1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace/trace-root.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 43 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 44 /* #define DEBUG_TLB */ 45 /* #define DEBUG_TLB_LOG */ 46 47 #ifdef DEBUG_TLB 48 # define DEBUG_TLB_GATE 1 49 # ifdef DEBUG_TLB_LOG 50 # define DEBUG_TLB_LOG_GATE 1 51 # else 52 # define DEBUG_TLB_LOG_GATE 0 53 # endif 54 #else 55 # define DEBUG_TLB_GATE 0 56 # define DEBUG_TLB_LOG_GATE 0 57 #endif 58 59 #define tlb_debug(fmt, ...) do { \ 60 if (DEBUG_TLB_LOG_GATE) { \ 61 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 62 ## __VA_ARGS__); \ 63 } else if (DEBUG_TLB_GATE) { \ 64 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 65 } \ 66 } while (0) 67 68 #define assert_cpu_is_self(cpu) do { \ 69 if (DEBUG_TLB_GATE) { \ 70 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 71 } \ 72 } while (0) 73 74 /* run_on_cpu_data.target_ptr should always be big enough for a 75 * target_ulong even on 32 bit builds */ 76 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 77 78 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 79 */ 80 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 81 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 82 83 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 84 { 85 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 86 } 87 88 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 89 { 90 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 91 } 92 93 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 94 size_t max_entries) 95 { 96 desc->window_begin_ns = ns; 97 desc->window_max_entries = max_entries; 98 } 99 100 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 101 { 102 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 103 104 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 105 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 106 } 107 } 108 109 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 110 { 111 /* Discard jump cache entries for any tb which might potentially 112 overlap the flushed page. */ 113 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 114 tb_jmp_cache_clear_page(cpu, addr); 115 } 116 117 /** 118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 119 * @desc: The CPUTLBDesc portion of the TLB 120 * @fast: The CPUTLBDescFast portion of the same TLB 121 * 122 * Called with tlb_lock_held. 123 * 124 * We have two main constraints when resizing a TLB: (1) we only resize it 125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 126 * the array or unnecessarily flushing it), which means we do not control how 127 * frequently the resizing can occur; (2) we don't have access to the guest's 128 * future scheduling decisions, and therefore have to decide the magnitude of 129 * the resize based on past observations. 130 * 131 * In general, a memory-hungry process can benefit greatly from an appropriately 132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 133 * we just have to make the TLB as large as possible; while an oversized TLB 134 * results in minimal TLB miss rates, it also takes longer to be flushed 135 * (flushes can be _very_ frequent), and the reduced locality can also hurt 136 * performance. 137 * 138 * To achieve near-optimal performance for all kinds of workloads, we: 139 * 140 * 1. Aggressively increase the size of the TLB when the use rate of the 141 * TLB being flushed is high, since it is likely that in the near future this 142 * memory-hungry process will execute again, and its memory hungriness will 143 * probably be similar. 144 * 145 * 2. Slowly reduce the size of the TLB as the use rate declines over a 146 * reasonably large time window. The rationale is that if in such a time window 147 * we have not observed a high TLB use rate, it is likely that we won't observe 148 * it in the near future. In that case, once a time window expires we downsize 149 * the TLB to match the maximum use rate observed in the window. 150 * 151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 152 * since in that range performance is likely near-optimal. Recall that the TLB 153 * is direct mapped, so we want the use rate to be low (or at least not too 154 * high), since otherwise we are likely to have a significant amount of 155 * conflict misses. 156 */ 157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 158 int64_t now) 159 { 160 size_t old_size = tlb_n_entries(fast); 161 size_t rate; 162 size_t new_size = old_size; 163 int64_t window_len_ms = 100; 164 int64_t window_len_ns = window_len_ms * 1000 * 1000; 165 bool window_expired = now > desc->window_begin_ns + window_len_ns; 166 167 if (desc->n_used_entries > desc->window_max_entries) { 168 desc->window_max_entries = desc->n_used_entries; 169 } 170 rate = desc->window_max_entries * 100 / old_size; 171 172 if (rate > 70) { 173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 174 } else if (rate < 30 && window_expired) { 175 size_t ceil = pow2ceil(desc->window_max_entries); 176 size_t expected_rate = desc->window_max_entries * 100 / ceil; 177 178 /* 179 * Avoid undersizing when the max number of entries seen is just below 180 * a pow2. For instance, if max_entries == 1025, the expected use rate 181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 183 * later. Thus, make sure that the expected use rate remains below 70%. 184 * (and since we double the size, that means the lowest rate we'd 185 * expect to get is 35%, which is still in the 30-70% range where 186 * we consider that the size is appropriate.) 187 */ 188 if (expected_rate > 70) { 189 ceil *= 2; 190 } 191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 192 } 193 194 if (new_size == old_size) { 195 if (window_expired) { 196 tlb_window_reset(desc, now, desc->n_used_entries); 197 } 198 return; 199 } 200 201 g_free(fast->table); 202 g_free(desc->iotlb); 203 204 tlb_window_reset(desc, now, 0); 205 /* desc->n_used_entries is cleared by the caller */ 206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 207 fast->table = g_try_new(CPUTLBEntry, new_size); 208 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); 209 210 /* 211 * If the allocations fail, try smaller sizes. We just freed some 212 * memory, so going back to half of new_size has a good chance of working. 213 * Increased memory pressure elsewhere in the system might cause the 214 * allocations to fail though, so we progressively reduce the allocation 215 * size, aborting if we cannot even allocate the smallest TLB we support. 216 */ 217 while (fast->table == NULL || desc->iotlb == NULL) { 218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 219 error_report("%s: %s", __func__, strerror(errno)); 220 abort(); 221 } 222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 224 225 g_free(fast->table); 226 g_free(desc->iotlb); 227 fast->table = g_try_new(CPUTLBEntry, new_size); 228 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); 229 } 230 } 231 232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 233 { 234 desc->n_used_entries = 0; 235 desc->large_page_addr = -1; 236 desc->large_page_mask = -1; 237 desc->vindex = 0; 238 memset(fast->table, -1, sizeof_tlb(fast)); 239 memset(desc->vtable, -1, sizeof(desc->vtable)); 240 } 241 242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 243 int64_t now) 244 { 245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 247 248 tlb_mmu_resize_locked(desc, fast, now); 249 tlb_mmu_flush_locked(desc, fast); 250 } 251 252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 253 { 254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 255 256 tlb_window_reset(desc, now, 0); 257 desc->n_used_entries = 0; 258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 259 fast->table = g_new(CPUTLBEntry, n_entries); 260 desc->iotlb = g_new(CPUIOTLBEntry, n_entries); 261 tlb_mmu_flush_locked(desc, fast); 262 } 263 264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 265 { 266 env_tlb(env)->d[mmu_idx].n_used_entries++; 267 } 268 269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 270 { 271 env_tlb(env)->d[mmu_idx].n_used_entries--; 272 } 273 274 void tlb_init(CPUState *cpu) 275 { 276 CPUArchState *env = cpu->env_ptr; 277 int64_t now = get_clock_realtime(); 278 int i; 279 280 qemu_spin_init(&env_tlb(env)->c.lock); 281 282 /* All tlbs are initialized flushed. */ 283 env_tlb(env)->c.dirty = 0; 284 285 for (i = 0; i < NB_MMU_MODES; i++) { 286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 287 } 288 } 289 290 void tlb_destroy(CPUState *cpu) 291 { 292 CPUArchState *env = cpu->env_ptr; 293 int i; 294 295 qemu_spin_destroy(&env_tlb(env)->c.lock); 296 for (i = 0; i < NB_MMU_MODES; i++) { 297 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 298 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 299 300 g_free(fast->table); 301 g_free(desc->iotlb); 302 } 303 } 304 305 /* flush_all_helper: run fn across all cpus 306 * 307 * If the wait flag is set then the src cpu's helper will be queued as 308 * "safe" work and the loop exited creating a synchronisation point 309 * where all queued work will be finished before execution starts 310 * again. 311 */ 312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 313 run_on_cpu_data d) 314 { 315 CPUState *cpu; 316 317 CPU_FOREACH(cpu) { 318 if (cpu != src) { 319 async_run_on_cpu(cpu, fn, d); 320 } 321 } 322 } 323 324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 325 { 326 CPUState *cpu; 327 size_t full = 0, part = 0, elide = 0; 328 329 CPU_FOREACH(cpu) { 330 CPUArchState *env = cpu->env_ptr; 331 332 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 333 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 335 } 336 *pfull = full; 337 *ppart = part; 338 *pelide = elide; 339 } 340 341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 342 { 343 CPUArchState *env = cpu->env_ptr; 344 uint16_t asked = data.host_int; 345 uint16_t all_dirty, work, to_clean; 346 int64_t now = get_clock_realtime(); 347 348 assert_cpu_is_self(cpu); 349 350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 351 352 qemu_spin_lock(&env_tlb(env)->c.lock); 353 354 all_dirty = env_tlb(env)->c.dirty; 355 to_clean = asked & all_dirty; 356 all_dirty &= ~to_clean; 357 env_tlb(env)->c.dirty = all_dirty; 358 359 for (work = to_clean; work != 0; work &= work - 1) { 360 int mmu_idx = ctz32(work); 361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 362 } 363 364 qemu_spin_unlock(&env_tlb(env)->c.lock); 365 366 cpu_tb_jmp_cache_clear(cpu); 367 368 if (to_clean == ALL_MMUIDX_BITS) { 369 qatomic_set(&env_tlb(env)->c.full_flush_count, 370 env_tlb(env)->c.full_flush_count + 1); 371 } else { 372 qatomic_set(&env_tlb(env)->c.part_flush_count, 373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 374 if (to_clean != asked) { 375 qatomic_set(&env_tlb(env)->c.elide_flush_count, 376 env_tlb(env)->c.elide_flush_count + 377 ctpop16(asked & ~to_clean)); 378 } 379 } 380 } 381 382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 383 { 384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 385 386 if (cpu->created && !qemu_cpu_is_self(cpu)) { 387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 388 RUN_ON_CPU_HOST_INT(idxmap)); 389 } else { 390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 391 } 392 } 393 394 void tlb_flush(CPUState *cpu) 395 { 396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 397 } 398 399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 400 { 401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 402 403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 404 405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 407 } 408 409 void tlb_flush_all_cpus(CPUState *src_cpu) 410 { 411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 412 } 413 414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 415 { 416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 417 418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 419 420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 } 423 424 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 425 { 426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 427 } 428 429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 430 target_ulong page, target_ulong mask) 431 { 432 page &= mask; 433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 434 435 return (page == (tlb_entry->addr_read & mask) || 436 page == (tlb_addr_write(tlb_entry) & mask) || 437 page == (tlb_entry->addr_code & mask)); 438 } 439 440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 441 target_ulong page) 442 { 443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 444 } 445 446 /** 447 * tlb_entry_is_empty - return true if the entry is not in use 448 * @te: pointer to CPUTLBEntry 449 */ 450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 451 { 452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 453 } 454 455 /* Called with tlb_c.lock held */ 456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 457 target_ulong page, 458 target_ulong mask) 459 { 460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 461 memset(tlb_entry, -1, sizeof(*tlb_entry)); 462 return true; 463 } 464 return false; 465 } 466 467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 468 target_ulong page) 469 { 470 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 471 } 472 473 /* Called with tlb_c.lock held */ 474 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 475 target_ulong page, 476 target_ulong mask) 477 { 478 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 479 int k; 480 481 assert_cpu_is_self(env_cpu(env)); 482 for (k = 0; k < CPU_VTLB_SIZE; k++) { 483 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 484 tlb_n_used_entries_dec(env, mmu_idx); 485 } 486 } 487 } 488 489 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 490 target_ulong page) 491 { 492 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 493 } 494 495 static void tlb_flush_page_locked(CPUArchState *env, int midx, 496 target_ulong page) 497 { 498 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 499 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 500 501 /* Check if we need to flush due to large pages. */ 502 if ((page & lp_mask) == lp_addr) { 503 tlb_debug("forcing full flush midx %d (" 504 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 505 midx, lp_addr, lp_mask); 506 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 507 } else { 508 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 509 tlb_n_used_entries_dec(env, midx); 510 } 511 tlb_flush_vtlb_page_locked(env, midx, page); 512 } 513 } 514 515 /** 516 * tlb_flush_page_by_mmuidx_async_0: 517 * @cpu: cpu on which to flush 518 * @addr: page of virtual address to flush 519 * @idxmap: set of mmu_idx to flush 520 * 521 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 522 * at @addr from the tlbs indicated by @idxmap from @cpu. 523 */ 524 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 525 target_ulong addr, 526 uint16_t idxmap) 527 { 528 CPUArchState *env = cpu->env_ptr; 529 int mmu_idx; 530 531 assert_cpu_is_self(cpu); 532 533 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 534 535 qemu_spin_lock(&env_tlb(env)->c.lock); 536 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 537 if ((idxmap >> mmu_idx) & 1) { 538 tlb_flush_page_locked(env, mmu_idx, addr); 539 } 540 } 541 qemu_spin_unlock(&env_tlb(env)->c.lock); 542 543 tb_flush_jmp_cache(cpu, addr); 544 } 545 546 /** 547 * tlb_flush_page_by_mmuidx_async_1: 548 * @cpu: cpu on which to flush 549 * @data: encoded addr + idxmap 550 * 551 * Helper for tlb_flush_page_by_mmuidx and friends, called through 552 * async_run_on_cpu. The idxmap parameter is encoded in the page 553 * offset of the target_ptr field. This limits the set of mmu_idx 554 * that can be passed via this method. 555 */ 556 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 557 run_on_cpu_data data) 558 { 559 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 560 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 561 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 562 563 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 564 } 565 566 typedef struct { 567 target_ulong addr; 568 uint16_t idxmap; 569 } TLBFlushPageByMMUIdxData; 570 571 /** 572 * tlb_flush_page_by_mmuidx_async_2: 573 * @cpu: cpu on which to flush 574 * @data: allocated addr + idxmap 575 * 576 * Helper for tlb_flush_page_by_mmuidx and friends, called through 577 * async_run_on_cpu. The addr+idxmap parameters are stored in a 578 * TLBFlushPageByMMUIdxData structure that has been allocated 579 * specifically for this helper. Free the structure when done. 580 */ 581 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 582 run_on_cpu_data data) 583 { 584 TLBFlushPageByMMUIdxData *d = data.host_ptr; 585 586 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 587 g_free(d); 588 } 589 590 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 591 { 592 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 593 594 /* This should already be page aligned */ 595 addr &= TARGET_PAGE_MASK; 596 597 if (qemu_cpu_is_self(cpu)) { 598 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 599 } else if (idxmap < TARGET_PAGE_SIZE) { 600 /* 601 * Most targets have only a few mmu_idx. In the case where 602 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 603 * allocating memory for this operation. 604 */ 605 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 606 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 607 } else { 608 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 609 610 /* Otherwise allocate a structure, freed by the worker. */ 611 d->addr = addr; 612 d->idxmap = idxmap; 613 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 614 RUN_ON_CPU_HOST_PTR(d)); 615 } 616 } 617 618 void tlb_flush_page(CPUState *cpu, target_ulong addr) 619 { 620 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 621 } 622 623 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 624 uint16_t idxmap) 625 { 626 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 627 628 /* This should already be page aligned */ 629 addr &= TARGET_PAGE_MASK; 630 631 /* 632 * Allocate memory to hold addr+idxmap only when needed. 633 * See tlb_flush_page_by_mmuidx for details. 634 */ 635 if (idxmap < TARGET_PAGE_SIZE) { 636 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 637 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 638 } else { 639 CPUState *dst_cpu; 640 641 /* Allocate a separate data block for each destination cpu. */ 642 CPU_FOREACH(dst_cpu) { 643 if (dst_cpu != src_cpu) { 644 TLBFlushPageByMMUIdxData *d 645 = g_new(TLBFlushPageByMMUIdxData, 1); 646 647 d->addr = addr; 648 d->idxmap = idxmap; 649 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 650 RUN_ON_CPU_HOST_PTR(d)); 651 } 652 } 653 } 654 655 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 656 } 657 658 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 659 { 660 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 661 } 662 663 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 664 target_ulong addr, 665 uint16_t idxmap) 666 { 667 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 668 669 /* This should already be page aligned */ 670 addr &= TARGET_PAGE_MASK; 671 672 /* 673 * Allocate memory to hold addr+idxmap only when needed. 674 * See tlb_flush_page_by_mmuidx for details. 675 */ 676 if (idxmap < TARGET_PAGE_SIZE) { 677 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 678 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 679 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 680 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 681 } else { 682 CPUState *dst_cpu; 683 TLBFlushPageByMMUIdxData *d; 684 685 /* Allocate a separate data block for each destination cpu. */ 686 CPU_FOREACH(dst_cpu) { 687 if (dst_cpu != src_cpu) { 688 d = g_new(TLBFlushPageByMMUIdxData, 1); 689 d->addr = addr; 690 d->idxmap = idxmap; 691 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 692 RUN_ON_CPU_HOST_PTR(d)); 693 } 694 } 695 696 d = g_new(TLBFlushPageByMMUIdxData, 1); 697 d->addr = addr; 698 d->idxmap = idxmap; 699 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 700 RUN_ON_CPU_HOST_PTR(d)); 701 } 702 } 703 704 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 705 { 706 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 707 } 708 709 static void tlb_flush_range_locked(CPUArchState *env, int midx, 710 target_ulong addr, target_ulong len, 711 unsigned bits) 712 { 713 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 714 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 715 target_ulong mask = MAKE_64BIT_MASK(0, bits); 716 717 /* 718 * If @bits is smaller than the tlb size, there may be multiple entries 719 * within the TLB; otherwise all addresses that match under @mask hit 720 * the same TLB entry. 721 * TODO: Perhaps allow bits to be a few bits less than the size. 722 * For now, just flush the entire TLB. 723 * 724 * If @len is larger than the tlb size, then it will take longer to 725 * test all of the entries in the TLB than it will to flush it all. 726 */ 727 if (mask < f->mask || len > f->mask) { 728 tlb_debug("forcing full flush midx %d (" 729 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 730 midx, addr, mask, len); 731 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 732 return; 733 } 734 735 /* 736 * Check if we need to flush due to large pages. 737 * Because large_page_mask contains all 1's from the msb, 738 * we only need to test the end of the range. 739 */ 740 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 741 tlb_debug("forcing full flush midx %d (" 742 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 743 midx, d->large_page_addr, d->large_page_mask); 744 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 745 return; 746 } 747 748 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 749 target_ulong page = addr + i; 750 CPUTLBEntry *entry = tlb_entry(env, midx, page); 751 752 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 753 tlb_n_used_entries_dec(env, midx); 754 } 755 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 756 } 757 } 758 759 typedef struct { 760 target_ulong addr; 761 target_ulong len; 762 uint16_t idxmap; 763 uint16_t bits; 764 } TLBFlushRangeData; 765 766 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 767 TLBFlushRangeData d) 768 { 769 CPUArchState *env = cpu->env_ptr; 770 int mmu_idx; 771 772 assert_cpu_is_self(cpu); 773 774 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 775 d.addr, d.bits, d.len, d.idxmap); 776 777 qemu_spin_lock(&env_tlb(env)->c.lock); 778 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 779 if ((d.idxmap >> mmu_idx) & 1) { 780 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 781 } 782 } 783 qemu_spin_unlock(&env_tlb(env)->c.lock); 784 785 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) { 786 tb_flush_jmp_cache(cpu, d.addr + i); 787 } 788 } 789 790 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 791 run_on_cpu_data data) 792 { 793 TLBFlushRangeData *d = data.host_ptr; 794 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 795 g_free(d); 796 } 797 798 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 799 target_ulong len, uint16_t idxmap, 800 unsigned bits) 801 { 802 TLBFlushRangeData d; 803 804 /* 805 * If all bits are significant, and len is small, 806 * this devolves to tlb_flush_page. 807 */ 808 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 809 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 810 return; 811 } 812 /* If no page bits are significant, this devolves to tlb_flush. */ 813 if (bits < TARGET_PAGE_BITS) { 814 tlb_flush_by_mmuidx(cpu, idxmap); 815 return; 816 } 817 818 /* This should already be page aligned */ 819 d.addr = addr & TARGET_PAGE_MASK; 820 d.len = len; 821 d.idxmap = idxmap; 822 d.bits = bits; 823 824 if (qemu_cpu_is_self(cpu)) { 825 tlb_flush_range_by_mmuidx_async_0(cpu, d); 826 } else { 827 /* Otherwise allocate a structure, freed by the worker. */ 828 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 829 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 830 RUN_ON_CPU_HOST_PTR(p)); 831 } 832 } 833 834 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 835 uint16_t idxmap, unsigned bits) 836 { 837 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 838 } 839 840 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 841 target_ulong addr, target_ulong len, 842 uint16_t idxmap, unsigned bits) 843 { 844 TLBFlushRangeData d; 845 CPUState *dst_cpu; 846 847 /* 848 * If all bits are significant, and len is small, 849 * this devolves to tlb_flush_page. 850 */ 851 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 852 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 853 return; 854 } 855 /* If no page bits are significant, this devolves to tlb_flush. */ 856 if (bits < TARGET_PAGE_BITS) { 857 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 858 return; 859 } 860 861 /* This should already be page aligned */ 862 d.addr = addr & TARGET_PAGE_MASK; 863 d.len = len; 864 d.idxmap = idxmap; 865 d.bits = bits; 866 867 /* Allocate a separate data block for each destination cpu. */ 868 CPU_FOREACH(dst_cpu) { 869 if (dst_cpu != src_cpu) { 870 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 871 async_run_on_cpu(dst_cpu, 872 tlb_flush_range_by_mmuidx_async_1, 873 RUN_ON_CPU_HOST_PTR(p)); 874 } 875 } 876 877 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 878 } 879 880 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 881 target_ulong addr, 882 uint16_t idxmap, unsigned bits) 883 { 884 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 885 idxmap, bits); 886 } 887 888 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 889 target_ulong addr, 890 target_ulong len, 891 uint16_t idxmap, 892 unsigned bits) 893 { 894 TLBFlushRangeData d, *p; 895 CPUState *dst_cpu; 896 897 /* 898 * If all bits are significant, and len is small, 899 * this devolves to tlb_flush_page. 900 */ 901 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 902 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 903 return; 904 } 905 /* If no page bits are significant, this devolves to tlb_flush. */ 906 if (bits < TARGET_PAGE_BITS) { 907 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 908 return; 909 } 910 911 /* This should already be page aligned */ 912 d.addr = addr & TARGET_PAGE_MASK; 913 d.len = len; 914 d.idxmap = idxmap; 915 d.bits = bits; 916 917 /* Allocate a separate data block for each destination cpu. */ 918 CPU_FOREACH(dst_cpu) { 919 if (dst_cpu != src_cpu) { 920 p = g_memdup(&d, sizeof(d)); 921 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 922 RUN_ON_CPU_HOST_PTR(p)); 923 } 924 } 925 926 p = g_memdup(&d, sizeof(d)); 927 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 928 RUN_ON_CPU_HOST_PTR(p)); 929 } 930 931 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 932 target_ulong addr, 933 uint16_t idxmap, 934 unsigned bits) 935 { 936 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 937 idxmap, bits); 938 } 939 940 /* update the TLBs so that writes to code in the virtual page 'addr' 941 can be detected */ 942 void tlb_protect_code(ram_addr_t ram_addr) 943 { 944 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 945 DIRTY_MEMORY_CODE); 946 } 947 948 /* update the TLB so that writes in physical page 'phys_addr' are no longer 949 tested for self modifying code */ 950 void tlb_unprotect_code(ram_addr_t ram_addr) 951 { 952 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 953 } 954 955 956 /* 957 * Dirty write flag handling 958 * 959 * When the TCG code writes to a location it looks up the address in 960 * the TLB and uses that data to compute the final address. If any of 961 * the lower bits of the address are set then the slow path is forced. 962 * There are a number of reasons to do this but for normal RAM the 963 * most usual is detecting writes to code regions which may invalidate 964 * generated code. 965 * 966 * Other vCPUs might be reading their TLBs during guest execution, so we update 967 * te->addr_write with qatomic_set. We don't need to worry about this for 968 * oversized guests as MTTCG is disabled for them. 969 * 970 * Called with tlb_c.lock held. 971 */ 972 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 973 uintptr_t start, uintptr_t length) 974 { 975 uintptr_t addr = tlb_entry->addr_write; 976 977 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 978 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 979 addr &= TARGET_PAGE_MASK; 980 addr += tlb_entry->addend; 981 if ((addr - start) < length) { 982 #if TCG_OVERSIZED_GUEST 983 tlb_entry->addr_write |= TLB_NOTDIRTY; 984 #else 985 qatomic_set(&tlb_entry->addr_write, 986 tlb_entry->addr_write | TLB_NOTDIRTY); 987 #endif 988 } 989 } 990 } 991 992 /* 993 * Called with tlb_c.lock held. 994 * Called only from the vCPU context, i.e. the TLB's owner thread. 995 */ 996 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 997 { 998 *d = *s; 999 } 1000 1001 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1002 * the target vCPU). 1003 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1004 * thing actually updated is the target TLB entry ->addr_write flags. 1005 */ 1006 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1007 { 1008 CPUArchState *env; 1009 1010 int mmu_idx; 1011 1012 env = cpu->env_ptr; 1013 qemu_spin_lock(&env_tlb(env)->c.lock); 1014 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1015 unsigned int i; 1016 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1017 1018 for (i = 0; i < n; i++) { 1019 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1020 start1, length); 1021 } 1022 1023 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1024 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1025 start1, length); 1026 } 1027 } 1028 qemu_spin_unlock(&env_tlb(env)->c.lock); 1029 } 1030 1031 /* Called with tlb_c.lock held */ 1032 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1033 target_ulong vaddr) 1034 { 1035 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1036 tlb_entry->addr_write = vaddr; 1037 } 1038 } 1039 1040 /* update the TLB corresponding to virtual page vaddr 1041 so that it is no longer dirty */ 1042 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1043 { 1044 CPUArchState *env = cpu->env_ptr; 1045 int mmu_idx; 1046 1047 assert_cpu_is_self(cpu); 1048 1049 vaddr &= TARGET_PAGE_MASK; 1050 qemu_spin_lock(&env_tlb(env)->c.lock); 1051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1052 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1053 } 1054 1055 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1056 int k; 1057 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1058 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1059 } 1060 } 1061 qemu_spin_unlock(&env_tlb(env)->c.lock); 1062 } 1063 1064 /* Our TLB does not support large pages, so remember the area covered by 1065 large pages and trigger a full TLB flush if these are invalidated. */ 1066 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1067 target_ulong vaddr, target_ulong size) 1068 { 1069 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1070 target_ulong lp_mask = ~(size - 1); 1071 1072 if (lp_addr == (target_ulong)-1) { 1073 /* No previous large page. */ 1074 lp_addr = vaddr; 1075 } else { 1076 /* Extend the existing region to include the new page. 1077 This is a compromise between unnecessary flushes and 1078 the cost of maintaining a full variable size TLB. */ 1079 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1080 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1081 lp_mask <<= 1; 1082 } 1083 } 1084 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1085 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1086 } 1087 1088 /* Add a new TLB entry. At most one entry for a given virtual address 1089 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1090 * supplied size is only used by tlb_flush_page. 1091 * 1092 * Called from TCG-generated code, which is under an RCU read-side 1093 * critical section. 1094 */ 1095 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1096 hwaddr paddr, MemTxAttrs attrs, int prot, 1097 int mmu_idx, target_ulong size) 1098 { 1099 CPUArchState *env = cpu->env_ptr; 1100 CPUTLB *tlb = env_tlb(env); 1101 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1102 MemoryRegionSection *section; 1103 unsigned int index; 1104 target_ulong address; 1105 target_ulong write_address; 1106 uintptr_t addend; 1107 CPUTLBEntry *te, tn; 1108 hwaddr iotlb, xlat, sz, paddr_page; 1109 target_ulong vaddr_page; 1110 int asidx = cpu_asidx_from_attrs(cpu, attrs); 1111 int wp_flags; 1112 bool is_ram, is_romd; 1113 1114 assert_cpu_is_self(cpu); 1115 1116 if (size <= TARGET_PAGE_SIZE) { 1117 sz = TARGET_PAGE_SIZE; 1118 } else { 1119 tlb_add_large_page(env, mmu_idx, vaddr, size); 1120 sz = size; 1121 } 1122 vaddr_page = vaddr & TARGET_PAGE_MASK; 1123 paddr_page = paddr & TARGET_PAGE_MASK; 1124 1125 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1126 &xlat, &sz, attrs, &prot); 1127 assert(sz >= TARGET_PAGE_SIZE); 1128 1129 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 1130 " prot=%x idx=%d\n", 1131 vaddr, paddr, prot, mmu_idx); 1132 1133 address = vaddr_page; 1134 if (size < TARGET_PAGE_SIZE) { 1135 /* Repeat the MMU check and TLB fill on every access. */ 1136 address |= TLB_INVALID_MASK; 1137 } 1138 if (attrs.byte_swap) { 1139 address |= TLB_BSWAP; 1140 } 1141 1142 is_ram = memory_region_is_ram(section->mr); 1143 is_romd = memory_region_is_romd(section->mr); 1144 1145 if (is_ram || is_romd) { 1146 /* RAM and ROMD both have associated host memory. */ 1147 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1148 } else { 1149 /* I/O does not; force the host address to NULL. */ 1150 addend = 0; 1151 } 1152 1153 write_address = address; 1154 if (is_ram) { 1155 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1156 /* 1157 * Computing is_clean is expensive; avoid all that unless 1158 * the page is actually writable. 1159 */ 1160 if (prot & PAGE_WRITE) { 1161 if (section->readonly) { 1162 write_address |= TLB_DISCARD_WRITE; 1163 } else if (cpu_physical_memory_is_clean(iotlb)) { 1164 write_address |= TLB_NOTDIRTY; 1165 } 1166 } 1167 } else { 1168 /* I/O or ROMD */ 1169 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1170 /* 1171 * Writes to romd devices must go through MMIO to enable write. 1172 * Reads to romd devices go through the ram_ptr found above, 1173 * but of course reads to I/O must go through MMIO. 1174 */ 1175 write_address |= TLB_MMIO; 1176 if (!is_romd) { 1177 address = write_address; 1178 } 1179 } 1180 1181 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1182 TARGET_PAGE_SIZE); 1183 1184 index = tlb_index(env, mmu_idx, vaddr_page); 1185 te = tlb_entry(env, mmu_idx, vaddr_page); 1186 1187 /* 1188 * Hold the TLB lock for the rest of the function. We could acquire/release 1189 * the lock several times in the function, but it is faster to amortize the 1190 * acquisition cost by acquiring it just once. Note that this leads to 1191 * a longer critical section, but this is not a concern since the TLB lock 1192 * is unlikely to be contended. 1193 */ 1194 qemu_spin_lock(&tlb->c.lock); 1195 1196 /* Note that the tlb is no longer clean. */ 1197 tlb->c.dirty |= 1 << mmu_idx; 1198 1199 /* Make sure there's no cached translation for the new page. */ 1200 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1201 1202 /* 1203 * Only evict the old entry to the victim tlb if it's for a 1204 * different page; otherwise just overwrite the stale data. 1205 */ 1206 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1207 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1208 CPUTLBEntry *tv = &desc->vtable[vidx]; 1209 1210 /* Evict the old entry into the victim tlb. */ 1211 copy_tlb_helper_locked(tv, te); 1212 desc->viotlb[vidx] = desc->iotlb[index]; 1213 tlb_n_used_entries_dec(env, mmu_idx); 1214 } 1215 1216 /* refill the tlb */ 1217 /* 1218 * At this point iotlb contains a physical section number in the lower 1219 * TARGET_PAGE_BITS, and either 1220 * + the ram_addr_t of the page base of the target RAM (RAM) 1221 * + the offset within section->mr of the page base (I/O, ROMD) 1222 * We subtract the vaddr_page (which is page aligned and thus won't 1223 * disturb the low bits) to give an offset which can be added to the 1224 * (non-page-aligned) vaddr of the eventual memory access to get 1225 * the MemoryRegion offset for the access. Note that the vaddr we 1226 * subtract here is that of the page base, and not the same as the 1227 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1228 */ 1229 desc->iotlb[index].addr = iotlb - vaddr_page; 1230 desc->iotlb[index].attrs = attrs; 1231 1232 /* Now calculate the new entry */ 1233 tn.addend = addend - vaddr_page; 1234 if (prot & PAGE_READ) { 1235 tn.addr_read = address; 1236 if (wp_flags & BP_MEM_READ) { 1237 tn.addr_read |= TLB_WATCHPOINT; 1238 } 1239 } else { 1240 tn.addr_read = -1; 1241 } 1242 1243 if (prot & PAGE_EXEC) { 1244 tn.addr_code = address; 1245 } else { 1246 tn.addr_code = -1; 1247 } 1248 1249 tn.addr_write = -1; 1250 if (prot & PAGE_WRITE) { 1251 tn.addr_write = write_address; 1252 if (prot & PAGE_WRITE_INV) { 1253 tn.addr_write |= TLB_INVALID_MASK; 1254 } 1255 if (wp_flags & BP_MEM_WRITE) { 1256 tn.addr_write |= TLB_WATCHPOINT; 1257 } 1258 } 1259 1260 copy_tlb_helper_locked(te, &tn); 1261 tlb_n_used_entries_inc(env, mmu_idx); 1262 qemu_spin_unlock(&tlb->c.lock); 1263 } 1264 1265 /* Add a new TLB entry, but without specifying the memory 1266 * transaction attributes to be used. 1267 */ 1268 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1269 hwaddr paddr, int prot, 1270 int mmu_idx, target_ulong size) 1271 { 1272 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1273 prot, mmu_idx, size); 1274 } 1275 1276 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 1277 { 1278 ram_addr_t ram_addr; 1279 1280 ram_addr = qemu_ram_addr_from_host(ptr); 1281 if (ram_addr == RAM_ADDR_INVALID) { 1282 error_report("Bad ram pointer %p", ptr); 1283 abort(); 1284 } 1285 return ram_addr; 1286 } 1287 1288 /* 1289 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1290 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1291 * be discarded and looked up again (e.g. via tlb_entry()). 1292 */ 1293 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1294 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1295 { 1296 CPUClass *cc = CPU_GET_CLASS(cpu); 1297 bool ok; 1298 1299 /* 1300 * This is not a probe, so only valid return is success; failure 1301 * should result in exception + longjmp to the cpu loop. 1302 */ 1303 ok = cc->tcg_ops->tlb_fill(cpu, addr, size, 1304 access_type, mmu_idx, false, retaddr); 1305 assert(ok); 1306 } 1307 1308 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1309 MMUAccessType access_type, 1310 int mmu_idx, uintptr_t retaddr) 1311 { 1312 CPUClass *cc = CPU_GET_CLASS(cpu); 1313 1314 cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 1315 } 1316 1317 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1318 vaddr addr, unsigned size, 1319 MMUAccessType access_type, 1320 int mmu_idx, MemTxAttrs attrs, 1321 MemTxResult response, 1322 uintptr_t retaddr) 1323 { 1324 CPUClass *cc = CPU_GET_CLASS(cpu); 1325 1326 if (!cpu->ignore_memory_transaction_failures && 1327 cc->tcg_ops->do_transaction_failed) { 1328 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1329 access_type, mmu_idx, attrs, 1330 response, retaddr); 1331 } 1332 } 1333 1334 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 1335 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1336 MMUAccessType access_type, MemOp op) 1337 { 1338 CPUState *cpu = env_cpu(env); 1339 hwaddr mr_offset; 1340 MemoryRegionSection *section; 1341 MemoryRegion *mr; 1342 uint64_t val; 1343 bool locked = false; 1344 MemTxResult r; 1345 1346 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1347 mr = section->mr; 1348 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1349 cpu->mem_io_pc = retaddr; 1350 if (!cpu->can_do_io) { 1351 cpu_io_recompile(cpu, retaddr); 1352 } 1353 1354 if (!qemu_mutex_iothread_locked()) { 1355 qemu_mutex_lock_iothread(); 1356 locked = true; 1357 } 1358 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs); 1359 if (r != MEMTX_OK) { 1360 hwaddr physaddr = mr_offset + 1361 section->offset_within_address_space - 1362 section->offset_within_region; 1363 1364 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1365 mmu_idx, iotlbentry->attrs, r, retaddr); 1366 } 1367 if (locked) { 1368 qemu_mutex_unlock_iothread(); 1369 } 1370 1371 return val; 1372 } 1373 1374 /* 1375 * Save a potentially trashed IOTLB entry for later lookup by plugin. 1376 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match 1377 * because of the side effect of io_writex changing memory layout. 1378 */ 1379 static void save_iotlb_data(CPUState *cs, hwaddr addr, 1380 MemoryRegionSection *section, hwaddr mr_offset) 1381 { 1382 #ifdef CONFIG_PLUGIN 1383 SavedIOTLB *saved = &cs->saved_iotlb; 1384 saved->addr = addr; 1385 saved->section = section; 1386 saved->mr_offset = mr_offset; 1387 #endif 1388 } 1389 1390 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 1391 int mmu_idx, uint64_t val, target_ulong addr, 1392 uintptr_t retaddr, MemOp op) 1393 { 1394 CPUState *cpu = env_cpu(env); 1395 hwaddr mr_offset; 1396 MemoryRegionSection *section; 1397 MemoryRegion *mr; 1398 bool locked = false; 1399 MemTxResult r; 1400 1401 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1402 mr = section->mr; 1403 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1404 if (!cpu->can_do_io) { 1405 cpu_io_recompile(cpu, retaddr); 1406 } 1407 cpu->mem_io_pc = retaddr; 1408 1409 /* 1410 * The memory_region_dispatch may trigger a flush/resize 1411 * so for plugins we save the iotlb_data just in case. 1412 */ 1413 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset); 1414 1415 if (!qemu_mutex_iothread_locked()) { 1416 qemu_mutex_lock_iothread(); 1417 locked = true; 1418 } 1419 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs); 1420 if (r != MEMTX_OK) { 1421 hwaddr physaddr = mr_offset + 1422 section->offset_within_address_space - 1423 section->offset_within_region; 1424 1425 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1426 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r, 1427 retaddr); 1428 } 1429 if (locked) { 1430 qemu_mutex_unlock_iothread(); 1431 } 1432 } 1433 1434 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 1435 { 1436 #if TCG_OVERSIZED_GUEST 1437 return *(target_ulong *)((uintptr_t)entry + ofs); 1438 #else 1439 /* ofs might correspond to .addr_write, so use qatomic_read */ 1440 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); 1441 #endif 1442 } 1443 1444 /* Return true if ADDR is present in the victim tlb, and has been copied 1445 back to the main tlb. */ 1446 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1447 size_t elt_ofs, target_ulong page) 1448 { 1449 size_t vidx; 1450 1451 assert_cpu_is_self(env_cpu(env)); 1452 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1453 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1454 target_ulong cmp; 1455 1456 /* elt_ofs might correspond to .addr_write, so use qatomic_read */ 1457 #if TCG_OVERSIZED_GUEST 1458 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1459 #else 1460 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1461 #endif 1462 1463 if (cmp == page) { 1464 /* Found entry in victim tlb, swap tlb and iotlb. */ 1465 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1466 1467 qemu_spin_lock(&env_tlb(env)->c.lock); 1468 copy_tlb_helper_locked(&tmptlb, tlb); 1469 copy_tlb_helper_locked(tlb, vtlb); 1470 copy_tlb_helper_locked(vtlb, &tmptlb); 1471 qemu_spin_unlock(&env_tlb(env)->c.lock); 1472 1473 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1474 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; 1475 tmpio = *io; *io = *vio; *vio = tmpio; 1476 return true; 1477 } 1478 } 1479 return false; 1480 } 1481 1482 /* Macro to call the above, with local variables from the use context. */ 1483 #define VICTIM_TLB_HIT(TY, ADDR) \ 1484 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1485 (ADDR) & TARGET_PAGE_MASK) 1486 1487 /* 1488 * Return a ram_addr_t for the virtual address for execution. 1489 * 1490 * Return -1 if we can't translate and execute from an entire page 1491 * of RAM. This will force us to execute by loading and translating 1492 * one insn at a time, without caching. 1493 * 1494 * NOTE: This function will trigger an exception if the page is 1495 * not executable. 1496 */ 1497 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1498 void **hostp) 1499 { 1500 uintptr_t mmu_idx = cpu_mmu_index(env, true); 1501 uintptr_t index = tlb_index(env, mmu_idx, addr); 1502 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1503 void *p; 1504 1505 if (unlikely(!tlb_hit(entry->addr_code, addr))) { 1506 if (!VICTIM_TLB_HIT(addr_code, addr)) { 1507 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); 1508 index = tlb_index(env, mmu_idx, addr); 1509 entry = tlb_entry(env, mmu_idx, addr); 1510 1511 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) { 1512 /* 1513 * The MMU protection covers a smaller range than a target 1514 * page, so we must redo the MMU check for every insn. 1515 */ 1516 return -1; 1517 } 1518 } 1519 assert(tlb_hit(entry->addr_code, addr)); 1520 } 1521 1522 if (unlikely(entry->addr_code & TLB_MMIO)) { 1523 /* The region is not backed by RAM. */ 1524 if (hostp) { 1525 *hostp = NULL; 1526 } 1527 return -1; 1528 } 1529 1530 p = (void *)((uintptr_t)addr + entry->addend); 1531 if (hostp) { 1532 *hostp = p; 1533 } 1534 return qemu_ram_addr_from_host_nofail(p); 1535 } 1536 1537 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 1538 { 1539 return get_page_addr_code_hostp(env, addr, NULL); 1540 } 1541 1542 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1543 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr) 1544 { 1545 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr; 1546 1547 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1548 1549 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1550 struct page_collection *pages 1551 = page_collection_lock(ram_addr, ram_addr + size); 1552 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr); 1553 page_collection_unlock(pages); 1554 } 1555 1556 /* 1557 * Set both VGA and migration bits for simplicity and to remove 1558 * the notdirty callback faster. 1559 */ 1560 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1561 1562 /* We remove the notdirty callback only if the code has been flushed. */ 1563 if (!cpu_physical_memory_is_clean(ram_addr)) { 1564 trace_memory_notdirty_set_dirty(mem_vaddr); 1565 tlb_set_dirty(cpu, mem_vaddr); 1566 } 1567 } 1568 1569 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1570 int fault_size, MMUAccessType access_type, 1571 int mmu_idx, bool nonfault, 1572 void **phost, uintptr_t retaddr) 1573 { 1574 uintptr_t index = tlb_index(env, mmu_idx, addr); 1575 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1576 target_ulong tlb_addr, page_addr; 1577 size_t elt_ofs; 1578 int flags; 1579 1580 switch (access_type) { 1581 case MMU_DATA_LOAD: 1582 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1583 break; 1584 case MMU_DATA_STORE: 1585 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1586 break; 1587 case MMU_INST_FETCH: 1588 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1589 break; 1590 default: 1591 g_assert_not_reached(); 1592 } 1593 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1594 1595 page_addr = addr & TARGET_PAGE_MASK; 1596 if (!tlb_hit_page(tlb_addr, page_addr)) { 1597 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { 1598 CPUState *cs = env_cpu(env); 1599 CPUClass *cc = CPU_GET_CLASS(cs); 1600 1601 if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1602 mmu_idx, nonfault, retaddr)) { 1603 /* Non-faulting page table read failed. */ 1604 *phost = NULL; 1605 return TLB_INVALID_MASK; 1606 } 1607 1608 /* TLB resize via tlb_fill may have moved the entry. */ 1609 entry = tlb_entry(env, mmu_idx, addr); 1610 } 1611 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1612 } 1613 flags = tlb_addr & TLB_FLAGS_MASK; 1614 1615 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1616 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1617 *phost = NULL; 1618 return TLB_MMIO; 1619 } 1620 1621 /* Everything else is RAM. */ 1622 *phost = (void *)((uintptr_t)addr + entry->addend); 1623 return flags; 1624 } 1625 1626 int probe_access_flags(CPUArchState *env, target_ulong addr, 1627 MMUAccessType access_type, int mmu_idx, 1628 bool nonfault, void **phost, uintptr_t retaddr) 1629 { 1630 int flags; 1631 1632 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, 1633 nonfault, phost, retaddr); 1634 1635 /* Handle clean RAM pages. */ 1636 if (unlikely(flags & TLB_NOTDIRTY)) { 1637 uintptr_t index = tlb_index(env, mmu_idx, addr); 1638 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1639 1640 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); 1641 flags &= ~TLB_NOTDIRTY; 1642 } 1643 1644 return flags; 1645 } 1646 1647 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1648 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1649 { 1650 void *host; 1651 int flags; 1652 1653 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1654 1655 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1656 false, &host, retaddr); 1657 1658 /* Per the interface, size == 0 merely faults the access. */ 1659 if (size == 0) { 1660 return NULL; 1661 } 1662 1663 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1664 uintptr_t index = tlb_index(env, mmu_idx, addr); 1665 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1666 1667 /* Handle watchpoints. */ 1668 if (flags & TLB_WATCHPOINT) { 1669 int wp_access = (access_type == MMU_DATA_STORE 1670 ? BP_MEM_WRITE : BP_MEM_READ); 1671 cpu_check_watchpoint(env_cpu(env), addr, size, 1672 iotlbentry->attrs, wp_access, retaddr); 1673 } 1674 1675 /* Handle clean RAM pages. */ 1676 if (flags & TLB_NOTDIRTY) { 1677 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); 1678 } 1679 } 1680 1681 return host; 1682 } 1683 1684 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1685 MMUAccessType access_type, int mmu_idx) 1686 { 1687 void *host; 1688 int flags; 1689 1690 flags = probe_access_internal(env, addr, 0, access_type, 1691 mmu_idx, true, &host, 0); 1692 1693 /* No combination of flags are expected by the caller. */ 1694 return flags ? NULL : host; 1695 } 1696 1697 #ifdef CONFIG_PLUGIN 1698 /* 1699 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1700 * This should be a hot path as we will have just looked this path up 1701 * in the softmmu lookup code (or helper). We don't handle re-fills or 1702 * checking the victim table. This is purely informational. 1703 * 1704 * This almost never fails as the memory access being instrumented 1705 * should have just filled the TLB. The one corner case is io_writex 1706 * which can cause TLB flushes and potential resizing of the TLBs 1707 * losing the information we need. In those cases we need to recover 1708 * data from a copy of the iotlbentry. As long as this always occurs 1709 * from the same thread (which a mem callback will be) this is safe. 1710 */ 1711 1712 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1713 bool is_store, struct qemu_plugin_hwaddr *data) 1714 { 1715 CPUArchState *env = cpu->env_ptr; 1716 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1717 uintptr_t index = tlb_index(env, mmu_idx, addr); 1718 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1719 1720 if (likely(tlb_hit(tlb_addr, addr))) { 1721 /* We must have an iotlb entry for MMIO */ 1722 if (tlb_addr & TLB_MMIO) { 1723 CPUIOTLBEntry *iotlbentry; 1724 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1725 data->is_io = true; 1726 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1727 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1728 } else { 1729 data->is_io = false; 1730 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1731 } 1732 return true; 1733 } else { 1734 SavedIOTLB *saved = &cpu->saved_iotlb; 1735 data->is_io = true; 1736 data->v.io.section = saved->section; 1737 data->v.io.offset = saved->mr_offset; 1738 return true; 1739 } 1740 } 1741 1742 #endif 1743 1744 /* 1745 * Probe for an atomic operation. Do not allow unaligned operations, 1746 * or io operations to proceed. Return the host address. 1747 * 1748 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1749 */ 1750 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1751 MemOpIdx oi, int size, int prot, 1752 uintptr_t retaddr) 1753 { 1754 size_t mmu_idx = get_mmuidx(oi); 1755 MemOp mop = get_memop(oi); 1756 int a_bits = get_alignment_bits(mop); 1757 uintptr_t index; 1758 CPUTLBEntry *tlbe; 1759 target_ulong tlb_addr; 1760 void *hostaddr; 1761 1762 /* Adjust the given return address. */ 1763 retaddr -= GETPC_ADJ; 1764 1765 /* Enforce guest required alignment. */ 1766 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1767 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1768 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1769 mmu_idx, retaddr); 1770 } 1771 1772 /* Enforce qemu required alignment. */ 1773 if (unlikely(addr & (size - 1))) { 1774 /* We get here if guest alignment was not requested, 1775 or was not enforced by cpu_unaligned_access above. 1776 We might widen the access and emulate, but for now 1777 mark an exception and exit the cpu loop. */ 1778 goto stop_the_world; 1779 } 1780 1781 index = tlb_index(env, mmu_idx, addr); 1782 tlbe = tlb_entry(env, mmu_idx, addr); 1783 1784 /* Check TLB entry and enforce page permissions. */ 1785 if (prot & PAGE_WRITE) { 1786 tlb_addr = tlb_addr_write(tlbe); 1787 if (!tlb_hit(tlb_addr, addr)) { 1788 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1789 tlb_fill(env_cpu(env), addr, size, 1790 MMU_DATA_STORE, mmu_idx, retaddr); 1791 index = tlb_index(env, mmu_idx, addr); 1792 tlbe = tlb_entry(env, mmu_idx, addr); 1793 } 1794 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1795 } 1796 1797 /* Let the guest notice RMW on a write-only page. */ 1798 if ((prot & PAGE_READ) && 1799 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1800 tlb_fill(env_cpu(env), addr, size, 1801 MMU_DATA_LOAD, mmu_idx, retaddr); 1802 /* 1803 * Since we don't support reads and writes to different addresses, 1804 * and we do have the proper page loaded for write, this shouldn't 1805 * ever return. But just in case, handle via stop-the-world. 1806 */ 1807 goto stop_the_world; 1808 } 1809 } else /* if (prot & PAGE_READ) */ { 1810 tlb_addr = tlbe->addr_read; 1811 if (!tlb_hit(tlb_addr, addr)) { 1812 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1813 tlb_fill(env_cpu(env), addr, size, 1814 MMU_DATA_LOAD, mmu_idx, retaddr); 1815 index = tlb_index(env, mmu_idx, addr); 1816 tlbe = tlb_entry(env, mmu_idx, addr); 1817 } 1818 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1819 } 1820 } 1821 1822 /* Notice an IO access or a needs-MMU-lookup access */ 1823 if (unlikely(tlb_addr & TLB_MMIO)) { 1824 /* There's really nothing that can be done to 1825 support this apart from stop-the-world. */ 1826 goto stop_the_world; 1827 } 1828 1829 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1830 1831 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1832 notdirty_write(env_cpu(env), addr, size, 1833 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr); 1834 } 1835 1836 return hostaddr; 1837 1838 stop_the_world: 1839 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1840 } 1841 1842 /* 1843 * Load Helpers 1844 * 1845 * We support two different access types. SOFTMMU_CODE_ACCESS is 1846 * specifically for reading instructions from system memory. It is 1847 * called by the translation loop and in some helpers where the code 1848 * is disassembled. It shouldn't be called directly by guest code. 1849 */ 1850 1851 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1852 MemOpIdx oi, uintptr_t retaddr); 1853 1854 static inline uint64_t QEMU_ALWAYS_INLINE 1855 load_memop(const void *haddr, MemOp op) 1856 { 1857 switch (op) { 1858 case MO_UB: 1859 return ldub_p(haddr); 1860 case MO_BEUW: 1861 return lduw_be_p(haddr); 1862 case MO_LEUW: 1863 return lduw_le_p(haddr); 1864 case MO_BEUL: 1865 return (uint32_t)ldl_be_p(haddr); 1866 case MO_LEUL: 1867 return (uint32_t)ldl_le_p(haddr); 1868 case MO_BEQ: 1869 return ldq_be_p(haddr); 1870 case MO_LEQ: 1871 return ldq_le_p(haddr); 1872 default: 1873 qemu_build_not_reached(); 1874 } 1875 } 1876 1877 static inline uint64_t QEMU_ALWAYS_INLINE 1878 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1879 uintptr_t retaddr, MemOp op, bool code_read, 1880 FullLoadHelper *full_load) 1881 { 1882 uintptr_t mmu_idx = get_mmuidx(oi); 1883 uintptr_t index = tlb_index(env, mmu_idx, addr); 1884 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1885 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1886 const size_t tlb_off = code_read ? 1887 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1888 const MMUAccessType access_type = 1889 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1890 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1891 void *haddr; 1892 uint64_t res; 1893 size_t size = memop_size(op); 1894 1895 /* Handle CPU specific unaligned behaviour */ 1896 if (addr & ((1 << a_bits) - 1)) { 1897 cpu_unaligned_access(env_cpu(env), addr, access_type, 1898 mmu_idx, retaddr); 1899 } 1900 1901 /* If the TLB entry is for a different page, reload and try again. */ 1902 if (!tlb_hit(tlb_addr, addr)) { 1903 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1904 addr & TARGET_PAGE_MASK)) { 1905 tlb_fill(env_cpu(env), addr, size, 1906 access_type, mmu_idx, retaddr); 1907 index = tlb_index(env, mmu_idx, addr); 1908 entry = tlb_entry(env, mmu_idx, addr); 1909 } 1910 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1911 tlb_addr &= ~TLB_INVALID_MASK; 1912 } 1913 1914 /* Handle anything that isn't just a straight memory access. */ 1915 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1916 CPUIOTLBEntry *iotlbentry; 1917 bool need_swap; 1918 1919 /* For anything that is unaligned, recurse through full_load. */ 1920 if ((addr & (size - 1)) != 0) { 1921 goto do_unaligned_access; 1922 } 1923 1924 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1925 1926 /* Handle watchpoints. */ 1927 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1928 /* On watchpoint hit, this will longjmp out. */ 1929 cpu_check_watchpoint(env_cpu(env), addr, size, 1930 iotlbentry->attrs, BP_MEM_READ, retaddr); 1931 } 1932 1933 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 1934 1935 /* Handle I/O access. */ 1936 if (likely(tlb_addr & TLB_MMIO)) { 1937 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, 1938 access_type, op ^ (need_swap * MO_BSWAP)); 1939 } 1940 1941 haddr = (void *)((uintptr_t)addr + entry->addend); 1942 1943 /* 1944 * Keep these two load_memop separate to ensure that the compiler 1945 * is able to fold the entire function to a single instruction. 1946 * There is a build-time assert inside to remind you of this. ;-) 1947 */ 1948 if (unlikely(need_swap)) { 1949 return load_memop(haddr, op ^ MO_BSWAP); 1950 } 1951 return load_memop(haddr, op); 1952 } 1953 1954 /* Handle slow unaligned access (it spans two pages or IO). */ 1955 if (size > 1 1956 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1957 >= TARGET_PAGE_SIZE)) { 1958 target_ulong addr1, addr2; 1959 uint64_t r1, r2; 1960 unsigned shift; 1961 do_unaligned_access: 1962 addr1 = addr & ~((target_ulong)size - 1); 1963 addr2 = addr1 + size; 1964 r1 = full_load(env, addr1, oi, retaddr); 1965 r2 = full_load(env, addr2, oi, retaddr); 1966 shift = (addr & (size - 1)) * 8; 1967 1968 if (memop_big_endian(op)) { 1969 /* Big-endian combine. */ 1970 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1971 } else { 1972 /* Little-endian combine. */ 1973 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1974 } 1975 return res & MAKE_64BIT_MASK(0, size * 8); 1976 } 1977 1978 haddr = (void *)((uintptr_t)addr + entry->addend); 1979 return load_memop(haddr, op); 1980 } 1981 1982 /* 1983 * For the benefit of TCG generated code, we want to avoid the 1984 * complication of ABI-specific return type promotion and always 1985 * return a value extended to the register size of the host. This is 1986 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1987 * data, and for that we always have uint64_t. 1988 * 1989 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1990 */ 1991 1992 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 1993 MemOpIdx oi, uintptr_t retaddr) 1994 { 1995 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 1996 } 1997 1998 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 1999 MemOpIdx oi, uintptr_t retaddr) 2000 { 2001 return full_ldub_mmu(env, addr, oi, retaddr); 2002 } 2003 2004 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2005 MemOpIdx oi, uintptr_t retaddr) 2006 { 2007 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 2008 full_le_lduw_mmu); 2009 } 2010 2011 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2012 MemOpIdx oi, uintptr_t retaddr) 2013 { 2014 return full_le_lduw_mmu(env, addr, oi, retaddr); 2015 } 2016 2017 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2018 MemOpIdx oi, uintptr_t retaddr) 2019 { 2020 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 2021 full_be_lduw_mmu); 2022 } 2023 2024 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2025 MemOpIdx oi, uintptr_t retaddr) 2026 { 2027 return full_be_lduw_mmu(env, addr, oi, retaddr); 2028 } 2029 2030 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2031 MemOpIdx oi, uintptr_t retaddr) 2032 { 2033 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 2034 full_le_ldul_mmu); 2035 } 2036 2037 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2038 MemOpIdx oi, uintptr_t retaddr) 2039 { 2040 return full_le_ldul_mmu(env, addr, oi, retaddr); 2041 } 2042 2043 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2044 MemOpIdx oi, uintptr_t retaddr) 2045 { 2046 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 2047 full_be_ldul_mmu); 2048 } 2049 2050 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2051 MemOpIdx oi, uintptr_t retaddr) 2052 { 2053 return full_be_ldul_mmu(env, addr, oi, retaddr); 2054 } 2055 2056 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 2057 MemOpIdx oi, uintptr_t retaddr) 2058 { 2059 return load_helper(env, addr, oi, retaddr, MO_LEQ, false, 2060 helper_le_ldq_mmu); 2061 } 2062 2063 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 2064 MemOpIdx oi, uintptr_t retaddr) 2065 { 2066 return load_helper(env, addr, oi, retaddr, MO_BEQ, false, 2067 helper_be_ldq_mmu); 2068 } 2069 2070 /* 2071 * Provide signed versions of the load routines as well. We can of course 2072 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2073 */ 2074 2075 2076 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 2077 MemOpIdx oi, uintptr_t retaddr) 2078 { 2079 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 2080 } 2081 2082 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 2083 MemOpIdx oi, uintptr_t retaddr) 2084 { 2085 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 2086 } 2087 2088 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 2089 MemOpIdx oi, uintptr_t retaddr) 2090 { 2091 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 2092 } 2093 2094 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 2095 MemOpIdx oi, uintptr_t retaddr) 2096 { 2097 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 2098 } 2099 2100 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 2101 MemOpIdx oi, uintptr_t retaddr) 2102 { 2103 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 2104 } 2105 2106 /* 2107 * Load helpers for cpu_ldst.h. 2108 */ 2109 2110 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, 2111 int mmu_idx, uintptr_t retaddr, 2112 MemOp op, FullLoadHelper *full_load) 2113 { 2114 MemOpIdx oi = make_memop_idx(op, mmu_idx); 2115 uint64_t ret; 2116 2117 trace_guest_ld_before_exec(env_cpu(env), addr, oi); 2118 2119 ret = full_load(env, addr, oi, retaddr); 2120 2121 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2122 2123 return ret; 2124 } 2125 2126 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2127 int mmu_idx, uintptr_t ra) 2128 { 2129 return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu); 2130 } 2131 2132 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2133 int mmu_idx, uintptr_t ra) 2134 { 2135 return (int8_t)cpu_ldub_mmuidx_ra(env, addr, mmu_idx, ra); 2136 } 2137 2138 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2139 int mmu_idx, uintptr_t ra) 2140 { 2141 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu); 2142 } 2143 2144 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2145 int mmu_idx, uintptr_t ra) 2146 { 2147 return (int16_t)cpu_lduw_be_mmuidx_ra(env, addr, mmu_idx, ra); 2148 } 2149 2150 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2151 int mmu_idx, uintptr_t ra) 2152 { 2153 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu); 2154 } 2155 2156 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2157 int mmu_idx, uintptr_t ra) 2158 { 2159 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu); 2160 } 2161 2162 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2163 int mmu_idx, uintptr_t ra) 2164 { 2165 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu); 2166 } 2167 2168 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2169 int mmu_idx, uintptr_t ra) 2170 { 2171 return (int16_t)cpu_lduw_le_mmuidx_ra(env, addr, mmu_idx, ra); 2172 } 2173 2174 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2175 int mmu_idx, uintptr_t ra) 2176 { 2177 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu); 2178 } 2179 2180 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, 2181 int mmu_idx, uintptr_t ra) 2182 { 2183 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu); 2184 } 2185 2186 uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr, 2187 uintptr_t retaddr) 2188 { 2189 return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2190 } 2191 2192 int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr) 2193 { 2194 return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2195 } 2196 2197 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr, 2198 uintptr_t retaddr) 2199 { 2200 return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2201 } 2202 2203 int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr) 2204 { 2205 return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2206 } 2207 2208 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr, 2209 uintptr_t retaddr) 2210 { 2211 return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2212 } 2213 2214 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr, 2215 uintptr_t retaddr) 2216 { 2217 return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2218 } 2219 2220 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr, 2221 uintptr_t retaddr) 2222 { 2223 return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2224 } 2225 2226 int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr) 2227 { 2228 return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2229 } 2230 2231 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr, 2232 uintptr_t retaddr) 2233 { 2234 return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2235 } 2236 2237 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr, 2238 uintptr_t retaddr) 2239 { 2240 return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr); 2241 } 2242 2243 uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr) 2244 { 2245 return cpu_ldub_data_ra(env, ptr, 0); 2246 } 2247 2248 int cpu_ldsb_data(CPUArchState *env, target_ulong ptr) 2249 { 2250 return cpu_ldsb_data_ra(env, ptr, 0); 2251 } 2252 2253 uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr) 2254 { 2255 return cpu_lduw_be_data_ra(env, ptr, 0); 2256 } 2257 2258 int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr) 2259 { 2260 return cpu_ldsw_be_data_ra(env, ptr, 0); 2261 } 2262 2263 uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr) 2264 { 2265 return cpu_ldl_be_data_ra(env, ptr, 0); 2266 } 2267 2268 uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr) 2269 { 2270 return cpu_ldq_be_data_ra(env, ptr, 0); 2271 } 2272 2273 uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr) 2274 { 2275 return cpu_lduw_le_data_ra(env, ptr, 0); 2276 } 2277 2278 int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr) 2279 { 2280 return cpu_ldsw_le_data_ra(env, ptr, 0); 2281 } 2282 2283 uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr) 2284 { 2285 return cpu_ldl_le_data_ra(env, ptr, 0); 2286 } 2287 2288 uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr) 2289 { 2290 return cpu_ldq_le_data_ra(env, ptr, 0); 2291 } 2292 2293 /* 2294 * Store Helpers 2295 */ 2296 2297 static inline void QEMU_ALWAYS_INLINE 2298 store_memop(void *haddr, uint64_t val, MemOp op) 2299 { 2300 switch (op) { 2301 case MO_UB: 2302 stb_p(haddr, val); 2303 break; 2304 case MO_BEUW: 2305 stw_be_p(haddr, val); 2306 break; 2307 case MO_LEUW: 2308 stw_le_p(haddr, val); 2309 break; 2310 case MO_BEUL: 2311 stl_be_p(haddr, val); 2312 break; 2313 case MO_LEUL: 2314 stl_le_p(haddr, val); 2315 break; 2316 case MO_BEQ: 2317 stq_be_p(haddr, val); 2318 break; 2319 case MO_LEQ: 2320 stq_le_p(haddr, val); 2321 break; 2322 default: 2323 qemu_build_not_reached(); 2324 } 2325 } 2326 2327 static void __attribute__((noinline)) 2328 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, 2329 uintptr_t retaddr, size_t size, uintptr_t mmu_idx, 2330 bool big_endian) 2331 { 2332 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2333 uintptr_t index, index2; 2334 CPUTLBEntry *entry, *entry2; 2335 target_ulong page2, tlb_addr, tlb_addr2; 2336 MemOpIdx oi; 2337 size_t size2; 2338 int i; 2339 2340 /* 2341 * Ensure the second page is in the TLB. Note that the first page 2342 * is already guaranteed to be filled, and that the second page 2343 * cannot evict the first. 2344 */ 2345 page2 = (addr + size) & TARGET_PAGE_MASK; 2346 size2 = (addr + size) & ~TARGET_PAGE_MASK; 2347 index2 = tlb_index(env, mmu_idx, page2); 2348 entry2 = tlb_entry(env, mmu_idx, page2); 2349 2350 tlb_addr2 = tlb_addr_write(entry2); 2351 if (!tlb_hit_page(tlb_addr2, page2)) { 2352 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { 2353 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, 2354 mmu_idx, retaddr); 2355 index2 = tlb_index(env, mmu_idx, page2); 2356 entry2 = tlb_entry(env, mmu_idx, page2); 2357 } 2358 tlb_addr2 = tlb_addr_write(entry2); 2359 } 2360 2361 index = tlb_index(env, mmu_idx, addr); 2362 entry = tlb_entry(env, mmu_idx, addr); 2363 tlb_addr = tlb_addr_write(entry); 2364 2365 /* 2366 * Handle watchpoints. Since this may trap, all checks 2367 * must happen before any store. 2368 */ 2369 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2370 cpu_check_watchpoint(env_cpu(env), addr, size - size2, 2371 env_tlb(env)->d[mmu_idx].iotlb[index].attrs, 2372 BP_MEM_WRITE, retaddr); 2373 } 2374 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { 2375 cpu_check_watchpoint(env_cpu(env), page2, size2, 2376 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs, 2377 BP_MEM_WRITE, retaddr); 2378 } 2379 2380 /* 2381 * XXX: not efficient, but simple. 2382 * This loop must go in the forward direction to avoid issues 2383 * with self-modifying code in Windows 64-bit. 2384 */ 2385 oi = make_memop_idx(MO_UB, mmu_idx); 2386 if (big_endian) { 2387 for (i = 0; i < size; ++i) { 2388 /* Big-endian extract. */ 2389 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); 2390 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr); 2391 } 2392 } else { 2393 for (i = 0; i < size; ++i) { 2394 /* Little-endian extract. */ 2395 uint8_t val8 = val >> (i * 8); 2396 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr); 2397 } 2398 } 2399 } 2400 2401 static inline void QEMU_ALWAYS_INLINE 2402 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 2403 MemOpIdx oi, uintptr_t retaddr, MemOp op) 2404 { 2405 uintptr_t mmu_idx = get_mmuidx(oi); 2406 uintptr_t index = tlb_index(env, mmu_idx, addr); 2407 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 2408 target_ulong tlb_addr = tlb_addr_write(entry); 2409 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2410 unsigned a_bits = get_alignment_bits(get_memop(oi)); 2411 void *haddr; 2412 size_t size = memop_size(op); 2413 2414 /* Handle CPU specific unaligned behaviour */ 2415 if (addr & ((1 << a_bits) - 1)) { 2416 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2417 mmu_idx, retaddr); 2418 } 2419 2420 /* If the TLB entry is for a different page, reload and try again. */ 2421 if (!tlb_hit(tlb_addr, addr)) { 2422 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 2423 addr & TARGET_PAGE_MASK)) { 2424 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 2425 mmu_idx, retaddr); 2426 index = tlb_index(env, mmu_idx, addr); 2427 entry = tlb_entry(env, mmu_idx, addr); 2428 } 2429 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 2430 } 2431 2432 /* Handle anything that isn't just a straight memory access. */ 2433 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 2434 CPUIOTLBEntry *iotlbentry; 2435 bool need_swap; 2436 2437 /* For anything that is unaligned, recurse through byte stores. */ 2438 if ((addr & (size - 1)) != 0) { 2439 goto do_unaligned_access; 2440 } 2441 2442 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 2443 2444 /* Handle watchpoints. */ 2445 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2446 /* On watchpoint hit, this will longjmp out. */ 2447 cpu_check_watchpoint(env_cpu(env), addr, size, 2448 iotlbentry->attrs, BP_MEM_WRITE, retaddr); 2449 } 2450 2451 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 2452 2453 /* Handle I/O access. */ 2454 if (tlb_addr & TLB_MMIO) { 2455 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, 2456 op ^ (need_swap * MO_BSWAP)); 2457 return; 2458 } 2459 2460 /* Ignore writes to ROM. */ 2461 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { 2462 return; 2463 } 2464 2465 /* Handle clean RAM pages. */ 2466 if (tlb_addr & TLB_NOTDIRTY) { 2467 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr); 2468 } 2469 2470 haddr = (void *)((uintptr_t)addr + entry->addend); 2471 2472 /* 2473 * Keep these two store_memop separate to ensure that the compiler 2474 * is able to fold the entire function to a single instruction. 2475 * There is a build-time assert inside to remind you of this. ;-) 2476 */ 2477 if (unlikely(need_swap)) { 2478 store_memop(haddr, val, op ^ MO_BSWAP); 2479 } else { 2480 store_memop(haddr, val, op); 2481 } 2482 return; 2483 } 2484 2485 /* Handle slow unaligned access (it spans two pages or IO). */ 2486 if (size > 1 2487 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 2488 >= TARGET_PAGE_SIZE)) { 2489 do_unaligned_access: 2490 store_helper_unaligned(env, addr, val, retaddr, size, 2491 mmu_idx, memop_big_endian(op)); 2492 return; 2493 } 2494 2495 haddr = (void *)((uintptr_t)addr + entry->addend); 2496 store_memop(haddr, val, op); 2497 } 2498 2499 void __attribute__((noinline)) 2500 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2501 MemOpIdx oi, uintptr_t retaddr) 2502 { 2503 store_helper(env, addr, val, oi, retaddr, MO_UB); 2504 } 2505 2506 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2507 MemOpIdx oi, uintptr_t retaddr) 2508 { 2509 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 2510 } 2511 2512 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2513 MemOpIdx oi, uintptr_t retaddr) 2514 { 2515 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 2516 } 2517 2518 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2519 MemOpIdx oi, uintptr_t retaddr) 2520 { 2521 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 2522 } 2523 2524 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2525 MemOpIdx oi, uintptr_t retaddr) 2526 { 2527 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 2528 } 2529 2530 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2531 MemOpIdx oi, uintptr_t retaddr) 2532 { 2533 store_helper(env, addr, val, oi, retaddr, MO_LEQ); 2534 } 2535 2536 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2537 MemOpIdx oi, uintptr_t retaddr) 2538 { 2539 store_helper(env, addr, val, oi, retaddr, MO_BEQ); 2540 } 2541 2542 /* 2543 * Store Helpers for cpu_ldst.h 2544 */ 2545 2546 static inline void QEMU_ALWAYS_INLINE 2547 cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 2548 int mmu_idx, uintptr_t retaddr, MemOp op) 2549 { 2550 MemOpIdx oi = make_memop_idx(op, mmu_idx); 2551 2552 trace_guest_st_before_exec(env_cpu(env), addr, oi); 2553 2554 store_helper(env, addr, val, oi, retaddr, op); 2555 2556 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2557 } 2558 2559 void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val, 2560 int mmu_idx, uintptr_t retaddr) 2561 { 2562 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB); 2563 } 2564 2565 void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val, 2566 int mmu_idx, uintptr_t retaddr) 2567 { 2568 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW); 2569 } 2570 2571 void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val, 2572 int mmu_idx, uintptr_t retaddr) 2573 { 2574 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL); 2575 } 2576 2577 void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val, 2578 int mmu_idx, uintptr_t retaddr) 2579 { 2580 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ); 2581 } 2582 2583 void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val, 2584 int mmu_idx, uintptr_t retaddr) 2585 { 2586 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW); 2587 } 2588 2589 void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val, 2590 int mmu_idx, uintptr_t retaddr) 2591 { 2592 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL); 2593 } 2594 2595 void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val, 2596 int mmu_idx, uintptr_t retaddr) 2597 { 2598 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ); 2599 } 2600 2601 void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr, 2602 uint32_t val, uintptr_t retaddr) 2603 { 2604 cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr); 2605 } 2606 2607 void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr, 2608 uint32_t val, uintptr_t retaddr) 2609 { 2610 cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr); 2611 } 2612 2613 void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr, 2614 uint32_t val, uintptr_t retaddr) 2615 { 2616 cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr); 2617 } 2618 2619 void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr, 2620 uint64_t val, uintptr_t retaddr) 2621 { 2622 cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr); 2623 } 2624 2625 void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr, 2626 uint32_t val, uintptr_t retaddr) 2627 { 2628 cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr); 2629 } 2630 2631 void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr, 2632 uint32_t val, uintptr_t retaddr) 2633 { 2634 cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr); 2635 } 2636 2637 void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr, 2638 uint64_t val, uintptr_t retaddr) 2639 { 2640 cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr); 2641 } 2642 2643 void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val) 2644 { 2645 cpu_stb_data_ra(env, ptr, val, 0); 2646 } 2647 2648 void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val) 2649 { 2650 cpu_stw_be_data_ra(env, ptr, val, 0); 2651 } 2652 2653 void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val) 2654 { 2655 cpu_stl_be_data_ra(env, ptr, val, 0); 2656 } 2657 2658 void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val) 2659 { 2660 cpu_stq_be_data_ra(env, ptr, val, 0); 2661 } 2662 2663 void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val) 2664 { 2665 cpu_stw_le_data_ra(env, ptr, val, 0); 2666 } 2667 2668 void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val) 2669 { 2670 cpu_stl_le_data_ra(env, ptr, val, 0); 2671 } 2672 2673 void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val) 2674 { 2675 cpu_stq_le_data_ra(env, ptr, val, 0); 2676 } 2677 2678 /* 2679 * First set of functions passes in OI and RETADDR. 2680 * This makes them callable from other helpers. 2681 */ 2682 2683 #define ATOMIC_NAME(X) \ 2684 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2685 2686 #define ATOMIC_MMU_CLEANUP 2687 #define ATOMIC_MMU_IDX get_mmuidx(oi) 2688 2689 #include "atomic_common.c.inc" 2690 2691 #define DATA_SIZE 1 2692 #include "atomic_template.h" 2693 2694 #define DATA_SIZE 2 2695 #include "atomic_template.h" 2696 2697 #define DATA_SIZE 4 2698 #include "atomic_template.h" 2699 2700 #ifdef CONFIG_ATOMIC64 2701 #define DATA_SIZE 8 2702 #include "atomic_template.h" 2703 #endif 2704 2705 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2706 #define DATA_SIZE 16 2707 #include "atomic_template.h" 2708 #endif 2709 2710 /* Code access functions. */ 2711 2712 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, 2713 MemOpIdx oi, uintptr_t retaddr) 2714 { 2715 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); 2716 } 2717 2718 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2719 { 2720 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2721 return full_ldub_code(env, addr, oi, 0); 2722 } 2723 2724 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, 2725 MemOpIdx oi, uintptr_t retaddr) 2726 { 2727 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); 2728 } 2729 2730 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2731 { 2732 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2733 return full_lduw_code(env, addr, oi, 0); 2734 } 2735 2736 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, 2737 MemOpIdx oi, uintptr_t retaddr) 2738 { 2739 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); 2740 } 2741 2742 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2743 { 2744 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2745 return full_ldl_code(env, addr, oi, 0); 2746 } 2747 2748 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, 2749 MemOpIdx oi, uintptr_t retaddr) 2750 { 2751 return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code); 2752 } 2753 2754 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2755 { 2756 MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true)); 2757 return full_ldq_code(env, addr, oi, 0); 2758 } 2759