1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 45 /* #define DEBUG_TLB */ 46 /* #define DEBUG_TLB_LOG */ 47 48 #ifdef DEBUG_TLB 49 # define DEBUG_TLB_GATE 1 50 # ifdef DEBUG_TLB_LOG 51 # define DEBUG_TLB_LOG_GATE 1 52 # else 53 # define DEBUG_TLB_LOG_GATE 0 54 # endif 55 #else 56 # define DEBUG_TLB_GATE 0 57 # define DEBUG_TLB_LOG_GATE 0 58 #endif 59 60 #define tlb_debug(fmt, ...) do { \ 61 if (DEBUG_TLB_LOG_GATE) { \ 62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 63 ## __VA_ARGS__); \ 64 } else if (DEBUG_TLB_GATE) { \ 65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define assert_cpu_is_self(cpu) do { \ 70 if (DEBUG_TLB_GATE) { \ 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 72 } \ 73 } while (0) 74 75 /* run_on_cpu_data.target_ptr should always be big enough for a 76 * target_ulong even on 32 bit builds */ 77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 78 79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 80 */ 81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 83 84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 85 { 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 87 } 88 89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 90 { 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 92 } 93 94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 95 size_t max_entries) 96 { 97 desc->window_begin_ns = ns; 98 desc->window_max_entries = max_entries; 99 } 100 101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 102 { 103 CPUJumpCache *jc = cpu->tb_jmp_cache; 104 int i, i0; 105 106 if (unlikely(!jc)) { 107 return; 108 } 109 110 i0 = tb_jmp_cache_hash_page(page_addr); 111 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 112 qatomic_set(&jc->array[i0 + i].tb, NULL); 113 } 114 } 115 116 /** 117 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 118 * @desc: The CPUTLBDesc portion of the TLB 119 * @fast: The CPUTLBDescFast portion of the same TLB 120 * 121 * Called with tlb_lock_held. 122 * 123 * We have two main constraints when resizing a TLB: (1) we only resize it 124 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 125 * the array or unnecessarily flushing it), which means we do not control how 126 * frequently the resizing can occur; (2) we don't have access to the guest's 127 * future scheduling decisions, and therefore have to decide the magnitude of 128 * the resize based on past observations. 129 * 130 * In general, a memory-hungry process can benefit greatly from an appropriately 131 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 132 * we just have to make the TLB as large as possible; while an oversized TLB 133 * results in minimal TLB miss rates, it also takes longer to be flushed 134 * (flushes can be _very_ frequent), and the reduced locality can also hurt 135 * performance. 136 * 137 * To achieve near-optimal performance for all kinds of workloads, we: 138 * 139 * 1. Aggressively increase the size of the TLB when the use rate of the 140 * TLB being flushed is high, since it is likely that in the near future this 141 * memory-hungry process will execute again, and its memory hungriness will 142 * probably be similar. 143 * 144 * 2. Slowly reduce the size of the TLB as the use rate declines over a 145 * reasonably large time window. The rationale is that if in such a time window 146 * we have not observed a high TLB use rate, it is likely that we won't observe 147 * it in the near future. In that case, once a time window expires we downsize 148 * the TLB to match the maximum use rate observed in the window. 149 * 150 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 151 * since in that range performance is likely near-optimal. Recall that the TLB 152 * is direct mapped, so we want the use rate to be low (or at least not too 153 * high), since otherwise we are likely to have a significant amount of 154 * conflict misses. 155 */ 156 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 157 int64_t now) 158 { 159 size_t old_size = tlb_n_entries(fast); 160 size_t rate; 161 size_t new_size = old_size; 162 int64_t window_len_ms = 100; 163 int64_t window_len_ns = window_len_ms * 1000 * 1000; 164 bool window_expired = now > desc->window_begin_ns + window_len_ns; 165 166 if (desc->n_used_entries > desc->window_max_entries) { 167 desc->window_max_entries = desc->n_used_entries; 168 } 169 rate = desc->window_max_entries * 100 / old_size; 170 171 if (rate > 70) { 172 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 173 } else if (rate < 30 && window_expired) { 174 size_t ceil = pow2ceil(desc->window_max_entries); 175 size_t expected_rate = desc->window_max_entries * 100 / ceil; 176 177 /* 178 * Avoid undersizing when the max number of entries seen is just below 179 * a pow2. For instance, if max_entries == 1025, the expected use rate 180 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 181 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 182 * later. Thus, make sure that the expected use rate remains below 70%. 183 * (and since we double the size, that means the lowest rate we'd 184 * expect to get is 35%, which is still in the 30-70% range where 185 * we consider that the size is appropriate.) 186 */ 187 if (expected_rate > 70) { 188 ceil *= 2; 189 } 190 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 191 } 192 193 if (new_size == old_size) { 194 if (window_expired) { 195 tlb_window_reset(desc, now, desc->n_used_entries); 196 } 197 return; 198 } 199 200 g_free(fast->table); 201 g_free(desc->fulltlb); 202 203 tlb_window_reset(desc, now, 0); 204 /* desc->n_used_entries is cleared by the caller */ 205 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 206 fast->table = g_try_new(CPUTLBEntry, new_size); 207 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 208 209 /* 210 * If the allocations fail, try smaller sizes. We just freed some 211 * memory, so going back to half of new_size has a good chance of working. 212 * Increased memory pressure elsewhere in the system might cause the 213 * allocations to fail though, so we progressively reduce the allocation 214 * size, aborting if we cannot even allocate the smallest TLB we support. 215 */ 216 while (fast->table == NULL || desc->fulltlb == NULL) { 217 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 218 error_report("%s: %s", __func__, strerror(errno)); 219 abort(); 220 } 221 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 222 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 223 224 g_free(fast->table); 225 g_free(desc->fulltlb); 226 fast->table = g_try_new(CPUTLBEntry, new_size); 227 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 228 } 229 } 230 231 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 232 { 233 desc->n_used_entries = 0; 234 desc->large_page_addr = -1; 235 desc->large_page_mask = -1; 236 desc->vindex = 0; 237 memset(fast->table, -1, sizeof_tlb(fast)); 238 memset(desc->vtable, -1, sizeof(desc->vtable)); 239 } 240 241 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 242 int64_t now) 243 { 244 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 245 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 246 247 tlb_mmu_resize_locked(desc, fast, now); 248 tlb_mmu_flush_locked(desc, fast); 249 } 250 251 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 252 { 253 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 254 255 tlb_window_reset(desc, now, 0); 256 desc->n_used_entries = 0; 257 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 258 fast->table = g_new(CPUTLBEntry, n_entries); 259 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 260 tlb_mmu_flush_locked(desc, fast); 261 } 262 263 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 264 { 265 env_tlb(env)->d[mmu_idx].n_used_entries++; 266 } 267 268 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 269 { 270 env_tlb(env)->d[mmu_idx].n_used_entries--; 271 } 272 273 void tlb_init(CPUState *cpu) 274 { 275 CPUArchState *env = cpu->env_ptr; 276 int64_t now = get_clock_realtime(); 277 int i; 278 279 qemu_spin_init(&env_tlb(env)->c.lock); 280 281 /* All tlbs are initialized flushed. */ 282 env_tlb(env)->c.dirty = 0; 283 284 for (i = 0; i < NB_MMU_MODES; i++) { 285 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 286 } 287 } 288 289 void tlb_destroy(CPUState *cpu) 290 { 291 CPUArchState *env = cpu->env_ptr; 292 int i; 293 294 qemu_spin_destroy(&env_tlb(env)->c.lock); 295 for (i = 0; i < NB_MMU_MODES; i++) { 296 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 297 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 298 299 g_free(fast->table); 300 g_free(desc->fulltlb); 301 } 302 } 303 304 /* flush_all_helper: run fn across all cpus 305 * 306 * If the wait flag is set then the src cpu's helper will be queued as 307 * "safe" work and the loop exited creating a synchronisation point 308 * where all queued work will be finished before execution starts 309 * again. 310 */ 311 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 312 run_on_cpu_data d) 313 { 314 CPUState *cpu; 315 316 CPU_FOREACH(cpu) { 317 if (cpu != src) { 318 async_run_on_cpu(cpu, fn, d); 319 } 320 } 321 } 322 323 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 324 { 325 CPUState *cpu; 326 size_t full = 0, part = 0, elide = 0; 327 328 CPU_FOREACH(cpu) { 329 CPUArchState *env = cpu->env_ptr; 330 331 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 332 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 333 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 334 } 335 *pfull = full; 336 *ppart = part; 337 *pelide = elide; 338 } 339 340 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 341 { 342 CPUArchState *env = cpu->env_ptr; 343 uint16_t asked = data.host_int; 344 uint16_t all_dirty, work, to_clean; 345 int64_t now = get_clock_realtime(); 346 347 assert_cpu_is_self(cpu); 348 349 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 350 351 qemu_spin_lock(&env_tlb(env)->c.lock); 352 353 all_dirty = env_tlb(env)->c.dirty; 354 to_clean = asked & all_dirty; 355 all_dirty &= ~to_clean; 356 env_tlb(env)->c.dirty = all_dirty; 357 358 for (work = to_clean; work != 0; work &= work - 1) { 359 int mmu_idx = ctz32(work); 360 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 361 } 362 363 qemu_spin_unlock(&env_tlb(env)->c.lock); 364 365 tcg_flush_jmp_cache(cpu); 366 367 if (to_clean == ALL_MMUIDX_BITS) { 368 qatomic_set(&env_tlb(env)->c.full_flush_count, 369 env_tlb(env)->c.full_flush_count + 1); 370 } else { 371 qatomic_set(&env_tlb(env)->c.part_flush_count, 372 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 373 if (to_clean != asked) { 374 qatomic_set(&env_tlb(env)->c.elide_flush_count, 375 env_tlb(env)->c.elide_flush_count + 376 ctpop16(asked & ~to_clean)); 377 } 378 } 379 } 380 381 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 382 { 383 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 384 385 if (cpu->created && !qemu_cpu_is_self(cpu)) { 386 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 387 RUN_ON_CPU_HOST_INT(idxmap)); 388 } else { 389 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 390 } 391 } 392 393 void tlb_flush(CPUState *cpu) 394 { 395 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 396 } 397 398 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 399 { 400 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 401 402 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 403 404 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 405 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 406 } 407 408 void tlb_flush_all_cpus(CPUState *src_cpu) 409 { 410 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 411 } 412 413 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 414 { 415 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 416 417 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 418 419 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 420 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 421 } 422 423 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 424 { 425 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 426 } 427 428 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 429 target_ulong page, target_ulong mask) 430 { 431 page &= mask; 432 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 433 434 return (page == (tlb_entry->addr_read & mask) || 435 page == (tlb_addr_write(tlb_entry) & mask) || 436 page == (tlb_entry->addr_code & mask)); 437 } 438 439 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 440 target_ulong page) 441 { 442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 443 } 444 445 /** 446 * tlb_entry_is_empty - return true if the entry is not in use 447 * @te: pointer to CPUTLBEntry 448 */ 449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 450 { 451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 452 } 453 454 /* Called with tlb_c.lock held */ 455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 456 target_ulong page, 457 target_ulong mask) 458 { 459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 460 memset(tlb_entry, -1, sizeof(*tlb_entry)); 461 return true; 462 } 463 return false; 464 } 465 466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 467 target_ulong page) 468 { 469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 470 } 471 472 /* Called with tlb_c.lock held */ 473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 474 target_ulong page, 475 target_ulong mask) 476 { 477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 478 int k; 479 480 assert_cpu_is_self(env_cpu(env)); 481 for (k = 0; k < CPU_VTLB_SIZE; k++) { 482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 483 tlb_n_used_entries_dec(env, mmu_idx); 484 } 485 } 486 } 487 488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 489 target_ulong page) 490 { 491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 492 } 493 494 static void tlb_flush_page_locked(CPUArchState *env, int midx, 495 target_ulong page) 496 { 497 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 498 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 499 500 /* Check if we need to flush due to large pages. */ 501 if ((page & lp_mask) == lp_addr) { 502 tlb_debug("forcing full flush midx %d (" 503 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 504 midx, lp_addr, lp_mask); 505 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 506 } else { 507 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 508 tlb_n_used_entries_dec(env, midx); 509 } 510 tlb_flush_vtlb_page_locked(env, midx, page); 511 } 512 } 513 514 /** 515 * tlb_flush_page_by_mmuidx_async_0: 516 * @cpu: cpu on which to flush 517 * @addr: page of virtual address to flush 518 * @idxmap: set of mmu_idx to flush 519 * 520 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 521 * at @addr from the tlbs indicated by @idxmap from @cpu. 522 */ 523 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 524 target_ulong addr, 525 uint16_t idxmap) 526 { 527 CPUArchState *env = cpu->env_ptr; 528 int mmu_idx; 529 530 assert_cpu_is_self(cpu); 531 532 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 533 534 qemu_spin_lock(&env_tlb(env)->c.lock); 535 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 536 if ((idxmap >> mmu_idx) & 1) { 537 tlb_flush_page_locked(env, mmu_idx, addr); 538 } 539 } 540 qemu_spin_unlock(&env_tlb(env)->c.lock); 541 542 /* 543 * Discard jump cache entries for any tb which might potentially 544 * overlap the flushed page, which includes the previous. 545 */ 546 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 547 tb_jmp_cache_clear_page(cpu, addr); 548 } 549 550 /** 551 * tlb_flush_page_by_mmuidx_async_1: 552 * @cpu: cpu on which to flush 553 * @data: encoded addr + idxmap 554 * 555 * Helper for tlb_flush_page_by_mmuidx and friends, called through 556 * async_run_on_cpu. The idxmap parameter is encoded in the page 557 * offset of the target_ptr field. This limits the set of mmu_idx 558 * that can be passed via this method. 559 */ 560 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 561 run_on_cpu_data data) 562 { 563 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 564 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 565 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 566 567 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 568 } 569 570 typedef struct { 571 target_ulong addr; 572 uint16_t idxmap; 573 } TLBFlushPageByMMUIdxData; 574 575 /** 576 * tlb_flush_page_by_mmuidx_async_2: 577 * @cpu: cpu on which to flush 578 * @data: allocated addr + idxmap 579 * 580 * Helper for tlb_flush_page_by_mmuidx and friends, called through 581 * async_run_on_cpu. The addr+idxmap parameters are stored in a 582 * TLBFlushPageByMMUIdxData structure that has been allocated 583 * specifically for this helper. Free the structure when done. 584 */ 585 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 586 run_on_cpu_data data) 587 { 588 TLBFlushPageByMMUIdxData *d = data.host_ptr; 589 590 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 591 g_free(d); 592 } 593 594 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 595 { 596 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 597 598 /* This should already be page aligned */ 599 addr &= TARGET_PAGE_MASK; 600 601 if (qemu_cpu_is_self(cpu)) { 602 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 603 } else if (idxmap < TARGET_PAGE_SIZE) { 604 /* 605 * Most targets have only a few mmu_idx. In the case where 606 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 607 * allocating memory for this operation. 608 */ 609 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 610 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 611 } else { 612 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 613 614 /* Otherwise allocate a structure, freed by the worker. */ 615 d->addr = addr; 616 d->idxmap = idxmap; 617 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 618 RUN_ON_CPU_HOST_PTR(d)); 619 } 620 } 621 622 void tlb_flush_page(CPUState *cpu, target_ulong addr) 623 { 624 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 625 } 626 627 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 628 uint16_t idxmap) 629 { 630 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 631 632 /* This should already be page aligned */ 633 addr &= TARGET_PAGE_MASK; 634 635 /* 636 * Allocate memory to hold addr+idxmap only when needed. 637 * See tlb_flush_page_by_mmuidx for details. 638 */ 639 if (idxmap < TARGET_PAGE_SIZE) { 640 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 641 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 642 } else { 643 CPUState *dst_cpu; 644 645 /* Allocate a separate data block for each destination cpu. */ 646 CPU_FOREACH(dst_cpu) { 647 if (dst_cpu != src_cpu) { 648 TLBFlushPageByMMUIdxData *d 649 = g_new(TLBFlushPageByMMUIdxData, 1); 650 651 d->addr = addr; 652 d->idxmap = idxmap; 653 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 654 RUN_ON_CPU_HOST_PTR(d)); 655 } 656 } 657 } 658 659 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 660 } 661 662 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 663 { 664 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 665 } 666 667 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 668 target_ulong addr, 669 uint16_t idxmap) 670 { 671 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 672 673 /* This should already be page aligned */ 674 addr &= TARGET_PAGE_MASK; 675 676 /* 677 * Allocate memory to hold addr+idxmap only when needed. 678 * See tlb_flush_page_by_mmuidx for details. 679 */ 680 if (idxmap < TARGET_PAGE_SIZE) { 681 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 682 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 684 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 685 } else { 686 CPUState *dst_cpu; 687 TLBFlushPageByMMUIdxData *d; 688 689 /* Allocate a separate data block for each destination cpu. */ 690 CPU_FOREACH(dst_cpu) { 691 if (dst_cpu != src_cpu) { 692 d = g_new(TLBFlushPageByMMUIdxData, 1); 693 d->addr = addr; 694 d->idxmap = idxmap; 695 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 696 RUN_ON_CPU_HOST_PTR(d)); 697 } 698 } 699 700 d = g_new(TLBFlushPageByMMUIdxData, 1); 701 d->addr = addr; 702 d->idxmap = idxmap; 703 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 704 RUN_ON_CPU_HOST_PTR(d)); 705 } 706 } 707 708 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 709 { 710 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 711 } 712 713 static void tlb_flush_range_locked(CPUArchState *env, int midx, 714 target_ulong addr, target_ulong len, 715 unsigned bits) 716 { 717 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 718 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 719 target_ulong mask = MAKE_64BIT_MASK(0, bits); 720 721 /* 722 * If @bits is smaller than the tlb size, there may be multiple entries 723 * within the TLB; otherwise all addresses that match under @mask hit 724 * the same TLB entry. 725 * TODO: Perhaps allow bits to be a few bits less than the size. 726 * For now, just flush the entire TLB. 727 * 728 * If @len is larger than the tlb size, then it will take longer to 729 * test all of the entries in the TLB than it will to flush it all. 730 */ 731 if (mask < f->mask || len > f->mask) { 732 tlb_debug("forcing full flush midx %d (" 733 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 734 midx, addr, mask, len); 735 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 736 return; 737 } 738 739 /* 740 * Check if we need to flush due to large pages. 741 * Because large_page_mask contains all 1's from the msb, 742 * we only need to test the end of the range. 743 */ 744 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 745 tlb_debug("forcing full flush midx %d (" 746 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 747 midx, d->large_page_addr, d->large_page_mask); 748 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 749 return; 750 } 751 752 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 753 target_ulong page = addr + i; 754 CPUTLBEntry *entry = tlb_entry(env, midx, page); 755 756 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 757 tlb_n_used_entries_dec(env, midx); 758 } 759 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 760 } 761 } 762 763 typedef struct { 764 target_ulong addr; 765 target_ulong len; 766 uint16_t idxmap; 767 uint16_t bits; 768 } TLBFlushRangeData; 769 770 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 771 TLBFlushRangeData d) 772 { 773 CPUArchState *env = cpu->env_ptr; 774 int mmu_idx; 775 776 assert_cpu_is_self(cpu); 777 778 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 779 d.addr, d.bits, d.len, d.idxmap); 780 781 qemu_spin_lock(&env_tlb(env)->c.lock); 782 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 783 if ((d.idxmap >> mmu_idx) & 1) { 784 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 785 } 786 } 787 qemu_spin_unlock(&env_tlb(env)->c.lock); 788 789 /* 790 * If the length is larger than the jump cache size, then it will take 791 * longer to clear each entry individually than it will to clear it all. 792 */ 793 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 794 tcg_flush_jmp_cache(cpu); 795 return; 796 } 797 798 /* 799 * Discard jump cache entries for any tb which might potentially 800 * overlap the flushed pages, which includes the previous. 801 */ 802 d.addr -= TARGET_PAGE_SIZE; 803 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 804 tb_jmp_cache_clear_page(cpu, d.addr); 805 d.addr += TARGET_PAGE_SIZE; 806 } 807 } 808 809 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 810 run_on_cpu_data data) 811 { 812 TLBFlushRangeData *d = data.host_ptr; 813 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 814 g_free(d); 815 } 816 817 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 818 target_ulong len, uint16_t idxmap, 819 unsigned bits) 820 { 821 TLBFlushRangeData d; 822 823 /* 824 * If all bits are significant, and len is small, 825 * this devolves to tlb_flush_page. 826 */ 827 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 828 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 829 return; 830 } 831 /* If no page bits are significant, this devolves to tlb_flush. */ 832 if (bits < TARGET_PAGE_BITS) { 833 tlb_flush_by_mmuidx(cpu, idxmap); 834 return; 835 } 836 837 /* This should already be page aligned */ 838 d.addr = addr & TARGET_PAGE_MASK; 839 d.len = len; 840 d.idxmap = idxmap; 841 d.bits = bits; 842 843 if (qemu_cpu_is_self(cpu)) { 844 tlb_flush_range_by_mmuidx_async_0(cpu, d); 845 } else { 846 /* Otherwise allocate a structure, freed by the worker. */ 847 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 848 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 849 RUN_ON_CPU_HOST_PTR(p)); 850 } 851 } 852 853 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 854 uint16_t idxmap, unsigned bits) 855 { 856 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 857 } 858 859 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 860 target_ulong addr, target_ulong len, 861 uint16_t idxmap, unsigned bits) 862 { 863 TLBFlushRangeData d; 864 CPUState *dst_cpu; 865 866 /* 867 * If all bits are significant, and len is small, 868 * this devolves to tlb_flush_page. 869 */ 870 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 871 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 872 return; 873 } 874 /* If no page bits are significant, this devolves to tlb_flush. */ 875 if (bits < TARGET_PAGE_BITS) { 876 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 877 return; 878 } 879 880 /* This should already be page aligned */ 881 d.addr = addr & TARGET_PAGE_MASK; 882 d.len = len; 883 d.idxmap = idxmap; 884 d.bits = bits; 885 886 /* Allocate a separate data block for each destination cpu. */ 887 CPU_FOREACH(dst_cpu) { 888 if (dst_cpu != src_cpu) { 889 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 890 async_run_on_cpu(dst_cpu, 891 tlb_flush_range_by_mmuidx_async_1, 892 RUN_ON_CPU_HOST_PTR(p)); 893 } 894 } 895 896 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 897 } 898 899 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 900 target_ulong addr, 901 uint16_t idxmap, unsigned bits) 902 { 903 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 904 idxmap, bits); 905 } 906 907 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 908 target_ulong addr, 909 target_ulong len, 910 uint16_t idxmap, 911 unsigned bits) 912 { 913 TLBFlushRangeData d, *p; 914 CPUState *dst_cpu; 915 916 /* 917 * If all bits are significant, and len is small, 918 * this devolves to tlb_flush_page. 919 */ 920 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 921 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 922 return; 923 } 924 /* If no page bits are significant, this devolves to tlb_flush. */ 925 if (bits < TARGET_PAGE_BITS) { 926 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 927 return; 928 } 929 930 /* This should already be page aligned */ 931 d.addr = addr & TARGET_PAGE_MASK; 932 d.len = len; 933 d.idxmap = idxmap; 934 d.bits = bits; 935 936 /* Allocate a separate data block for each destination cpu. */ 937 CPU_FOREACH(dst_cpu) { 938 if (dst_cpu != src_cpu) { 939 p = g_memdup(&d, sizeof(d)); 940 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 941 RUN_ON_CPU_HOST_PTR(p)); 942 } 943 } 944 945 p = g_memdup(&d, sizeof(d)); 946 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 947 RUN_ON_CPU_HOST_PTR(p)); 948 } 949 950 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 951 target_ulong addr, 952 uint16_t idxmap, 953 unsigned bits) 954 { 955 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 956 idxmap, bits); 957 } 958 959 /* update the TLBs so that writes to code in the virtual page 'addr' 960 can be detected */ 961 void tlb_protect_code(ram_addr_t ram_addr) 962 { 963 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 964 TARGET_PAGE_SIZE, 965 DIRTY_MEMORY_CODE); 966 } 967 968 /* update the TLB so that writes in physical page 'phys_addr' are no longer 969 tested for self modifying code */ 970 void tlb_unprotect_code(ram_addr_t ram_addr) 971 { 972 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 973 } 974 975 976 /* 977 * Dirty write flag handling 978 * 979 * When the TCG code writes to a location it looks up the address in 980 * the TLB and uses that data to compute the final address. If any of 981 * the lower bits of the address are set then the slow path is forced. 982 * There are a number of reasons to do this but for normal RAM the 983 * most usual is detecting writes to code regions which may invalidate 984 * generated code. 985 * 986 * Other vCPUs might be reading their TLBs during guest execution, so we update 987 * te->addr_write with qatomic_set. We don't need to worry about this for 988 * oversized guests as MTTCG is disabled for them. 989 * 990 * Called with tlb_c.lock held. 991 */ 992 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 993 uintptr_t start, uintptr_t length) 994 { 995 uintptr_t addr = tlb_entry->addr_write; 996 997 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 998 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 999 addr &= TARGET_PAGE_MASK; 1000 addr += tlb_entry->addend; 1001 if ((addr - start) < length) { 1002 #if TCG_OVERSIZED_GUEST 1003 tlb_entry->addr_write |= TLB_NOTDIRTY; 1004 #else 1005 qatomic_set(&tlb_entry->addr_write, 1006 tlb_entry->addr_write | TLB_NOTDIRTY); 1007 #endif 1008 } 1009 } 1010 } 1011 1012 /* 1013 * Called with tlb_c.lock held. 1014 * Called only from the vCPU context, i.e. the TLB's owner thread. 1015 */ 1016 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1017 { 1018 *d = *s; 1019 } 1020 1021 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1022 * the target vCPU). 1023 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1024 * thing actually updated is the target TLB entry ->addr_write flags. 1025 */ 1026 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1027 { 1028 CPUArchState *env; 1029 1030 int mmu_idx; 1031 1032 env = cpu->env_ptr; 1033 qemu_spin_lock(&env_tlb(env)->c.lock); 1034 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1035 unsigned int i; 1036 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1037 1038 for (i = 0; i < n; i++) { 1039 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1040 start1, length); 1041 } 1042 1043 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1044 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1045 start1, length); 1046 } 1047 } 1048 qemu_spin_unlock(&env_tlb(env)->c.lock); 1049 } 1050 1051 /* Called with tlb_c.lock held */ 1052 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1053 target_ulong vaddr) 1054 { 1055 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1056 tlb_entry->addr_write = vaddr; 1057 } 1058 } 1059 1060 /* update the TLB corresponding to virtual page vaddr 1061 so that it is no longer dirty */ 1062 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1063 { 1064 CPUArchState *env = cpu->env_ptr; 1065 int mmu_idx; 1066 1067 assert_cpu_is_self(cpu); 1068 1069 vaddr &= TARGET_PAGE_MASK; 1070 qemu_spin_lock(&env_tlb(env)->c.lock); 1071 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1072 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1073 } 1074 1075 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1076 int k; 1077 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1078 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1079 } 1080 } 1081 qemu_spin_unlock(&env_tlb(env)->c.lock); 1082 } 1083 1084 /* Our TLB does not support large pages, so remember the area covered by 1085 large pages and trigger a full TLB flush if these are invalidated. */ 1086 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1087 target_ulong vaddr, target_ulong size) 1088 { 1089 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1090 target_ulong lp_mask = ~(size - 1); 1091 1092 if (lp_addr == (target_ulong)-1) { 1093 /* No previous large page. */ 1094 lp_addr = vaddr; 1095 } else { 1096 /* Extend the existing region to include the new page. 1097 This is a compromise between unnecessary flushes and 1098 the cost of maintaining a full variable size TLB. */ 1099 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1100 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1101 lp_mask <<= 1; 1102 } 1103 } 1104 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1105 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1106 } 1107 1108 /* 1109 * Add a new TLB entry. At most one entry for a given virtual address 1110 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1111 * supplied size is only used by tlb_flush_page. 1112 * 1113 * Called from TCG-generated code, which is under an RCU read-side 1114 * critical section. 1115 */ 1116 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1117 target_ulong vaddr, CPUTLBEntryFull *full) 1118 { 1119 CPUArchState *env = cpu->env_ptr; 1120 CPUTLB *tlb = env_tlb(env); 1121 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1122 MemoryRegionSection *section; 1123 unsigned int index; 1124 target_ulong address; 1125 target_ulong write_address; 1126 uintptr_t addend; 1127 CPUTLBEntry *te, tn; 1128 hwaddr iotlb, xlat, sz, paddr_page; 1129 target_ulong vaddr_page; 1130 int asidx, wp_flags, prot; 1131 bool is_ram, is_romd; 1132 1133 assert_cpu_is_self(cpu); 1134 1135 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1136 sz = TARGET_PAGE_SIZE; 1137 } else { 1138 sz = (hwaddr)1 << full->lg_page_size; 1139 tlb_add_large_page(env, mmu_idx, vaddr, sz); 1140 } 1141 vaddr_page = vaddr & TARGET_PAGE_MASK; 1142 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1143 1144 prot = full->prot; 1145 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1146 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1147 &xlat, &sz, full->attrs, &prot); 1148 assert(sz >= TARGET_PAGE_SIZE); 1149 1150 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx 1151 " prot=%x idx=%d\n", 1152 vaddr, full->phys_addr, prot, mmu_idx); 1153 1154 address = vaddr_page; 1155 if (full->lg_page_size < TARGET_PAGE_BITS) { 1156 /* Repeat the MMU check and TLB fill on every access. */ 1157 address |= TLB_INVALID_MASK; 1158 } 1159 if (full->attrs.byte_swap) { 1160 address |= TLB_BSWAP; 1161 } 1162 1163 is_ram = memory_region_is_ram(section->mr); 1164 is_romd = memory_region_is_romd(section->mr); 1165 1166 if (is_ram || is_romd) { 1167 /* RAM and ROMD both have associated host memory. */ 1168 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1169 } else { 1170 /* I/O does not; force the host address to NULL. */ 1171 addend = 0; 1172 } 1173 1174 write_address = address; 1175 if (is_ram) { 1176 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1177 /* 1178 * Computing is_clean is expensive; avoid all that unless 1179 * the page is actually writable. 1180 */ 1181 if (prot & PAGE_WRITE) { 1182 if (section->readonly) { 1183 write_address |= TLB_DISCARD_WRITE; 1184 } else if (cpu_physical_memory_is_clean(iotlb)) { 1185 write_address |= TLB_NOTDIRTY; 1186 } 1187 } 1188 } else { 1189 /* I/O or ROMD */ 1190 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1191 /* 1192 * Writes to romd devices must go through MMIO to enable write. 1193 * Reads to romd devices go through the ram_ptr found above, 1194 * but of course reads to I/O must go through MMIO. 1195 */ 1196 write_address |= TLB_MMIO; 1197 if (!is_romd) { 1198 address = write_address; 1199 } 1200 } 1201 1202 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1203 TARGET_PAGE_SIZE); 1204 1205 index = tlb_index(env, mmu_idx, vaddr_page); 1206 te = tlb_entry(env, mmu_idx, vaddr_page); 1207 1208 /* 1209 * Hold the TLB lock for the rest of the function. We could acquire/release 1210 * the lock several times in the function, but it is faster to amortize the 1211 * acquisition cost by acquiring it just once. Note that this leads to 1212 * a longer critical section, but this is not a concern since the TLB lock 1213 * is unlikely to be contended. 1214 */ 1215 qemu_spin_lock(&tlb->c.lock); 1216 1217 /* Note that the tlb is no longer clean. */ 1218 tlb->c.dirty |= 1 << mmu_idx; 1219 1220 /* Make sure there's no cached translation for the new page. */ 1221 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1222 1223 /* 1224 * Only evict the old entry to the victim tlb if it's for a 1225 * different page; otherwise just overwrite the stale data. 1226 */ 1227 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1228 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1229 CPUTLBEntry *tv = &desc->vtable[vidx]; 1230 1231 /* Evict the old entry into the victim tlb. */ 1232 copy_tlb_helper_locked(tv, te); 1233 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1234 tlb_n_used_entries_dec(env, mmu_idx); 1235 } 1236 1237 /* refill the tlb */ 1238 /* 1239 * At this point iotlb contains a physical section number in the lower 1240 * TARGET_PAGE_BITS, and either 1241 * + the ram_addr_t of the page base of the target RAM (RAM) 1242 * + the offset within section->mr of the page base (I/O, ROMD) 1243 * We subtract the vaddr_page (which is page aligned and thus won't 1244 * disturb the low bits) to give an offset which can be added to the 1245 * (non-page-aligned) vaddr of the eventual memory access to get 1246 * the MemoryRegion offset for the access. Note that the vaddr we 1247 * subtract here is that of the page base, and not the same as the 1248 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1249 */ 1250 desc->fulltlb[index] = *full; 1251 desc->fulltlb[index].xlat_section = iotlb - vaddr_page; 1252 desc->fulltlb[index].phys_addr = paddr_page; 1253 1254 /* Now calculate the new entry */ 1255 tn.addend = addend - vaddr_page; 1256 if (prot & PAGE_READ) { 1257 tn.addr_read = address; 1258 if (wp_flags & BP_MEM_READ) { 1259 tn.addr_read |= TLB_WATCHPOINT; 1260 } 1261 } else { 1262 tn.addr_read = -1; 1263 } 1264 1265 if (prot & PAGE_EXEC) { 1266 tn.addr_code = address; 1267 } else { 1268 tn.addr_code = -1; 1269 } 1270 1271 tn.addr_write = -1; 1272 if (prot & PAGE_WRITE) { 1273 tn.addr_write = write_address; 1274 if (prot & PAGE_WRITE_INV) { 1275 tn.addr_write |= TLB_INVALID_MASK; 1276 } 1277 if (wp_flags & BP_MEM_WRITE) { 1278 tn.addr_write |= TLB_WATCHPOINT; 1279 } 1280 } 1281 1282 copy_tlb_helper_locked(te, &tn); 1283 tlb_n_used_entries_inc(env, mmu_idx); 1284 qemu_spin_unlock(&tlb->c.lock); 1285 } 1286 1287 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1288 hwaddr paddr, MemTxAttrs attrs, int prot, 1289 int mmu_idx, target_ulong size) 1290 { 1291 CPUTLBEntryFull full = { 1292 .phys_addr = paddr, 1293 .attrs = attrs, 1294 .prot = prot, 1295 .lg_page_size = ctz64(size) 1296 }; 1297 1298 assert(is_power_of_2(size)); 1299 tlb_set_page_full(cpu, mmu_idx, vaddr, &full); 1300 } 1301 1302 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1303 hwaddr paddr, int prot, 1304 int mmu_idx, target_ulong size) 1305 { 1306 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1307 prot, mmu_idx, size); 1308 } 1309 1310 /* 1311 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1312 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1313 * be discarded and looked up again (e.g. via tlb_entry()). 1314 */ 1315 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1316 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1317 { 1318 bool ok; 1319 1320 /* 1321 * This is not a probe, so only valid return is success; failure 1322 * should result in exception + longjmp to the cpu loop. 1323 */ 1324 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1325 access_type, mmu_idx, false, retaddr); 1326 assert(ok); 1327 } 1328 1329 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1330 MMUAccessType access_type, 1331 int mmu_idx, uintptr_t retaddr) 1332 { 1333 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1334 mmu_idx, retaddr); 1335 } 1336 1337 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1338 vaddr addr, unsigned size, 1339 MMUAccessType access_type, 1340 int mmu_idx, MemTxAttrs attrs, 1341 MemTxResult response, 1342 uintptr_t retaddr) 1343 { 1344 CPUClass *cc = CPU_GET_CLASS(cpu); 1345 1346 if (!cpu->ignore_memory_transaction_failures && 1347 cc->tcg_ops->do_transaction_failed) { 1348 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1349 access_type, mmu_idx, attrs, 1350 response, retaddr); 1351 } 1352 } 1353 1354 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1355 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1356 MMUAccessType access_type, MemOp op) 1357 { 1358 CPUState *cpu = env_cpu(env); 1359 hwaddr mr_offset; 1360 MemoryRegionSection *section; 1361 MemoryRegion *mr; 1362 uint64_t val; 1363 MemTxResult r; 1364 1365 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1366 mr = section->mr; 1367 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1368 cpu->mem_io_pc = retaddr; 1369 if (!cpu->can_do_io) { 1370 cpu_io_recompile(cpu, retaddr); 1371 } 1372 1373 { 1374 QEMU_IOTHREAD_LOCK_GUARD(); 1375 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1376 } 1377 1378 if (r != MEMTX_OK) { 1379 hwaddr physaddr = mr_offset + 1380 section->offset_within_address_space - 1381 section->offset_within_region; 1382 1383 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1384 mmu_idx, full->attrs, r, retaddr); 1385 } 1386 return val; 1387 } 1388 1389 /* 1390 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1391 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1392 * because of the side effect of io_writex changing memory layout. 1393 */ 1394 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1395 hwaddr mr_offset) 1396 { 1397 #ifdef CONFIG_PLUGIN 1398 SavedIOTLB *saved = &cs->saved_iotlb; 1399 saved->section = section; 1400 saved->mr_offset = mr_offset; 1401 #endif 1402 } 1403 1404 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1405 int mmu_idx, uint64_t val, target_ulong addr, 1406 uintptr_t retaddr, MemOp op) 1407 { 1408 CPUState *cpu = env_cpu(env); 1409 hwaddr mr_offset; 1410 MemoryRegionSection *section; 1411 MemoryRegion *mr; 1412 MemTxResult r; 1413 1414 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1415 mr = section->mr; 1416 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1417 if (!cpu->can_do_io) { 1418 cpu_io_recompile(cpu, retaddr); 1419 } 1420 cpu->mem_io_pc = retaddr; 1421 1422 /* 1423 * The memory_region_dispatch may trigger a flush/resize 1424 * so for plugins we save the iotlb_data just in case. 1425 */ 1426 save_iotlb_data(cpu, section, mr_offset); 1427 1428 { 1429 QEMU_IOTHREAD_LOCK_GUARD(); 1430 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1431 } 1432 1433 if (r != MEMTX_OK) { 1434 hwaddr physaddr = mr_offset + 1435 section->offset_within_address_space - 1436 section->offset_within_region; 1437 1438 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1439 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1440 retaddr); 1441 } 1442 } 1443 1444 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 1445 { 1446 #if TCG_OVERSIZED_GUEST 1447 return *(target_ulong *)((uintptr_t)entry + ofs); 1448 #else 1449 /* ofs might correspond to .addr_write, so use qatomic_read */ 1450 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); 1451 #endif 1452 } 1453 1454 /* Return true if ADDR is present in the victim tlb, and has been copied 1455 back to the main tlb. */ 1456 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1457 size_t elt_ofs, target_ulong page) 1458 { 1459 size_t vidx; 1460 1461 assert_cpu_is_self(env_cpu(env)); 1462 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1463 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1464 target_ulong cmp; 1465 1466 /* elt_ofs might correspond to .addr_write, so use qatomic_read */ 1467 #if TCG_OVERSIZED_GUEST 1468 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1469 #else 1470 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1471 #endif 1472 1473 if (cmp == page) { 1474 /* Found entry in victim tlb, swap tlb and iotlb. */ 1475 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1476 1477 qemu_spin_lock(&env_tlb(env)->c.lock); 1478 copy_tlb_helper_locked(&tmptlb, tlb); 1479 copy_tlb_helper_locked(tlb, vtlb); 1480 copy_tlb_helper_locked(vtlb, &tmptlb); 1481 qemu_spin_unlock(&env_tlb(env)->c.lock); 1482 1483 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1484 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1485 CPUTLBEntryFull tmpf; 1486 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1487 return true; 1488 } 1489 } 1490 return false; 1491 } 1492 1493 /* Macro to call the above, with local variables from the use context. */ 1494 #define VICTIM_TLB_HIT(TY, ADDR) \ 1495 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1496 (ADDR) & TARGET_PAGE_MASK) 1497 1498 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1499 CPUTLBEntryFull *full, uintptr_t retaddr) 1500 { 1501 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1502 1503 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1504 1505 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1506 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1507 } 1508 1509 /* 1510 * Set both VGA and migration bits for simplicity and to remove 1511 * the notdirty callback faster. 1512 */ 1513 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1514 1515 /* We remove the notdirty callback only if the code has been flushed. */ 1516 if (!cpu_physical_memory_is_clean(ram_addr)) { 1517 trace_memory_notdirty_set_dirty(mem_vaddr); 1518 tlb_set_dirty(cpu, mem_vaddr); 1519 } 1520 } 1521 1522 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1523 int fault_size, MMUAccessType access_type, 1524 int mmu_idx, bool nonfault, 1525 void **phost, CPUTLBEntryFull **pfull, 1526 uintptr_t retaddr) 1527 { 1528 uintptr_t index = tlb_index(env, mmu_idx, addr); 1529 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1530 target_ulong tlb_addr, page_addr; 1531 size_t elt_ofs; 1532 int flags; 1533 1534 switch (access_type) { 1535 case MMU_DATA_LOAD: 1536 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1537 break; 1538 case MMU_DATA_STORE: 1539 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1540 break; 1541 case MMU_INST_FETCH: 1542 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1543 break; 1544 default: 1545 g_assert_not_reached(); 1546 } 1547 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1548 1549 flags = TLB_FLAGS_MASK; 1550 page_addr = addr & TARGET_PAGE_MASK; 1551 if (!tlb_hit_page(tlb_addr, page_addr)) { 1552 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { 1553 CPUState *cs = env_cpu(env); 1554 1555 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1556 mmu_idx, nonfault, retaddr)) { 1557 /* Non-faulting page table read failed. */ 1558 *phost = NULL; 1559 *pfull = NULL; 1560 return TLB_INVALID_MASK; 1561 } 1562 1563 /* TLB resize via tlb_fill may have moved the entry. */ 1564 index = tlb_index(env, mmu_idx, addr); 1565 entry = tlb_entry(env, mmu_idx, addr); 1566 1567 /* 1568 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1569 * to force the next access through tlb_fill. We've just 1570 * called tlb_fill, so we know that this entry *is* valid. 1571 */ 1572 flags &= ~TLB_INVALID_MASK; 1573 } 1574 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1575 } 1576 flags &= tlb_addr; 1577 1578 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1579 1580 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1581 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1582 *phost = NULL; 1583 return TLB_MMIO; 1584 } 1585 1586 /* Everything else is RAM. */ 1587 *phost = (void *)((uintptr_t)addr + entry->addend); 1588 return flags; 1589 } 1590 1591 int probe_access_full(CPUArchState *env, target_ulong addr, int size, 1592 MMUAccessType access_type, int mmu_idx, 1593 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1594 uintptr_t retaddr) 1595 { 1596 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1597 nonfault, phost, pfull, retaddr); 1598 1599 /* Handle clean RAM pages. */ 1600 if (unlikely(flags & TLB_NOTDIRTY)) { 1601 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1602 flags &= ~TLB_NOTDIRTY; 1603 } 1604 1605 return flags; 1606 } 1607 1608 int probe_access_flags(CPUArchState *env, target_ulong addr, int size, 1609 MMUAccessType access_type, int mmu_idx, 1610 bool nonfault, void **phost, uintptr_t retaddr) 1611 { 1612 CPUTLBEntryFull *full; 1613 int flags; 1614 1615 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1616 1617 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1618 nonfault, phost, &full, retaddr); 1619 1620 /* Handle clean RAM pages. */ 1621 if (unlikely(flags & TLB_NOTDIRTY)) { 1622 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1623 flags &= ~TLB_NOTDIRTY; 1624 } 1625 1626 return flags; 1627 } 1628 1629 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1630 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1631 { 1632 CPUTLBEntryFull *full; 1633 void *host; 1634 int flags; 1635 1636 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1637 1638 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1639 false, &host, &full, retaddr); 1640 1641 /* Per the interface, size == 0 merely faults the access. */ 1642 if (size == 0) { 1643 return NULL; 1644 } 1645 1646 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1647 /* Handle watchpoints. */ 1648 if (flags & TLB_WATCHPOINT) { 1649 int wp_access = (access_type == MMU_DATA_STORE 1650 ? BP_MEM_WRITE : BP_MEM_READ); 1651 cpu_check_watchpoint(env_cpu(env), addr, size, 1652 full->attrs, wp_access, retaddr); 1653 } 1654 1655 /* Handle clean RAM pages. */ 1656 if (flags & TLB_NOTDIRTY) { 1657 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1658 } 1659 } 1660 1661 return host; 1662 } 1663 1664 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1665 MMUAccessType access_type, int mmu_idx) 1666 { 1667 CPUTLBEntryFull *full; 1668 void *host; 1669 int flags; 1670 1671 flags = probe_access_internal(env, addr, 0, access_type, 1672 mmu_idx, true, &host, &full, 0); 1673 1674 /* No combination of flags are expected by the caller. */ 1675 return flags ? NULL : host; 1676 } 1677 1678 /* 1679 * Return a ram_addr_t for the virtual address for execution. 1680 * 1681 * Return -1 if we can't translate and execute from an entire page 1682 * of RAM. This will force us to execute by loading and translating 1683 * one insn at a time, without caching. 1684 * 1685 * NOTE: This function will trigger an exception if the page is 1686 * not executable. 1687 */ 1688 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1689 void **hostp) 1690 { 1691 CPUTLBEntryFull *full; 1692 void *p; 1693 1694 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1695 cpu_mmu_index(env, true), false, &p, &full, 0); 1696 if (p == NULL) { 1697 return -1; 1698 } 1699 1700 if (full->lg_page_size < TARGET_PAGE_BITS) { 1701 return -1; 1702 } 1703 1704 if (hostp) { 1705 *hostp = p; 1706 } 1707 return qemu_ram_addr_from_host_nofail(p); 1708 } 1709 1710 #ifdef CONFIG_PLUGIN 1711 /* 1712 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1713 * This should be a hot path as we will have just looked this path up 1714 * in the softmmu lookup code (or helper). We don't handle re-fills or 1715 * checking the victim table. This is purely informational. 1716 * 1717 * This almost never fails as the memory access being instrumented 1718 * should have just filled the TLB. The one corner case is io_writex 1719 * which can cause TLB flushes and potential resizing of the TLBs 1720 * losing the information we need. In those cases we need to recover 1721 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1722 * from the same thread (which a mem callback will be) this is safe. 1723 */ 1724 1725 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1726 bool is_store, struct qemu_plugin_hwaddr *data) 1727 { 1728 CPUArchState *env = cpu->env_ptr; 1729 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1730 uintptr_t index = tlb_index(env, mmu_idx, addr); 1731 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1732 1733 if (likely(tlb_hit(tlb_addr, addr))) { 1734 /* We must have an iotlb entry for MMIO */ 1735 if (tlb_addr & TLB_MMIO) { 1736 CPUTLBEntryFull *full; 1737 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1738 data->is_io = true; 1739 data->v.io.section = 1740 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1741 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1742 } else { 1743 data->is_io = false; 1744 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1745 } 1746 return true; 1747 } else { 1748 SavedIOTLB *saved = &cpu->saved_iotlb; 1749 data->is_io = true; 1750 data->v.io.section = saved->section; 1751 data->v.io.offset = saved->mr_offset; 1752 return true; 1753 } 1754 } 1755 1756 #endif 1757 1758 /* 1759 * Probe for an atomic operation. Do not allow unaligned operations, 1760 * or io operations to proceed. Return the host address. 1761 * 1762 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1763 */ 1764 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1765 MemOpIdx oi, int size, int prot, 1766 uintptr_t retaddr) 1767 { 1768 uintptr_t mmu_idx = get_mmuidx(oi); 1769 MemOp mop = get_memop(oi); 1770 int a_bits = get_alignment_bits(mop); 1771 uintptr_t index; 1772 CPUTLBEntry *tlbe; 1773 target_ulong tlb_addr; 1774 void *hostaddr; 1775 CPUTLBEntryFull *full; 1776 1777 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1778 1779 /* Adjust the given return address. */ 1780 retaddr -= GETPC_ADJ; 1781 1782 /* Enforce guest required alignment. */ 1783 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1784 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1785 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1786 mmu_idx, retaddr); 1787 } 1788 1789 /* Enforce qemu required alignment. */ 1790 if (unlikely(addr & (size - 1))) { 1791 /* We get here if guest alignment was not requested, 1792 or was not enforced by cpu_unaligned_access above. 1793 We might widen the access and emulate, but for now 1794 mark an exception and exit the cpu loop. */ 1795 goto stop_the_world; 1796 } 1797 1798 index = tlb_index(env, mmu_idx, addr); 1799 tlbe = tlb_entry(env, mmu_idx, addr); 1800 1801 /* Check TLB entry and enforce page permissions. */ 1802 if (prot & PAGE_WRITE) { 1803 tlb_addr = tlb_addr_write(tlbe); 1804 if (!tlb_hit(tlb_addr, addr)) { 1805 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1806 tlb_fill(env_cpu(env), addr, size, 1807 MMU_DATA_STORE, mmu_idx, retaddr); 1808 index = tlb_index(env, mmu_idx, addr); 1809 tlbe = tlb_entry(env, mmu_idx, addr); 1810 } 1811 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1812 } 1813 1814 if (prot & PAGE_READ) { 1815 /* 1816 * Let the guest notice RMW on a write-only page. 1817 * We have just verified that the page is writable. 1818 * Subpage lookups may have left TLB_INVALID_MASK set, 1819 * but addr_read will only be -1 if PAGE_READ was unset. 1820 */ 1821 if (unlikely(tlbe->addr_read == -1)) { 1822 tlb_fill(env_cpu(env), addr, size, 1823 MMU_DATA_LOAD, mmu_idx, retaddr); 1824 /* 1825 * Since we don't support reads and writes to different 1826 * addresses, and we do have the proper page loaded for 1827 * write, this shouldn't ever return. But just in case, 1828 * handle via stop-the-world. 1829 */ 1830 goto stop_the_world; 1831 } 1832 /* Collect TLB_WATCHPOINT for read. */ 1833 tlb_addr |= tlbe->addr_read; 1834 } 1835 } else /* if (prot & PAGE_READ) */ { 1836 tlb_addr = tlbe->addr_read; 1837 if (!tlb_hit(tlb_addr, addr)) { 1838 if (!VICTIM_TLB_HIT(addr_read, addr)) { 1839 tlb_fill(env_cpu(env), addr, size, 1840 MMU_DATA_LOAD, mmu_idx, retaddr); 1841 index = tlb_index(env, mmu_idx, addr); 1842 tlbe = tlb_entry(env, mmu_idx, addr); 1843 } 1844 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1845 } 1846 } 1847 1848 /* Notice an IO access or a needs-MMU-lookup access */ 1849 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1850 /* There's really nothing that can be done to 1851 support this apart from stop-the-world. */ 1852 goto stop_the_world; 1853 } 1854 1855 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1856 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1857 1858 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1859 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1860 } 1861 1862 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1863 QEMU_BUILD_BUG_ON(PAGE_READ != BP_MEM_READ); 1864 QEMU_BUILD_BUG_ON(PAGE_WRITE != BP_MEM_WRITE); 1865 /* therefore prot == watchpoint bits */ 1866 cpu_check_watchpoint(env_cpu(env), addr, size, 1867 full->attrs, prot, retaddr); 1868 } 1869 1870 return hostaddr; 1871 1872 stop_the_world: 1873 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1874 } 1875 1876 /* 1877 * Verify that we have passed the correct MemOp to the correct function. 1878 * 1879 * In the case of the helper_*_mmu functions, we will have done this by 1880 * using the MemOp to look up the helper during code generation. 1881 * 1882 * In the case of the cpu_*_mmu functions, this is up to the caller. 1883 * We could present one function to target code, and dispatch based on 1884 * the MemOp, but so far we have worked hard to avoid an indirect function 1885 * call along the memory path. 1886 */ 1887 static void validate_memop(MemOpIdx oi, MemOp expected) 1888 { 1889 #ifdef CONFIG_DEBUG_TCG 1890 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); 1891 assert(have == expected); 1892 #endif 1893 } 1894 1895 /* 1896 * Load Helpers 1897 * 1898 * We support two different access types. SOFTMMU_CODE_ACCESS is 1899 * specifically for reading instructions from system memory. It is 1900 * called by the translation loop and in some helpers where the code 1901 * is disassembled. It shouldn't be called directly by guest code. 1902 */ 1903 1904 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1905 MemOpIdx oi, uintptr_t retaddr); 1906 1907 static inline uint64_t QEMU_ALWAYS_INLINE 1908 load_memop(const void *haddr, MemOp op) 1909 { 1910 switch (op) { 1911 case MO_UB: 1912 return ldub_p(haddr); 1913 case MO_BEUW: 1914 return lduw_be_p(haddr); 1915 case MO_LEUW: 1916 return lduw_le_p(haddr); 1917 case MO_BEUL: 1918 return (uint32_t)ldl_be_p(haddr); 1919 case MO_LEUL: 1920 return (uint32_t)ldl_le_p(haddr); 1921 case MO_BEUQ: 1922 return ldq_be_p(haddr); 1923 case MO_LEUQ: 1924 return ldq_le_p(haddr); 1925 default: 1926 qemu_build_not_reached(); 1927 } 1928 } 1929 1930 static inline uint64_t QEMU_ALWAYS_INLINE 1931 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1932 uintptr_t retaddr, MemOp op, bool code_read, 1933 FullLoadHelper *full_load) 1934 { 1935 const size_t tlb_off = code_read ? 1936 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1937 const MMUAccessType access_type = 1938 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1939 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 1940 const size_t size = memop_size(op); 1941 uintptr_t mmu_idx = get_mmuidx(oi); 1942 uintptr_t index; 1943 CPUTLBEntry *entry; 1944 target_ulong tlb_addr; 1945 void *haddr; 1946 uint64_t res; 1947 1948 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1949 1950 /* Handle CPU specific unaligned behaviour */ 1951 if (addr & ((1 << a_bits) - 1)) { 1952 cpu_unaligned_access(env_cpu(env), addr, access_type, 1953 mmu_idx, retaddr); 1954 } 1955 1956 index = tlb_index(env, mmu_idx, addr); 1957 entry = tlb_entry(env, mmu_idx, addr); 1958 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1959 1960 /* If the TLB entry is for a different page, reload and try again. */ 1961 if (!tlb_hit(tlb_addr, addr)) { 1962 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1963 addr & TARGET_PAGE_MASK)) { 1964 tlb_fill(env_cpu(env), addr, size, 1965 access_type, mmu_idx, retaddr); 1966 index = tlb_index(env, mmu_idx, addr); 1967 entry = tlb_entry(env, mmu_idx, addr); 1968 } 1969 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1970 tlb_addr &= ~TLB_INVALID_MASK; 1971 } 1972 1973 /* Handle anything that isn't just a straight memory access. */ 1974 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1975 CPUTLBEntryFull *full; 1976 bool need_swap; 1977 1978 /* For anything that is unaligned, recurse through full_load. */ 1979 if ((addr & (size - 1)) != 0) { 1980 goto do_unaligned_access; 1981 } 1982 1983 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1984 1985 /* Handle watchpoints. */ 1986 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1987 /* On watchpoint hit, this will longjmp out. */ 1988 cpu_check_watchpoint(env_cpu(env), addr, size, 1989 full->attrs, BP_MEM_READ, retaddr); 1990 } 1991 1992 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 1993 1994 /* Handle I/O access. */ 1995 if (likely(tlb_addr & TLB_MMIO)) { 1996 return io_readx(env, full, mmu_idx, addr, retaddr, 1997 access_type, op ^ (need_swap * MO_BSWAP)); 1998 } 1999 2000 haddr = (void *)((uintptr_t)addr + entry->addend); 2001 2002 /* 2003 * Keep these two load_memop separate to ensure that the compiler 2004 * is able to fold the entire function to a single instruction. 2005 * There is a build-time assert inside to remind you of this. ;-) 2006 */ 2007 if (unlikely(need_swap)) { 2008 return load_memop(haddr, op ^ MO_BSWAP); 2009 } 2010 return load_memop(haddr, op); 2011 } 2012 2013 /* Handle slow unaligned access (it spans two pages or IO). */ 2014 if (size > 1 2015 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 2016 >= TARGET_PAGE_SIZE)) { 2017 target_ulong addr1, addr2; 2018 uint64_t r1, r2; 2019 unsigned shift; 2020 do_unaligned_access: 2021 addr1 = addr & ~((target_ulong)size - 1); 2022 addr2 = addr1 + size; 2023 r1 = full_load(env, addr1, oi, retaddr); 2024 r2 = full_load(env, addr2, oi, retaddr); 2025 shift = (addr & (size - 1)) * 8; 2026 2027 if (memop_big_endian(op)) { 2028 /* Big-endian combine. */ 2029 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 2030 } else { 2031 /* Little-endian combine. */ 2032 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 2033 } 2034 return res & MAKE_64BIT_MASK(0, size * 8); 2035 } 2036 2037 haddr = (void *)((uintptr_t)addr + entry->addend); 2038 return load_memop(haddr, op); 2039 } 2040 2041 /* 2042 * For the benefit of TCG generated code, we want to avoid the 2043 * complication of ABI-specific return type promotion and always 2044 * return a value extended to the register size of the host. This is 2045 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2046 * data, and for that we always have uint64_t. 2047 * 2048 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2049 */ 2050 2051 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 2052 MemOpIdx oi, uintptr_t retaddr) 2053 { 2054 validate_memop(oi, MO_UB); 2055 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 2056 } 2057 2058 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 2059 MemOpIdx oi, uintptr_t retaddr) 2060 { 2061 return full_ldub_mmu(env, addr, oi, retaddr); 2062 } 2063 2064 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2065 MemOpIdx oi, uintptr_t retaddr) 2066 { 2067 validate_memop(oi, MO_LEUW); 2068 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 2069 full_le_lduw_mmu); 2070 } 2071 2072 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2073 MemOpIdx oi, uintptr_t retaddr) 2074 { 2075 return full_le_lduw_mmu(env, addr, oi, retaddr); 2076 } 2077 2078 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2079 MemOpIdx oi, uintptr_t retaddr) 2080 { 2081 validate_memop(oi, MO_BEUW); 2082 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 2083 full_be_lduw_mmu); 2084 } 2085 2086 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2087 MemOpIdx oi, uintptr_t retaddr) 2088 { 2089 return full_be_lduw_mmu(env, addr, oi, retaddr); 2090 } 2091 2092 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2093 MemOpIdx oi, uintptr_t retaddr) 2094 { 2095 validate_memop(oi, MO_LEUL); 2096 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 2097 full_le_ldul_mmu); 2098 } 2099 2100 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2101 MemOpIdx oi, uintptr_t retaddr) 2102 { 2103 return full_le_ldul_mmu(env, addr, oi, retaddr); 2104 } 2105 2106 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2107 MemOpIdx oi, uintptr_t retaddr) 2108 { 2109 validate_memop(oi, MO_BEUL); 2110 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 2111 full_be_ldul_mmu); 2112 } 2113 2114 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2115 MemOpIdx oi, uintptr_t retaddr) 2116 { 2117 return full_be_ldul_mmu(env, addr, oi, retaddr); 2118 } 2119 2120 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 2121 MemOpIdx oi, uintptr_t retaddr) 2122 { 2123 validate_memop(oi, MO_LEUQ); 2124 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false, 2125 helper_le_ldq_mmu); 2126 } 2127 2128 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 2129 MemOpIdx oi, uintptr_t retaddr) 2130 { 2131 validate_memop(oi, MO_BEUQ); 2132 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false, 2133 helper_be_ldq_mmu); 2134 } 2135 2136 /* 2137 * Provide signed versions of the load routines as well. We can of course 2138 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2139 */ 2140 2141 2142 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 2143 MemOpIdx oi, uintptr_t retaddr) 2144 { 2145 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 2146 } 2147 2148 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 2149 MemOpIdx oi, uintptr_t retaddr) 2150 { 2151 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 2152 } 2153 2154 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 2155 MemOpIdx oi, uintptr_t retaddr) 2156 { 2157 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 2158 } 2159 2160 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 2161 MemOpIdx oi, uintptr_t retaddr) 2162 { 2163 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 2164 } 2165 2166 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 2167 MemOpIdx oi, uintptr_t retaddr) 2168 { 2169 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 2170 } 2171 2172 /* 2173 * Load helpers for cpu_ldst.h. 2174 */ 2175 2176 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, 2177 MemOpIdx oi, uintptr_t retaddr, 2178 FullLoadHelper *full_load) 2179 { 2180 uint64_t ret; 2181 2182 ret = full_load(env, addr, oi, retaddr); 2183 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2184 return ret; 2185 } 2186 2187 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2188 { 2189 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu); 2190 } 2191 2192 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 2193 MemOpIdx oi, uintptr_t ra) 2194 { 2195 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu); 2196 } 2197 2198 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 2199 MemOpIdx oi, uintptr_t ra) 2200 { 2201 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu); 2202 } 2203 2204 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 2205 MemOpIdx oi, uintptr_t ra) 2206 { 2207 return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu); 2208 } 2209 2210 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 2211 MemOpIdx oi, uintptr_t ra) 2212 { 2213 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu); 2214 } 2215 2216 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 2217 MemOpIdx oi, uintptr_t ra) 2218 { 2219 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu); 2220 } 2221 2222 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 2223 MemOpIdx oi, uintptr_t ra) 2224 { 2225 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu); 2226 } 2227 2228 Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr, 2229 MemOpIdx oi, uintptr_t ra) 2230 { 2231 MemOp mop = get_memop(oi); 2232 int mmu_idx = get_mmuidx(oi); 2233 MemOpIdx new_oi; 2234 unsigned a_bits; 2235 uint64_t h, l; 2236 2237 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128)); 2238 a_bits = get_alignment_bits(mop); 2239 2240 /* Handle CPU specific unaligned behaviour */ 2241 if (addr & ((1 << a_bits) - 1)) { 2242 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD, 2243 mmu_idx, ra); 2244 } 2245 2246 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2247 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2248 new_oi = make_memop_idx(mop, mmu_idx); 2249 2250 h = helper_be_ldq_mmu(env, addr, new_oi, ra); 2251 l = helper_be_ldq_mmu(env, addr + 8, new_oi, ra); 2252 2253 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2254 return int128_make128(l, h); 2255 } 2256 2257 Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr, 2258 MemOpIdx oi, uintptr_t ra) 2259 { 2260 MemOp mop = get_memop(oi); 2261 int mmu_idx = get_mmuidx(oi); 2262 MemOpIdx new_oi; 2263 unsigned a_bits; 2264 uint64_t h, l; 2265 2266 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128)); 2267 a_bits = get_alignment_bits(mop); 2268 2269 /* Handle CPU specific unaligned behaviour */ 2270 if (addr & ((1 << a_bits) - 1)) { 2271 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD, 2272 mmu_idx, ra); 2273 } 2274 2275 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2276 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2277 new_oi = make_memop_idx(mop, mmu_idx); 2278 2279 l = helper_le_ldq_mmu(env, addr, new_oi, ra); 2280 h = helper_le_ldq_mmu(env, addr + 8, new_oi, ra); 2281 2282 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2283 return int128_make128(l, h); 2284 } 2285 2286 /* 2287 * Store Helpers 2288 */ 2289 2290 static inline void QEMU_ALWAYS_INLINE 2291 store_memop(void *haddr, uint64_t val, MemOp op) 2292 { 2293 switch (op) { 2294 case MO_UB: 2295 stb_p(haddr, val); 2296 break; 2297 case MO_BEUW: 2298 stw_be_p(haddr, val); 2299 break; 2300 case MO_LEUW: 2301 stw_le_p(haddr, val); 2302 break; 2303 case MO_BEUL: 2304 stl_be_p(haddr, val); 2305 break; 2306 case MO_LEUL: 2307 stl_le_p(haddr, val); 2308 break; 2309 case MO_BEUQ: 2310 stq_be_p(haddr, val); 2311 break; 2312 case MO_LEUQ: 2313 stq_le_p(haddr, val); 2314 break; 2315 default: 2316 qemu_build_not_reached(); 2317 } 2318 } 2319 2320 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2321 MemOpIdx oi, uintptr_t retaddr); 2322 2323 static void __attribute__((noinline)) 2324 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, 2325 uintptr_t retaddr, size_t size, uintptr_t mmu_idx, 2326 bool big_endian) 2327 { 2328 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2329 uintptr_t index, index2; 2330 CPUTLBEntry *entry, *entry2; 2331 target_ulong page1, page2, tlb_addr, tlb_addr2; 2332 MemOpIdx oi; 2333 size_t size2; 2334 int i; 2335 2336 /* 2337 * Ensure the second page is in the TLB. Note that the first page 2338 * is already guaranteed to be filled, and that the second page 2339 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV 2340 * handling: the first page could have evicted itself. 2341 */ 2342 page1 = addr & TARGET_PAGE_MASK; 2343 page2 = (addr + size) & TARGET_PAGE_MASK; 2344 size2 = (addr + size) & ~TARGET_PAGE_MASK; 2345 index2 = tlb_index(env, mmu_idx, page2); 2346 entry2 = tlb_entry(env, mmu_idx, page2); 2347 2348 tlb_addr2 = tlb_addr_write(entry2); 2349 if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) { 2350 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { 2351 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, 2352 mmu_idx, retaddr); 2353 index2 = tlb_index(env, mmu_idx, page2); 2354 entry2 = tlb_entry(env, mmu_idx, page2); 2355 } 2356 tlb_addr2 = tlb_addr_write(entry2); 2357 } 2358 2359 index = tlb_index(env, mmu_idx, addr); 2360 entry = tlb_entry(env, mmu_idx, addr); 2361 tlb_addr = tlb_addr_write(entry); 2362 2363 /* 2364 * Handle watchpoints. Since this may trap, all checks 2365 * must happen before any store. 2366 */ 2367 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2368 cpu_check_watchpoint(env_cpu(env), addr, size - size2, 2369 env_tlb(env)->d[mmu_idx].fulltlb[index].attrs, 2370 BP_MEM_WRITE, retaddr); 2371 } 2372 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { 2373 cpu_check_watchpoint(env_cpu(env), page2, size2, 2374 env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs, 2375 BP_MEM_WRITE, retaddr); 2376 } 2377 2378 /* 2379 * XXX: not efficient, but simple. 2380 * This loop must go in the forward direction to avoid issues 2381 * with self-modifying code in Windows 64-bit. 2382 */ 2383 oi = make_memop_idx(MO_UB, mmu_idx); 2384 if (big_endian) { 2385 for (i = 0; i < size; ++i) { 2386 /* Big-endian extract. */ 2387 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); 2388 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2389 } 2390 } else { 2391 for (i = 0; i < size; ++i) { 2392 /* Little-endian extract. */ 2393 uint8_t val8 = val >> (i * 8); 2394 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2395 } 2396 } 2397 } 2398 2399 static inline void QEMU_ALWAYS_INLINE 2400 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 2401 MemOpIdx oi, uintptr_t retaddr, MemOp op) 2402 { 2403 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2404 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 2405 const size_t size = memop_size(op); 2406 uintptr_t mmu_idx = get_mmuidx(oi); 2407 uintptr_t index; 2408 CPUTLBEntry *entry; 2409 target_ulong tlb_addr; 2410 void *haddr; 2411 2412 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 2413 2414 /* Handle CPU specific unaligned behaviour */ 2415 if (addr & ((1 << a_bits) - 1)) { 2416 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2417 mmu_idx, retaddr); 2418 } 2419 2420 index = tlb_index(env, mmu_idx, addr); 2421 entry = tlb_entry(env, mmu_idx, addr); 2422 tlb_addr = tlb_addr_write(entry); 2423 2424 /* If the TLB entry is for a different page, reload and try again. */ 2425 if (!tlb_hit(tlb_addr, addr)) { 2426 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 2427 addr & TARGET_PAGE_MASK)) { 2428 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 2429 mmu_idx, retaddr); 2430 index = tlb_index(env, mmu_idx, addr); 2431 entry = tlb_entry(env, mmu_idx, addr); 2432 } 2433 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 2434 } 2435 2436 /* Handle anything that isn't just a straight memory access. */ 2437 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 2438 CPUTLBEntryFull *full; 2439 bool need_swap; 2440 2441 /* For anything that is unaligned, recurse through byte stores. */ 2442 if ((addr & (size - 1)) != 0) { 2443 goto do_unaligned_access; 2444 } 2445 2446 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 2447 2448 /* Handle watchpoints. */ 2449 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2450 /* On watchpoint hit, this will longjmp out. */ 2451 cpu_check_watchpoint(env_cpu(env), addr, size, 2452 full->attrs, BP_MEM_WRITE, retaddr); 2453 } 2454 2455 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 2456 2457 /* Handle I/O access. */ 2458 if (tlb_addr & TLB_MMIO) { 2459 io_writex(env, full, mmu_idx, val, addr, retaddr, 2460 op ^ (need_swap * MO_BSWAP)); 2461 return; 2462 } 2463 2464 /* Ignore writes to ROM. */ 2465 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { 2466 return; 2467 } 2468 2469 /* Handle clean RAM pages. */ 2470 if (tlb_addr & TLB_NOTDIRTY) { 2471 notdirty_write(env_cpu(env), addr, size, full, retaddr); 2472 } 2473 2474 haddr = (void *)((uintptr_t)addr + entry->addend); 2475 2476 /* 2477 * Keep these two store_memop separate to ensure that the compiler 2478 * is able to fold the entire function to a single instruction. 2479 * There is a build-time assert inside to remind you of this. ;-) 2480 */ 2481 if (unlikely(need_swap)) { 2482 store_memop(haddr, val, op ^ MO_BSWAP); 2483 } else { 2484 store_memop(haddr, val, op); 2485 } 2486 return; 2487 } 2488 2489 /* Handle slow unaligned access (it spans two pages or IO). */ 2490 if (size > 1 2491 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 2492 >= TARGET_PAGE_SIZE)) { 2493 do_unaligned_access: 2494 store_helper_unaligned(env, addr, val, retaddr, size, 2495 mmu_idx, memop_big_endian(op)); 2496 return; 2497 } 2498 2499 haddr = (void *)((uintptr_t)addr + entry->addend); 2500 store_memop(haddr, val, op); 2501 } 2502 2503 static void __attribute__((noinline)) 2504 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2505 MemOpIdx oi, uintptr_t retaddr) 2506 { 2507 validate_memop(oi, MO_UB); 2508 store_helper(env, addr, val, oi, retaddr, MO_UB); 2509 } 2510 2511 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2512 MemOpIdx oi, uintptr_t retaddr) 2513 { 2514 full_stb_mmu(env, addr, val, oi, retaddr); 2515 } 2516 2517 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2518 MemOpIdx oi, uintptr_t retaddr) 2519 { 2520 validate_memop(oi, MO_LEUW); 2521 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 2522 } 2523 2524 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2525 MemOpIdx oi, uintptr_t retaddr) 2526 { 2527 full_le_stw_mmu(env, addr, val, oi, retaddr); 2528 } 2529 2530 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2531 MemOpIdx oi, uintptr_t retaddr) 2532 { 2533 validate_memop(oi, MO_BEUW); 2534 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 2535 } 2536 2537 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2538 MemOpIdx oi, uintptr_t retaddr) 2539 { 2540 full_be_stw_mmu(env, addr, val, oi, retaddr); 2541 } 2542 2543 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2544 MemOpIdx oi, uintptr_t retaddr) 2545 { 2546 validate_memop(oi, MO_LEUL); 2547 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 2548 } 2549 2550 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2551 MemOpIdx oi, uintptr_t retaddr) 2552 { 2553 full_le_stl_mmu(env, addr, val, oi, retaddr); 2554 } 2555 2556 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2557 MemOpIdx oi, uintptr_t retaddr) 2558 { 2559 validate_memop(oi, MO_BEUL); 2560 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 2561 } 2562 2563 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2564 MemOpIdx oi, uintptr_t retaddr) 2565 { 2566 full_be_stl_mmu(env, addr, val, oi, retaddr); 2567 } 2568 2569 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2570 MemOpIdx oi, uintptr_t retaddr) 2571 { 2572 validate_memop(oi, MO_LEUQ); 2573 store_helper(env, addr, val, oi, retaddr, MO_LEUQ); 2574 } 2575 2576 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2577 MemOpIdx oi, uintptr_t retaddr) 2578 { 2579 validate_memop(oi, MO_BEUQ); 2580 store_helper(env, addr, val, oi, retaddr, MO_BEUQ); 2581 } 2582 2583 /* 2584 * Store Helpers for cpu_ldst.h 2585 */ 2586 2587 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr, 2588 uint64_t val, MemOpIdx oi, uintptr_t retaddr); 2589 2590 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr, 2591 uint64_t val, MemOpIdx oi, uintptr_t ra, 2592 FullStoreHelper *full_store) 2593 { 2594 full_store(env, addr, val, oi, ra); 2595 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2596 } 2597 2598 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2599 MemOpIdx oi, uintptr_t retaddr) 2600 { 2601 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu); 2602 } 2603 2604 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2605 MemOpIdx oi, uintptr_t retaddr) 2606 { 2607 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu); 2608 } 2609 2610 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2611 MemOpIdx oi, uintptr_t retaddr) 2612 { 2613 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu); 2614 } 2615 2616 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2617 MemOpIdx oi, uintptr_t retaddr) 2618 { 2619 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu); 2620 } 2621 2622 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2623 MemOpIdx oi, uintptr_t retaddr) 2624 { 2625 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu); 2626 } 2627 2628 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2629 MemOpIdx oi, uintptr_t retaddr) 2630 { 2631 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu); 2632 } 2633 2634 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2635 MemOpIdx oi, uintptr_t retaddr) 2636 { 2637 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu); 2638 } 2639 2640 void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 2641 MemOpIdx oi, uintptr_t ra) 2642 { 2643 MemOp mop = get_memop(oi); 2644 int mmu_idx = get_mmuidx(oi); 2645 MemOpIdx new_oi; 2646 unsigned a_bits; 2647 2648 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128)); 2649 a_bits = get_alignment_bits(mop); 2650 2651 /* Handle CPU specific unaligned behaviour */ 2652 if (addr & ((1 << a_bits) - 1)) { 2653 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2654 mmu_idx, ra); 2655 } 2656 2657 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2658 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2659 new_oi = make_memop_idx(mop, mmu_idx); 2660 2661 helper_be_stq_mmu(env, addr, int128_gethi(val), new_oi, ra); 2662 helper_be_stq_mmu(env, addr + 8, int128_getlo(val), new_oi, ra); 2663 2664 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2665 } 2666 2667 void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 2668 MemOpIdx oi, uintptr_t ra) 2669 { 2670 MemOp mop = get_memop(oi); 2671 int mmu_idx = get_mmuidx(oi); 2672 MemOpIdx new_oi; 2673 unsigned a_bits; 2674 2675 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128)); 2676 a_bits = get_alignment_bits(mop); 2677 2678 /* Handle CPU specific unaligned behaviour */ 2679 if (addr & ((1 << a_bits) - 1)) { 2680 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2681 mmu_idx, ra); 2682 } 2683 2684 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2685 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2686 new_oi = make_memop_idx(mop, mmu_idx); 2687 2688 helper_le_stq_mmu(env, addr, int128_getlo(val), new_oi, ra); 2689 helper_le_stq_mmu(env, addr + 8, int128_gethi(val), new_oi, ra); 2690 2691 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2692 } 2693 2694 #include "ldst_common.c.inc" 2695 2696 /* 2697 * First set of functions passes in OI and RETADDR. 2698 * This makes them callable from other helpers. 2699 */ 2700 2701 #define ATOMIC_NAME(X) \ 2702 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2703 2704 #define ATOMIC_MMU_CLEANUP 2705 2706 #include "atomic_common.c.inc" 2707 2708 #define DATA_SIZE 1 2709 #include "atomic_template.h" 2710 2711 #define DATA_SIZE 2 2712 #include "atomic_template.h" 2713 2714 #define DATA_SIZE 4 2715 #include "atomic_template.h" 2716 2717 #ifdef CONFIG_ATOMIC64 2718 #define DATA_SIZE 8 2719 #include "atomic_template.h" 2720 #endif 2721 2722 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2723 #define DATA_SIZE 16 2724 #include "atomic_template.h" 2725 #endif 2726 2727 /* Code access functions. */ 2728 2729 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, 2730 MemOpIdx oi, uintptr_t retaddr) 2731 { 2732 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); 2733 } 2734 2735 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2736 { 2737 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2738 return full_ldub_code(env, addr, oi, 0); 2739 } 2740 2741 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, 2742 MemOpIdx oi, uintptr_t retaddr) 2743 { 2744 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); 2745 } 2746 2747 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2748 { 2749 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2750 return full_lduw_code(env, addr, oi, 0); 2751 } 2752 2753 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, 2754 MemOpIdx oi, uintptr_t retaddr) 2755 { 2756 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); 2757 } 2758 2759 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2760 { 2761 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2762 return full_ldl_code(env, addr, oi, 0); 2763 } 2764 2765 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, 2766 MemOpIdx oi, uintptr_t retaddr) 2767 { 2768 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code); 2769 } 2770 2771 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2772 { 2773 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2774 return full_ldq_code(env, addr, oi, 0); 2775 } 2776 2777 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 2778 MemOpIdx oi, uintptr_t retaddr) 2779 { 2780 return full_ldub_code(env, addr, oi, retaddr); 2781 } 2782 2783 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 2784 MemOpIdx oi, uintptr_t retaddr) 2785 { 2786 MemOp mop = get_memop(oi); 2787 int idx = get_mmuidx(oi); 2788 uint16_t ret; 2789 2790 ret = full_lduw_code(env, addr, make_memop_idx(MO_TEUW, idx), retaddr); 2791 if ((mop & MO_BSWAP) != MO_TE) { 2792 ret = bswap16(ret); 2793 } 2794 return ret; 2795 } 2796 2797 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 2798 MemOpIdx oi, uintptr_t retaddr) 2799 { 2800 MemOp mop = get_memop(oi); 2801 int idx = get_mmuidx(oi); 2802 uint32_t ret; 2803 2804 ret = full_ldl_code(env, addr, make_memop_idx(MO_TEUL, idx), retaddr); 2805 if ((mop & MO_BSWAP) != MO_TE) { 2806 ret = bswap32(ret); 2807 } 2808 return ret; 2809 } 2810 2811 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 2812 MemOpIdx oi, uintptr_t retaddr) 2813 { 2814 MemOp mop = get_memop(oi); 2815 int idx = get_mmuidx(oi); 2816 uint64_t ret; 2817 2818 ret = full_ldq_code(env, addr, make_memop_idx(MO_TEUQ, idx), retaddr); 2819 if ((mop & MO_BSWAP) != MO_TE) { 2820 ret = bswap64(ret); 2821 } 2822 return ret; 2823 } 2824