_mmio_beN: 2078 * @env: cpu context 2079 * @p: translation parameters 2080 * @ret_be: accumulated data 2081 * @mmu_idx: virtual address context 2082 * @ra: return address into tcg generated code, or 0 2083 * 2084 * Load @p->size bytes from @p->addr, which is memory-mapped i/o. 2085 * The bytes are concatenated in big-endian order with @ret_be. 2086 */ 2087 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p, 2088 uint64_t ret_be, int mmu_idx, 2089 MMUAccessType type, uintptr_t ra) 2090 { 2091 CPUTLBEntryFull *full = p->full; 2092 target_ulong addr = p->addr; 2093 int i, size = p->size; 2094 2095 QEMU_IOTHREAD_LOCK_GUARD(); 2096 for (i = 0; i < size; i++) { 2097 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB); 2098 ret_be = (ret_be << 8) | x; 2099 } 2100 return ret_be; 2101 } 2102 2103 /** 2104 * do_ld_bytes_beN 2105 * @p: translation parameters 2106 * @ret_be: accumulated data 2107 * 2108 * Load @p->size bytes from @p->haddr, which is RAM. 2109 * The bytes to concatenated in big-endian order with @ret_be. 2110 */ 2111 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2112 { 2113 uint8_t *haddr = p->haddr; 2114 int i, size = p->size; 2115 2116 for (i = 0; i < size; i++) { 2117 ret_be = (ret_be << 8) | haddr[i]; 2118 } 2119 return ret_be; 2120 } 2121 2122 /* 2123 * Wrapper for the above. 2124 */ 2125 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2126 uint64_t ret_be, int mmu_idx, 2127 MMUAccessType type, uintptr_t ra) 2128 { 2129 if (unlikely(p->flags & TLB_MMIO)) { 2130 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra); 2131 } else { 2132 return do_ld_bytes_beN(p, ret_be); 2133 } 2134 } 2135 2136 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2137 MMUAccessType type, uintptr_t ra) 2138 { 2139 if (unlikely(p->flags & TLB_MMIO)) { 2140 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2141 } else { 2142 return *(uint8_t *)p->haddr; 2143 } 2144 } 2145 2146 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2147 MMUAccessType type, MemOp memop, uintptr_t ra) 2148 { 2149 uint64_t ret; 2150 2151 if (unlikely(p->flags & TLB_MMIO)) { 2152 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2153 } 2154 2155 /* Perform the load host endian, then swap if necessary. */ 2156 ret = load_memop(p->haddr, MO_UW); 2157 if (memop & MO_BSWAP) { 2158 ret = bswap16(ret); 2159 } 2160 return ret; 2161 } 2162 2163 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2164 MMUAccessType type, MemOp memop, uintptr_t ra) 2165 { 2166 uint32_t ret; 2167 2168 if (unlikely(p->flags & TLB_MMIO)) { 2169 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2170 } 2171 2172 /* Perform the load host endian. */ 2173 ret = load_memop(p->haddr, MO_UL); 2174 if (memop & MO_BSWAP) { 2175 ret = bswap32(ret); 2176 } 2177 return ret; 2178 } 2179 2180 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2181 MMUAccessType type, MemOp memop, uintptr_t ra) 2182 { 2183 uint64_t ret; 2184 2185 if (unlikely(p->flags & TLB_MMIO)) { 2186 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2187 } 2188 2189 /* Perform the load host endian. */ 2190 ret = load_memop(p->haddr, MO_UQ); 2191 if (memop & MO_BSWAP) { 2192 ret = bswap64(ret); 2193 } 2194 return ret; 2195 } 2196 2197 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2198 uintptr_t ra, MMUAccessType access_type) 2199 { 2200 MMULookupLocals l; 2201 bool crosspage; 2202 2203 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2204 tcg_debug_assert(!crosspage); 2205 2206 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2207 } 2208 2209 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 2210 MemOpIdx oi, uintptr_t retaddr) 2211 { 2212 validate_memop(oi, MO_UB); 2213 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2214 } 2215 2216 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2217 uintptr_t ra, MMUAccessType access_type) 2218 { 2219 MMULookupLocals l; 2220 bool crosspage; 2221 uint16_t ret; 2222 uint8_t a, b; 2223 2224 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2225 if (likely(!crosspage)) { 2226 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2227 } 2228 2229 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2230 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2231 2232 if ((l.memop & MO_BSWAP) == MO_LE) { 2233 ret = a | (b << 8); 2234 } else { 2235 ret = b | (a << 8); 2236 } 2237 return ret; 2238 } 2239 2240 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2241 MemOpIdx oi, uintptr_t retaddr) 2242 { 2243 validate_memop(oi, MO_LEUW); 2244 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2245 } 2246 2247 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2248 MemOpIdx oi, uintptr_t retaddr) 2249 { 2250 validate_memop(oi, MO_BEUW); 2251 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2252 } 2253 2254 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2255 uintptr_t ra, MMUAccessType access_type) 2256 { 2257 MMULookupLocals l; 2258 bool crosspage; 2259 uint32_t ret; 2260 2261 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2262 if (likely(!crosspage)) { 2263 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2264 } 2265 2266 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra); 2267 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra); 2268 if ((l.memop & MO_BSWAP) == MO_LE) { 2269 ret = bswap32(ret); 2270 } 2271 return ret; 2272 } 2273 2274 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2275 MemOpIdx oi, uintptr_t retaddr) 2276 { 2277 validate_memop(oi, MO_LEUL); 2278 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2279 } 2280 2281 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2282 MemOpIdx oi, uintptr_t retaddr) 2283 { 2284 validate_memop(oi, MO_BEUL); 2285 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2286 } 2287 2288 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2289 uintptr_t ra, MMUAccessType access_type) 2290 { 2291 MMULookupLocals l; 2292 bool crosspage; 2293 uint64_t ret; 2294 2295 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2296 if (likely(!crosspage)) { 2297 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2298 } 2299 2300 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra); 2301 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra); 2302 if ((l.memop & MO_BSWAP) == MO_LE) { 2303 ret = bswap64(ret); 2304 } 2305 return ret; 2306 } 2307 2308 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 2309 MemOpIdx oi, uintptr_t retaddr) 2310 { 2311 validate_memop(oi, MO_LEUQ); 2312 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2313 } 2314 2315 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 2316 MemOpIdx oi, uintptr_t retaddr) 2317 { 2318 validate_memop(oi, MO_BEUQ); 2319 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2320 } 2321 2322 /* 2323 * Provide signed versions of the load routines as well. We can of course 2324 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2325 */ 2326 2327 2328 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 2329 MemOpIdx oi, uintptr_t retaddr) 2330 { 2331 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 2332 } 2333 2334 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 2335 MemOpIdx oi, uintptr_t retaddr) 2336 { 2337 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 2338 } 2339 2340 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 2341 MemOpIdx oi, uintptr_t retaddr) 2342 { 2343 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 2344 } 2345 2346 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 2347 MemOpIdx oi, uintptr_t retaddr) 2348 { 2349 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 2350 } 2351 2352 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 2353 MemOpIdx oi, uintptr_t retaddr) 2354 { 2355 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 2356 } 2357 2358 /* 2359 * Load helpers for cpu_ldst.h. 2360 */ 2361 2362 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2363 { 2364 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2365 } 2366 2367 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2368 { 2369 uint8_t ret; 2370 2371 validate_memop(oi, MO_UB); 2372 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2373 plugin_load_cb(env, addr, oi); 2374 return ret; 2375 } 2376 2377 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 2378 MemOpIdx oi, uintptr_t ra) 2379 { 2380 uint16_t ret; 2381 2382 validate_memop(oi, MO_BEUW); 2383 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2384 plugin_load_cb(env, addr, oi); 2385 return ret; 2386 } 2387 2388 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 2389 MemOpIdx oi, uintptr_t ra) 2390 { 2391 uint32_t ret; 2392 2393 validate_memop(oi, MO_BEUL); 2394 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2395 plugin_load_cb(env, addr, oi); 2396 return ret; 2397 } 2398 2399 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 2400 MemOpIdx oi, uintptr_t ra) 2401 { 2402 uint64_t ret; 2403 2404 validate_memop(oi, MO_BEUQ); 2405 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2406 plugin_load_cb(env, addr, oi); 2407 return ret; 2408 } 2409 2410 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 2411 MemOpIdx oi, uintptr_t ra) 2412 { 2413 uint16_t ret; 2414 2415 validate_memop(oi, MO_LEUW); 2416 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2417 plugin_load_cb(env, addr, oi); 2418 return ret; 2419 } 2420 2421 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 2422 MemOpIdx oi, uintptr_t ra) 2423 { 2424 uint32_t ret; 2425 2426 validate_memop(oi, MO_LEUL); 2427 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2428 plugin_load_cb(env, addr, oi); 2429 return ret; 2430 } 2431 2432 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 2433 MemOpIdx oi, uintptr_t ra) 2434 { 2435 uint64_t ret; 2436 2437 validate_memop(oi, MO_LEUQ); 2438 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2439 plugin_load_cb(env, addr, oi); 2440 return ret; 2441 } 2442 2443 Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr, 2444 MemOpIdx oi, uintptr_t ra) 2445 { 2446 MemOp mop = get_memop(oi); 2447 int mmu_idx = get_mmuidx(oi); 2448 MemOpIdx new_oi; 2449 unsigned a_bits; 2450 uint64_t h, l; 2451 2452 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128)); 2453 a_bits = get_alignment_bits(mop); 2454 2455 /* Handle CPU specific unaligned behaviour */ 2456 if (addr & ((1 << a_bits) - 1)) { 2457 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD, 2458 mmu_idx, ra); 2459 } 2460 2461 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2462 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2463 new_oi = make_memop_idx(mop, mmu_idx); 2464 2465 h = helper_be_ldq_mmu(env, addr, new_oi, ra); 2466 l = helper_be_ldq_mmu(env, addr + 8, new_oi, ra); 2467 2468 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2469 return int128_make128(l, h); 2470 } 2471 2472 Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr, 2473 MemOpIdx oi, uintptr_t ra) 2474 { 2475 MemOp mop = get_memop(oi); 2476 int mmu_idx = get_mmuidx(oi); 2477 MemOpIdx new_oi; 2478 unsigned a_bits; 2479 uint64_t h, l; 2480 2481 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128)); 2482 a_bits = get_alignment_bits(mop); 2483 2484 /* Handle CPU specific unaligned behaviour */ 2485 if (addr & ((1 << a_bits) - 1)) { 2486 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD, 2487 mmu_idx, ra); 2488 } 2489 2490 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2491 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2492 new_oi = make_memop_idx(mop, mmu_idx); 2493 2494 l = helper_le_ldq_mmu(env, addr, new_oi, ra); 2495 h = helper_le_ldq_mmu(env, addr + 8, new_oi, ra); 2496 2497 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2498 return int128_make128(l, h); 2499 } 2500 2501 /* 2502 * Store Helpers 2503 */ 2504 2505 static inline void QEMU_ALWAYS_INLINE 2506 store_memop(void *haddr, uint64_t val, MemOp op) 2507 { 2508 switch (op) { 2509 case MO_UB: 2510 stb_p(haddr, val); 2511 break; 2512 case MO_BEUW: 2513 stw_be_p(haddr, val); 2514 break; 2515 case MO_LEUW: 2516 stw_le_p(haddr, val); 2517 break; 2518 case MO_BEUL: 2519 stl_be_p(haddr, val); 2520 break; 2521 case MO_LEUL: 2522 stl_le_p(haddr, val); 2523 break; 2524 case MO_BEUQ: 2525 stq_be_p(haddr, val); 2526 break; 2527 case MO_LEUQ: 2528 stq_le_p(haddr, val); 2529 break; 2530 default: 2531 qemu_build_not_reached(); 2532 } 2533 } 2534 2535 /** 2536 * do_st_mmio_leN: 2537 * @env: cpu context 2538 * @p: translation parameters 2539 * @val_le: data to store 2540 * @mmu_idx: virtual address context 2541 * @ra: return address into tcg generated code, or 0 2542 * 2543 * Store @p->size bytes at @p->addr, which is memory-mapped i/o. 2544 * The bytes to store are extracted in little-endian order from @val_le; 2545 * return the bytes of @val_le beyond @p->size that have not been stored. 2546 */ 2547 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p, 2548 uint64_t val_le, int mmu_idx, uintptr_t ra) 2549 { 2550 CPUTLBEntryFull *full = p->full; 2551 target_ulong addr = p->addr; 2552 int i, size = p->size; 2553 2554 QEMU_IOTHREAD_LOCK_GUARD(); 2555 for (i = 0; i < size; i++, val_le >>= 8) { 2556 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB); 2557 } 2558 return val_le; 2559 } 2560 2561 /** 2562 * do_st_bytes_leN: 2563 * @p: translation parameters 2564 * @val_le: data to store 2565 * 2566 * Store @p->size bytes at @p->haddr, which is RAM. 2567 * The bytes to store are extracted in little-endian order from @val_le; 2568 * return the bytes of @val_le beyond @p->size that have not been stored. 2569 */ 2570 static uint64_t do_st_bytes_leN(MMULookupPageData *p, uint64_t val_le) 2571 { 2572 uint8_t *haddr = p->haddr; 2573 int i, size = p->size; 2574 2575 for (i = 0; i < size; i++, val_le >>= 8) { 2576 haddr[i] = val_le; 2577 } 2578 return val_le; 2579 } 2580 2581 /* 2582 * Wrapper for the above. 2583 */ 2584 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2585 uint64_t val_le, int mmu_idx, uintptr_t ra) 2586 { 2587 if (unlikely(p->flags & TLB_MMIO)) { 2588 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra); 2589 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2590 return val_le >> (p->size * 8); 2591 } else { 2592 return do_st_bytes_leN(p, val_le); 2593 } 2594 } 2595 2596 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2597 int mmu_idx, uintptr_t ra) 2598 { 2599 if (unlikely(p->flags & TLB_MMIO)) { 2600 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2601 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2602 /* nothing */ 2603 } else { 2604 *(uint8_t *)p->haddr = val; 2605 } 2606 } 2607 2608 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2609 int mmu_idx, MemOp memop, uintptr_t ra) 2610 { 2611 if (unlikely(p->flags & TLB_MMIO)) { 2612 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2613 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2614 /* nothing */ 2615 } else { 2616 /* Swap to host endian if necessary, then store. */ 2617 if (memop & MO_BSWAP) { 2618 val = bswap16(val); 2619 } 2620 store_memop(p->haddr, val, MO_UW); 2621 } 2622 } 2623 2624 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2625 int mmu_idx, MemOp memop, uintptr_t ra) 2626 { 2627 if (unlikely(p->flags & TLB_MMIO)) { 2628 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2629 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2630 /* nothing */ 2631 } else { 2632 /* Swap to host endian if necessary, then store. */ 2633 if (memop & MO_BSWAP) { 2634 val = bswap32(val); 2635 } 2636 store_memop(p->haddr, val, MO_UL); 2637 } 2638 } 2639 2640 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2641 int mmu_idx, MemOp memop, uintptr_t ra) 2642 { 2643 if (unlikely(p->flags & TLB_MMIO)) { 2644 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2645 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2646 /* nothing */ 2647 } else { 2648 /* Swap to host endian if necessary, then store. */ 2649 if (memop & MO_BSWAP) { 2650 val = bswap64(val); 2651 } 2652 store_memop(p->haddr, val, MO_UQ); 2653 } 2654 } 2655 2656 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2657 MemOpIdx oi, uintptr_t ra) 2658 { 2659 MMULookupLocals l; 2660 bool crosspage; 2661 2662 validate_memop(oi, MO_UB); 2663 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2664 tcg_debug_assert(!crosspage); 2665 2666 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2667 } 2668 2669 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2670 MemOpIdx oi, uintptr_t ra) 2671 { 2672 MMULookupLocals l; 2673 bool crosspage; 2674 uint8_t a, b; 2675 2676 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2677 if (likely(!crosspage)) { 2678 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2679 return; 2680 } 2681 2682 if ((l.memop & MO_BSWAP) == MO_LE) { 2683 a = val, b = val >> 8; 2684 } else { 2685 b = val, a = val >> 8; 2686 } 2687 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2688 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2689 } 2690 2691 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2692 MemOpIdx oi, uintptr_t retaddr) 2693 { 2694 validate_memop(oi, MO_LEUW); 2695 do_st2_mmu(env, addr, val, oi, retaddr); 2696 } 2697 2698 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2699 MemOpIdx oi, uintptr_t retaddr) 2700 { 2701 validate_memop(oi, MO_BEUW); 2702 do_st2_mmu(env, addr, val, oi, retaddr); 2703 } 2704 2705 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2706 MemOpIdx oi, uintptr_t ra) 2707 { 2708 MMULookupLocals l; 2709 bool crosspage; 2710 2711 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2712 if (likely(!crosspage)) { 2713 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2714 return; 2715 } 2716 2717 /* Swap to little endian for simplicity, then store by bytes. */ 2718 if ((l.memop & MO_BSWAP) != MO_LE) { 2719 val = bswap32(val); 2720 } 2721 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, ra); 2722 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, ra); 2723 } 2724 2725 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2726 MemOpIdx oi, uintptr_t retaddr) 2727 { 2728 validate_memop(oi, MO_LEUL); 2729 do_st4_mmu(env, addr, val, oi, retaddr); 2730 } 2731 2732 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2733 MemOpIdx oi, uintptr_t retaddr) 2734 { 2735 validate_memop(oi, MO_BEUL); 2736 do_st4_mmu(env, addr, val, oi, retaddr); 2737 } 2738 2739 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2740 MemOpIdx oi, uintptr_t ra) 2741 { 2742 MMULookupLocals l; 2743 bool crosspage; 2744 2745 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2746 if (likely(!crosspage)) { 2747 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2748 return; 2749 } 2750 2751 /* Swap to little endian for simplicity, then store by bytes. */ 2752 if ((l.memop & MO_BSWAP) != MO_LE) { 2753 val = bswap64(val); 2754 } 2755 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, ra); 2756 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, ra); 2757 } 2758 2759 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2760 MemOpIdx oi, uintptr_t retaddr) 2761 { 2762 validate_memop(oi, MO_LEUQ); 2763 do_st8_mmu(env, addr, val, oi, retaddr); 2764 } 2765 2766 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2767 MemOpIdx oi, uintptr_t retaddr) 2768 { 2769 validate_memop(oi, MO_BEUQ); 2770 do_st8_mmu(env, addr, val, oi, retaddr); 2771 } 2772 2773 /* 2774 * Store Helpers for cpu_ldst.h 2775 */ 2776 2777 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2778 { 2779 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2780 } 2781 2782 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2783 MemOpIdx oi, uintptr_t retaddr) 2784 { 2785 helper_ret_stb_mmu(env, addr, val, oi, retaddr); 2786 plugin_store_cb(env, addr, oi); 2787 } 2788 2789 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2790 MemOpIdx oi, uintptr_t retaddr) 2791 { 2792 helper_be_stw_mmu(env, addr, val, oi, retaddr); 2793 plugin_store_cb(env, addr, oi); 2794 } 2795 2796 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2797 MemOpIdx oi, uintptr_t retaddr) 2798 { 2799 helper_be_stl_mmu(env, addr, val, oi, retaddr); 2800 plugin_store_cb(env, addr, oi); 2801 } 2802 2803 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2804 MemOpIdx oi, uintptr_t retaddr) 2805 { 2806 helper_be_stq_mmu(env, addr, val, oi, retaddr); 2807 plugin_store_cb(env, addr, oi); 2808 } 2809 2810 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2811 MemOpIdx oi, uintptr_t retaddr) 2812 { 2813 helper_le_stw_mmu(env, addr, val, oi, retaddr); 2814 plugin_store_cb(env, addr, oi); 2815 } 2816 2817 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2818 MemOpIdx oi, uintptr_t retaddr) 2819 { 2820 helper_le_stl_mmu(env, addr, val, oi, retaddr); 2821 plugin_store_cb(env, addr, oi); 2822 } 2823 2824 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2825 MemOpIdx oi, uintptr_t retaddr) 2826 { 2827 helper_le_stq_mmu(env, addr, val, oi, retaddr); 2828 plugin_store_cb(env, addr, oi); 2829 } 2830 2831 void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 2832 MemOpIdx oi, uintptr_t ra) 2833 { 2834 MemOp mop = get_memop(oi); 2835 int mmu_idx = get_mmuidx(oi); 2836 MemOpIdx new_oi; 2837 unsigned a_bits; 2838 2839 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128)); 2840 a_bits = get_alignment_bits(mop); 2841 2842 /* Handle CPU specific unaligned behaviour */ 2843 if (addr & ((1 << a_bits) - 1)) { 2844 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2845 mmu_idx, ra); 2846 } 2847 2848 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2849 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2850 new_oi = make_memop_idx(mop, mmu_idx); 2851 2852 helper_be_stq_mmu(env, addr, int128_gethi(val), new_oi, ra); 2853 helper_be_stq_mmu(env, addr + 8, int128_getlo(val), new_oi, ra); 2854 2855 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2856 } 2857 2858 void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 2859 MemOpIdx oi, uintptr_t ra) 2860 { 2861 MemOp mop = get_memop(oi); 2862 int mmu_idx = get_mmuidx(oi); 2863 MemOpIdx new_oi; 2864 unsigned a_bits; 2865 2866 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128)); 2867 a_bits = get_alignment_bits(mop); 2868 2869 /* Handle CPU specific unaligned behaviour */ 2870 if (addr & ((1 << a_bits) - 1)) { 2871 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2872 mmu_idx, ra); 2873 } 2874 2875 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2876 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2877 new_oi = make_memop_idx(mop, mmu_idx); 2878 2879 helper_le_stq_mmu(env, addr, int128_getlo(val), new_oi, ra); 2880 helper_le_stq_mmu(env, addr + 8, int128_gethi(val), new_oi, ra); 2881 2882 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2883 } 2884 2885 #include "ldst_common.c.inc" 2886 2887 /* 2888 * First set of functions passes in OI and RETADDR. 2889 * This makes them callable from other helpers. 2890 */ 2891 2892 #define ATOMIC_NAME(X) \ 2893 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2894 2895 #define ATOMIC_MMU_CLEANUP 2896 2897 #include "atomic_common.c.inc" 2898 2899 #define DATA_SIZE 1 2900 #include "atomic_template.h" 2901 2902 #define DATA_SIZE 2 2903 #include "atomic_template.h" 2904 2905 #define DATA_SIZE 4 2906 #include "atomic_template.h" 2907 2908 #ifdef CONFIG_ATOMIC64 2909 #define DATA_SIZE 8 2910 #include "atomic_template.h" 2911 #endif 2912 2913 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2914 #define DATA_SIZE 16 2915 #include "atomic_template.h" 2916 #endif 2917 2918 /* Code access functions. */ 2919 2920 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2921 { 2922 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2923 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2924 } 2925 2926 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2927 { 2928 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2929 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2930 } 2931 2932 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2933 { 2934 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2935 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2936 } 2937 2938 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2939 { 2940 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2941 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2942 } 2943 2944 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 2945 MemOpIdx oi, uintptr_t retaddr) 2946 { 2947 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2948 } 2949 2950 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 2951 MemOpIdx oi, uintptr_t retaddr) 2952 { 2953 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2954 } 2955 2956 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 2957 MemOpIdx oi, uintptr_t retaddr) 2958 { 2959 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2960 } 2961 2962 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 2963 MemOpIdx oi, uintptr_t retaddr) 2964 { 2965 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2966 } 2967