1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "exec/memory.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/tb-flush.h" 29 #include "exec/memory-internal.h" 30 #include "exec/ram_addr.h" 31 #include "exec/mmu-access-type.h" 32 #include "exec/tlb-common.h" 33 #include "exec/vaddr.h" 34 #include "tcg/tcg.h" 35 #include "qemu/error-report.h" 36 #include "exec/log.h" 37 #include "exec/helper-proto-common.h" 38 #include "qemu/atomic.h" 39 #include "qemu/atomic128.h" 40 #include "exec/translate-all.h" 41 #include "trace.h" 42 #include "tb-hash.h" 43 #include "internal-common.h" 44 #include "internal-target.h" 45 #ifdef CONFIG_PLUGIN 46 #include "qemu/plugin-memory.h" 47 #endif 48 #include "tcg/tcg-ldst.h" 49 #include "tcg/oversized-guest.h" 50 51 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 52 /* #define DEBUG_TLB */ 53 /* #define DEBUG_TLB_LOG */ 54 55 #ifdef DEBUG_TLB 56 # define DEBUG_TLB_GATE 1 57 # ifdef DEBUG_TLB_LOG 58 # define DEBUG_TLB_LOG_GATE 1 59 # else 60 # define DEBUG_TLB_LOG_GATE 0 61 # endif 62 #else 63 # define DEBUG_TLB_GATE 0 64 # define DEBUG_TLB_LOG_GATE 0 65 #endif 66 67 #define tlb_debug(fmt, ...) do { \ 68 if (DEBUG_TLB_LOG_GATE) { \ 69 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 70 ## __VA_ARGS__); \ 71 } else if (DEBUG_TLB_GATE) { \ 72 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 73 } \ 74 } while (0) 75 76 #define assert_cpu_is_self(cpu) do { \ 77 if (DEBUG_TLB_GATE) { \ 78 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 79 } \ 80 } while (0) 81 82 /* run_on_cpu_data.target_ptr should always be big enough for a 83 * vaddr even on 32 bit builds 84 */ 85 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 86 87 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 88 */ 89 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 90 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 91 92 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 93 { 94 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 95 } 96 97 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 98 { 99 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 100 } 101 102 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry, 103 MMUAccessType access_type) 104 { 105 /* Do not rearrange the CPUTLBEntry structure members. */ 106 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != 107 MMU_DATA_LOAD * sizeof(uint64_t)); 108 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != 109 MMU_DATA_STORE * sizeof(uint64_t)); 110 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != 111 MMU_INST_FETCH * sizeof(uint64_t)); 112 113 #if TARGET_LONG_BITS == 32 114 /* Use qatomic_read, in case of addr_write; only care about low bits. */ 115 const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type]; 116 ptr += HOST_BIG_ENDIAN; 117 return qatomic_read(ptr); 118 #else 119 const uint64_t *ptr = &entry->addr_idx[access_type]; 120 # if TCG_OVERSIZED_GUEST 121 return *ptr; 122 # else 123 /* ofs might correspond to .addr_write, so use qatomic_read */ 124 return qatomic_read(ptr); 125 # endif 126 #endif 127 } 128 129 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry) 130 { 131 return tlb_read_idx(entry, MMU_DATA_STORE); 132 } 133 134 /* Find the TLB index corresponding to the mmu_idx + address pair. */ 135 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx, 136 vaddr addr) 137 { 138 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; 139 140 return (addr >> TARGET_PAGE_BITS) & size_mask; 141 } 142 143 /* Find the TLB entry corresponding to the mmu_idx + address pair. */ 144 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx, 145 vaddr addr) 146 { 147 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)]; 148 } 149 150 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 151 size_t max_entries) 152 { 153 desc->window_begin_ns = ns; 154 desc->window_max_entries = max_entries; 155 } 156 157 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 158 { 159 CPUJumpCache *jc = cpu->tb_jmp_cache; 160 int i, i0; 161 162 if (unlikely(!jc)) { 163 return; 164 } 165 166 i0 = tb_jmp_cache_hash_page(page_addr); 167 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 168 qatomic_set(&jc->array[i0 + i].tb, NULL); 169 } 170 } 171 172 /** 173 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 174 * @desc: The CPUTLBDesc portion of the TLB 175 * @fast: The CPUTLBDescFast portion of the same TLB 176 * 177 * Called with tlb_lock_held. 178 * 179 * We have two main constraints when resizing a TLB: (1) we only resize it 180 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 181 * the array or unnecessarily flushing it), which means we do not control how 182 * frequently the resizing can occur; (2) we don't have access to the guest's 183 * future scheduling decisions, and therefore have to decide the magnitude of 184 * the resize based on past observations. 185 * 186 * In general, a memory-hungry process can benefit greatly from an appropriately 187 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 188 * we just have to make the TLB as large as possible; while an oversized TLB 189 * results in minimal TLB miss rates, it also takes longer to be flushed 190 * (flushes can be _very_ frequent), and the reduced locality can also hurt 191 * performance. 192 * 193 * To achieve near-optimal performance for all kinds of workloads, we: 194 * 195 * 1. Aggressively increase the size of the TLB when the use rate of the 196 * TLB being flushed is high, since it is likely that in the near future this 197 * memory-hungry process will execute again, and its memory hungriness will 198 * probably be similar. 199 * 200 * 2. Slowly reduce the size of the TLB as the use rate declines over a 201 * reasonably large time window. The rationale is that if in such a time window 202 * we have not observed a high TLB use rate, it is likely that we won't observe 203 * it in the near future. In that case, once a time window expires we downsize 204 * the TLB to match the maximum use rate observed in the window. 205 * 206 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 207 * since in that range performance is likely near-optimal. Recall that the TLB 208 * is direct mapped, so we want the use rate to be low (or at least not too 209 * high), since otherwise we are likely to have a significant amount of 210 * conflict misses. 211 */ 212 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 213 int64_t now) 214 { 215 size_t old_size = tlb_n_entries(fast); 216 size_t rate; 217 size_t new_size = old_size; 218 int64_t window_len_ms = 100; 219 int64_t window_len_ns = window_len_ms * 1000 * 1000; 220 bool window_expired = now > desc->window_begin_ns + window_len_ns; 221 222 if (desc->n_used_entries > desc->window_max_entries) { 223 desc->window_max_entries = desc->n_used_entries; 224 } 225 rate = desc->window_max_entries * 100 / old_size; 226 227 if (rate > 70) { 228 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 229 } else if (rate < 30 && window_expired) { 230 size_t ceil = pow2ceil(desc->window_max_entries); 231 size_t expected_rate = desc->window_max_entries * 100 / ceil; 232 233 /* 234 * Avoid undersizing when the max number of entries seen is just below 235 * a pow2. For instance, if max_entries == 1025, the expected use rate 236 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 237 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 238 * later. Thus, make sure that the expected use rate remains below 70%. 239 * (and since we double the size, that means the lowest rate we'd 240 * expect to get is 35%, which is still in the 30-70% range where 241 * we consider that the size is appropriate.) 242 */ 243 if (expected_rate > 70) { 244 ceil *= 2; 245 } 246 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 247 } 248 249 if (new_size == old_size) { 250 if (window_expired) { 251 tlb_window_reset(desc, now, desc->n_used_entries); 252 } 253 return; 254 } 255 256 g_free(fast->table); 257 g_free(desc->fulltlb); 258 259 tlb_window_reset(desc, now, 0); 260 /* desc->n_used_entries is cleared by the caller */ 261 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 262 fast->table = g_try_new(CPUTLBEntry, new_size); 263 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 264 265 /* 266 * If the allocations fail, try smaller sizes. We just freed some 267 * memory, so going back to half of new_size has a good chance of working. 268 * Increased memory pressure elsewhere in the system might cause the 269 * allocations to fail though, so we progressively reduce the allocation 270 * size, aborting if we cannot even allocate the smallest TLB we support. 271 */ 272 while (fast->table == NULL || desc->fulltlb == NULL) { 273 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 274 error_report("%s: %s", __func__, strerror(errno)); 275 abort(); 276 } 277 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 278 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 279 280 g_free(fast->table); 281 g_free(desc->fulltlb); 282 fast->table = g_try_new(CPUTLBEntry, new_size); 283 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 284 } 285 } 286 287 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 288 { 289 desc->n_used_entries = 0; 290 desc->large_page_addr = -1; 291 desc->large_page_mask = -1; 292 desc->vindex = 0; 293 memset(fast->table, -1, sizeof_tlb(fast)); 294 memset(desc->vtable, -1, sizeof(desc->vtable)); 295 } 296 297 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 298 int64_t now) 299 { 300 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 301 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 302 303 tlb_mmu_resize_locked(desc, fast, now); 304 tlb_mmu_flush_locked(desc, fast); 305 } 306 307 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 308 { 309 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 310 311 tlb_window_reset(desc, now, 0); 312 desc->n_used_entries = 0; 313 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 314 fast->table = g_new(CPUTLBEntry, n_entries); 315 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 316 tlb_mmu_flush_locked(desc, fast); 317 } 318 319 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 320 { 321 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 322 } 323 324 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 325 { 326 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 327 } 328 329 void tlb_init(CPUState *cpu) 330 { 331 int64_t now = get_clock_realtime(); 332 int i; 333 334 qemu_spin_init(&cpu->neg.tlb.c.lock); 335 336 /* All tlbs are initialized flushed. */ 337 cpu->neg.tlb.c.dirty = 0; 338 339 for (i = 0; i < NB_MMU_MODES; i++) { 340 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 341 } 342 } 343 344 void tlb_destroy(CPUState *cpu) 345 { 346 int i; 347 348 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 349 for (i = 0; i < NB_MMU_MODES; i++) { 350 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 351 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 352 353 g_free(fast->table); 354 g_free(desc->fulltlb); 355 } 356 } 357 358 /* flush_all_helper: run fn across all cpus 359 * 360 * If the wait flag is set then the src cpu's helper will be queued as 361 * "safe" work and the loop exited creating a synchronisation point 362 * where all queued work will be finished before execution starts 363 * again. 364 */ 365 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 366 run_on_cpu_data d) 367 { 368 CPUState *cpu; 369 370 CPU_FOREACH(cpu) { 371 if (cpu != src) { 372 async_run_on_cpu(cpu, fn, d); 373 } 374 } 375 } 376 377 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 378 { 379 uint16_t asked = data.host_int; 380 uint16_t all_dirty, work, to_clean; 381 int64_t now = get_clock_realtime(); 382 383 assert_cpu_is_self(cpu); 384 385 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 386 387 qemu_spin_lock(&cpu->neg.tlb.c.lock); 388 389 all_dirty = cpu->neg.tlb.c.dirty; 390 to_clean = asked & all_dirty; 391 all_dirty &= ~to_clean; 392 cpu->neg.tlb.c.dirty = all_dirty; 393 394 for (work = to_clean; work != 0; work &= work - 1) { 395 int mmu_idx = ctz32(work); 396 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 397 } 398 399 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 400 401 tcg_flush_jmp_cache(cpu); 402 403 if (to_clean == ALL_MMUIDX_BITS) { 404 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 405 cpu->neg.tlb.c.full_flush_count + 1); 406 } else { 407 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 408 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 409 if (to_clean != asked) { 410 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 411 cpu->neg.tlb.c.elide_flush_count + 412 ctpop16(asked & ~to_clean)); 413 } 414 } 415 } 416 417 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 418 { 419 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 420 421 assert_cpu_is_self(cpu); 422 423 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 424 } 425 426 void tlb_flush(CPUState *cpu) 427 { 428 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 429 } 430 431 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 432 { 433 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 434 435 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 436 437 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 438 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 439 } 440 441 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 442 { 443 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 444 } 445 446 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 447 vaddr page, vaddr mask) 448 { 449 page &= mask; 450 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 451 452 return (page == (tlb_entry->addr_read & mask) || 453 page == (tlb_addr_write(tlb_entry) & mask) || 454 page == (tlb_entry->addr_code & mask)); 455 } 456 457 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 458 { 459 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 460 } 461 462 /** 463 * tlb_entry_is_empty - return true if the entry is not in use 464 * @te: pointer to CPUTLBEntry 465 */ 466 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 467 { 468 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 469 } 470 471 /* Called with tlb_c.lock held */ 472 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 473 vaddr page, 474 vaddr mask) 475 { 476 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 477 memset(tlb_entry, -1, sizeof(*tlb_entry)); 478 return true; 479 } 480 return false; 481 } 482 483 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 484 { 485 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 486 } 487 488 /* Called with tlb_c.lock held */ 489 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 490 vaddr page, 491 vaddr mask) 492 { 493 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 494 int k; 495 496 assert_cpu_is_self(cpu); 497 for (k = 0; k < CPU_VTLB_SIZE; k++) { 498 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 499 tlb_n_used_entries_dec(cpu, mmu_idx); 500 } 501 } 502 } 503 504 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 505 vaddr page) 506 { 507 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 508 } 509 510 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 511 { 512 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 513 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 514 515 /* Check if we need to flush due to large pages. */ 516 if ((page & lp_mask) == lp_addr) { 517 tlb_debug("forcing full flush midx %d (%016" 518 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 519 midx, lp_addr, lp_mask); 520 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 521 } else { 522 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 523 tlb_n_used_entries_dec(cpu, midx); 524 } 525 tlb_flush_vtlb_page_locked(cpu, midx, page); 526 } 527 } 528 529 /** 530 * tlb_flush_page_by_mmuidx_async_0: 531 * @cpu: cpu on which to flush 532 * @addr: page of virtual address to flush 533 * @idxmap: set of mmu_idx to flush 534 * 535 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 536 * at @addr from the tlbs indicated by @idxmap from @cpu. 537 */ 538 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 539 vaddr addr, 540 uint16_t idxmap) 541 { 542 int mmu_idx; 543 544 assert_cpu_is_self(cpu); 545 546 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 547 548 qemu_spin_lock(&cpu->neg.tlb.c.lock); 549 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 550 if ((idxmap >> mmu_idx) & 1) { 551 tlb_flush_page_locked(cpu, mmu_idx, addr); 552 } 553 } 554 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 555 556 /* 557 * Discard jump cache entries for any tb which might potentially 558 * overlap the flushed page, which includes the previous. 559 */ 560 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 561 tb_jmp_cache_clear_page(cpu, addr); 562 } 563 564 /** 565 * tlb_flush_page_by_mmuidx_async_1: 566 * @cpu: cpu on which to flush 567 * @data: encoded addr + idxmap 568 * 569 * Helper for tlb_flush_page_by_mmuidx and friends, called through 570 * async_run_on_cpu. The idxmap parameter is encoded in the page 571 * offset of the target_ptr field. This limits the set of mmu_idx 572 * that can be passed via this method. 573 */ 574 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 575 run_on_cpu_data data) 576 { 577 vaddr addr_and_idxmap = data.target_ptr; 578 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 579 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 580 581 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 582 } 583 584 typedef struct { 585 vaddr addr; 586 uint16_t idxmap; 587 } TLBFlushPageByMMUIdxData; 588 589 /** 590 * tlb_flush_page_by_mmuidx_async_2: 591 * @cpu: cpu on which to flush 592 * @data: allocated addr + idxmap 593 * 594 * Helper for tlb_flush_page_by_mmuidx and friends, called through 595 * async_run_on_cpu. The addr+idxmap parameters are stored in a 596 * TLBFlushPageByMMUIdxData structure that has been allocated 597 * specifically for this helper. Free the structure when done. 598 */ 599 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 600 run_on_cpu_data data) 601 { 602 TLBFlushPageByMMUIdxData *d = data.host_ptr; 603 604 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 605 g_free(d); 606 } 607 608 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 609 { 610 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 611 612 assert_cpu_is_self(cpu); 613 614 /* This should already be page aligned */ 615 addr &= TARGET_PAGE_MASK; 616 617 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 618 } 619 620 void tlb_flush_page(CPUState *cpu, vaddr addr) 621 { 622 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 623 } 624 625 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 626 vaddr addr, 627 uint16_t idxmap) 628 { 629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 630 631 /* This should already be page aligned */ 632 addr &= TARGET_PAGE_MASK; 633 634 /* 635 * Allocate memory to hold addr+idxmap only when needed. 636 * See tlb_flush_page_by_mmuidx for details. 637 */ 638 if (idxmap < TARGET_PAGE_SIZE) { 639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 640 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 641 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 642 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 643 } else { 644 CPUState *dst_cpu; 645 TLBFlushPageByMMUIdxData *d; 646 647 /* Allocate a separate data block for each destination cpu. */ 648 CPU_FOREACH(dst_cpu) { 649 if (dst_cpu != src_cpu) { 650 d = g_new(TLBFlushPageByMMUIdxData, 1); 651 d->addr = addr; 652 d->idxmap = idxmap; 653 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 654 RUN_ON_CPU_HOST_PTR(d)); 655 } 656 } 657 658 d = g_new(TLBFlushPageByMMUIdxData, 1); 659 d->addr = addr; 660 d->idxmap = idxmap; 661 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 662 RUN_ON_CPU_HOST_PTR(d)); 663 } 664 } 665 666 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 667 { 668 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 669 } 670 671 static void tlb_flush_range_locked(CPUState *cpu, int midx, 672 vaddr addr, vaddr len, 673 unsigned bits) 674 { 675 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 676 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 677 vaddr mask = MAKE_64BIT_MASK(0, bits); 678 679 /* 680 * If @bits is smaller than the tlb size, there may be multiple entries 681 * within the TLB; otherwise all addresses that match under @mask hit 682 * the same TLB entry. 683 * TODO: Perhaps allow bits to be a few bits less than the size. 684 * For now, just flush the entire TLB. 685 * 686 * If @len is larger than the tlb size, then it will take longer to 687 * test all of the entries in the TLB than it will to flush it all. 688 */ 689 if (mask < f->mask || len > f->mask) { 690 tlb_debug("forcing full flush midx %d (" 691 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 692 midx, addr, mask, len); 693 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 694 return; 695 } 696 697 /* 698 * Check if we need to flush due to large pages. 699 * Because large_page_mask contains all 1's from the msb, 700 * we only need to test the end of the range. 701 */ 702 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 703 tlb_debug("forcing full flush midx %d (" 704 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 705 midx, d->large_page_addr, d->large_page_mask); 706 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 707 return; 708 } 709 710 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 711 vaddr page = addr + i; 712 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 713 714 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 715 tlb_n_used_entries_dec(cpu, midx); 716 } 717 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 718 } 719 } 720 721 typedef struct { 722 vaddr addr; 723 vaddr len; 724 uint16_t idxmap; 725 uint16_t bits; 726 } TLBFlushRangeData; 727 728 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 729 TLBFlushRangeData d) 730 { 731 int mmu_idx; 732 733 assert_cpu_is_self(cpu); 734 735 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 736 d.addr, d.bits, d.len, d.idxmap); 737 738 qemu_spin_lock(&cpu->neg.tlb.c.lock); 739 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 740 if ((d.idxmap >> mmu_idx) & 1) { 741 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 742 } 743 } 744 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 745 746 /* 747 * If the length is larger than the jump cache size, then it will take 748 * longer to clear each entry individually than it will to clear it all. 749 */ 750 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 751 tcg_flush_jmp_cache(cpu); 752 return; 753 } 754 755 /* 756 * Discard jump cache entries for any tb which might potentially 757 * overlap the flushed pages, which includes the previous. 758 */ 759 d.addr -= TARGET_PAGE_SIZE; 760 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 761 tb_jmp_cache_clear_page(cpu, d.addr); 762 d.addr += TARGET_PAGE_SIZE; 763 } 764 } 765 766 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 767 run_on_cpu_data data) 768 { 769 TLBFlushRangeData *d = data.host_ptr; 770 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 771 g_free(d); 772 } 773 774 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 775 vaddr len, uint16_t idxmap, 776 unsigned bits) 777 { 778 TLBFlushRangeData d; 779 780 assert_cpu_is_self(cpu); 781 782 /* 783 * If all bits are significant, and len is small, 784 * this devolves to tlb_flush_page. 785 */ 786 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 787 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 788 return; 789 } 790 /* If no page bits are significant, this devolves to tlb_flush. */ 791 if (bits < TARGET_PAGE_BITS) { 792 tlb_flush_by_mmuidx(cpu, idxmap); 793 return; 794 } 795 796 /* This should already be page aligned */ 797 d.addr = addr & TARGET_PAGE_MASK; 798 d.len = len; 799 d.idxmap = idxmap; 800 d.bits = bits; 801 802 tlb_flush_range_by_mmuidx_async_0(cpu, d); 803 } 804 805 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 806 uint16_t idxmap, unsigned bits) 807 { 808 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 809 } 810 811 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 812 vaddr addr, 813 vaddr len, 814 uint16_t idxmap, 815 unsigned bits) 816 { 817 TLBFlushRangeData d, *p; 818 CPUState *dst_cpu; 819 820 /* 821 * If all bits are significant, and len is small, 822 * this devolves to tlb_flush_page. 823 */ 824 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 825 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 826 return; 827 } 828 /* If no page bits are significant, this devolves to tlb_flush. */ 829 if (bits < TARGET_PAGE_BITS) { 830 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 831 return; 832 } 833 834 /* This should already be page aligned */ 835 d.addr = addr & TARGET_PAGE_MASK; 836 d.len = len; 837 d.idxmap = idxmap; 838 d.bits = bits; 839 840 /* Allocate a separate data block for each destination cpu. */ 841 CPU_FOREACH(dst_cpu) { 842 if (dst_cpu != src_cpu) { 843 p = g_memdup(&d, sizeof(d)); 844 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 845 RUN_ON_CPU_HOST_PTR(p)); 846 } 847 } 848 849 p = g_memdup(&d, sizeof(d)); 850 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 851 RUN_ON_CPU_HOST_PTR(p)); 852 } 853 854 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 855 vaddr addr, 856 uint16_t idxmap, 857 unsigned bits) 858 { 859 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 860 idxmap, bits); 861 } 862 863 /* update the TLBs so that writes to code in the virtual page 'addr' 864 can be detected */ 865 void tlb_protect_code(ram_addr_t ram_addr) 866 { 867 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 868 TARGET_PAGE_SIZE, 869 DIRTY_MEMORY_CODE); 870 } 871 872 /* update the TLB so that writes in physical page 'phys_addr' are no longer 873 tested for self modifying code */ 874 void tlb_unprotect_code(ram_addr_t ram_addr) 875 { 876 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 877 } 878 879 880 /* 881 * Dirty write flag handling 882 * 883 * When the TCG code writes to a location it looks up the address in 884 * the TLB and uses that data to compute the final address. If any of 885 * the lower bits of the address are set then the slow path is forced. 886 * There are a number of reasons to do this but for normal RAM the 887 * most usual is detecting writes to code regions which may invalidate 888 * generated code. 889 * 890 * Other vCPUs might be reading their TLBs during guest execution, so we update 891 * te->addr_write with qatomic_set. We don't need to worry about this for 892 * oversized guests as MTTCG is disabled for them. 893 * 894 * Called with tlb_c.lock held. 895 */ 896 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 897 uintptr_t start, uintptr_t length) 898 { 899 uintptr_t addr = tlb_entry->addr_write; 900 901 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 902 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 903 addr &= TARGET_PAGE_MASK; 904 addr += tlb_entry->addend; 905 if ((addr - start) < length) { 906 #if TARGET_LONG_BITS == 32 907 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 908 ptr_write += HOST_BIG_ENDIAN; 909 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 910 #elif TCG_OVERSIZED_GUEST 911 tlb_entry->addr_write |= TLB_NOTDIRTY; 912 #else 913 qatomic_set(&tlb_entry->addr_write, 914 tlb_entry->addr_write | TLB_NOTDIRTY); 915 #endif 916 } 917 } 918 } 919 920 /* 921 * Called with tlb_c.lock held. 922 * Called only from the vCPU context, i.e. the TLB's owner thread. 923 */ 924 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 925 { 926 *d = *s; 927 } 928 929 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 930 * the target vCPU). 931 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 932 * thing actually updated is the target TLB entry ->addr_write flags. 933 */ 934 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 935 { 936 int mmu_idx; 937 938 qemu_spin_lock(&cpu->neg.tlb.c.lock); 939 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 940 unsigned int i; 941 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]); 942 943 for (i = 0; i < n; i++) { 944 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i], 945 start1, length); 946 } 947 948 for (i = 0; i < CPU_VTLB_SIZE; i++) { 949 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i], 950 start1, length); 951 } 952 } 953 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 954 } 955 956 /* Called with tlb_c.lock held */ 957 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 958 vaddr addr) 959 { 960 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 961 tlb_entry->addr_write = addr; 962 } 963 } 964 965 /* update the TLB corresponding to virtual page vaddr 966 so that it is no longer dirty */ 967 static void tlb_set_dirty(CPUState *cpu, vaddr addr) 968 { 969 int mmu_idx; 970 971 assert_cpu_is_self(cpu); 972 973 addr &= TARGET_PAGE_MASK; 974 qemu_spin_lock(&cpu->neg.tlb.c.lock); 975 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 976 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 977 } 978 979 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 980 int k; 981 for (k = 0; k < CPU_VTLB_SIZE; k++) { 982 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 983 } 984 } 985 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 986 } 987 988 /* Our TLB does not support large pages, so remember the area covered by 989 large pages and trigger a full TLB flush if these are invalidated. */ 990 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 991 vaddr addr, uint64_t size) 992 { 993 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 994 vaddr lp_mask = ~(size - 1); 995 996 if (lp_addr == (vaddr)-1) { 997 /* No previous large page. */ 998 lp_addr = addr; 999 } else { 1000 /* Extend the existing region to include the new page. 1001 This is a compromise between unnecessary flushes and 1002 the cost of maintaining a full variable size TLB. */ 1003 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 1004 while (((lp_addr ^ addr) & lp_mask) != 0) { 1005 lp_mask <<= 1; 1006 } 1007 } 1008 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1009 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 1010 } 1011 1012 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1013 vaddr address, int flags, 1014 MMUAccessType access_type, bool enable) 1015 { 1016 if (enable) { 1017 address |= flags & TLB_FLAGS_MASK; 1018 flags &= TLB_SLOW_FLAGS_MASK; 1019 if (flags) { 1020 address |= TLB_FORCE_SLOW; 1021 } 1022 } else { 1023 address = -1; 1024 flags = 0; 1025 } 1026 ent->addr_idx[access_type] = address; 1027 full->slow_flags[access_type] = flags; 1028 } 1029 1030 /* 1031 * Add a new TLB entry. At most one entry for a given virtual address 1032 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1033 * supplied size is only used by tlb_flush_page. 1034 * 1035 * Called from TCG-generated code, which is under an RCU read-side 1036 * critical section. 1037 */ 1038 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1039 vaddr addr, CPUTLBEntryFull *full) 1040 { 1041 CPUTLB *tlb = &cpu->neg.tlb; 1042 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1043 MemoryRegionSection *section; 1044 unsigned int index, read_flags, write_flags; 1045 uintptr_t addend; 1046 CPUTLBEntry *te, tn; 1047 hwaddr iotlb, xlat, sz, paddr_page; 1048 vaddr addr_page; 1049 int asidx, wp_flags, prot; 1050 bool is_ram, is_romd; 1051 1052 assert_cpu_is_self(cpu); 1053 1054 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1055 sz = TARGET_PAGE_SIZE; 1056 } else { 1057 sz = (hwaddr)1 << full->lg_page_size; 1058 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1059 } 1060 addr_page = addr & TARGET_PAGE_MASK; 1061 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1062 1063 prot = full->prot; 1064 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1065 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1066 &xlat, &sz, full->attrs, &prot); 1067 assert(sz >= TARGET_PAGE_SIZE); 1068 1069 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1070 " prot=%x idx=%d\n", 1071 addr, full->phys_addr, prot, mmu_idx); 1072 1073 read_flags = full->tlb_fill_flags; 1074 if (full->lg_page_size < TARGET_PAGE_BITS) { 1075 /* Repeat the MMU check and TLB fill on every access. */ 1076 read_flags |= TLB_INVALID_MASK; 1077 } 1078 1079 is_ram = memory_region_is_ram(section->mr); 1080 is_romd = memory_region_is_romd(section->mr); 1081 1082 if (is_ram || is_romd) { 1083 /* RAM and ROMD both have associated host memory. */ 1084 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1085 } else { 1086 /* I/O does not; force the host address to NULL. */ 1087 addend = 0; 1088 } 1089 1090 write_flags = read_flags; 1091 if (is_ram) { 1092 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1093 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1094 /* 1095 * Computing is_clean is expensive; avoid all that unless 1096 * the page is actually writable. 1097 */ 1098 if (prot & PAGE_WRITE) { 1099 if (section->readonly) { 1100 write_flags |= TLB_DISCARD_WRITE; 1101 } else if (cpu_physical_memory_is_clean(iotlb)) { 1102 write_flags |= TLB_NOTDIRTY; 1103 } 1104 } 1105 } else { 1106 /* I/O or ROMD */ 1107 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1108 /* 1109 * Writes to romd devices must go through MMIO to enable write. 1110 * Reads to romd devices go through the ram_ptr found above, 1111 * but of course reads to I/O must go through MMIO. 1112 */ 1113 write_flags |= TLB_MMIO; 1114 if (!is_romd) { 1115 read_flags = write_flags; 1116 } 1117 } 1118 1119 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1120 TARGET_PAGE_SIZE); 1121 1122 index = tlb_index(cpu, mmu_idx, addr_page); 1123 te = tlb_entry(cpu, mmu_idx, addr_page); 1124 1125 /* 1126 * Hold the TLB lock for the rest of the function. We could acquire/release 1127 * the lock several times in the function, but it is faster to amortize the 1128 * acquisition cost by acquiring it just once. Note that this leads to 1129 * a longer critical section, but this is not a concern since the TLB lock 1130 * is unlikely to be contended. 1131 */ 1132 qemu_spin_lock(&tlb->c.lock); 1133 1134 /* Note that the tlb is no longer clean. */ 1135 tlb->c.dirty |= 1 << mmu_idx; 1136 1137 /* Make sure there's no cached translation for the new page. */ 1138 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1139 1140 /* 1141 * Only evict the old entry to the victim tlb if it's for a 1142 * different page; otherwise just overwrite the stale data. 1143 */ 1144 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1145 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1146 CPUTLBEntry *tv = &desc->vtable[vidx]; 1147 1148 /* Evict the old entry into the victim tlb. */ 1149 copy_tlb_helper_locked(tv, te); 1150 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1151 tlb_n_used_entries_dec(cpu, mmu_idx); 1152 } 1153 1154 /* refill the tlb */ 1155 /* 1156 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1157 * aligned ram_addr_t of the page base of the target RAM. 1158 * Otherwise, iotlb contains 1159 * - a physical section number in the lower TARGET_PAGE_BITS 1160 * - the offset within section->mr of the page base (I/O, ROMD) with the 1161 * TARGET_PAGE_BITS masked off. 1162 * We subtract addr_page (which is page aligned and thus won't 1163 * disturb the low bits) to give an offset which can be added to the 1164 * (non-page-aligned) vaddr of the eventual memory access to get 1165 * the MemoryRegion offset for the access. Note that the vaddr we 1166 * subtract here is that of the page base, and not the same as the 1167 * vaddr we add back in io_prepare()/get_page_addr_code(). 1168 */ 1169 desc->fulltlb[index] = *full; 1170 full = &desc->fulltlb[index]; 1171 full->xlat_section = iotlb - addr_page; 1172 full->phys_addr = paddr_page; 1173 1174 /* Now calculate the new entry */ 1175 tn.addend = addend - addr_page; 1176 1177 tlb_set_compare(full, &tn, addr_page, read_flags, 1178 MMU_INST_FETCH, prot & PAGE_EXEC); 1179 1180 if (wp_flags & BP_MEM_READ) { 1181 read_flags |= TLB_WATCHPOINT; 1182 } 1183 tlb_set_compare(full, &tn, addr_page, read_flags, 1184 MMU_DATA_LOAD, prot & PAGE_READ); 1185 1186 if (prot & PAGE_WRITE_INV) { 1187 write_flags |= TLB_INVALID_MASK; 1188 } 1189 if (wp_flags & BP_MEM_WRITE) { 1190 write_flags |= TLB_WATCHPOINT; 1191 } 1192 tlb_set_compare(full, &tn, addr_page, write_flags, 1193 MMU_DATA_STORE, prot & PAGE_WRITE); 1194 1195 copy_tlb_helper_locked(te, &tn); 1196 tlb_n_used_entries_inc(cpu, mmu_idx); 1197 qemu_spin_unlock(&tlb->c.lock); 1198 } 1199 1200 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1201 hwaddr paddr, MemTxAttrs attrs, int prot, 1202 int mmu_idx, uint64_t size) 1203 { 1204 CPUTLBEntryFull full = { 1205 .phys_addr = paddr, 1206 .attrs = attrs, 1207 .prot = prot, 1208 .lg_page_size = ctz64(size) 1209 }; 1210 1211 assert(is_power_of_2(size)); 1212 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1213 } 1214 1215 void tlb_set_page(CPUState *cpu, vaddr addr, 1216 hwaddr paddr, int prot, 1217 int mmu_idx, uint64_t size) 1218 { 1219 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1220 prot, mmu_idx, size); 1221 } 1222 1223 /* 1224 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1225 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1226 * be discarded and looked up again (e.g. via tlb_entry()). 1227 */ 1228 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1229 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1230 { 1231 bool ok; 1232 1233 /* 1234 * This is not a probe, so only valid return is success; failure 1235 * should result in exception + longjmp to the cpu loop. 1236 */ 1237 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1238 access_type, mmu_idx, false, retaddr); 1239 assert(ok); 1240 } 1241 1242 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1243 MMUAccessType access_type, 1244 int mmu_idx, uintptr_t retaddr) 1245 { 1246 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1247 mmu_idx, retaddr); 1248 } 1249 1250 static MemoryRegionSection * 1251 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1252 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1253 { 1254 MemoryRegionSection *section; 1255 hwaddr mr_offset; 1256 1257 section = iotlb_to_section(cpu, xlat, attrs); 1258 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1259 cpu->mem_io_pc = retaddr; 1260 if (!cpu->neg.can_do_io) { 1261 cpu_io_recompile(cpu, retaddr); 1262 } 1263 1264 *out_offset = mr_offset; 1265 return section; 1266 } 1267 1268 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1269 unsigned size, MMUAccessType access_type, int mmu_idx, 1270 MemTxResult response, uintptr_t retaddr) 1271 { 1272 if (!cpu->ignore_memory_transaction_failures 1273 && cpu->cc->tcg_ops->do_transaction_failed) { 1274 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1275 1276 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1277 access_type, mmu_idx, 1278 full->attrs, response, retaddr); 1279 } 1280 } 1281 1282 /* Return true if ADDR is present in the victim tlb, and has been copied 1283 back to the main tlb. */ 1284 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1285 MMUAccessType access_type, vaddr page) 1286 { 1287 size_t vidx; 1288 1289 assert_cpu_is_self(cpu); 1290 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1291 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1292 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1293 1294 if (cmp == page) { 1295 /* Found entry in victim tlb, swap tlb and iotlb. */ 1296 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1297 1298 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1299 copy_tlb_helper_locked(&tmptlb, tlb); 1300 copy_tlb_helper_locked(tlb, vtlb); 1301 copy_tlb_helper_locked(vtlb, &tmptlb); 1302 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1303 1304 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1305 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1306 CPUTLBEntryFull tmpf; 1307 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1308 return true; 1309 } 1310 } 1311 return false; 1312 } 1313 1314 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1315 CPUTLBEntryFull *full, uintptr_t retaddr) 1316 { 1317 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1318 1319 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1320 1321 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1322 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1323 } 1324 1325 /* 1326 * Set both VGA and migration bits for simplicity and to remove 1327 * the notdirty callback faster. 1328 */ 1329 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1330 1331 /* We remove the notdirty callback only if the code has been flushed. */ 1332 if (!cpu_physical_memory_is_clean(ram_addr)) { 1333 trace_memory_notdirty_set_dirty(mem_vaddr); 1334 tlb_set_dirty(cpu, mem_vaddr); 1335 } 1336 } 1337 1338 static int probe_access_internal(CPUState *cpu, vaddr addr, 1339 int fault_size, MMUAccessType access_type, 1340 int mmu_idx, bool nonfault, 1341 void **phost, CPUTLBEntryFull **pfull, 1342 uintptr_t retaddr, bool check_mem_cbs) 1343 { 1344 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1345 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1346 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1347 vaddr page_addr = addr & TARGET_PAGE_MASK; 1348 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1349 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1350 CPUTLBEntryFull *full; 1351 1352 if (!tlb_hit_page(tlb_addr, page_addr)) { 1353 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1354 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type, 1355 mmu_idx, nonfault, retaddr)) { 1356 /* Non-faulting page table read failed. */ 1357 *phost = NULL; 1358 *pfull = NULL; 1359 return TLB_INVALID_MASK; 1360 } 1361 1362 /* TLB resize via tlb_fill may have moved the entry. */ 1363 index = tlb_index(cpu, mmu_idx, addr); 1364 entry = tlb_entry(cpu, mmu_idx, addr); 1365 1366 /* 1367 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1368 * to force the next access through tlb_fill. We've just 1369 * called tlb_fill, so we know that this entry *is* valid. 1370 */ 1371 flags &= ~TLB_INVALID_MASK; 1372 } 1373 tlb_addr = tlb_read_idx(entry, access_type); 1374 } 1375 flags &= tlb_addr; 1376 1377 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1378 flags |= full->slow_flags[access_type]; 1379 1380 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1381 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED)) 1382 || (access_type != MMU_INST_FETCH && force_mmio)) { 1383 *phost = NULL; 1384 return TLB_MMIO; 1385 } 1386 1387 /* Everything else is RAM. */ 1388 *phost = (void *)((uintptr_t)addr + entry->addend); 1389 return flags; 1390 } 1391 1392 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1393 MMUAccessType access_type, int mmu_idx, 1394 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1395 uintptr_t retaddr) 1396 { 1397 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1398 mmu_idx, nonfault, phost, pfull, retaddr, 1399 true); 1400 1401 /* Handle clean RAM pages. */ 1402 if (unlikely(flags & TLB_NOTDIRTY)) { 1403 int dirtysize = size == 0 ? 1 : size; 1404 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr); 1405 flags &= ~TLB_NOTDIRTY; 1406 } 1407 1408 return flags; 1409 } 1410 1411 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1412 MMUAccessType access_type, int mmu_idx, 1413 void **phost, CPUTLBEntryFull **pfull) 1414 { 1415 void *discard_phost; 1416 CPUTLBEntryFull *discard_tlb; 1417 1418 /* privately handle users that don't need full results */ 1419 phost = phost ? phost : &discard_phost; 1420 pfull = pfull ? pfull : &discard_tlb; 1421 1422 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1423 mmu_idx, true, phost, pfull, 0, false); 1424 1425 /* Handle clean RAM pages. */ 1426 if (unlikely(flags & TLB_NOTDIRTY)) { 1427 int dirtysize = size == 0 ? 1 : size; 1428 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0); 1429 flags &= ~TLB_NOTDIRTY; 1430 } 1431 1432 return flags; 1433 } 1434 1435 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1436 MMUAccessType access_type, int mmu_idx, 1437 bool nonfault, void **phost, uintptr_t retaddr) 1438 { 1439 CPUTLBEntryFull *full; 1440 int flags; 1441 1442 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1443 1444 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1445 mmu_idx, nonfault, phost, &full, retaddr, 1446 true); 1447 1448 /* Handle clean RAM pages. */ 1449 if (unlikely(flags & TLB_NOTDIRTY)) { 1450 int dirtysize = size == 0 ? 1 : size; 1451 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr); 1452 flags &= ~TLB_NOTDIRTY; 1453 } 1454 1455 return flags; 1456 } 1457 1458 void *probe_access(CPUArchState *env, vaddr addr, int size, 1459 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1460 { 1461 CPUTLBEntryFull *full; 1462 void *host; 1463 int flags; 1464 1465 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1466 1467 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1468 mmu_idx, false, &host, &full, retaddr, 1469 true); 1470 1471 /* Per the interface, size == 0 merely faults the access. */ 1472 if (size == 0) { 1473 return NULL; 1474 } 1475 1476 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1477 /* Handle watchpoints. */ 1478 if (flags & TLB_WATCHPOINT) { 1479 int wp_access = (access_type == MMU_DATA_STORE 1480 ? BP_MEM_WRITE : BP_MEM_READ); 1481 cpu_check_watchpoint(env_cpu(env), addr, size, 1482 full->attrs, wp_access, retaddr); 1483 } 1484 1485 /* Handle clean RAM pages. */ 1486 if (flags & TLB_NOTDIRTY) { 1487 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1488 } 1489 } 1490 1491 return host; 1492 } 1493 1494 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1495 MMUAccessType access_type, int mmu_idx) 1496 { 1497 CPUTLBEntryFull *full; 1498 void *host; 1499 int flags; 1500 1501 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1502 mmu_idx, true, &host, &full, 0, false); 1503 1504 /* No combination of flags are expected by the caller. */ 1505 return flags ? NULL : host; 1506 } 1507 1508 /* 1509 * Return a ram_addr_t for the virtual address for execution. 1510 * 1511 * Return -1 if we can't translate and execute from an entire page 1512 * of RAM. This will force us to execute by loading and translating 1513 * one insn at a time, without caching. 1514 * 1515 * NOTE: This function will trigger an exception if the page is 1516 * not executable. 1517 */ 1518 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1519 void **hostp) 1520 { 1521 CPUTLBEntryFull *full; 1522 void *p; 1523 1524 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1525 cpu_mmu_index(env_cpu(env), true), false, 1526 &p, &full, 0, false); 1527 if (p == NULL) { 1528 return -1; 1529 } 1530 1531 if (full->lg_page_size < TARGET_PAGE_BITS) { 1532 return -1; 1533 } 1534 1535 if (hostp) { 1536 *hostp = p; 1537 } 1538 return qemu_ram_addr_from_host_nofail(p); 1539 } 1540 1541 /* Load/store with atomicity primitives. */ 1542 #include "ldst_atomicity.c.inc" 1543 1544 #ifdef CONFIG_PLUGIN 1545 /* 1546 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1547 * This should be a hot path as we will have just looked this path up 1548 * in the softmmu lookup code (or helper). We don't handle re-fills or 1549 * checking the victim table. This is purely informational. 1550 * 1551 * The one corner case is i/o write, which can cause changes to the 1552 * address space. Those changes, and the corresponding tlb flush, 1553 * should be delayed until the next TB, so even then this ought not fail. 1554 * But check, Just in Case. 1555 */ 1556 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1557 bool is_store, struct qemu_plugin_hwaddr *data) 1558 { 1559 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1560 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1561 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1562 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1563 CPUTLBEntryFull *full; 1564 1565 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1566 return false; 1567 } 1568 1569 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1570 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1571 1572 /* We must have an iotlb entry for MMIO */ 1573 if (tlb_addr & TLB_MMIO) { 1574 MemoryRegionSection *section = 1575 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1576 full->attrs); 1577 data->is_io = true; 1578 data->mr = section->mr; 1579 } else { 1580 data->is_io = false; 1581 data->mr = NULL; 1582 } 1583 return true; 1584 } 1585 #endif 1586 1587 /* 1588 * Probe for a load/store operation. 1589 * Return the host address and into @flags. 1590 */ 1591 1592 typedef struct MMULookupPageData { 1593 CPUTLBEntryFull *full; 1594 void *haddr; 1595 vaddr addr; 1596 int flags; 1597 int size; 1598 } MMULookupPageData; 1599 1600 typedef struct MMULookupLocals { 1601 MMULookupPageData page[2]; 1602 MemOp memop; 1603 int mmu_idx; 1604 } MMULookupLocals; 1605 1606 /** 1607 * mmu_lookup1: translate one page 1608 * @cpu: generic cpu state 1609 * @data: lookup parameters 1610 * @mmu_idx: virtual address context 1611 * @access_type: load/store/code 1612 * @ra: return address into tcg generated code, or 0 1613 * 1614 * Resolve the translation for the one page at @data.addr, filling in 1615 * the rest of @data with the results. If the translation fails, 1616 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1617 * @mmu_idx may have resized. 1618 */ 1619 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, 1620 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1621 { 1622 vaddr addr = data->addr; 1623 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1624 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1625 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1626 bool maybe_resized = false; 1627 CPUTLBEntryFull *full; 1628 int flags; 1629 1630 /* If the TLB entry is for a different page, reload and try again. */ 1631 if (!tlb_hit(tlb_addr, addr)) { 1632 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1633 addr & TARGET_PAGE_MASK)) { 1634 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra); 1635 maybe_resized = true; 1636 index = tlb_index(cpu, mmu_idx, addr); 1637 entry = tlb_entry(cpu, mmu_idx, addr); 1638 } 1639 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1640 } 1641 1642 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1643 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1644 flags |= full->slow_flags[access_type]; 1645 1646 data->full = full; 1647 data->flags = flags; 1648 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1649 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1650 1651 return maybe_resized; 1652 } 1653 1654 /** 1655 * mmu_watch_or_dirty 1656 * @cpu: generic cpu state 1657 * @data: lookup parameters 1658 * @access_type: load/store/code 1659 * @ra: return address into tcg generated code, or 0 1660 * 1661 * Trigger watchpoints for @data.addr:@data.size; 1662 * record writes to protected clean pages. 1663 */ 1664 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1665 MMUAccessType access_type, uintptr_t ra) 1666 { 1667 CPUTLBEntryFull *full = data->full; 1668 vaddr addr = data->addr; 1669 int flags = data->flags; 1670 int size = data->size; 1671 1672 /* On watchpoint hit, this will longjmp out. */ 1673 if (flags & TLB_WATCHPOINT) { 1674 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1675 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1676 flags &= ~TLB_WATCHPOINT; 1677 } 1678 1679 /* Note that notdirty is only set for writes. */ 1680 if (flags & TLB_NOTDIRTY) { 1681 notdirty_write(cpu, addr, size, full, ra); 1682 flags &= ~TLB_NOTDIRTY; 1683 } 1684 data->flags = flags; 1685 } 1686 1687 /** 1688 * mmu_lookup: translate page(s) 1689 * @cpu: generic cpu state 1690 * @addr: virtual address 1691 * @oi: combined mmu_idx and MemOp 1692 * @ra: return address into tcg generated code, or 0 1693 * @access_type: load/store/code 1694 * @l: output result 1695 * 1696 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1697 * bytes. Return true if the lookup crosses a page boundary. 1698 */ 1699 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1700 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1701 { 1702 unsigned a_bits; 1703 bool crosspage; 1704 int flags; 1705 1706 l->memop = get_memop(oi); 1707 l->mmu_idx = get_mmuidx(oi); 1708 1709 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1710 1711 /* Handle CPU specific unaligned behaviour */ 1712 a_bits = get_alignment_bits(l->memop); 1713 if (addr & ((1 << a_bits) - 1)) { 1714 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1715 } 1716 1717 l->page[0].addr = addr; 1718 l->page[0].size = memop_size(l->memop); 1719 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1720 l->page[1].size = 0; 1721 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1722 1723 if (likely(!crosspage)) { 1724 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1725 1726 flags = l->page[0].flags; 1727 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1728 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1729 } 1730 if (unlikely(flags & TLB_BSWAP)) { 1731 l->memop ^= MO_BSWAP; 1732 } 1733 } else { 1734 /* Finish compute of page crossing. */ 1735 int size0 = l->page[1].addr - addr; 1736 l->page[1].size = l->page[0].size - size0; 1737 l->page[0].size = size0; 1738 1739 /* 1740 * Lookup both pages, recognizing exceptions from either. If the 1741 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1742 */ 1743 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1744 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) { 1745 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1746 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1747 } 1748 1749 flags = l->page[0].flags | l->page[1].flags; 1750 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1751 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1752 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1753 } 1754 1755 /* 1756 * Since target/sparc is the only user of TLB_BSWAP, and all 1757 * Sparc accesses are aligned, any treatment across two pages 1758 * would be arbitrary. Refuse it until there's a use. 1759 */ 1760 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1761 } 1762 1763 /* 1764 * This alignment check differs from the one above, in that this is 1765 * based on the atomicity of the operation. The intended use case is 1766 * the ARM memory type field of each PTE, where access to pages with 1767 * Device memory type require alignment. 1768 */ 1769 if (unlikely(flags & TLB_CHECK_ALIGNED)) { 1770 MemOp size = l->memop & MO_SIZE; 1771 1772 switch (l->memop & MO_ATOM_MASK) { 1773 case MO_ATOM_NONE: 1774 size = MO_8; 1775 break; 1776 case MO_ATOM_IFALIGN_PAIR: 1777 case MO_ATOM_WITHIN16_PAIR: 1778 size = size ? size - 1 : 0; 1779 break; 1780 default: 1781 break; 1782 } 1783 if (addr & ((1 << size) - 1)) { 1784 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1785 } 1786 } 1787 1788 return crosspage; 1789 } 1790 1791 /* 1792 * Probe for an atomic operation. Do not allow unaligned operations, 1793 * or io operations to proceed. Return the host address. 1794 */ 1795 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1796 int size, uintptr_t retaddr) 1797 { 1798 uintptr_t mmu_idx = get_mmuidx(oi); 1799 MemOp mop = get_memop(oi); 1800 int a_bits = get_alignment_bits(mop); 1801 uintptr_t index; 1802 CPUTLBEntry *tlbe; 1803 vaddr tlb_addr; 1804 void *hostaddr; 1805 CPUTLBEntryFull *full; 1806 1807 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1808 1809 /* Adjust the given return address. */ 1810 retaddr -= GETPC_ADJ; 1811 1812 /* Enforce guest required alignment. */ 1813 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1814 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1815 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, 1816 mmu_idx, retaddr); 1817 } 1818 1819 /* Enforce qemu required alignment. */ 1820 if (unlikely(addr & (size - 1))) { 1821 /* We get here if guest alignment was not requested, 1822 or was not enforced by cpu_unaligned_access above. 1823 We might widen the access and emulate, but for now 1824 mark an exception and exit the cpu loop. */ 1825 goto stop_the_world; 1826 } 1827 1828 index = tlb_index(cpu, mmu_idx, addr); 1829 tlbe = tlb_entry(cpu, mmu_idx, addr); 1830 1831 /* Check TLB entry and enforce page permissions. */ 1832 tlb_addr = tlb_addr_write(tlbe); 1833 if (!tlb_hit(tlb_addr, addr)) { 1834 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1835 addr & TARGET_PAGE_MASK)) { 1836 tlb_fill(cpu, addr, size, 1837 MMU_DATA_STORE, mmu_idx, retaddr); 1838 index = tlb_index(cpu, mmu_idx, addr); 1839 tlbe = tlb_entry(cpu, mmu_idx, addr); 1840 } 1841 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1842 } 1843 1844 /* 1845 * Let the guest notice RMW on a write-only page. 1846 * We have just verified that the page is writable. 1847 * Subpage lookups may have left TLB_INVALID_MASK set, 1848 * but addr_read will only be -1 if PAGE_READ was unset. 1849 */ 1850 if (unlikely(tlbe->addr_read == -1)) { 1851 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1852 /* 1853 * Since we don't support reads and writes to different 1854 * addresses, and we do have the proper page loaded for 1855 * write, this shouldn't ever return. But just in case, 1856 * handle via stop-the-world. 1857 */ 1858 goto stop_the_world; 1859 } 1860 /* Collect tlb flags for read. */ 1861 tlb_addr |= tlbe->addr_read; 1862 1863 /* Notice an IO access or a needs-MMU-lookup access */ 1864 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1865 /* There's really nothing that can be done to 1866 support this apart from stop-the-world. */ 1867 goto stop_the_world; 1868 } 1869 1870 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1871 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1872 1873 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1874 notdirty_write(cpu, addr, size, full, retaddr); 1875 } 1876 1877 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 1878 int wp_flags = 0; 1879 1880 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 1881 wp_flags |= BP_MEM_WRITE; 1882 } 1883 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 1884 wp_flags |= BP_MEM_READ; 1885 } 1886 if (wp_flags) { 1887 cpu_check_watchpoint(cpu, addr, size, 1888 full->attrs, wp_flags, retaddr); 1889 } 1890 } 1891 1892 return hostaddr; 1893 1894 stop_the_world: 1895 cpu_loop_exit_atomic(cpu, retaddr); 1896 } 1897 1898 /* 1899 * Load Helpers 1900 * 1901 * We support two different access types. SOFTMMU_CODE_ACCESS is 1902 * specifically for reading instructions from system memory. It is 1903 * called by the translation loop and in some helpers where the code 1904 * is disassembled. It shouldn't be called directly by guest code. 1905 * 1906 * For the benefit of TCG generated code, we want to avoid the 1907 * complication of ABI-specific return type promotion and always 1908 * return a value extended to the register size of the host. This is 1909 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1910 * data, and for that we always have uint64_t. 1911 * 1912 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1913 */ 1914 1915 /** 1916 * do_ld_mmio_beN: 1917 * @cpu: generic cpu state 1918 * @full: page parameters 1919 * @ret_be: accumulated data 1920 * @addr: virtual address 1921 * @size: number of bytes 1922 * @mmu_idx: virtual address context 1923 * @ra: return address into tcg generated code, or 0 1924 * Context: BQL held 1925 * 1926 * Load @size bytes from @addr, which is memory-mapped i/o. 1927 * The bytes are concatenated in big-endian order with @ret_be. 1928 */ 1929 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1930 uint64_t ret_be, vaddr addr, int size, 1931 int mmu_idx, MMUAccessType type, uintptr_t ra, 1932 MemoryRegion *mr, hwaddr mr_offset) 1933 { 1934 do { 1935 MemOp this_mop; 1936 unsigned this_size; 1937 uint64_t val; 1938 MemTxResult r; 1939 1940 /* Read aligned pieces up to 8 bytes. */ 1941 this_mop = ctz32(size | (int)addr | 8); 1942 this_size = 1 << this_mop; 1943 this_mop |= MO_BE; 1944 1945 r = memory_region_dispatch_read(mr, mr_offset, &val, 1946 this_mop, full->attrs); 1947 if (unlikely(r != MEMTX_OK)) { 1948 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 1949 } 1950 if (this_size == 8) { 1951 return val; 1952 } 1953 1954 ret_be = (ret_be << (this_size * 8)) | val; 1955 addr += this_size; 1956 mr_offset += this_size; 1957 size -= this_size; 1958 } while (size); 1959 1960 return ret_be; 1961 } 1962 1963 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1964 uint64_t ret_be, vaddr addr, int size, 1965 int mmu_idx, MMUAccessType type, uintptr_t ra) 1966 { 1967 MemoryRegionSection *section; 1968 MemoryRegion *mr; 1969 hwaddr mr_offset; 1970 MemTxAttrs attrs; 1971 1972 tcg_debug_assert(size > 0 && size <= 8); 1973 1974 attrs = full->attrs; 1975 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 1976 mr = section->mr; 1977 1978 BQL_LOCK_GUARD(); 1979 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 1980 type, ra, mr, mr_offset); 1981 } 1982 1983 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1984 uint64_t ret_be, vaddr addr, int size, 1985 int mmu_idx, uintptr_t ra) 1986 { 1987 MemoryRegionSection *section; 1988 MemoryRegion *mr; 1989 hwaddr mr_offset; 1990 MemTxAttrs attrs; 1991 uint64_t a, b; 1992 1993 tcg_debug_assert(size > 8 && size <= 16); 1994 1995 attrs = full->attrs; 1996 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 1997 mr = section->mr; 1998 1999 BQL_LOCK_GUARD(); 2000 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2001 MMU_DATA_LOAD, ra, mr, mr_offset); 2002 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2003 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2004 return int128_make128(b, a); 2005 } 2006 2007 /** 2008 * do_ld_bytes_beN 2009 * @p: translation parameters 2010 * @ret_be: accumulated data 2011 * 2012 * Load @p->size bytes from @p->haddr, which is RAM. 2013 * The bytes to concatenated in big-endian order with @ret_be. 2014 */ 2015 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2016 { 2017 uint8_t *haddr = p->haddr; 2018 int i, size = p->size; 2019 2020 for (i = 0; i < size; i++) { 2021 ret_be = (ret_be << 8) | haddr[i]; 2022 } 2023 return ret_be; 2024 } 2025 2026 /** 2027 * do_ld_parts_beN 2028 * @p: translation parameters 2029 * @ret_be: accumulated data 2030 * 2031 * As do_ld_bytes_beN, but atomically on each aligned part. 2032 */ 2033 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2034 { 2035 void *haddr = p->haddr; 2036 int size = p->size; 2037 2038 do { 2039 uint64_t x; 2040 int n; 2041 2042 /* 2043 * Find minimum of alignment and size. 2044 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2045 * would have only checked the low bits of addr|size once at the start, 2046 * but is just as easy. 2047 */ 2048 switch (((uintptr_t)haddr | size) & 7) { 2049 case 4: 2050 x = cpu_to_be32(load_atomic4(haddr)); 2051 ret_be = (ret_be << 32) | x; 2052 n = 4; 2053 break; 2054 case 2: 2055 case 6: 2056 x = cpu_to_be16(load_atomic2(haddr)); 2057 ret_be = (ret_be << 16) | x; 2058 n = 2; 2059 break; 2060 default: 2061 x = *(uint8_t *)haddr; 2062 ret_be = (ret_be << 8) | x; 2063 n = 1; 2064 break; 2065 case 0: 2066 g_assert_not_reached(); 2067 } 2068 haddr += n; 2069 size -= n; 2070 } while (size != 0); 2071 return ret_be; 2072 } 2073 2074 /** 2075 * do_ld_parts_be4 2076 * @p: translation parameters 2077 * @ret_be: accumulated data 2078 * 2079 * As do_ld_bytes_beN, but with one atomic load. 2080 * Four aligned bytes are guaranteed to cover the load. 2081 */ 2082 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2083 { 2084 int o = p->addr & 3; 2085 uint32_t x = load_atomic4(p->haddr - o); 2086 2087 x = cpu_to_be32(x); 2088 x <<= o * 8; 2089 x >>= (4 - p->size) * 8; 2090 return (ret_be << (p->size * 8)) | x; 2091 } 2092 2093 /** 2094 * do_ld_parts_be8 2095 * @p: translation parameters 2096 * @ret_be: accumulated data 2097 * 2098 * As do_ld_bytes_beN, but with one atomic load. 2099 * Eight aligned bytes are guaranteed to cover the load. 2100 */ 2101 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2102 MMULookupPageData *p, uint64_t ret_be) 2103 { 2104 int o = p->addr & 7; 2105 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2106 2107 x = cpu_to_be64(x); 2108 x <<= o * 8; 2109 x >>= (8 - p->size) * 8; 2110 return (ret_be << (p->size * 8)) | x; 2111 } 2112 2113 /** 2114 * do_ld_parts_be16 2115 * @p: translation parameters 2116 * @ret_be: accumulated data 2117 * 2118 * As do_ld_bytes_beN, but with one atomic load. 2119 * 16 aligned bytes are guaranteed to cover the load. 2120 */ 2121 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2122 MMULookupPageData *p, uint64_t ret_be) 2123 { 2124 int o = p->addr & 15; 2125 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2126 int size = p->size; 2127 2128 if (!HOST_BIG_ENDIAN) { 2129 y = bswap128(y); 2130 } 2131 y = int128_lshift(y, o * 8); 2132 y = int128_urshift(y, (16 - size) * 8); 2133 x = int128_make64(ret_be); 2134 x = int128_lshift(x, size * 8); 2135 return int128_or(x, y); 2136 } 2137 2138 /* 2139 * Wrapper for the above. 2140 */ 2141 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2142 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2143 MemOp mop, uintptr_t ra) 2144 { 2145 MemOp atom; 2146 unsigned tmp, half_size; 2147 2148 if (unlikely(p->flags & TLB_MMIO)) { 2149 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2150 mmu_idx, type, ra); 2151 } 2152 2153 /* 2154 * It is a given that we cross a page and therefore there is no 2155 * atomicity for the load as a whole, but subobjects may need attention. 2156 */ 2157 atom = mop & MO_ATOM_MASK; 2158 switch (atom) { 2159 case MO_ATOM_SUBALIGN: 2160 return do_ld_parts_beN(p, ret_be); 2161 2162 case MO_ATOM_IFALIGN_PAIR: 2163 case MO_ATOM_WITHIN16_PAIR: 2164 tmp = mop & MO_SIZE; 2165 tmp = tmp ? tmp - 1 : 0; 2166 half_size = 1 << tmp; 2167 if (atom == MO_ATOM_IFALIGN_PAIR 2168 ? p->size == half_size 2169 : p->size >= half_size) { 2170 if (!HAVE_al8_fast && p->size < 4) { 2171 return do_ld_whole_be4(p, ret_be); 2172 } else { 2173 return do_ld_whole_be8(cpu, ra, p, ret_be); 2174 } 2175 } 2176 /* fall through */ 2177 2178 case MO_ATOM_IFALIGN: 2179 case MO_ATOM_WITHIN16: 2180 case MO_ATOM_NONE: 2181 return do_ld_bytes_beN(p, ret_be); 2182 2183 default: 2184 g_assert_not_reached(); 2185 } 2186 } 2187 2188 /* 2189 * Wrapper for the above, for 8 < size < 16. 2190 */ 2191 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2192 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2193 { 2194 int size = p->size; 2195 uint64_t b; 2196 MemOp atom; 2197 2198 if (unlikely(p->flags & TLB_MMIO)) { 2199 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2200 } 2201 2202 /* 2203 * It is a given that we cross a page and therefore there is no 2204 * atomicity for the load as a whole, but subobjects may need attention. 2205 */ 2206 atom = mop & MO_ATOM_MASK; 2207 switch (atom) { 2208 case MO_ATOM_SUBALIGN: 2209 p->size = size - 8; 2210 a = do_ld_parts_beN(p, a); 2211 p->haddr += size - 8; 2212 p->size = 8; 2213 b = do_ld_parts_beN(p, 0); 2214 break; 2215 2216 case MO_ATOM_WITHIN16_PAIR: 2217 /* Since size > 8, this is the half that must be atomic. */ 2218 return do_ld_whole_be16(cpu, ra, p, a); 2219 2220 case MO_ATOM_IFALIGN_PAIR: 2221 /* 2222 * Since size > 8, both halves are misaligned, 2223 * and so neither is atomic. 2224 */ 2225 case MO_ATOM_IFALIGN: 2226 case MO_ATOM_WITHIN16: 2227 case MO_ATOM_NONE: 2228 p->size = size - 8; 2229 a = do_ld_bytes_beN(p, a); 2230 b = ldq_be_p(p->haddr + size - 8); 2231 break; 2232 2233 default: 2234 g_assert_not_reached(); 2235 } 2236 2237 return int128_make128(b, a); 2238 } 2239 2240 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2241 MMUAccessType type, uintptr_t ra) 2242 { 2243 if (unlikely(p->flags & TLB_MMIO)) { 2244 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2245 } else { 2246 return *(uint8_t *)p->haddr; 2247 } 2248 } 2249 2250 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2251 MMUAccessType type, MemOp memop, uintptr_t ra) 2252 { 2253 uint16_t ret; 2254 2255 if (unlikely(p->flags & TLB_MMIO)) { 2256 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2257 if ((memop & MO_BSWAP) == MO_LE) { 2258 ret = bswap16(ret); 2259 } 2260 } else { 2261 /* Perform the load host endian, then swap if necessary. */ 2262 ret = load_atom_2(cpu, ra, p->haddr, memop); 2263 if (memop & MO_BSWAP) { 2264 ret = bswap16(ret); 2265 } 2266 } 2267 return ret; 2268 } 2269 2270 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2271 MMUAccessType type, MemOp memop, uintptr_t ra) 2272 { 2273 uint32_t ret; 2274 2275 if (unlikely(p->flags & TLB_MMIO)) { 2276 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2277 if ((memop & MO_BSWAP) == MO_LE) { 2278 ret = bswap32(ret); 2279 } 2280 } else { 2281 /* Perform the load host endian. */ 2282 ret = load_atom_4(cpu, ra, p->haddr, memop); 2283 if (memop & MO_BSWAP) { 2284 ret = bswap32(ret); 2285 } 2286 } 2287 return ret; 2288 } 2289 2290 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2291 MMUAccessType type, MemOp memop, uintptr_t ra) 2292 { 2293 uint64_t ret; 2294 2295 if (unlikely(p->flags & TLB_MMIO)) { 2296 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2297 if ((memop & MO_BSWAP) == MO_LE) { 2298 ret = bswap64(ret); 2299 } 2300 } else { 2301 /* Perform the load host endian. */ 2302 ret = load_atom_8(cpu, ra, p->haddr, memop); 2303 if (memop & MO_BSWAP) { 2304 ret = bswap64(ret); 2305 } 2306 } 2307 return ret; 2308 } 2309 2310 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2311 uintptr_t ra, MMUAccessType access_type) 2312 { 2313 MMULookupLocals l; 2314 bool crosspage; 2315 2316 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2317 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2318 tcg_debug_assert(!crosspage); 2319 2320 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2321 } 2322 2323 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2324 uintptr_t ra, MMUAccessType access_type) 2325 { 2326 MMULookupLocals l; 2327 bool crosspage; 2328 uint16_t ret; 2329 uint8_t a, b; 2330 2331 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2332 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2333 if (likely(!crosspage)) { 2334 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2335 } 2336 2337 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2338 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2339 2340 if ((l.memop & MO_BSWAP) == MO_LE) { 2341 ret = a | (b << 8); 2342 } else { 2343 ret = b | (a << 8); 2344 } 2345 return ret; 2346 } 2347 2348 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2349 uintptr_t ra, MMUAccessType access_type) 2350 { 2351 MMULookupLocals l; 2352 bool crosspage; 2353 uint32_t ret; 2354 2355 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2356 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2357 if (likely(!crosspage)) { 2358 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2359 } 2360 2361 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2362 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2363 if ((l.memop & MO_BSWAP) == MO_LE) { 2364 ret = bswap32(ret); 2365 } 2366 return ret; 2367 } 2368 2369 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2370 uintptr_t ra, MMUAccessType access_type) 2371 { 2372 MMULookupLocals l; 2373 bool crosspage; 2374 uint64_t ret; 2375 2376 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2377 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2378 if (likely(!crosspage)) { 2379 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2380 } 2381 2382 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2383 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2384 if ((l.memop & MO_BSWAP) == MO_LE) { 2385 ret = bswap64(ret); 2386 } 2387 return ret; 2388 } 2389 2390 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2391 MemOpIdx oi, uintptr_t ra) 2392 { 2393 MMULookupLocals l; 2394 bool crosspage; 2395 uint64_t a, b; 2396 Int128 ret; 2397 int first; 2398 2399 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2400 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2401 if (likely(!crosspage)) { 2402 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2403 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2404 l.mmu_idx, ra); 2405 if ((l.memop & MO_BSWAP) == MO_LE) { 2406 ret = bswap128(ret); 2407 } 2408 } else { 2409 /* Perform the load host endian. */ 2410 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2411 if (l.memop & MO_BSWAP) { 2412 ret = bswap128(ret); 2413 } 2414 } 2415 return ret; 2416 } 2417 2418 first = l.page[0].size; 2419 if (first == 8) { 2420 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2421 2422 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2423 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2424 if ((mop8 & MO_BSWAP) == MO_LE) { 2425 ret = int128_make128(a, b); 2426 } else { 2427 ret = int128_make128(b, a); 2428 } 2429 return ret; 2430 } 2431 2432 if (first < 8) { 2433 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2434 MMU_DATA_LOAD, l.memop, ra); 2435 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2436 } else { 2437 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2438 b = int128_getlo(ret); 2439 ret = int128_lshift(ret, l.page[1].size * 8); 2440 a = int128_gethi(ret); 2441 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2442 MMU_DATA_LOAD, l.memop, ra); 2443 ret = int128_make128(b, a); 2444 } 2445 if ((l.memop & MO_BSWAP) == MO_LE) { 2446 ret = bswap128(ret); 2447 } 2448 return ret; 2449 } 2450 2451 /* 2452 * Store Helpers 2453 */ 2454 2455 /** 2456 * do_st_mmio_leN: 2457 * @cpu: generic cpu state 2458 * @full: page parameters 2459 * @val_le: data to store 2460 * @addr: virtual address 2461 * @size: number of bytes 2462 * @mmu_idx: virtual address context 2463 * @ra: return address into tcg generated code, or 0 2464 * Context: BQL held 2465 * 2466 * Store @size bytes at @addr, which is memory-mapped i/o. 2467 * The bytes to store are extracted in little-endian order from @val_le; 2468 * return the bytes of @val_le beyond @p->size that have not been stored. 2469 */ 2470 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2471 uint64_t val_le, vaddr addr, int size, 2472 int mmu_idx, uintptr_t ra, 2473 MemoryRegion *mr, hwaddr mr_offset) 2474 { 2475 do { 2476 MemOp this_mop; 2477 unsigned this_size; 2478 MemTxResult r; 2479 2480 /* Store aligned pieces up to 8 bytes. */ 2481 this_mop = ctz32(size | (int)addr | 8); 2482 this_size = 1 << this_mop; 2483 this_mop |= MO_LE; 2484 2485 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2486 this_mop, full->attrs); 2487 if (unlikely(r != MEMTX_OK)) { 2488 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2489 mmu_idx, r, ra); 2490 } 2491 if (this_size == 8) { 2492 return 0; 2493 } 2494 2495 val_le >>= this_size * 8; 2496 addr += this_size; 2497 mr_offset += this_size; 2498 size -= this_size; 2499 } while (size); 2500 2501 return val_le; 2502 } 2503 2504 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2505 uint64_t val_le, vaddr addr, int size, 2506 int mmu_idx, uintptr_t ra) 2507 { 2508 MemoryRegionSection *section; 2509 hwaddr mr_offset; 2510 MemoryRegion *mr; 2511 MemTxAttrs attrs; 2512 2513 tcg_debug_assert(size > 0 && size <= 8); 2514 2515 attrs = full->attrs; 2516 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2517 mr = section->mr; 2518 2519 BQL_LOCK_GUARD(); 2520 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2521 ra, mr, mr_offset); 2522 } 2523 2524 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2525 Int128 val_le, vaddr addr, int size, 2526 int mmu_idx, uintptr_t ra) 2527 { 2528 MemoryRegionSection *section; 2529 MemoryRegion *mr; 2530 hwaddr mr_offset; 2531 MemTxAttrs attrs; 2532 2533 tcg_debug_assert(size > 8 && size <= 16); 2534 2535 attrs = full->attrs; 2536 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2537 mr = section->mr; 2538 2539 BQL_LOCK_GUARD(); 2540 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2541 mmu_idx, ra, mr, mr_offset); 2542 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2543 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2544 } 2545 2546 /* 2547 * Wrapper for the above. 2548 */ 2549 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2550 uint64_t val_le, int mmu_idx, 2551 MemOp mop, uintptr_t ra) 2552 { 2553 MemOp atom; 2554 unsigned tmp, half_size; 2555 2556 if (unlikely(p->flags & TLB_MMIO)) { 2557 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2558 p->size, mmu_idx, ra); 2559 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2560 return val_le >> (p->size * 8); 2561 } 2562 2563 /* 2564 * It is a given that we cross a page and therefore there is no atomicity 2565 * for the store as a whole, but subobjects may need attention. 2566 */ 2567 atom = mop & MO_ATOM_MASK; 2568 switch (atom) { 2569 case MO_ATOM_SUBALIGN: 2570 return store_parts_leN(p->haddr, p->size, val_le); 2571 2572 case MO_ATOM_IFALIGN_PAIR: 2573 case MO_ATOM_WITHIN16_PAIR: 2574 tmp = mop & MO_SIZE; 2575 tmp = tmp ? tmp - 1 : 0; 2576 half_size = 1 << tmp; 2577 if (atom == MO_ATOM_IFALIGN_PAIR 2578 ? p->size == half_size 2579 : p->size >= half_size) { 2580 if (!HAVE_al8_fast && p->size <= 4) { 2581 return store_whole_le4(p->haddr, p->size, val_le); 2582 } else if (HAVE_al8) { 2583 return store_whole_le8(p->haddr, p->size, val_le); 2584 } else { 2585 cpu_loop_exit_atomic(cpu, ra); 2586 } 2587 } 2588 /* fall through */ 2589 2590 case MO_ATOM_IFALIGN: 2591 case MO_ATOM_WITHIN16: 2592 case MO_ATOM_NONE: 2593 return store_bytes_leN(p->haddr, p->size, val_le); 2594 2595 default: 2596 g_assert_not_reached(); 2597 } 2598 } 2599 2600 /* 2601 * Wrapper for the above, for 8 < size < 16. 2602 */ 2603 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2604 Int128 val_le, int mmu_idx, 2605 MemOp mop, uintptr_t ra) 2606 { 2607 int size = p->size; 2608 MemOp atom; 2609 2610 if (unlikely(p->flags & TLB_MMIO)) { 2611 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2612 size, mmu_idx, ra); 2613 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2614 return int128_gethi(val_le) >> ((size - 8) * 8); 2615 } 2616 2617 /* 2618 * It is a given that we cross a page and therefore there is no atomicity 2619 * for the store as a whole, but subobjects may need attention. 2620 */ 2621 atom = mop & MO_ATOM_MASK; 2622 switch (atom) { 2623 case MO_ATOM_SUBALIGN: 2624 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2625 return store_parts_leN(p->haddr + 8, p->size - 8, 2626 int128_gethi(val_le)); 2627 2628 case MO_ATOM_WITHIN16_PAIR: 2629 /* Since size > 8, this is the half that must be atomic. */ 2630 if (!HAVE_CMPXCHG128) { 2631 cpu_loop_exit_atomic(cpu, ra); 2632 } 2633 return store_whole_le16(p->haddr, p->size, val_le); 2634 2635 case MO_ATOM_IFALIGN_PAIR: 2636 /* 2637 * Since size > 8, both halves are misaligned, 2638 * and so neither is atomic. 2639 */ 2640 case MO_ATOM_IFALIGN: 2641 case MO_ATOM_WITHIN16: 2642 case MO_ATOM_NONE: 2643 stq_le_p(p->haddr, int128_getlo(val_le)); 2644 return store_bytes_leN(p->haddr + 8, p->size - 8, 2645 int128_gethi(val_le)); 2646 2647 default: 2648 g_assert_not_reached(); 2649 } 2650 } 2651 2652 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2653 int mmu_idx, uintptr_t ra) 2654 { 2655 if (unlikely(p->flags & TLB_MMIO)) { 2656 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2657 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2658 /* nothing */ 2659 } else { 2660 *(uint8_t *)p->haddr = val; 2661 } 2662 } 2663 2664 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2665 int mmu_idx, MemOp memop, uintptr_t ra) 2666 { 2667 if (unlikely(p->flags & TLB_MMIO)) { 2668 if ((memop & MO_BSWAP) != MO_LE) { 2669 val = bswap16(val); 2670 } 2671 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2672 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2673 /* nothing */ 2674 } else { 2675 /* Swap to host endian if necessary, then store. */ 2676 if (memop & MO_BSWAP) { 2677 val = bswap16(val); 2678 } 2679 store_atom_2(cpu, ra, p->haddr, memop, val); 2680 } 2681 } 2682 2683 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2684 int mmu_idx, MemOp memop, uintptr_t ra) 2685 { 2686 if (unlikely(p->flags & TLB_MMIO)) { 2687 if ((memop & MO_BSWAP) != MO_LE) { 2688 val = bswap32(val); 2689 } 2690 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2691 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2692 /* nothing */ 2693 } else { 2694 /* Swap to host endian if necessary, then store. */ 2695 if (memop & MO_BSWAP) { 2696 val = bswap32(val); 2697 } 2698 store_atom_4(cpu, ra, p->haddr, memop, val); 2699 } 2700 } 2701 2702 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2703 int mmu_idx, MemOp memop, uintptr_t ra) 2704 { 2705 if (unlikely(p->flags & TLB_MMIO)) { 2706 if ((memop & MO_BSWAP) != MO_LE) { 2707 val = bswap64(val); 2708 } 2709 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2710 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2711 /* nothing */ 2712 } else { 2713 /* Swap to host endian if necessary, then store. */ 2714 if (memop & MO_BSWAP) { 2715 val = bswap64(val); 2716 } 2717 store_atom_8(cpu, ra, p->haddr, memop, val); 2718 } 2719 } 2720 2721 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2722 MemOpIdx oi, uintptr_t ra) 2723 { 2724 MMULookupLocals l; 2725 bool crosspage; 2726 2727 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2728 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2729 tcg_debug_assert(!crosspage); 2730 2731 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2732 } 2733 2734 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2735 MemOpIdx oi, uintptr_t ra) 2736 { 2737 MMULookupLocals l; 2738 bool crosspage; 2739 uint8_t a, b; 2740 2741 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2742 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2743 if (likely(!crosspage)) { 2744 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2745 return; 2746 } 2747 2748 if ((l.memop & MO_BSWAP) == MO_LE) { 2749 a = val, b = val >> 8; 2750 } else { 2751 b = val, a = val >> 8; 2752 } 2753 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2754 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2755 } 2756 2757 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2758 MemOpIdx oi, uintptr_t ra) 2759 { 2760 MMULookupLocals l; 2761 bool crosspage; 2762 2763 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2764 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2765 if (likely(!crosspage)) { 2766 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2767 return; 2768 } 2769 2770 /* Swap to little endian for simplicity, then store by bytes. */ 2771 if ((l.memop & MO_BSWAP) != MO_LE) { 2772 val = bswap32(val); 2773 } 2774 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2775 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2776 } 2777 2778 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2779 MemOpIdx oi, uintptr_t ra) 2780 { 2781 MMULookupLocals l; 2782 bool crosspage; 2783 2784 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2785 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2786 if (likely(!crosspage)) { 2787 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2788 return; 2789 } 2790 2791 /* Swap to little endian for simplicity, then store by bytes. */ 2792 if ((l.memop & MO_BSWAP) != MO_LE) { 2793 val = bswap64(val); 2794 } 2795 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2796 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2797 } 2798 2799 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2800 MemOpIdx oi, uintptr_t ra) 2801 { 2802 MMULookupLocals l; 2803 bool crosspage; 2804 uint64_t a, b; 2805 int first; 2806 2807 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2808 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2809 if (likely(!crosspage)) { 2810 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2811 if ((l.memop & MO_BSWAP) != MO_LE) { 2812 val = bswap128(val); 2813 } 2814 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2815 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2816 /* nothing */ 2817 } else { 2818 /* Swap to host endian if necessary, then store. */ 2819 if (l.memop & MO_BSWAP) { 2820 val = bswap128(val); 2821 } 2822 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2823 } 2824 return; 2825 } 2826 2827 first = l.page[0].size; 2828 if (first == 8) { 2829 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2830 2831 if (l.memop & MO_BSWAP) { 2832 val = bswap128(val); 2833 } 2834 if (HOST_BIG_ENDIAN) { 2835 b = int128_getlo(val), a = int128_gethi(val); 2836 } else { 2837 a = int128_getlo(val), b = int128_gethi(val); 2838 } 2839 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2840 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2841 return; 2842 } 2843 2844 if ((l.memop & MO_BSWAP) != MO_LE) { 2845 val = bswap128(val); 2846 } 2847 if (first < 8) { 2848 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2849 val = int128_urshift(val, first * 8); 2850 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2851 } else { 2852 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2853 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2854 } 2855 } 2856 2857 #include "ldst_common.c.inc" 2858 2859 /* 2860 * First set of functions passes in OI and RETADDR. 2861 * This makes them callable from other helpers. 2862 */ 2863 2864 #define ATOMIC_NAME(X) \ 2865 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2866 2867 #define ATOMIC_MMU_CLEANUP 2868 2869 #include "atomic_common.c.inc" 2870 2871 #define DATA_SIZE 1 2872 #include "atomic_template.h" 2873 2874 #define DATA_SIZE 2 2875 #include "atomic_template.h" 2876 2877 #define DATA_SIZE 4 2878 #include "atomic_template.h" 2879 2880 #ifdef CONFIG_ATOMIC64 2881 #define DATA_SIZE 8 2882 #include "atomic_template.h" 2883 #endif 2884 2885 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 2886 #define DATA_SIZE 16 2887 #include "atomic_template.h" 2888 #endif 2889 2890 /* Code access functions. */ 2891 2892 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2893 { 2894 CPUState *cs = env_cpu(env); 2895 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true)); 2896 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2897 } 2898 2899 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2900 { 2901 CPUState *cs = env_cpu(env); 2902 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true)); 2903 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2904 } 2905 2906 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2907 { 2908 CPUState *cs = env_cpu(env); 2909 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true)); 2910 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2911 } 2912 2913 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2914 { 2915 CPUState *cs = env_cpu(env); 2916 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true)); 2917 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2918 } 2919 2920 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 2921 MemOpIdx oi, uintptr_t retaddr) 2922 { 2923 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2924 } 2925 2926 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 2927 MemOpIdx oi, uintptr_t retaddr) 2928 { 2929 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2930 } 2931 2932 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 2933 MemOpIdx oi, uintptr_t retaddr) 2934 { 2935 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2936 } 2937 2938 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 2939 MemOpIdx oi, uintptr_t retaddr) 2940 { 2941 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2942 } 2943