xref: /openbmc/qemu/accel/tcg/cputlb.c (revision c09124dc)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace/trace-root.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 
43 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
44 /* #define DEBUG_TLB */
45 /* #define DEBUG_TLB_LOG */
46 
47 #ifdef DEBUG_TLB
48 # define DEBUG_TLB_GATE 1
49 # ifdef DEBUG_TLB_LOG
50 #  define DEBUG_TLB_LOG_GATE 1
51 # else
52 #  define DEBUG_TLB_LOG_GATE 0
53 # endif
54 #else
55 # define DEBUG_TLB_GATE 0
56 # define DEBUG_TLB_LOG_GATE 0
57 #endif
58 
59 #define tlb_debug(fmt, ...) do { \
60     if (DEBUG_TLB_LOG_GATE) { \
61         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
62                       ## __VA_ARGS__); \
63     } else if (DEBUG_TLB_GATE) { \
64         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
65     } \
66 } while (0)
67 
68 #define assert_cpu_is_self(cpu) do {                              \
69         if (DEBUG_TLB_GATE) {                                     \
70             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
71         }                                                         \
72     } while (0)
73 
74 /* run_on_cpu_data.target_ptr should always be big enough for a
75  * target_ulong even on 32 bit builds */
76 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
77 
78 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
79  */
80 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
81 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
82 
83 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
84 {
85     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
86 }
87 
88 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
89 {
90     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
91 }
92 
93 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
94                              size_t max_entries)
95 {
96     desc->window_begin_ns = ns;
97     desc->window_max_entries = max_entries;
98 }
99 
100 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
101 {
102     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
103 
104     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
105         qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
106     }
107 }
108 
109 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
110 {
111     /* Discard jump cache entries for any tb which might potentially
112        overlap the flushed page.  */
113     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
114     tb_jmp_cache_clear_page(cpu, addr);
115 }
116 
117 /**
118  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119  * @desc: The CPUTLBDesc portion of the TLB
120  * @fast: The CPUTLBDescFast portion of the same TLB
121  *
122  * Called with tlb_lock_held.
123  *
124  * We have two main constraints when resizing a TLB: (1) we only resize it
125  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126  * the array or unnecessarily flushing it), which means we do not control how
127  * frequently the resizing can occur; (2) we don't have access to the guest's
128  * future scheduling decisions, and therefore have to decide the magnitude of
129  * the resize based on past observations.
130  *
131  * In general, a memory-hungry process can benefit greatly from an appropriately
132  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133  * we just have to make the TLB as large as possible; while an oversized TLB
134  * results in minimal TLB miss rates, it also takes longer to be flushed
135  * (flushes can be _very_ frequent), and the reduced locality can also hurt
136  * performance.
137  *
138  * To achieve near-optimal performance for all kinds of workloads, we:
139  *
140  * 1. Aggressively increase the size of the TLB when the use rate of the
141  * TLB being flushed is high, since it is likely that in the near future this
142  * memory-hungry process will execute again, and its memory hungriness will
143  * probably be similar.
144  *
145  * 2. Slowly reduce the size of the TLB as the use rate declines over a
146  * reasonably large time window. The rationale is that if in such a time window
147  * we have not observed a high TLB use rate, it is likely that we won't observe
148  * it in the near future. In that case, once a time window expires we downsize
149  * the TLB to match the maximum use rate observed in the window.
150  *
151  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152  * since in that range performance is likely near-optimal. Recall that the TLB
153  * is direct mapped, so we want the use rate to be low (or at least not too
154  * high), since otherwise we are likely to have a significant amount of
155  * conflict misses.
156  */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158                                   int64_t now)
159 {
160     size_t old_size = tlb_n_entries(fast);
161     size_t rate;
162     size_t new_size = old_size;
163     int64_t window_len_ms = 100;
164     int64_t window_len_ns = window_len_ms * 1000 * 1000;
165     bool window_expired = now > desc->window_begin_ns + window_len_ns;
166 
167     if (desc->n_used_entries > desc->window_max_entries) {
168         desc->window_max_entries = desc->n_used_entries;
169     }
170     rate = desc->window_max_entries * 100 / old_size;
171 
172     if (rate > 70) {
173         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174     } else if (rate < 30 && window_expired) {
175         size_t ceil = pow2ceil(desc->window_max_entries);
176         size_t expected_rate = desc->window_max_entries * 100 / ceil;
177 
178         /*
179          * Avoid undersizing when the max number of entries seen is just below
180          * a pow2. For instance, if max_entries == 1025, the expected use rate
181          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183          * later. Thus, make sure that the expected use rate remains below 70%.
184          * (and since we double the size, that means the lowest rate we'd
185          * expect to get is 35%, which is still in the 30-70% range where
186          * we consider that the size is appropriate.)
187          */
188         if (expected_rate > 70) {
189             ceil *= 2;
190         }
191         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192     }
193 
194     if (new_size == old_size) {
195         if (window_expired) {
196             tlb_window_reset(desc, now, desc->n_used_entries);
197         }
198         return;
199     }
200 
201     g_free(fast->table);
202     g_free(desc->iotlb);
203 
204     tlb_window_reset(desc, now, 0);
205     /* desc->n_used_entries is cleared by the caller */
206     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207     fast->table = g_try_new(CPUTLBEntry, new_size);
208     desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
209 
210     /*
211      * If the allocations fail, try smaller sizes. We just freed some
212      * memory, so going back to half of new_size has a good chance of working.
213      * Increased memory pressure elsewhere in the system might cause the
214      * allocations to fail though, so we progressively reduce the allocation
215      * size, aborting if we cannot even allocate the smallest TLB we support.
216      */
217     while (fast->table == NULL || desc->iotlb == NULL) {
218         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219             error_report("%s: %s", __func__, strerror(errno));
220             abort();
221         }
222         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224 
225         g_free(fast->table);
226         g_free(desc->iotlb);
227         fast->table = g_try_new(CPUTLBEntry, new_size);
228         desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
229     }
230 }
231 
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234     desc->n_used_entries = 0;
235     desc->large_page_addr = -1;
236     desc->large_page_mask = -1;
237     desc->vindex = 0;
238     memset(fast->table, -1, sizeof_tlb(fast));
239     memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241 
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243                                         int64_t now)
244 {
245     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247 
248     tlb_mmu_resize_locked(desc, fast, now);
249     tlb_mmu_flush_locked(desc, fast);
250 }
251 
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255 
256     tlb_window_reset(desc, now, 0);
257     desc->n_used_entries = 0;
258     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259     fast->table = g_new(CPUTLBEntry, n_entries);
260     desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
261     tlb_mmu_flush_locked(desc, fast);
262 }
263 
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266     env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268 
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271     env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273 
274 void tlb_init(CPUState *cpu)
275 {
276     CPUArchState *env = cpu->env_ptr;
277     int64_t now = get_clock_realtime();
278     int i;
279 
280     qemu_spin_init(&env_tlb(env)->c.lock);
281 
282     /* All tlbs are initialized flushed. */
283     env_tlb(env)->c.dirty = 0;
284 
285     for (i = 0; i < NB_MMU_MODES; i++) {
286         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287     }
288 }
289 
290 void tlb_destroy(CPUState *cpu)
291 {
292     CPUArchState *env = cpu->env_ptr;
293     int i;
294 
295     qemu_spin_destroy(&env_tlb(env)->c.lock);
296     for (i = 0; i < NB_MMU_MODES; i++) {
297         CPUTLBDesc *desc = &env_tlb(env)->d[i];
298         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299 
300         g_free(fast->table);
301         g_free(desc->iotlb);
302     }
303 }
304 
305 /* flush_all_helper: run fn across all cpus
306  *
307  * If the wait flag is set then the src cpu's helper will be queued as
308  * "safe" work and the loop exited creating a synchronisation point
309  * where all queued work will be finished before execution starts
310  * again.
311  */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313                              run_on_cpu_data d)
314 {
315     CPUState *cpu;
316 
317     CPU_FOREACH(cpu) {
318         if (cpu != src) {
319             async_run_on_cpu(cpu, fn, d);
320         }
321     }
322 }
323 
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326     CPUState *cpu;
327     size_t full = 0, part = 0, elide = 0;
328 
329     CPU_FOREACH(cpu) {
330         CPUArchState *env = cpu->env_ptr;
331 
332         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335     }
336     *pfull = full;
337     *ppart = part;
338     *pelide = elide;
339 }
340 
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343     CPUArchState *env = cpu->env_ptr;
344     uint16_t asked = data.host_int;
345     uint16_t all_dirty, work, to_clean;
346     int64_t now = get_clock_realtime();
347 
348     assert_cpu_is_self(cpu);
349 
350     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351 
352     qemu_spin_lock(&env_tlb(env)->c.lock);
353 
354     all_dirty = env_tlb(env)->c.dirty;
355     to_clean = asked & all_dirty;
356     all_dirty &= ~to_clean;
357     env_tlb(env)->c.dirty = all_dirty;
358 
359     for (work = to_clean; work != 0; work &= work - 1) {
360         int mmu_idx = ctz32(work);
361         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362     }
363 
364     qemu_spin_unlock(&env_tlb(env)->c.lock);
365 
366     cpu_tb_jmp_cache_clear(cpu);
367 
368     if (to_clean == ALL_MMUIDX_BITS) {
369         qatomic_set(&env_tlb(env)->c.full_flush_count,
370                    env_tlb(env)->c.full_flush_count + 1);
371     } else {
372         qatomic_set(&env_tlb(env)->c.part_flush_count,
373                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374         if (to_clean != asked) {
375             qatomic_set(&env_tlb(env)->c.elide_flush_count,
376                        env_tlb(env)->c.elide_flush_count +
377                        ctpop16(asked & ~to_clean));
378         }
379     }
380 }
381 
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385 
386     if (cpu->created && !qemu_cpu_is_self(cpu)) {
387         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388                          RUN_ON_CPU_HOST_INT(idxmap));
389     } else {
390         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391     }
392 }
393 
394 void tlb_flush(CPUState *cpu)
395 {
396     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398 
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402 
403     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404 
405     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408 
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413 
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417 
418     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419 
420     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423 
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428 
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430                                       target_ulong page, target_ulong mask)
431 {
432     page &= mask;
433     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434 
435     return (page == (tlb_entry->addr_read & mask) ||
436             page == (tlb_addr_write(tlb_entry) & mask) ||
437             page == (tlb_entry->addr_code & mask));
438 }
439 
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
441                                         target_ulong page)
442 {
443     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445 
446 /**
447  * tlb_entry_is_empty - return true if the entry is not in use
448  * @te: pointer to CPUTLBEntry
449  */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454 
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457                                         target_ulong page,
458                                         target_ulong mask)
459 {
460     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461         memset(tlb_entry, -1, sizeof(*tlb_entry));
462         return true;
463     }
464     return false;
465 }
466 
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
468                                           target_ulong page)
469 {
470     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
471 }
472 
473 /* Called with tlb_c.lock held */
474 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
475                                             target_ulong page,
476                                             target_ulong mask)
477 {
478     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
479     int k;
480 
481     assert_cpu_is_self(env_cpu(env));
482     for (k = 0; k < CPU_VTLB_SIZE; k++) {
483         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
484             tlb_n_used_entries_dec(env, mmu_idx);
485         }
486     }
487 }
488 
489 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
490                                               target_ulong page)
491 {
492     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
493 }
494 
495 static void tlb_flush_page_locked(CPUArchState *env, int midx,
496                                   target_ulong page)
497 {
498     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
499     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
500 
501     /* Check if we need to flush due to large pages.  */
502     if ((page & lp_mask) == lp_addr) {
503         tlb_debug("forcing full flush midx %d ("
504                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
505                   midx, lp_addr, lp_mask);
506         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
507     } else {
508         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
509             tlb_n_used_entries_dec(env, midx);
510         }
511         tlb_flush_vtlb_page_locked(env, midx, page);
512     }
513 }
514 
515 /**
516  * tlb_flush_page_by_mmuidx_async_0:
517  * @cpu: cpu on which to flush
518  * @addr: page of virtual address to flush
519  * @idxmap: set of mmu_idx to flush
520  *
521  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
522  * at @addr from the tlbs indicated by @idxmap from @cpu.
523  */
524 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
525                                              target_ulong addr,
526                                              uint16_t idxmap)
527 {
528     CPUArchState *env = cpu->env_ptr;
529     int mmu_idx;
530 
531     assert_cpu_is_self(cpu);
532 
533     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
534 
535     qemu_spin_lock(&env_tlb(env)->c.lock);
536     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
537         if ((idxmap >> mmu_idx) & 1) {
538             tlb_flush_page_locked(env, mmu_idx, addr);
539         }
540     }
541     qemu_spin_unlock(&env_tlb(env)->c.lock);
542 
543     tb_flush_jmp_cache(cpu, addr);
544 }
545 
546 /**
547  * tlb_flush_page_by_mmuidx_async_1:
548  * @cpu: cpu on which to flush
549  * @data: encoded addr + idxmap
550  *
551  * Helper for tlb_flush_page_by_mmuidx and friends, called through
552  * async_run_on_cpu.  The idxmap parameter is encoded in the page
553  * offset of the target_ptr field.  This limits the set of mmu_idx
554  * that can be passed via this method.
555  */
556 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
557                                              run_on_cpu_data data)
558 {
559     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
560     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
561     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
562 
563     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
564 }
565 
566 typedef struct {
567     target_ulong addr;
568     uint16_t idxmap;
569 } TLBFlushPageByMMUIdxData;
570 
571 /**
572  * tlb_flush_page_by_mmuidx_async_2:
573  * @cpu: cpu on which to flush
574  * @data: allocated addr + idxmap
575  *
576  * Helper for tlb_flush_page_by_mmuidx and friends, called through
577  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
578  * TLBFlushPageByMMUIdxData structure that has been allocated
579  * specifically for this helper.  Free the structure when done.
580  */
581 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
582                                              run_on_cpu_data data)
583 {
584     TLBFlushPageByMMUIdxData *d = data.host_ptr;
585 
586     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
587     g_free(d);
588 }
589 
590 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
591 {
592     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
593 
594     /* This should already be page aligned */
595     addr &= TARGET_PAGE_MASK;
596 
597     if (qemu_cpu_is_self(cpu)) {
598         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
599     } else if (idxmap < TARGET_PAGE_SIZE) {
600         /*
601          * Most targets have only a few mmu_idx.  In the case where
602          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
603          * allocating memory for this operation.
604          */
605         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
606                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
607     } else {
608         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
609 
610         /* Otherwise allocate a structure, freed by the worker.  */
611         d->addr = addr;
612         d->idxmap = idxmap;
613         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
614                          RUN_ON_CPU_HOST_PTR(d));
615     }
616 }
617 
618 void tlb_flush_page(CPUState *cpu, target_ulong addr)
619 {
620     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
621 }
622 
623 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
624                                        uint16_t idxmap)
625 {
626     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
627 
628     /* This should already be page aligned */
629     addr &= TARGET_PAGE_MASK;
630 
631     /*
632      * Allocate memory to hold addr+idxmap only when needed.
633      * See tlb_flush_page_by_mmuidx for details.
634      */
635     if (idxmap < TARGET_PAGE_SIZE) {
636         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
637                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
638     } else {
639         CPUState *dst_cpu;
640 
641         /* Allocate a separate data block for each destination cpu.  */
642         CPU_FOREACH(dst_cpu) {
643             if (dst_cpu != src_cpu) {
644                 TLBFlushPageByMMUIdxData *d
645                     = g_new(TLBFlushPageByMMUIdxData, 1);
646 
647                 d->addr = addr;
648                 d->idxmap = idxmap;
649                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
650                                  RUN_ON_CPU_HOST_PTR(d));
651             }
652         }
653     }
654 
655     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
656 }
657 
658 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
659 {
660     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
661 }
662 
663 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
664                                               target_ulong addr,
665                                               uint16_t idxmap)
666 {
667     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
668 
669     /* This should already be page aligned */
670     addr &= TARGET_PAGE_MASK;
671 
672     /*
673      * Allocate memory to hold addr+idxmap only when needed.
674      * See tlb_flush_page_by_mmuidx for details.
675      */
676     if (idxmap < TARGET_PAGE_SIZE) {
677         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
678                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
679         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
680                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
681     } else {
682         CPUState *dst_cpu;
683         TLBFlushPageByMMUIdxData *d;
684 
685         /* Allocate a separate data block for each destination cpu.  */
686         CPU_FOREACH(dst_cpu) {
687             if (dst_cpu != src_cpu) {
688                 d = g_new(TLBFlushPageByMMUIdxData, 1);
689                 d->addr = addr;
690                 d->idxmap = idxmap;
691                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
692                                  RUN_ON_CPU_HOST_PTR(d));
693             }
694         }
695 
696         d = g_new(TLBFlushPageByMMUIdxData, 1);
697         d->addr = addr;
698         d->idxmap = idxmap;
699         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
700                               RUN_ON_CPU_HOST_PTR(d));
701     }
702 }
703 
704 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
705 {
706     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
707 }
708 
709 static void tlb_flush_range_locked(CPUArchState *env, int midx,
710                                    target_ulong addr, target_ulong len,
711                                    unsigned bits)
712 {
713     CPUTLBDesc *d = &env_tlb(env)->d[midx];
714     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
715     target_ulong mask = MAKE_64BIT_MASK(0, bits);
716 
717     /*
718      * If @bits is smaller than the tlb size, there may be multiple entries
719      * within the TLB; otherwise all addresses that match under @mask hit
720      * the same TLB entry.
721      * TODO: Perhaps allow bits to be a few bits less than the size.
722      * For now, just flush the entire TLB.
723      *
724      * If @len is larger than the tlb size, then it will take longer to
725      * test all of the entries in the TLB than it will to flush it all.
726      */
727     if (mask < f->mask || len > f->mask) {
728         tlb_debug("forcing full flush midx %d ("
729                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
730                   midx, addr, mask, len);
731         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
732         return;
733     }
734 
735     /*
736      * Check if we need to flush due to large pages.
737      * Because large_page_mask contains all 1's from the msb,
738      * we only need to test the end of the range.
739      */
740     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
741         tlb_debug("forcing full flush midx %d ("
742                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
743                   midx, d->large_page_addr, d->large_page_mask);
744         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
745         return;
746     }
747 
748     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
749         target_ulong page = addr + i;
750         CPUTLBEntry *entry = tlb_entry(env, midx, page);
751 
752         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
753             tlb_n_used_entries_dec(env, midx);
754         }
755         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
756     }
757 }
758 
759 typedef struct {
760     target_ulong addr;
761     target_ulong len;
762     uint16_t idxmap;
763     uint16_t bits;
764 } TLBFlushRangeData;
765 
766 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
767                                               TLBFlushRangeData d)
768 {
769     CPUArchState *env = cpu->env_ptr;
770     int mmu_idx;
771 
772     assert_cpu_is_self(cpu);
773 
774     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
775               d.addr, d.bits, d.len, d.idxmap);
776 
777     qemu_spin_lock(&env_tlb(env)->c.lock);
778     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
779         if ((d.idxmap >> mmu_idx) & 1) {
780             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
781         }
782     }
783     qemu_spin_unlock(&env_tlb(env)->c.lock);
784 
785     for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
786         tb_flush_jmp_cache(cpu, d.addr + i);
787     }
788 }
789 
790 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
791                                               run_on_cpu_data data)
792 {
793     TLBFlushRangeData *d = data.host_ptr;
794     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
795     g_free(d);
796 }
797 
798 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
799                                target_ulong len, uint16_t idxmap,
800                                unsigned bits)
801 {
802     TLBFlushRangeData d;
803 
804     /*
805      * If all bits are significant, and len is small,
806      * this devolves to tlb_flush_page.
807      */
808     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
809         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
810         return;
811     }
812     /* If no page bits are significant, this devolves to tlb_flush. */
813     if (bits < TARGET_PAGE_BITS) {
814         tlb_flush_by_mmuidx(cpu, idxmap);
815         return;
816     }
817 
818     /* This should already be page aligned */
819     d.addr = addr & TARGET_PAGE_MASK;
820     d.len = len;
821     d.idxmap = idxmap;
822     d.bits = bits;
823 
824     if (qemu_cpu_is_self(cpu)) {
825         tlb_flush_range_by_mmuidx_async_0(cpu, d);
826     } else {
827         /* Otherwise allocate a structure, freed by the worker.  */
828         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
829         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
830                          RUN_ON_CPU_HOST_PTR(p));
831     }
832 }
833 
834 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
835                                    uint16_t idxmap, unsigned bits)
836 {
837     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
838 }
839 
840 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
841                                         target_ulong addr, target_ulong len,
842                                         uint16_t idxmap, unsigned bits)
843 {
844     TLBFlushRangeData d;
845     CPUState *dst_cpu;
846 
847     /*
848      * If all bits are significant, and len is small,
849      * this devolves to tlb_flush_page.
850      */
851     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
852         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
853         return;
854     }
855     /* If no page bits are significant, this devolves to tlb_flush. */
856     if (bits < TARGET_PAGE_BITS) {
857         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
858         return;
859     }
860 
861     /* This should already be page aligned */
862     d.addr = addr & TARGET_PAGE_MASK;
863     d.len = len;
864     d.idxmap = idxmap;
865     d.bits = bits;
866 
867     /* Allocate a separate data block for each destination cpu.  */
868     CPU_FOREACH(dst_cpu) {
869         if (dst_cpu != src_cpu) {
870             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
871             async_run_on_cpu(dst_cpu,
872                              tlb_flush_range_by_mmuidx_async_1,
873                              RUN_ON_CPU_HOST_PTR(p));
874         }
875     }
876 
877     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
878 }
879 
880 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
881                                             target_ulong addr,
882                                             uint16_t idxmap, unsigned bits)
883 {
884     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
885                                        idxmap, bits);
886 }
887 
888 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
889                                                target_ulong addr,
890                                                target_ulong len,
891                                                uint16_t idxmap,
892                                                unsigned bits)
893 {
894     TLBFlushRangeData d, *p;
895     CPUState *dst_cpu;
896 
897     /*
898      * If all bits are significant, and len is small,
899      * this devolves to tlb_flush_page.
900      */
901     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
902         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
903         return;
904     }
905     /* If no page bits are significant, this devolves to tlb_flush. */
906     if (bits < TARGET_PAGE_BITS) {
907         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
908         return;
909     }
910 
911     /* This should already be page aligned */
912     d.addr = addr & TARGET_PAGE_MASK;
913     d.len = len;
914     d.idxmap = idxmap;
915     d.bits = bits;
916 
917     /* Allocate a separate data block for each destination cpu.  */
918     CPU_FOREACH(dst_cpu) {
919         if (dst_cpu != src_cpu) {
920             p = g_memdup(&d, sizeof(d));
921             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
922                              RUN_ON_CPU_HOST_PTR(p));
923         }
924     }
925 
926     p = g_memdup(&d, sizeof(d));
927     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
928                           RUN_ON_CPU_HOST_PTR(p));
929 }
930 
931 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
932                                                    target_ulong addr,
933                                                    uint16_t idxmap,
934                                                    unsigned bits)
935 {
936     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
937                                               idxmap, bits);
938 }
939 
940 /* update the TLBs so that writes to code in the virtual page 'addr'
941    can be detected */
942 void tlb_protect_code(ram_addr_t ram_addr)
943 {
944     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
945                                              DIRTY_MEMORY_CODE);
946 }
947 
948 /* update the TLB so that writes in physical page 'phys_addr' are no longer
949    tested for self modifying code */
950 void tlb_unprotect_code(ram_addr_t ram_addr)
951 {
952     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
953 }
954 
955 
956 /*
957  * Dirty write flag handling
958  *
959  * When the TCG code writes to a location it looks up the address in
960  * the TLB and uses that data to compute the final address. If any of
961  * the lower bits of the address are set then the slow path is forced.
962  * There are a number of reasons to do this but for normal RAM the
963  * most usual is detecting writes to code regions which may invalidate
964  * generated code.
965  *
966  * Other vCPUs might be reading their TLBs during guest execution, so we update
967  * te->addr_write with qatomic_set. We don't need to worry about this for
968  * oversized guests as MTTCG is disabled for them.
969  *
970  * Called with tlb_c.lock held.
971  */
972 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
973                                          uintptr_t start, uintptr_t length)
974 {
975     uintptr_t addr = tlb_entry->addr_write;
976 
977     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
978                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
979         addr &= TARGET_PAGE_MASK;
980         addr += tlb_entry->addend;
981         if ((addr - start) < length) {
982 #if TCG_OVERSIZED_GUEST
983             tlb_entry->addr_write |= TLB_NOTDIRTY;
984 #else
985             qatomic_set(&tlb_entry->addr_write,
986                        tlb_entry->addr_write | TLB_NOTDIRTY);
987 #endif
988         }
989     }
990 }
991 
992 /*
993  * Called with tlb_c.lock held.
994  * Called only from the vCPU context, i.e. the TLB's owner thread.
995  */
996 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
997 {
998     *d = *s;
999 }
1000 
1001 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1002  * the target vCPU).
1003  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1004  * thing actually updated is the target TLB entry ->addr_write flags.
1005  */
1006 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1007 {
1008     CPUArchState *env;
1009 
1010     int mmu_idx;
1011 
1012     env = cpu->env_ptr;
1013     qemu_spin_lock(&env_tlb(env)->c.lock);
1014     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1015         unsigned int i;
1016         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1017 
1018         for (i = 0; i < n; i++) {
1019             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1020                                          start1, length);
1021         }
1022 
1023         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1024             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1025                                          start1, length);
1026         }
1027     }
1028     qemu_spin_unlock(&env_tlb(env)->c.lock);
1029 }
1030 
1031 /* Called with tlb_c.lock held */
1032 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1033                                          target_ulong vaddr)
1034 {
1035     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1036         tlb_entry->addr_write = vaddr;
1037     }
1038 }
1039 
1040 /* update the TLB corresponding to virtual page vaddr
1041    so that it is no longer dirty */
1042 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1043 {
1044     CPUArchState *env = cpu->env_ptr;
1045     int mmu_idx;
1046 
1047     assert_cpu_is_self(cpu);
1048 
1049     vaddr &= TARGET_PAGE_MASK;
1050     qemu_spin_lock(&env_tlb(env)->c.lock);
1051     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1052         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1053     }
1054 
1055     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1056         int k;
1057         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1058             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1059         }
1060     }
1061     qemu_spin_unlock(&env_tlb(env)->c.lock);
1062 }
1063 
1064 /* Our TLB does not support large pages, so remember the area covered by
1065    large pages and trigger a full TLB flush if these are invalidated.  */
1066 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1067                                target_ulong vaddr, target_ulong size)
1068 {
1069     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1070     target_ulong lp_mask = ~(size - 1);
1071 
1072     if (lp_addr == (target_ulong)-1) {
1073         /* No previous large page.  */
1074         lp_addr = vaddr;
1075     } else {
1076         /* Extend the existing region to include the new page.
1077            This is a compromise between unnecessary flushes and
1078            the cost of maintaining a full variable size TLB.  */
1079         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1080         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1081             lp_mask <<= 1;
1082         }
1083     }
1084     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1085     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1086 }
1087 
1088 /* Add a new TLB entry. At most one entry for a given virtual address
1089  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1090  * supplied size is only used by tlb_flush_page.
1091  *
1092  * Called from TCG-generated code, which is under an RCU read-side
1093  * critical section.
1094  */
1095 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1096                              hwaddr paddr, MemTxAttrs attrs, int prot,
1097                              int mmu_idx, target_ulong size)
1098 {
1099     CPUArchState *env = cpu->env_ptr;
1100     CPUTLB *tlb = env_tlb(env);
1101     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1102     MemoryRegionSection *section;
1103     unsigned int index;
1104     target_ulong address;
1105     target_ulong write_address;
1106     uintptr_t addend;
1107     CPUTLBEntry *te, tn;
1108     hwaddr iotlb, xlat, sz, paddr_page;
1109     target_ulong vaddr_page;
1110     int asidx = cpu_asidx_from_attrs(cpu, attrs);
1111     int wp_flags;
1112     bool is_ram, is_romd;
1113 
1114     assert_cpu_is_self(cpu);
1115 
1116     if (size <= TARGET_PAGE_SIZE) {
1117         sz = TARGET_PAGE_SIZE;
1118     } else {
1119         tlb_add_large_page(env, mmu_idx, vaddr, size);
1120         sz = size;
1121     }
1122     vaddr_page = vaddr & TARGET_PAGE_MASK;
1123     paddr_page = paddr & TARGET_PAGE_MASK;
1124 
1125     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1126                                                 &xlat, &sz, attrs, &prot);
1127     assert(sz >= TARGET_PAGE_SIZE);
1128 
1129     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1130               " prot=%x idx=%d\n",
1131               vaddr, paddr, prot, mmu_idx);
1132 
1133     address = vaddr_page;
1134     if (size < TARGET_PAGE_SIZE) {
1135         /* Repeat the MMU check and TLB fill on every access.  */
1136         address |= TLB_INVALID_MASK;
1137     }
1138     if (attrs.byte_swap) {
1139         address |= TLB_BSWAP;
1140     }
1141 
1142     is_ram = memory_region_is_ram(section->mr);
1143     is_romd = memory_region_is_romd(section->mr);
1144 
1145     if (is_ram || is_romd) {
1146         /* RAM and ROMD both have associated host memory. */
1147         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1148     } else {
1149         /* I/O does not; force the host address to NULL. */
1150         addend = 0;
1151     }
1152 
1153     write_address = address;
1154     if (is_ram) {
1155         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1156         /*
1157          * Computing is_clean is expensive; avoid all that unless
1158          * the page is actually writable.
1159          */
1160         if (prot & PAGE_WRITE) {
1161             if (section->readonly) {
1162                 write_address |= TLB_DISCARD_WRITE;
1163             } else if (cpu_physical_memory_is_clean(iotlb)) {
1164                 write_address |= TLB_NOTDIRTY;
1165             }
1166         }
1167     } else {
1168         /* I/O or ROMD */
1169         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1170         /*
1171          * Writes to romd devices must go through MMIO to enable write.
1172          * Reads to romd devices go through the ram_ptr found above,
1173          * but of course reads to I/O must go through MMIO.
1174          */
1175         write_address |= TLB_MMIO;
1176         if (!is_romd) {
1177             address = write_address;
1178         }
1179     }
1180 
1181     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1182                                               TARGET_PAGE_SIZE);
1183 
1184     index = tlb_index(env, mmu_idx, vaddr_page);
1185     te = tlb_entry(env, mmu_idx, vaddr_page);
1186 
1187     /*
1188      * Hold the TLB lock for the rest of the function. We could acquire/release
1189      * the lock several times in the function, but it is faster to amortize the
1190      * acquisition cost by acquiring it just once. Note that this leads to
1191      * a longer critical section, but this is not a concern since the TLB lock
1192      * is unlikely to be contended.
1193      */
1194     qemu_spin_lock(&tlb->c.lock);
1195 
1196     /* Note that the tlb is no longer clean.  */
1197     tlb->c.dirty |= 1 << mmu_idx;
1198 
1199     /* Make sure there's no cached translation for the new page.  */
1200     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1201 
1202     /*
1203      * Only evict the old entry to the victim tlb if it's for a
1204      * different page; otherwise just overwrite the stale data.
1205      */
1206     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1207         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1208         CPUTLBEntry *tv = &desc->vtable[vidx];
1209 
1210         /* Evict the old entry into the victim tlb.  */
1211         copy_tlb_helper_locked(tv, te);
1212         desc->viotlb[vidx] = desc->iotlb[index];
1213         tlb_n_used_entries_dec(env, mmu_idx);
1214     }
1215 
1216     /* refill the tlb */
1217     /*
1218      * At this point iotlb contains a physical section number in the lower
1219      * TARGET_PAGE_BITS, and either
1220      *  + the ram_addr_t of the page base of the target RAM (RAM)
1221      *  + the offset within section->mr of the page base (I/O, ROMD)
1222      * We subtract the vaddr_page (which is page aligned and thus won't
1223      * disturb the low bits) to give an offset which can be added to the
1224      * (non-page-aligned) vaddr of the eventual memory access to get
1225      * the MemoryRegion offset for the access. Note that the vaddr we
1226      * subtract here is that of the page base, and not the same as the
1227      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1228      */
1229     desc->iotlb[index].addr = iotlb - vaddr_page;
1230     desc->iotlb[index].attrs = attrs;
1231 
1232     /* Now calculate the new entry */
1233     tn.addend = addend - vaddr_page;
1234     if (prot & PAGE_READ) {
1235         tn.addr_read = address;
1236         if (wp_flags & BP_MEM_READ) {
1237             tn.addr_read |= TLB_WATCHPOINT;
1238         }
1239     } else {
1240         tn.addr_read = -1;
1241     }
1242 
1243     if (prot & PAGE_EXEC) {
1244         tn.addr_code = address;
1245     } else {
1246         tn.addr_code = -1;
1247     }
1248 
1249     tn.addr_write = -1;
1250     if (prot & PAGE_WRITE) {
1251         tn.addr_write = write_address;
1252         if (prot & PAGE_WRITE_INV) {
1253             tn.addr_write |= TLB_INVALID_MASK;
1254         }
1255         if (wp_flags & BP_MEM_WRITE) {
1256             tn.addr_write |= TLB_WATCHPOINT;
1257         }
1258     }
1259 
1260     copy_tlb_helper_locked(te, &tn);
1261     tlb_n_used_entries_inc(env, mmu_idx);
1262     qemu_spin_unlock(&tlb->c.lock);
1263 }
1264 
1265 /* Add a new TLB entry, but without specifying the memory
1266  * transaction attributes to be used.
1267  */
1268 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1269                   hwaddr paddr, int prot,
1270                   int mmu_idx, target_ulong size)
1271 {
1272     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1273                             prot, mmu_idx, size);
1274 }
1275 
1276 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1277 {
1278     ram_addr_t ram_addr;
1279 
1280     ram_addr = qemu_ram_addr_from_host(ptr);
1281     if (ram_addr == RAM_ADDR_INVALID) {
1282         error_report("Bad ram pointer %p", ptr);
1283         abort();
1284     }
1285     return ram_addr;
1286 }
1287 
1288 /*
1289  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1290  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1291  * be discarded and looked up again (e.g. via tlb_entry()).
1292  */
1293 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1294                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1295 {
1296     CPUClass *cc = CPU_GET_CLASS(cpu);
1297     bool ok;
1298 
1299     /*
1300      * This is not a probe, so only valid return is success; failure
1301      * should result in exception + longjmp to the cpu loop.
1302      */
1303     ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1304                                access_type, mmu_idx, false, retaddr);
1305     assert(ok);
1306 }
1307 
1308 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1309                                         MMUAccessType access_type,
1310                                         int mmu_idx, uintptr_t retaddr)
1311 {
1312     CPUClass *cc = CPU_GET_CLASS(cpu);
1313 
1314     cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1315 }
1316 
1317 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1318                                           vaddr addr, unsigned size,
1319                                           MMUAccessType access_type,
1320                                           int mmu_idx, MemTxAttrs attrs,
1321                                           MemTxResult response,
1322                                           uintptr_t retaddr)
1323 {
1324     CPUClass *cc = CPU_GET_CLASS(cpu);
1325 
1326     if (!cpu->ignore_memory_transaction_failures &&
1327         cc->tcg_ops->do_transaction_failed) {
1328         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1329                                            access_type, mmu_idx, attrs,
1330                                            response, retaddr);
1331     }
1332 }
1333 
1334 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1335                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
1336                          MMUAccessType access_type, MemOp op)
1337 {
1338     CPUState *cpu = env_cpu(env);
1339     hwaddr mr_offset;
1340     MemoryRegionSection *section;
1341     MemoryRegion *mr;
1342     uint64_t val;
1343     bool locked = false;
1344     MemTxResult r;
1345 
1346     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1347     mr = section->mr;
1348     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1349     cpu->mem_io_pc = retaddr;
1350     if (!cpu->can_do_io) {
1351         cpu_io_recompile(cpu, retaddr);
1352     }
1353 
1354     if (!qemu_mutex_iothread_locked()) {
1355         qemu_mutex_lock_iothread();
1356         locked = true;
1357     }
1358     r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1359     if (r != MEMTX_OK) {
1360         hwaddr physaddr = mr_offset +
1361             section->offset_within_address_space -
1362             section->offset_within_region;
1363 
1364         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1365                                mmu_idx, iotlbentry->attrs, r, retaddr);
1366     }
1367     if (locked) {
1368         qemu_mutex_unlock_iothread();
1369     }
1370 
1371     return val;
1372 }
1373 
1374 /*
1375  * Save a potentially trashed IOTLB entry for later lookup by plugin.
1376  * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1377  * because of the side effect of io_writex changing memory layout.
1378  */
1379 static void save_iotlb_data(CPUState *cs, hwaddr addr,
1380                             MemoryRegionSection *section, hwaddr mr_offset)
1381 {
1382 #ifdef CONFIG_PLUGIN
1383     SavedIOTLB *saved = &cs->saved_iotlb;
1384     saved->addr = addr;
1385     saved->section = section;
1386     saved->mr_offset = mr_offset;
1387 #endif
1388 }
1389 
1390 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1391                       int mmu_idx, uint64_t val, target_ulong addr,
1392                       uintptr_t retaddr, MemOp op)
1393 {
1394     CPUState *cpu = env_cpu(env);
1395     hwaddr mr_offset;
1396     MemoryRegionSection *section;
1397     MemoryRegion *mr;
1398     bool locked = false;
1399     MemTxResult r;
1400 
1401     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1402     mr = section->mr;
1403     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1404     if (!cpu->can_do_io) {
1405         cpu_io_recompile(cpu, retaddr);
1406     }
1407     cpu->mem_io_pc = retaddr;
1408 
1409     /*
1410      * The memory_region_dispatch may trigger a flush/resize
1411      * so for plugins we save the iotlb_data just in case.
1412      */
1413     save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1414 
1415     if (!qemu_mutex_iothread_locked()) {
1416         qemu_mutex_lock_iothread();
1417         locked = true;
1418     }
1419     r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1420     if (r != MEMTX_OK) {
1421         hwaddr physaddr = mr_offset +
1422             section->offset_within_address_space -
1423             section->offset_within_region;
1424 
1425         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1426                                MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1427                                retaddr);
1428     }
1429     if (locked) {
1430         qemu_mutex_unlock_iothread();
1431     }
1432 }
1433 
1434 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1435 {
1436 #if TCG_OVERSIZED_GUEST
1437     return *(target_ulong *)((uintptr_t)entry + ofs);
1438 #else
1439     /* ofs might correspond to .addr_write, so use qatomic_read */
1440     return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1441 #endif
1442 }
1443 
1444 /* Return true if ADDR is present in the victim tlb, and has been copied
1445    back to the main tlb.  */
1446 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1447                            size_t elt_ofs, target_ulong page)
1448 {
1449     size_t vidx;
1450 
1451     assert_cpu_is_self(env_cpu(env));
1452     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1453         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1454         target_ulong cmp;
1455 
1456         /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1457 #if TCG_OVERSIZED_GUEST
1458         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1459 #else
1460         cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1461 #endif
1462 
1463         if (cmp == page) {
1464             /* Found entry in victim tlb, swap tlb and iotlb.  */
1465             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1466 
1467             qemu_spin_lock(&env_tlb(env)->c.lock);
1468             copy_tlb_helper_locked(&tmptlb, tlb);
1469             copy_tlb_helper_locked(tlb, vtlb);
1470             copy_tlb_helper_locked(vtlb, &tmptlb);
1471             qemu_spin_unlock(&env_tlb(env)->c.lock);
1472 
1473             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1474             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1475             tmpio = *io; *io = *vio; *vio = tmpio;
1476             return true;
1477         }
1478     }
1479     return false;
1480 }
1481 
1482 /* Macro to call the above, with local variables from the use context.  */
1483 #define VICTIM_TLB_HIT(TY, ADDR) \
1484   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1485                  (ADDR) & TARGET_PAGE_MASK)
1486 
1487 /*
1488  * Return a ram_addr_t for the virtual address for execution.
1489  *
1490  * Return -1 if we can't translate and execute from an entire page
1491  * of RAM.  This will force us to execute by loading and translating
1492  * one insn at a time, without caching.
1493  *
1494  * NOTE: This function will trigger an exception if the page is
1495  * not executable.
1496  */
1497 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1498                                         void **hostp)
1499 {
1500     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1501     uintptr_t index = tlb_index(env, mmu_idx, addr);
1502     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1503     void *p;
1504 
1505     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1506         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1507             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1508             index = tlb_index(env, mmu_idx, addr);
1509             entry = tlb_entry(env, mmu_idx, addr);
1510 
1511             if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1512                 /*
1513                  * The MMU protection covers a smaller range than a target
1514                  * page, so we must redo the MMU check for every insn.
1515                  */
1516                 return -1;
1517             }
1518         }
1519         assert(tlb_hit(entry->addr_code, addr));
1520     }
1521 
1522     if (unlikely(entry->addr_code & TLB_MMIO)) {
1523         /* The region is not backed by RAM.  */
1524         if (hostp) {
1525             *hostp = NULL;
1526         }
1527         return -1;
1528     }
1529 
1530     p = (void *)((uintptr_t)addr + entry->addend);
1531     if (hostp) {
1532         *hostp = p;
1533     }
1534     return qemu_ram_addr_from_host_nofail(p);
1535 }
1536 
1537 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1538 {
1539     return get_page_addr_code_hostp(env, addr, NULL);
1540 }
1541 
1542 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1543                            CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1544 {
1545     ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1546 
1547     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1548 
1549     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1550         struct page_collection *pages
1551             = page_collection_lock(ram_addr, ram_addr + size);
1552         tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1553         page_collection_unlock(pages);
1554     }
1555 
1556     /*
1557      * Set both VGA and migration bits for simplicity and to remove
1558      * the notdirty callback faster.
1559      */
1560     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1561 
1562     /* We remove the notdirty callback only if the code has been flushed. */
1563     if (!cpu_physical_memory_is_clean(ram_addr)) {
1564         trace_memory_notdirty_set_dirty(mem_vaddr);
1565         tlb_set_dirty(cpu, mem_vaddr);
1566     }
1567 }
1568 
1569 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1570                                  int fault_size, MMUAccessType access_type,
1571                                  int mmu_idx, bool nonfault,
1572                                  void **phost, uintptr_t retaddr)
1573 {
1574     uintptr_t index = tlb_index(env, mmu_idx, addr);
1575     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1576     target_ulong tlb_addr, page_addr;
1577     size_t elt_ofs;
1578     int flags;
1579 
1580     switch (access_type) {
1581     case MMU_DATA_LOAD:
1582         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1583         break;
1584     case MMU_DATA_STORE:
1585         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1586         break;
1587     case MMU_INST_FETCH:
1588         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1589         break;
1590     default:
1591         g_assert_not_reached();
1592     }
1593     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1594 
1595     page_addr = addr & TARGET_PAGE_MASK;
1596     if (!tlb_hit_page(tlb_addr, page_addr)) {
1597         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1598             CPUState *cs = env_cpu(env);
1599             CPUClass *cc = CPU_GET_CLASS(cs);
1600 
1601             if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1602                                        mmu_idx, nonfault, retaddr)) {
1603                 /* Non-faulting page table read failed.  */
1604                 *phost = NULL;
1605                 return TLB_INVALID_MASK;
1606             }
1607 
1608             /* TLB resize via tlb_fill may have moved the entry.  */
1609             entry = tlb_entry(env, mmu_idx, addr);
1610         }
1611         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1612     }
1613     flags = tlb_addr & TLB_FLAGS_MASK;
1614 
1615     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1616     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1617         *phost = NULL;
1618         return TLB_MMIO;
1619     }
1620 
1621     /* Everything else is RAM. */
1622     *phost = (void *)((uintptr_t)addr + entry->addend);
1623     return flags;
1624 }
1625 
1626 int probe_access_flags(CPUArchState *env, target_ulong addr,
1627                        MMUAccessType access_type, int mmu_idx,
1628                        bool nonfault, void **phost, uintptr_t retaddr)
1629 {
1630     int flags;
1631 
1632     flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1633                                   nonfault, phost, retaddr);
1634 
1635     /* Handle clean RAM pages.  */
1636     if (unlikely(flags & TLB_NOTDIRTY)) {
1637         uintptr_t index = tlb_index(env, mmu_idx, addr);
1638         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1639 
1640         notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1641         flags &= ~TLB_NOTDIRTY;
1642     }
1643 
1644     return flags;
1645 }
1646 
1647 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1648                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1649 {
1650     void *host;
1651     int flags;
1652 
1653     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1654 
1655     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1656                                   false, &host, retaddr);
1657 
1658     /* Per the interface, size == 0 merely faults the access. */
1659     if (size == 0) {
1660         return NULL;
1661     }
1662 
1663     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1664         uintptr_t index = tlb_index(env, mmu_idx, addr);
1665         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1666 
1667         /* Handle watchpoints.  */
1668         if (flags & TLB_WATCHPOINT) {
1669             int wp_access = (access_type == MMU_DATA_STORE
1670                              ? BP_MEM_WRITE : BP_MEM_READ);
1671             cpu_check_watchpoint(env_cpu(env), addr, size,
1672                                  iotlbentry->attrs, wp_access, retaddr);
1673         }
1674 
1675         /* Handle clean RAM pages.  */
1676         if (flags & TLB_NOTDIRTY) {
1677             notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1678         }
1679     }
1680 
1681     return host;
1682 }
1683 
1684 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1685                         MMUAccessType access_type, int mmu_idx)
1686 {
1687     void *host;
1688     int flags;
1689 
1690     flags = probe_access_internal(env, addr, 0, access_type,
1691                                   mmu_idx, true, &host, 0);
1692 
1693     /* No combination of flags are expected by the caller. */
1694     return flags ? NULL : host;
1695 }
1696 
1697 #ifdef CONFIG_PLUGIN
1698 /*
1699  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1700  * This should be a hot path as we will have just looked this path up
1701  * in the softmmu lookup code (or helper). We don't handle re-fills or
1702  * checking the victim table. This is purely informational.
1703  *
1704  * This almost never fails as the memory access being instrumented
1705  * should have just filled the TLB. The one corner case is io_writex
1706  * which can cause TLB flushes and potential resizing of the TLBs
1707  * losing the information we need. In those cases we need to recover
1708  * data from a copy of the iotlbentry. As long as this always occurs
1709  * from the same thread (which a mem callback will be) this is safe.
1710  */
1711 
1712 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1713                        bool is_store, struct qemu_plugin_hwaddr *data)
1714 {
1715     CPUArchState *env = cpu->env_ptr;
1716     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1717     uintptr_t index = tlb_index(env, mmu_idx, addr);
1718     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1719 
1720     if (likely(tlb_hit(tlb_addr, addr))) {
1721         /* We must have an iotlb entry for MMIO */
1722         if (tlb_addr & TLB_MMIO) {
1723             CPUIOTLBEntry *iotlbentry;
1724             iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1725             data->is_io = true;
1726             data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1727             data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1728         } else {
1729             data->is_io = false;
1730             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1731         }
1732         return true;
1733     } else {
1734         SavedIOTLB *saved = &cpu->saved_iotlb;
1735         data->is_io = true;
1736         data->v.io.section = saved->section;
1737         data->v.io.offset = saved->mr_offset;
1738         return true;
1739     }
1740 }
1741 
1742 #endif
1743 
1744 /*
1745  * Probe for an atomic operation.  Do not allow unaligned operations,
1746  * or io operations to proceed.  Return the host address.
1747  *
1748  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1749  */
1750 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1751                                MemOpIdx oi, int size, int prot,
1752                                uintptr_t retaddr)
1753 {
1754     size_t mmu_idx = get_mmuidx(oi);
1755     MemOp mop = get_memop(oi);
1756     int a_bits = get_alignment_bits(mop);
1757     uintptr_t index;
1758     CPUTLBEntry *tlbe;
1759     target_ulong tlb_addr;
1760     void *hostaddr;
1761 
1762     /* Adjust the given return address.  */
1763     retaddr -= GETPC_ADJ;
1764 
1765     /* Enforce guest required alignment.  */
1766     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1767         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1768         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1769                              mmu_idx, retaddr);
1770     }
1771 
1772     /* Enforce qemu required alignment.  */
1773     if (unlikely(addr & (size - 1))) {
1774         /* We get here if guest alignment was not requested,
1775            or was not enforced by cpu_unaligned_access above.
1776            We might widen the access and emulate, but for now
1777            mark an exception and exit the cpu loop.  */
1778         goto stop_the_world;
1779     }
1780 
1781     index = tlb_index(env, mmu_idx, addr);
1782     tlbe = tlb_entry(env, mmu_idx, addr);
1783 
1784     /* Check TLB entry and enforce page permissions.  */
1785     if (prot & PAGE_WRITE) {
1786         tlb_addr = tlb_addr_write(tlbe);
1787         if (!tlb_hit(tlb_addr, addr)) {
1788             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1789                 tlb_fill(env_cpu(env), addr, size,
1790                          MMU_DATA_STORE, mmu_idx, retaddr);
1791                 index = tlb_index(env, mmu_idx, addr);
1792                 tlbe = tlb_entry(env, mmu_idx, addr);
1793             }
1794             tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1795         }
1796 
1797         /* Let the guest notice RMW on a write-only page.  */
1798         if ((prot & PAGE_READ) &&
1799             unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1800             tlb_fill(env_cpu(env), addr, size,
1801                      MMU_DATA_LOAD, mmu_idx, retaddr);
1802             /*
1803              * Since we don't support reads and writes to different addresses,
1804              * and we do have the proper page loaded for write, this shouldn't
1805              * ever return.  But just in case, handle via stop-the-world.
1806              */
1807             goto stop_the_world;
1808         }
1809     } else /* if (prot & PAGE_READ) */ {
1810         tlb_addr = tlbe->addr_read;
1811         if (!tlb_hit(tlb_addr, addr)) {
1812             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1813                 tlb_fill(env_cpu(env), addr, size,
1814                          MMU_DATA_LOAD, mmu_idx, retaddr);
1815                 index = tlb_index(env, mmu_idx, addr);
1816                 tlbe = tlb_entry(env, mmu_idx, addr);
1817             }
1818             tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1819         }
1820     }
1821 
1822     /* Notice an IO access or a needs-MMU-lookup access */
1823     if (unlikely(tlb_addr & TLB_MMIO)) {
1824         /* There's really nothing that can be done to
1825            support this apart from stop-the-world.  */
1826         goto stop_the_world;
1827     }
1828 
1829     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1830 
1831     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1832         notdirty_write(env_cpu(env), addr, size,
1833                        &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1834     }
1835 
1836     return hostaddr;
1837 
1838  stop_the_world:
1839     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1840 }
1841 
1842 /*
1843  * Load Helpers
1844  *
1845  * We support two different access types. SOFTMMU_CODE_ACCESS is
1846  * specifically for reading instructions from system memory. It is
1847  * called by the translation loop and in some helpers where the code
1848  * is disassembled. It shouldn't be called directly by guest code.
1849  */
1850 
1851 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1852                                 MemOpIdx oi, uintptr_t retaddr);
1853 
1854 static inline uint64_t QEMU_ALWAYS_INLINE
1855 load_memop(const void *haddr, MemOp op)
1856 {
1857     switch (op) {
1858     case MO_UB:
1859         return ldub_p(haddr);
1860     case MO_BEUW:
1861         return lduw_be_p(haddr);
1862     case MO_LEUW:
1863         return lduw_le_p(haddr);
1864     case MO_BEUL:
1865         return (uint32_t)ldl_be_p(haddr);
1866     case MO_LEUL:
1867         return (uint32_t)ldl_le_p(haddr);
1868     case MO_BEQ:
1869         return ldq_be_p(haddr);
1870     case MO_LEQ:
1871         return ldq_le_p(haddr);
1872     default:
1873         qemu_build_not_reached();
1874     }
1875 }
1876 
1877 static inline uint64_t QEMU_ALWAYS_INLINE
1878 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1879             uintptr_t retaddr, MemOp op, bool code_read,
1880             FullLoadHelper *full_load)
1881 {
1882     uintptr_t mmu_idx = get_mmuidx(oi);
1883     uintptr_t index = tlb_index(env, mmu_idx, addr);
1884     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1885     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1886     const size_t tlb_off = code_read ?
1887         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1888     const MMUAccessType access_type =
1889         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1890     unsigned a_bits = get_alignment_bits(get_memop(oi));
1891     void *haddr;
1892     uint64_t res;
1893     size_t size = memop_size(op);
1894 
1895     /* Handle CPU specific unaligned behaviour */
1896     if (addr & ((1 << a_bits) - 1)) {
1897         cpu_unaligned_access(env_cpu(env), addr, access_type,
1898                              mmu_idx, retaddr);
1899     }
1900 
1901     /* If the TLB entry is for a different page, reload and try again.  */
1902     if (!tlb_hit(tlb_addr, addr)) {
1903         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1904                             addr & TARGET_PAGE_MASK)) {
1905             tlb_fill(env_cpu(env), addr, size,
1906                      access_type, mmu_idx, retaddr);
1907             index = tlb_index(env, mmu_idx, addr);
1908             entry = tlb_entry(env, mmu_idx, addr);
1909         }
1910         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1911         tlb_addr &= ~TLB_INVALID_MASK;
1912     }
1913 
1914     /* Handle anything that isn't just a straight memory access.  */
1915     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1916         CPUIOTLBEntry *iotlbentry;
1917         bool need_swap;
1918 
1919         /* For anything that is unaligned, recurse through full_load.  */
1920         if ((addr & (size - 1)) != 0) {
1921             goto do_unaligned_access;
1922         }
1923 
1924         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1925 
1926         /* Handle watchpoints.  */
1927         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1928             /* On watchpoint hit, this will longjmp out.  */
1929             cpu_check_watchpoint(env_cpu(env), addr, size,
1930                                  iotlbentry->attrs, BP_MEM_READ, retaddr);
1931         }
1932 
1933         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1934 
1935         /* Handle I/O access.  */
1936         if (likely(tlb_addr & TLB_MMIO)) {
1937             return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1938                             access_type, op ^ (need_swap * MO_BSWAP));
1939         }
1940 
1941         haddr = (void *)((uintptr_t)addr + entry->addend);
1942 
1943         /*
1944          * Keep these two load_memop separate to ensure that the compiler
1945          * is able to fold the entire function to a single instruction.
1946          * There is a build-time assert inside to remind you of this.  ;-)
1947          */
1948         if (unlikely(need_swap)) {
1949             return load_memop(haddr, op ^ MO_BSWAP);
1950         }
1951         return load_memop(haddr, op);
1952     }
1953 
1954     /* Handle slow unaligned access (it spans two pages or IO).  */
1955     if (size > 1
1956         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1957                     >= TARGET_PAGE_SIZE)) {
1958         target_ulong addr1, addr2;
1959         uint64_t r1, r2;
1960         unsigned shift;
1961     do_unaligned_access:
1962         addr1 = addr & ~((target_ulong)size - 1);
1963         addr2 = addr1 + size;
1964         r1 = full_load(env, addr1, oi, retaddr);
1965         r2 = full_load(env, addr2, oi, retaddr);
1966         shift = (addr & (size - 1)) * 8;
1967 
1968         if (memop_big_endian(op)) {
1969             /* Big-endian combine.  */
1970             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1971         } else {
1972             /* Little-endian combine.  */
1973             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1974         }
1975         return res & MAKE_64BIT_MASK(0, size * 8);
1976     }
1977 
1978     haddr = (void *)((uintptr_t)addr + entry->addend);
1979     return load_memop(haddr, op);
1980 }
1981 
1982 /*
1983  * For the benefit of TCG generated code, we want to avoid the
1984  * complication of ABI-specific return type promotion and always
1985  * return a value extended to the register size of the host. This is
1986  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1987  * data, and for that we always have uint64_t.
1988  *
1989  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1990  */
1991 
1992 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1993                               MemOpIdx oi, uintptr_t retaddr)
1994 {
1995     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1996 }
1997 
1998 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1999                                      MemOpIdx oi, uintptr_t retaddr)
2000 {
2001     return full_ldub_mmu(env, addr, oi, retaddr);
2002 }
2003 
2004 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2005                                  MemOpIdx oi, uintptr_t retaddr)
2006 {
2007     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2008                        full_le_lduw_mmu);
2009 }
2010 
2011 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2012                                     MemOpIdx oi, uintptr_t retaddr)
2013 {
2014     return full_le_lduw_mmu(env, addr, oi, retaddr);
2015 }
2016 
2017 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2018                                  MemOpIdx oi, uintptr_t retaddr)
2019 {
2020     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2021                        full_be_lduw_mmu);
2022 }
2023 
2024 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2025                                     MemOpIdx oi, uintptr_t retaddr)
2026 {
2027     return full_be_lduw_mmu(env, addr, oi, retaddr);
2028 }
2029 
2030 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2031                                  MemOpIdx oi, uintptr_t retaddr)
2032 {
2033     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2034                        full_le_ldul_mmu);
2035 }
2036 
2037 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2038                                     MemOpIdx oi, uintptr_t retaddr)
2039 {
2040     return full_le_ldul_mmu(env, addr, oi, retaddr);
2041 }
2042 
2043 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2044                                  MemOpIdx oi, uintptr_t retaddr)
2045 {
2046     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2047                        full_be_ldul_mmu);
2048 }
2049 
2050 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2051                                     MemOpIdx oi, uintptr_t retaddr)
2052 {
2053     return full_be_ldul_mmu(env, addr, oi, retaddr);
2054 }
2055 
2056 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2057                            MemOpIdx oi, uintptr_t retaddr)
2058 {
2059     return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
2060                        helper_le_ldq_mmu);
2061 }
2062 
2063 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2064                            MemOpIdx oi, uintptr_t retaddr)
2065 {
2066     return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
2067                        helper_be_ldq_mmu);
2068 }
2069 
2070 /*
2071  * Provide signed versions of the load routines as well.  We can of course
2072  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2073  */
2074 
2075 
2076 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2077                                      MemOpIdx oi, uintptr_t retaddr)
2078 {
2079     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2080 }
2081 
2082 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2083                                     MemOpIdx oi, uintptr_t retaddr)
2084 {
2085     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2086 }
2087 
2088 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2089                                     MemOpIdx oi, uintptr_t retaddr)
2090 {
2091     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2092 }
2093 
2094 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2095                                     MemOpIdx oi, uintptr_t retaddr)
2096 {
2097     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2098 }
2099 
2100 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2101                                     MemOpIdx oi, uintptr_t retaddr)
2102 {
2103     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2104 }
2105 
2106 /*
2107  * Load helpers for cpu_ldst.h.
2108  */
2109 
2110 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2111                                        int mmu_idx, uintptr_t retaddr,
2112                                        MemOp op, FullLoadHelper *full_load)
2113 {
2114     MemOpIdx oi = make_memop_idx(op, mmu_idx);
2115     uint64_t ret;
2116 
2117     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
2118 
2119     ret = full_load(env, addr, oi, retaddr);
2120 
2121     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2122 
2123     return ret;
2124 }
2125 
2126 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2127                             int mmu_idx, uintptr_t ra)
2128 {
2129     return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu);
2130 }
2131 
2132 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2133                        int mmu_idx, uintptr_t ra)
2134 {
2135     return (int8_t)cpu_ldub_mmuidx_ra(env, addr, mmu_idx, ra);
2136 }
2137 
2138 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2139                                int mmu_idx, uintptr_t ra)
2140 {
2141     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu);
2142 }
2143 
2144 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2145                           int mmu_idx, uintptr_t ra)
2146 {
2147     return (int16_t)cpu_lduw_be_mmuidx_ra(env, addr, mmu_idx, ra);
2148 }
2149 
2150 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2151                               int mmu_idx, uintptr_t ra)
2152 {
2153     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu);
2154 }
2155 
2156 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2157                               int mmu_idx, uintptr_t ra)
2158 {
2159     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu);
2160 }
2161 
2162 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2163                                int mmu_idx, uintptr_t ra)
2164 {
2165     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu);
2166 }
2167 
2168 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2169                           int mmu_idx, uintptr_t ra)
2170 {
2171     return (int16_t)cpu_lduw_le_mmuidx_ra(env, addr, mmu_idx, ra);
2172 }
2173 
2174 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2175                               int mmu_idx, uintptr_t ra)
2176 {
2177     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu);
2178 }
2179 
2180 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2181                               int mmu_idx, uintptr_t ra)
2182 {
2183     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu);
2184 }
2185 
2186 uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr,
2187                           uintptr_t retaddr)
2188 {
2189     return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2190 }
2191 
2192 int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2193 {
2194     return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2195 }
2196 
2197 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr,
2198                              uintptr_t retaddr)
2199 {
2200     return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2201 }
2202 
2203 int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2204 {
2205     return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2206 }
2207 
2208 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr,
2209                             uintptr_t retaddr)
2210 {
2211     return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2212 }
2213 
2214 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr,
2215                             uintptr_t retaddr)
2216 {
2217     return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2218 }
2219 
2220 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr,
2221                              uintptr_t retaddr)
2222 {
2223     return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2224 }
2225 
2226 int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2227 {
2228     return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2229 }
2230 
2231 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr,
2232                             uintptr_t retaddr)
2233 {
2234     return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2235 }
2236 
2237 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr,
2238                             uintptr_t retaddr)
2239 {
2240     return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2241 }
2242 
2243 uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr)
2244 {
2245     return cpu_ldub_data_ra(env, ptr, 0);
2246 }
2247 
2248 int cpu_ldsb_data(CPUArchState *env, target_ulong ptr)
2249 {
2250     return cpu_ldsb_data_ra(env, ptr, 0);
2251 }
2252 
2253 uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr)
2254 {
2255     return cpu_lduw_be_data_ra(env, ptr, 0);
2256 }
2257 
2258 int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr)
2259 {
2260     return cpu_ldsw_be_data_ra(env, ptr, 0);
2261 }
2262 
2263 uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr)
2264 {
2265     return cpu_ldl_be_data_ra(env, ptr, 0);
2266 }
2267 
2268 uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr)
2269 {
2270     return cpu_ldq_be_data_ra(env, ptr, 0);
2271 }
2272 
2273 uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr)
2274 {
2275     return cpu_lduw_le_data_ra(env, ptr, 0);
2276 }
2277 
2278 int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr)
2279 {
2280     return cpu_ldsw_le_data_ra(env, ptr, 0);
2281 }
2282 
2283 uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr)
2284 {
2285     return cpu_ldl_le_data_ra(env, ptr, 0);
2286 }
2287 
2288 uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr)
2289 {
2290     return cpu_ldq_le_data_ra(env, ptr, 0);
2291 }
2292 
2293 /*
2294  * Store Helpers
2295  */
2296 
2297 static inline void QEMU_ALWAYS_INLINE
2298 store_memop(void *haddr, uint64_t val, MemOp op)
2299 {
2300     switch (op) {
2301     case MO_UB:
2302         stb_p(haddr, val);
2303         break;
2304     case MO_BEUW:
2305         stw_be_p(haddr, val);
2306         break;
2307     case MO_LEUW:
2308         stw_le_p(haddr, val);
2309         break;
2310     case MO_BEUL:
2311         stl_be_p(haddr, val);
2312         break;
2313     case MO_LEUL:
2314         stl_le_p(haddr, val);
2315         break;
2316     case MO_BEQ:
2317         stq_be_p(haddr, val);
2318         break;
2319     case MO_LEQ:
2320         stq_le_p(haddr, val);
2321         break;
2322     default:
2323         qemu_build_not_reached();
2324     }
2325 }
2326 
2327 static void __attribute__((noinline))
2328 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2329                        uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2330                        bool big_endian)
2331 {
2332     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2333     uintptr_t index, index2;
2334     CPUTLBEntry *entry, *entry2;
2335     target_ulong page2, tlb_addr, tlb_addr2;
2336     MemOpIdx oi;
2337     size_t size2;
2338     int i;
2339 
2340     /*
2341      * Ensure the second page is in the TLB.  Note that the first page
2342      * is already guaranteed to be filled, and that the second page
2343      * cannot evict the first.
2344      */
2345     page2 = (addr + size) & TARGET_PAGE_MASK;
2346     size2 = (addr + size) & ~TARGET_PAGE_MASK;
2347     index2 = tlb_index(env, mmu_idx, page2);
2348     entry2 = tlb_entry(env, mmu_idx, page2);
2349 
2350     tlb_addr2 = tlb_addr_write(entry2);
2351     if (!tlb_hit_page(tlb_addr2, page2)) {
2352         if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2353             tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2354                      mmu_idx, retaddr);
2355             index2 = tlb_index(env, mmu_idx, page2);
2356             entry2 = tlb_entry(env, mmu_idx, page2);
2357         }
2358         tlb_addr2 = tlb_addr_write(entry2);
2359     }
2360 
2361     index = tlb_index(env, mmu_idx, addr);
2362     entry = tlb_entry(env, mmu_idx, addr);
2363     tlb_addr = tlb_addr_write(entry);
2364 
2365     /*
2366      * Handle watchpoints.  Since this may trap, all checks
2367      * must happen before any store.
2368      */
2369     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2370         cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2371                              env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2372                              BP_MEM_WRITE, retaddr);
2373     }
2374     if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2375         cpu_check_watchpoint(env_cpu(env), page2, size2,
2376                              env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2377                              BP_MEM_WRITE, retaddr);
2378     }
2379 
2380     /*
2381      * XXX: not efficient, but simple.
2382      * This loop must go in the forward direction to avoid issues
2383      * with self-modifying code in Windows 64-bit.
2384      */
2385     oi = make_memop_idx(MO_UB, mmu_idx);
2386     if (big_endian) {
2387         for (i = 0; i < size; ++i) {
2388             /* Big-endian extract.  */
2389             uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2390             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2391         }
2392     } else {
2393         for (i = 0; i < size; ++i) {
2394             /* Little-endian extract.  */
2395             uint8_t val8 = val >> (i * 8);
2396             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2397         }
2398     }
2399 }
2400 
2401 static inline void QEMU_ALWAYS_INLINE
2402 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2403              MemOpIdx oi, uintptr_t retaddr, MemOp op)
2404 {
2405     uintptr_t mmu_idx = get_mmuidx(oi);
2406     uintptr_t index = tlb_index(env, mmu_idx, addr);
2407     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2408     target_ulong tlb_addr = tlb_addr_write(entry);
2409     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2410     unsigned a_bits = get_alignment_bits(get_memop(oi));
2411     void *haddr;
2412     size_t size = memop_size(op);
2413 
2414     /* Handle CPU specific unaligned behaviour */
2415     if (addr & ((1 << a_bits) - 1)) {
2416         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2417                              mmu_idx, retaddr);
2418     }
2419 
2420     /* If the TLB entry is for a different page, reload and try again.  */
2421     if (!tlb_hit(tlb_addr, addr)) {
2422         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2423             addr & TARGET_PAGE_MASK)) {
2424             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2425                      mmu_idx, retaddr);
2426             index = tlb_index(env, mmu_idx, addr);
2427             entry = tlb_entry(env, mmu_idx, addr);
2428         }
2429         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2430     }
2431 
2432     /* Handle anything that isn't just a straight memory access.  */
2433     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2434         CPUIOTLBEntry *iotlbentry;
2435         bool need_swap;
2436 
2437         /* For anything that is unaligned, recurse through byte stores.  */
2438         if ((addr & (size - 1)) != 0) {
2439             goto do_unaligned_access;
2440         }
2441 
2442         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2443 
2444         /* Handle watchpoints.  */
2445         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2446             /* On watchpoint hit, this will longjmp out.  */
2447             cpu_check_watchpoint(env_cpu(env), addr, size,
2448                                  iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2449         }
2450 
2451         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2452 
2453         /* Handle I/O access.  */
2454         if (tlb_addr & TLB_MMIO) {
2455             io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2456                       op ^ (need_swap * MO_BSWAP));
2457             return;
2458         }
2459 
2460         /* Ignore writes to ROM.  */
2461         if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2462             return;
2463         }
2464 
2465         /* Handle clean RAM pages.  */
2466         if (tlb_addr & TLB_NOTDIRTY) {
2467             notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2468         }
2469 
2470         haddr = (void *)((uintptr_t)addr + entry->addend);
2471 
2472         /*
2473          * Keep these two store_memop separate to ensure that the compiler
2474          * is able to fold the entire function to a single instruction.
2475          * There is a build-time assert inside to remind you of this.  ;-)
2476          */
2477         if (unlikely(need_swap)) {
2478             store_memop(haddr, val, op ^ MO_BSWAP);
2479         } else {
2480             store_memop(haddr, val, op);
2481         }
2482         return;
2483     }
2484 
2485     /* Handle slow unaligned access (it spans two pages or IO).  */
2486     if (size > 1
2487         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2488                      >= TARGET_PAGE_SIZE)) {
2489     do_unaligned_access:
2490         store_helper_unaligned(env, addr, val, retaddr, size,
2491                                mmu_idx, memop_big_endian(op));
2492         return;
2493     }
2494 
2495     haddr = (void *)((uintptr_t)addr + entry->addend);
2496     store_memop(haddr, val, op);
2497 }
2498 
2499 void __attribute__((noinline))
2500 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2501                    MemOpIdx oi, uintptr_t retaddr)
2502 {
2503     store_helper(env, addr, val, oi, retaddr, MO_UB);
2504 }
2505 
2506 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2507                        MemOpIdx oi, uintptr_t retaddr)
2508 {
2509     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2510 }
2511 
2512 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2513                        MemOpIdx oi, uintptr_t retaddr)
2514 {
2515     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2516 }
2517 
2518 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2519                        MemOpIdx oi, uintptr_t retaddr)
2520 {
2521     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2522 }
2523 
2524 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2525                        MemOpIdx oi, uintptr_t retaddr)
2526 {
2527     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2528 }
2529 
2530 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2531                        MemOpIdx oi, uintptr_t retaddr)
2532 {
2533     store_helper(env, addr, val, oi, retaddr, MO_LEQ);
2534 }
2535 
2536 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2537                        MemOpIdx oi, uintptr_t retaddr)
2538 {
2539     store_helper(env, addr, val, oi, retaddr, MO_BEQ);
2540 }
2541 
2542 /*
2543  * Store Helpers for cpu_ldst.h
2544  */
2545 
2546 static inline void QEMU_ALWAYS_INLINE
2547 cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2548                  int mmu_idx, uintptr_t retaddr, MemOp op)
2549 {
2550     MemOpIdx oi = make_memop_idx(op, mmu_idx);
2551 
2552     trace_guest_st_before_exec(env_cpu(env), addr, oi);
2553 
2554     store_helper(env, addr, val, oi, retaddr, op);
2555 
2556     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2557 }
2558 
2559 void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2560                        int mmu_idx, uintptr_t retaddr)
2561 {
2562     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
2563 }
2564 
2565 void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2566                           int mmu_idx, uintptr_t retaddr)
2567 {
2568     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW);
2569 }
2570 
2571 void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2572                           int mmu_idx, uintptr_t retaddr)
2573 {
2574     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL);
2575 }
2576 
2577 void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2578                           int mmu_idx, uintptr_t retaddr)
2579 {
2580     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ);
2581 }
2582 
2583 void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2584                           int mmu_idx, uintptr_t retaddr)
2585 {
2586     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW);
2587 }
2588 
2589 void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2590                           int mmu_idx, uintptr_t retaddr)
2591 {
2592     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL);
2593 }
2594 
2595 void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2596                           int mmu_idx, uintptr_t retaddr)
2597 {
2598     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ);
2599 }
2600 
2601 void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr,
2602                      uint32_t val, uintptr_t retaddr)
2603 {
2604     cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2605 }
2606 
2607 void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr,
2608                         uint32_t val, uintptr_t retaddr)
2609 {
2610     cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2611 }
2612 
2613 void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr,
2614                         uint32_t val, uintptr_t retaddr)
2615 {
2616     cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2617 }
2618 
2619 void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr,
2620                         uint64_t val, uintptr_t retaddr)
2621 {
2622     cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2623 }
2624 
2625 void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr,
2626                         uint32_t val, uintptr_t retaddr)
2627 {
2628     cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2629 }
2630 
2631 void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr,
2632                         uint32_t val, uintptr_t retaddr)
2633 {
2634     cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2635 }
2636 
2637 void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr,
2638                         uint64_t val, uintptr_t retaddr)
2639 {
2640     cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2641 }
2642 
2643 void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2644 {
2645     cpu_stb_data_ra(env, ptr, val, 0);
2646 }
2647 
2648 void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2649 {
2650     cpu_stw_be_data_ra(env, ptr, val, 0);
2651 }
2652 
2653 void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2654 {
2655     cpu_stl_be_data_ra(env, ptr, val, 0);
2656 }
2657 
2658 void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2659 {
2660     cpu_stq_be_data_ra(env, ptr, val, 0);
2661 }
2662 
2663 void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2664 {
2665     cpu_stw_le_data_ra(env, ptr, val, 0);
2666 }
2667 
2668 void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2669 {
2670     cpu_stl_le_data_ra(env, ptr, val, 0);
2671 }
2672 
2673 void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2674 {
2675     cpu_stq_le_data_ra(env, ptr, val, 0);
2676 }
2677 
2678 /*
2679  * First set of functions passes in OI and RETADDR.
2680  * This makes them callable from other helpers.
2681  */
2682 
2683 #define ATOMIC_NAME(X) \
2684     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2685 
2686 #define ATOMIC_MMU_CLEANUP
2687 #define ATOMIC_MMU_IDX   get_mmuidx(oi)
2688 
2689 #include "atomic_common.c.inc"
2690 
2691 #define DATA_SIZE 1
2692 #include "atomic_template.h"
2693 
2694 #define DATA_SIZE 2
2695 #include "atomic_template.h"
2696 
2697 #define DATA_SIZE 4
2698 #include "atomic_template.h"
2699 
2700 #ifdef CONFIG_ATOMIC64
2701 #define DATA_SIZE 8
2702 #include "atomic_template.h"
2703 #endif
2704 
2705 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2706 #define DATA_SIZE 16
2707 #include "atomic_template.h"
2708 #endif
2709 
2710 /* Code access functions.  */
2711 
2712 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2713                                MemOpIdx oi, uintptr_t retaddr)
2714 {
2715     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2716 }
2717 
2718 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2719 {
2720     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2721     return full_ldub_code(env, addr, oi, 0);
2722 }
2723 
2724 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2725                                MemOpIdx oi, uintptr_t retaddr)
2726 {
2727     return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2728 }
2729 
2730 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2731 {
2732     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2733     return full_lduw_code(env, addr, oi, 0);
2734 }
2735 
2736 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2737                               MemOpIdx oi, uintptr_t retaddr)
2738 {
2739     return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2740 }
2741 
2742 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2743 {
2744     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2745     return full_ldl_code(env, addr, oi, 0);
2746 }
2747 
2748 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2749                               MemOpIdx oi, uintptr_t retaddr)
2750 {
2751     return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
2752 }
2753 
2754 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2755 {
2756     MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
2757     return full_ldq_code(env, addr, oi, 0);
2758 }
2759