1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/address-spaces.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "tcg/tcg.h" 31 #include "qemu/error-report.h" 32 #include "exec/log.h" 33 #include "exec/helper-proto.h" 34 #include "qemu/atomic.h" 35 36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 37 /* #define DEBUG_TLB */ 38 /* #define DEBUG_TLB_LOG */ 39 40 #ifdef DEBUG_TLB 41 # define DEBUG_TLB_GATE 1 42 # ifdef DEBUG_TLB_LOG 43 # define DEBUG_TLB_LOG_GATE 1 44 # else 45 # define DEBUG_TLB_LOG_GATE 0 46 # endif 47 #else 48 # define DEBUG_TLB_GATE 0 49 # define DEBUG_TLB_LOG_GATE 0 50 #endif 51 52 #define tlb_debug(fmt, ...) do { \ 53 if (DEBUG_TLB_LOG_GATE) { \ 54 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 55 ## __VA_ARGS__); \ 56 } else if (DEBUG_TLB_GATE) { \ 57 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 58 } \ 59 } while (0) 60 61 #define assert_cpu_is_self(this_cpu) do { \ 62 if (DEBUG_TLB_GATE) { \ 63 g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \ 64 } \ 65 } while (0) 66 67 /* run_on_cpu_data.target_ptr should always be big enough for a 68 * target_ulong even on 32 bit builds */ 69 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 70 71 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 72 */ 73 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 74 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 75 76 /* flush_all_helper: run fn across all cpus 77 * 78 * If the wait flag is set then the src cpu's helper will be queued as 79 * "safe" work and the loop exited creating a synchronisation point 80 * where all queued work will be finished before execution starts 81 * again. 82 */ 83 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 84 run_on_cpu_data d) 85 { 86 CPUState *cpu; 87 88 CPU_FOREACH(cpu) { 89 if (cpu != src) { 90 async_run_on_cpu(cpu, fn, d); 91 } 92 } 93 } 94 95 size_t tlb_flush_count(void) 96 { 97 CPUState *cpu; 98 size_t count = 0; 99 100 CPU_FOREACH(cpu) { 101 CPUArchState *env = cpu->env_ptr; 102 103 count += atomic_read(&env->tlb_flush_count); 104 } 105 return count; 106 } 107 108 /* This is OK because CPU architectures generally permit an 109 * implementation to drop entries from the TLB at any time, so 110 * flushing more entries than required is only an efficiency issue, 111 * not a correctness issue. 112 */ 113 static void tlb_flush_nocheck(CPUState *cpu) 114 { 115 CPUArchState *env = cpu->env_ptr; 116 117 /* The QOM tests will trigger tlb_flushes without setting up TCG 118 * so we bug out here in that case. 119 */ 120 if (!tcg_enabled()) { 121 return; 122 } 123 124 assert_cpu_is_self(cpu); 125 atomic_set(&env->tlb_flush_count, env->tlb_flush_count + 1); 126 tlb_debug("(count: %zu)\n", tlb_flush_count()); 127 128 memset(env->tlb_table, -1, sizeof(env->tlb_table)); 129 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); 130 cpu_tb_jmp_cache_clear(cpu); 131 132 env->vtlb_index = 0; 133 env->tlb_flush_addr = -1; 134 env->tlb_flush_mask = 0; 135 136 atomic_mb_set(&cpu->pending_tlb_flush, 0); 137 } 138 139 static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data) 140 { 141 tlb_flush_nocheck(cpu); 142 } 143 144 void tlb_flush(CPUState *cpu) 145 { 146 if (cpu->created && !qemu_cpu_is_self(cpu)) { 147 if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) { 148 atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS); 149 async_run_on_cpu(cpu, tlb_flush_global_async_work, 150 RUN_ON_CPU_NULL); 151 } 152 } else { 153 tlb_flush_nocheck(cpu); 154 } 155 } 156 157 void tlb_flush_all_cpus(CPUState *src_cpu) 158 { 159 const run_on_cpu_func fn = tlb_flush_global_async_work; 160 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); 161 fn(src_cpu, RUN_ON_CPU_NULL); 162 } 163 164 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 165 { 166 const run_on_cpu_func fn = tlb_flush_global_async_work; 167 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); 168 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL); 169 } 170 171 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 172 { 173 CPUArchState *env = cpu->env_ptr; 174 unsigned long mmu_idx_bitmask = data.host_int; 175 int mmu_idx; 176 177 assert_cpu_is_self(cpu); 178 179 tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask); 180 181 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 182 183 if (test_bit(mmu_idx, &mmu_idx_bitmask)) { 184 tlb_debug("%d\n", mmu_idx); 185 186 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); 187 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); 188 } 189 } 190 191 cpu_tb_jmp_cache_clear(cpu); 192 193 tlb_debug("done\n"); 194 } 195 196 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 197 { 198 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 199 200 if (!qemu_cpu_is_self(cpu)) { 201 uint16_t pending_flushes = idxmap; 202 pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush); 203 204 if (pending_flushes) { 205 tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes); 206 207 atomic_or(&cpu->pending_tlb_flush, pending_flushes); 208 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 209 RUN_ON_CPU_HOST_INT(pending_flushes)); 210 } 211 } else { 212 tlb_flush_by_mmuidx_async_work(cpu, 213 RUN_ON_CPU_HOST_INT(idxmap)); 214 } 215 } 216 217 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 218 { 219 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 220 221 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 222 223 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 224 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 225 } 226 227 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 228 uint16_t idxmap) 229 { 230 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 231 232 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 233 234 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 235 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 236 } 237 238 239 240 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) 241 { 242 if (addr == (tlb_entry->addr_read & 243 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || 244 addr == (tlb_entry->addr_write & 245 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || 246 addr == (tlb_entry->addr_code & 247 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { 248 memset(tlb_entry, -1, sizeof(*tlb_entry)); 249 } 250 } 251 252 static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data) 253 { 254 CPUArchState *env = cpu->env_ptr; 255 target_ulong addr = (target_ulong) data.target_ptr; 256 int i; 257 int mmu_idx; 258 259 assert_cpu_is_self(cpu); 260 261 tlb_debug("page :" TARGET_FMT_lx "\n", addr); 262 263 /* Check if we need to flush due to large pages. */ 264 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { 265 tlb_debug("forcing full flush (" 266 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 267 env->tlb_flush_addr, env->tlb_flush_mask); 268 269 tlb_flush(cpu); 270 return; 271 } 272 273 addr &= TARGET_PAGE_MASK; 274 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 275 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 276 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); 277 } 278 279 /* check whether there are entries that need to be flushed in the vtlb */ 280 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 281 int k; 282 for (k = 0; k < CPU_VTLB_SIZE; k++) { 283 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); 284 } 285 } 286 287 tb_flush_jmp_cache(cpu, addr); 288 } 289 290 void tlb_flush_page(CPUState *cpu, target_ulong addr) 291 { 292 tlb_debug("page :" TARGET_FMT_lx "\n", addr); 293 294 if (!qemu_cpu_is_self(cpu)) { 295 async_run_on_cpu(cpu, tlb_flush_page_async_work, 296 RUN_ON_CPU_TARGET_PTR(addr)); 297 } else { 298 tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr)); 299 } 300 } 301 302 /* As we are going to hijack the bottom bits of the page address for a 303 * mmuidx bit mask we need to fail to build if we can't do that 304 */ 305 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); 306 307 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, 308 run_on_cpu_data data) 309 { 310 CPUArchState *env = cpu->env_ptr; 311 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 312 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 313 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 314 int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 315 int mmu_idx; 316 int i; 317 318 assert_cpu_is_self(cpu); 319 320 tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n", 321 page, addr, mmu_idx_bitmap); 322 323 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 324 if (test_bit(mmu_idx, &mmu_idx_bitmap)) { 325 tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr); 326 327 /* check whether there are vltb entries that need to be flushed */ 328 for (i = 0; i < CPU_VTLB_SIZE; i++) { 329 tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr); 330 } 331 } 332 } 333 334 tb_flush_jmp_cache(cpu, addr); 335 } 336 337 static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu, 338 run_on_cpu_data data) 339 { 340 CPUArchState *env = cpu->env_ptr; 341 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 342 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 343 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 344 345 tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap); 346 347 /* Check if we need to flush due to large pages. */ 348 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { 349 tlb_debug("forced full flush (" 350 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 351 env->tlb_flush_addr, env->tlb_flush_mask); 352 353 tlb_flush_by_mmuidx_async_work(cpu, 354 RUN_ON_CPU_HOST_INT(mmu_idx_bitmap)); 355 } else { 356 tlb_flush_page_by_mmuidx_async_work(cpu, data); 357 } 358 } 359 360 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 361 { 362 target_ulong addr_and_mmu_idx; 363 364 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 365 366 /* This should already be page aligned */ 367 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 368 addr_and_mmu_idx |= idxmap; 369 370 if (!qemu_cpu_is_self(cpu)) { 371 async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work, 372 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 373 } else { 374 tlb_check_page_and_flush_by_mmuidx_async_work( 375 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 376 } 377 } 378 379 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 380 uint16_t idxmap) 381 { 382 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; 383 target_ulong addr_and_mmu_idx; 384 385 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 386 387 /* This should already be page aligned */ 388 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 389 addr_and_mmu_idx |= idxmap; 390 391 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 392 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 393 } 394 395 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 396 target_ulong addr, 397 uint16_t idxmap) 398 { 399 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; 400 target_ulong addr_and_mmu_idx; 401 402 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 403 404 /* This should already be page aligned */ 405 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 406 addr_and_mmu_idx |= idxmap; 407 408 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 409 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 410 } 411 412 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 413 { 414 const run_on_cpu_func fn = tlb_flush_page_async_work; 415 416 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); 417 fn(src, RUN_ON_CPU_TARGET_PTR(addr)); 418 } 419 420 void tlb_flush_page_all_cpus_synced(CPUState *src, 421 target_ulong addr) 422 { 423 const run_on_cpu_func fn = tlb_flush_page_async_work; 424 425 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); 426 async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); 427 } 428 429 /* update the TLBs so that writes to code in the virtual page 'addr' 430 can be detected */ 431 void tlb_protect_code(ram_addr_t ram_addr) 432 { 433 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 434 DIRTY_MEMORY_CODE); 435 } 436 437 /* update the TLB so that writes in physical page 'phys_addr' are no longer 438 tested for self modifying code */ 439 void tlb_unprotect_code(ram_addr_t ram_addr) 440 { 441 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 442 } 443 444 445 /* 446 * Dirty write flag handling 447 * 448 * When the TCG code writes to a location it looks up the address in 449 * the TLB and uses that data to compute the final address. If any of 450 * the lower bits of the address are set then the slow path is forced. 451 * There are a number of reasons to do this but for normal RAM the 452 * most usual is detecting writes to code regions which may invalidate 453 * generated code. 454 * 455 * Because we want other vCPUs to respond to changes straight away we 456 * update the te->addr_write field atomically. If the TLB entry has 457 * been changed by the vCPU in the mean time we skip the update. 458 * 459 * As this function uses atomic accesses we also need to ensure 460 * updates to tlb_entries follow the same access rules. We don't need 461 * to worry about this for oversized guests as MTTCG is disabled for 462 * them. 463 */ 464 465 static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, 466 uintptr_t length) 467 { 468 #if TCG_OVERSIZED_GUEST 469 uintptr_t addr = tlb_entry->addr_write; 470 471 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 472 addr &= TARGET_PAGE_MASK; 473 addr += tlb_entry->addend; 474 if ((addr - start) < length) { 475 tlb_entry->addr_write |= TLB_NOTDIRTY; 476 } 477 } 478 #else 479 /* paired with atomic_mb_set in tlb_set_page_with_attrs */ 480 uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write); 481 uintptr_t addr = orig_addr; 482 483 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 484 addr &= TARGET_PAGE_MASK; 485 addr += atomic_read(&tlb_entry->addend); 486 if ((addr - start) < length) { 487 uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY; 488 atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr); 489 } 490 } 491 #endif 492 } 493 494 /* For atomic correctness when running MTTCG we need to use the right 495 * primitives when copying entries */ 496 static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s, 497 bool atomic_set) 498 { 499 #if TCG_OVERSIZED_GUEST 500 *d = *s; 501 #else 502 if (atomic_set) { 503 d->addr_read = s->addr_read; 504 d->addr_code = s->addr_code; 505 atomic_set(&d->addend, atomic_read(&s->addend)); 506 /* Pairs with flag setting in tlb_reset_dirty_range */ 507 atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write)); 508 } else { 509 d->addr_read = s->addr_read; 510 d->addr_write = atomic_read(&s->addr_write); 511 d->addr_code = s->addr_code; 512 d->addend = atomic_read(&s->addend); 513 } 514 #endif 515 } 516 517 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 518 * the target vCPU). As such care needs to be taken that we don't 519 * dangerously race with another vCPU update. The only thing actually 520 * updated is the target TLB entry ->addr_write flags. 521 */ 522 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 523 { 524 CPUArchState *env; 525 526 int mmu_idx; 527 528 env = cpu->env_ptr; 529 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 530 unsigned int i; 531 532 for (i = 0; i < CPU_TLB_SIZE; i++) { 533 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], 534 start1, length); 535 } 536 537 for (i = 0; i < CPU_VTLB_SIZE; i++) { 538 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], 539 start1, length); 540 } 541 } 542 } 543 544 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) 545 { 546 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 547 tlb_entry->addr_write = vaddr; 548 } 549 } 550 551 /* update the TLB corresponding to virtual page vaddr 552 so that it is no longer dirty */ 553 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 554 { 555 CPUArchState *env = cpu->env_ptr; 556 int i; 557 int mmu_idx; 558 559 assert_cpu_is_self(cpu); 560 561 vaddr &= TARGET_PAGE_MASK; 562 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 563 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 564 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); 565 } 566 567 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 568 int k; 569 for (k = 0; k < CPU_VTLB_SIZE; k++) { 570 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); 571 } 572 } 573 } 574 575 /* Our TLB does not support large pages, so remember the area covered by 576 large pages and trigger a full TLB flush if these are invalidated. */ 577 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, 578 target_ulong size) 579 { 580 target_ulong mask = ~(size - 1); 581 582 if (env->tlb_flush_addr == (target_ulong)-1) { 583 env->tlb_flush_addr = vaddr & mask; 584 env->tlb_flush_mask = mask; 585 return; 586 } 587 /* Extend the existing region to include the new page. 588 This is a compromise between unnecessary flushes and the cost 589 of maintaining a full variable size TLB. */ 590 mask &= env->tlb_flush_mask; 591 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { 592 mask <<= 1; 593 } 594 env->tlb_flush_addr &= mask; 595 env->tlb_flush_mask = mask; 596 } 597 598 /* Add a new TLB entry. At most one entry for a given virtual address 599 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 600 * supplied size is only used by tlb_flush_page. 601 * 602 * Called from TCG-generated code, which is under an RCU read-side 603 * critical section. 604 */ 605 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 606 hwaddr paddr, MemTxAttrs attrs, int prot, 607 int mmu_idx, target_ulong size) 608 { 609 CPUArchState *env = cpu->env_ptr; 610 MemoryRegionSection *section; 611 unsigned int index; 612 target_ulong address; 613 target_ulong code_address; 614 uintptr_t addend; 615 CPUTLBEntry *te, *tv, tn; 616 hwaddr iotlb, xlat, sz, paddr_page; 617 target_ulong vaddr_page; 618 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; 619 int asidx = cpu_asidx_from_attrs(cpu, attrs); 620 621 assert_cpu_is_self(cpu); 622 623 if (size < TARGET_PAGE_SIZE) { 624 sz = TARGET_PAGE_SIZE; 625 } else { 626 if (size > TARGET_PAGE_SIZE) { 627 tlb_add_large_page(env, vaddr, size); 628 } 629 sz = size; 630 } 631 vaddr_page = vaddr & TARGET_PAGE_MASK; 632 paddr_page = paddr & TARGET_PAGE_MASK; 633 634 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 635 &xlat, &sz, attrs, &prot); 636 assert(sz >= TARGET_PAGE_SIZE); 637 638 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 639 " prot=%x idx=%d\n", 640 vaddr, paddr, prot, mmu_idx); 641 642 address = vaddr_page; 643 if (size < TARGET_PAGE_SIZE) { 644 /* 645 * Slow-path the TLB entries; we will repeat the MMU check and TLB 646 * fill on every access. 647 */ 648 address |= TLB_RECHECK; 649 } 650 if (!memory_region_is_ram(section->mr) && 651 !memory_region_is_romd(section->mr)) { 652 /* IO memory case */ 653 address |= TLB_MMIO; 654 addend = 0; 655 } else { 656 /* TLB_MMIO for rom/romd handled below */ 657 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 658 } 659 660 code_address = address; 661 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page, 662 paddr_page, xlat, prot, &address); 663 664 index = (vaddr_page >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 665 te = &env->tlb_table[mmu_idx][index]; 666 /* do not discard the translation in te, evict it into a victim tlb */ 667 tv = &env->tlb_v_table[mmu_idx][vidx]; 668 669 /* addr_write can race with tlb_reset_dirty_range */ 670 copy_tlb_helper(tv, te, true); 671 672 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; 673 674 /* refill the tlb */ 675 /* 676 * At this point iotlb contains a physical section number in the lower 677 * TARGET_PAGE_BITS, and either 678 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM) 679 * + the offset within section->mr of the page base (otherwise) 680 * We subtract the vaddr_page (which is page aligned and thus won't 681 * disturb the low bits) to give an offset which can be added to the 682 * (non-page-aligned) vaddr of the eventual memory access to get 683 * the MemoryRegion offset for the access. Note that the vaddr we 684 * subtract here is that of the page base, and not the same as the 685 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 686 */ 687 env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page; 688 env->iotlb[mmu_idx][index].attrs = attrs; 689 690 /* Now calculate the new entry */ 691 tn.addend = addend - vaddr_page; 692 if (prot & PAGE_READ) { 693 tn.addr_read = address; 694 } else { 695 tn.addr_read = -1; 696 } 697 698 if (prot & PAGE_EXEC) { 699 tn.addr_code = code_address; 700 } else { 701 tn.addr_code = -1; 702 } 703 704 tn.addr_write = -1; 705 if (prot & PAGE_WRITE) { 706 if ((memory_region_is_ram(section->mr) && section->readonly) 707 || memory_region_is_romd(section->mr)) { 708 /* Write access calls the I/O callback. */ 709 tn.addr_write = address | TLB_MMIO; 710 } else if (memory_region_is_ram(section->mr) 711 && cpu_physical_memory_is_clean( 712 memory_region_get_ram_addr(section->mr) + xlat)) { 713 tn.addr_write = address | TLB_NOTDIRTY; 714 } else { 715 tn.addr_write = address; 716 } 717 if (prot & PAGE_WRITE_INV) { 718 tn.addr_write |= TLB_INVALID_MASK; 719 } 720 } 721 722 /* Pairs with flag setting in tlb_reset_dirty_range */ 723 copy_tlb_helper(te, &tn, true); 724 /* atomic_mb_set(&te->addr_write, write_address); */ 725 } 726 727 /* Add a new TLB entry, but without specifying the memory 728 * transaction attributes to be used. 729 */ 730 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 731 hwaddr paddr, int prot, 732 int mmu_idx, target_ulong size) 733 { 734 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 735 prot, mmu_idx, size); 736 } 737 738 static void report_bad_exec(CPUState *cpu, target_ulong addr) 739 { 740 /* Accidentally executing outside RAM or ROM is quite common for 741 * several user-error situations, so report it in a way that 742 * makes it clear that this isn't a QEMU bug and provide suggestions 743 * about what a user could do to fix things. 744 */ 745 error_report("Trying to execute code outside RAM or ROM at 0x" 746 TARGET_FMT_lx, addr); 747 error_printf("This usually means one of the following happened:\n\n" 748 "(1) You told QEMU to execute a kernel for the wrong machine " 749 "type, and it crashed on startup (eg trying to run a " 750 "raspberry pi kernel on a versatilepb QEMU machine)\n" 751 "(2) You didn't give QEMU a kernel or BIOS filename at all, " 752 "and QEMU executed a ROM full of no-op instructions until " 753 "it fell off the end\n" 754 "(3) Your guest kernel has a bug and crashed by jumping " 755 "off into nowhere\n\n" 756 "This is almost always one of the first two, so check your " 757 "command line and that you are using the right type of kernel " 758 "for this machine.\n" 759 "If you think option (3) is likely then you can try debugging " 760 "your guest with the -d debug options; in particular " 761 "-d guest_errors will cause the log to include a dump of the " 762 "guest register state at this point.\n\n" 763 "Execution cannot continue; stopping here.\n\n"); 764 765 /* Report also to the logs, with more detail including register dump */ 766 qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code " 767 "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); 768 log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); 769 } 770 771 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 772 { 773 ram_addr_t ram_addr; 774 775 ram_addr = qemu_ram_addr_from_host(ptr); 776 if (ram_addr == RAM_ADDR_INVALID) { 777 error_report("Bad ram pointer %p", ptr); 778 abort(); 779 } 780 return ram_addr; 781 } 782 783 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 784 int mmu_idx, 785 target_ulong addr, uintptr_t retaddr, 786 bool recheck, int size) 787 { 788 CPUState *cpu = ENV_GET_CPU(env); 789 hwaddr mr_offset; 790 MemoryRegionSection *section; 791 MemoryRegion *mr; 792 uint64_t val; 793 bool locked = false; 794 MemTxResult r; 795 796 if (recheck) { 797 /* 798 * This is a TLB_RECHECK access, where the MMU protection 799 * covers a smaller range than a target page, and we must 800 * repeat the MMU check here. This tlb_fill() call might 801 * longjump out if this access should cause a guest exception. 802 */ 803 int index; 804 target_ulong tlb_addr; 805 806 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 807 808 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 809 tlb_addr = env->tlb_table[mmu_idx][index].addr_read; 810 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) { 811 /* RAM access */ 812 uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend; 813 814 return ldn_p((void *)haddr, size); 815 } 816 /* Fall through for handling IO accesses */ 817 } 818 819 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 820 mr = section->mr; 821 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 822 cpu->mem_io_pc = retaddr; 823 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 824 cpu_io_recompile(cpu, retaddr); 825 } 826 827 cpu->mem_io_vaddr = addr; 828 829 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 830 qemu_mutex_lock_iothread(); 831 locked = true; 832 } 833 r = memory_region_dispatch_read(mr, mr_offset, 834 &val, size, iotlbentry->attrs); 835 if (r != MEMTX_OK) { 836 hwaddr physaddr = mr_offset + 837 section->offset_within_address_space - 838 section->offset_within_region; 839 840 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_LOAD, 841 mmu_idx, iotlbentry->attrs, r, retaddr); 842 } 843 if (locked) { 844 qemu_mutex_unlock_iothread(); 845 } 846 847 return val; 848 } 849 850 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 851 int mmu_idx, 852 uint64_t val, target_ulong addr, 853 uintptr_t retaddr, bool recheck, int size) 854 { 855 CPUState *cpu = ENV_GET_CPU(env); 856 hwaddr mr_offset; 857 MemoryRegionSection *section; 858 MemoryRegion *mr; 859 bool locked = false; 860 MemTxResult r; 861 862 if (recheck) { 863 /* 864 * This is a TLB_RECHECK access, where the MMU protection 865 * covers a smaller range than a target page, and we must 866 * repeat the MMU check here. This tlb_fill() call might 867 * longjump out if this access should cause a guest exception. 868 */ 869 int index; 870 target_ulong tlb_addr; 871 872 tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr); 873 874 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 875 tlb_addr = env->tlb_table[mmu_idx][index].addr_write; 876 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) { 877 /* RAM access */ 878 uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend; 879 880 stn_p((void *)haddr, size, val); 881 return; 882 } 883 /* Fall through for handling IO accesses */ 884 } 885 886 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 887 mr = section->mr; 888 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 889 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 890 cpu_io_recompile(cpu, retaddr); 891 } 892 cpu->mem_io_vaddr = addr; 893 cpu->mem_io_pc = retaddr; 894 895 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 896 qemu_mutex_lock_iothread(); 897 locked = true; 898 } 899 r = memory_region_dispatch_write(mr, mr_offset, 900 val, size, iotlbentry->attrs); 901 if (r != MEMTX_OK) { 902 hwaddr physaddr = mr_offset + 903 section->offset_within_address_space - 904 section->offset_within_region; 905 906 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE, 907 mmu_idx, iotlbentry->attrs, r, retaddr); 908 } 909 if (locked) { 910 qemu_mutex_unlock_iothread(); 911 } 912 } 913 914 /* Return true if ADDR is present in the victim tlb, and has been copied 915 back to the main tlb. */ 916 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 917 size_t elt_ofs, target_ulong page) 918 { 919 size_t vidx; 920 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 921 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx]; 922 target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 923 924 if (cmp == page) { 925 /* Found entry in victim tlb, swap tlb and iotlb. */ 926 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; 927 928 copy_tlb_helper(&tmptlb, tlb, false); 929 copy_tlb_helper(tlb, vtlb, true); 930 copy_tlb_helper(vtlb, &tmptlb, true); 931 932 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; 933 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; 934 tmpio = *io; *io = *vio; *vio = tmpio; 935 return true; 936 } 937 } 938 return false; 939 } 940 941 /* Macro to call the above, with local variables from the use context. */ 942 #define VICTIM_TLB_HIT(TY, ADDR) \ 943 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 944 (ADDR) & TARGET_PAGE_MASK) 945 946 /* NOTE: this function can trigger an exception */ 947 /* NOTE2: the returned address is not exactly the physical address: it 948 * is actually a ram_addr_t (in system mode; the user mode emulation 949 * version of this function returns a guest virtual address). 950 */ 951 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 952 { 953 int mmu_idx, index; 954 void *p; 955 MemoryRegion *mr; 956 MemoryRegionSection *section; 957 CPUState *cpu = ENV_GET_CPU(env); 958 CPUIOTLBEntry *iotlbentry; 959 hwaddr physaddr, mr_offset; 960 961 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 962 mmu_idx = cpu_mmu_index(env, true); 963 if (unlikely(env->tlb_table[mmu_idx][index].addr_code != 964 (addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)))) { 965 if (!VICTIM_TLB_HIT(addr_read, addr)) { 966 tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); 967 } 968 } 969 970 if (unlikely(env->tlb_table[mmu_idx][index].addr_code & TLB_RECHECK)) { 971 /* 972 * This is a TLB_RECHECK access, where the MMU protection 973 * covers a smaller range than a target page, and we must 974 * repeat the MMU check here. This tlb_fill() call might 975 * longjump out if this access should cause a guest exception. 976 */ 977 int index; 978 target_ulong tlb_addr; 979 980 tlb_fill(cpu, addr, 0, MMU_INST_FETCH, mmu_idx, 0); 981 982 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 983 tlb_addr = env->tlb_table[mmu_idx][index].addr_code; 984 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) { 985 /* RAM access. We can't handle this, so for now just stop */ 986 cpu_abort(cpu, "Unable to handle guest executing from RAM within " 987 "a small MPU region at 0x" TARGET_FMT_lx, addr); 988 } 989 /* 990 * Fall through to handle IO accesses (which will almost certainly 991 * also result in failure) 992 */ 993 } 994 995 iotlbentry = &env->iotlb[mmu_idx][index]; 996 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 997 mr = section->mr; 998 if (memory_region_is_unassigned(mr)) { 999 qemu_mutex_lock_iothread(); 1000 if (memory_region_request_mmio_ptr(mr, addr)) { 1001 qemu_mutex_unlock_iothread(); 1002 /* A MemoryRegion is potentially added so re-run the 1003 * get_page_addr_code. 1004 */ 1005 return get_page_addr_code(env, addr); 1006 } 1007 qemu_mutex_unlock_iothread(); 1008 1009 /* Give the new-style cpu_transaction_failed() hook first chance 1010 * to handle this. 1011 * This is not the ideal place to detect and generate CPU 1012 * exceptions for instruction fetch failure (for instance 1013 * we don't know the length of the access that the CPU would 1014 * use, and it would be better to go ahead and try the access 1015 * and use the MemTXResult it produced). However it is the 1016 * simplest place we have currently available for the check. 1017 */ 1018 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1019 physaddr = mr_offset + 1020 section->offset_within_address_space - 1021 section->offset_within_region; 1022 cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx, 1023 iotlbentry->attrs, MEMTX_DECODE_ERROR, 0); 1024 1025 cpu_unassigned_access(cpu, addr, false, true, 0, 4); 1026 /* The CPU's unassigned access hook might have longjumped out 1027 * with an exception. If it didn't (or there was no hook) then 1028 * we can't proceed further. 1029 */ 1030 report_bad_exec(cpu, addr); 1031 exit(1); 1032 } 1033 p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend); 1034 return qemu_ram_addr_from_host_nofail(p); 1035 } 1036 1037 /* Probe for whether the specified guest write access is permitted. 1038 * If it is not permitted then an exception will be taken in the same 1039 * way as if this were a real write access (and we will not return). 1040 * Otherwise the function will return, and there will be a valid 1041 * entry in the TLB for this access. 1042 */ 1043 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx, 1044 uintptr_t retaddr) 1045 { 1046 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 1047 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; 1048 1049 if ((addr & TARGET_PAGE_MASK) 1050 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { 1051 /* TLB entry is for a different page */ 1052 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1053 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE, 1054 mmu_idx, retaddr); 1055 } 1056 } 1057 } 1058 1059 /* Probe for a read-modify-write atomic operation. Do not allow unaligned 1060 * operations, or io operations to proceed. Return the host address. */ 1061 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1062 TCGMemOpIdx oi, uintptr_t retaddr, 1063 NotDirtyInfo *ndi) 1064 { 1065 size_t mmu_idx = get_mmuidx(oi); 1066 size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 1067 CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index]; 1068 target_ulong tlb_addr = tlbe->addr_write; 1069 TCGMemOp mop = get_memop(oi); 1070 int a_bits = get_alignment_bits(mop); 1071 int s_bits = mop & MO_SIZE; 1072 void *hostaddr; 1073 1074 /* Adjust the given return address. */ 1075 retaddr -= GETPC_ADJ; 1076 1077 /* Enforce guest required alignment. */ 1078 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1079 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1080 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, 1081 mmu_idx, retaddr); 1082 } 1083 1084 /* Enforce qemu required alignment. */ 1085 if (unlikely(addr & ((1 << s_bits) - 1))) { 1086 /* We get here if guest alignment was not requested, 1087 or was not enforced by cpu_unaligned_access above. 1088 We might widen the access and emulate, but for now 1089 mark an exception and exit the cpu loop. */ 1090 goto stop_the_world; 1091 } 1092 1093 /* Check TLB entry and enforce page permissions. */ 1094 if ((addr & TARGET_PAGE_MASK) 1095 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { 1096 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1097 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE, 1098 mmu_idx, retaddr); 1099 } 1100 tlb_addr = tlbe->addr_write & ~TLB_INVALID_MASK; 1101 } 1102 1103 /* Notice an IO access or a needs-MMU-lookup access */ 1104 if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) { 1105 /* There's really nothing that can be done to 1106 support this apart from stop-the-world. */ 1107 goto stop_the_world; 1108 } 1109 1110 /* Let the guest notice RMW on a write-only page. */ 1111 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1112 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD, 1113 mmu_idx, retaddr); 1114 /* Since we don't support reads and writes to different addresses, 1115 and we do have the proper page loaded for write, this shouldn't 1116 ever return. But just in case, handle via stop-the-world. */ 1117 goto stop_the_world; 1118 } 1119 1120 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1121 1122 ndi->active = false; 1123 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1124 ndi->active = true; 1125 memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr, 1126 qemu_ram_addr_from_host_nofail(hostaddr), 1127 1 << s_bits); 1128 } 1129 1130 return hostaddr; 1131 1132 stop_the_world: 1133 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr); 1134 } 1135 1136 #ifdef TARGET_WORDS_BIGENDIAN 1137 # define TGT_BE(X) (X) 1138 # define TGT_LE(X) BSWAP(X) 1139 #else 1140 # define TGT_BE(X) BSWAP(X) 1141 # define TGT_LE(X) (X) 1142 #endif 1143 1144 #define MMUSUFFIX _mmu 1145 1146 #define DATA_SIZE 1 1147 #include "softmmu_template.h" 1148 1149 #define DATA_SIZE 2 1150 #include "softmmu_template.h" 1151 1152 #define DATA_SIZE 4 1153 #include "softmmu_template.h" 1154 1155 #define DATA_SIZE 8 1156 #include "softmmu_template.h" 1157 1158 /* First set of helpers allows passing in of OI and RETADDR. This makes 1159 them callable from other helpers. */ 1160 1161 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 1162 #define ATOMIC_NAME(X) \ 1163 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 1164 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi 1165 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi) 1166 #define ATOMIC_MMU_CLEANUP \ 1167 do { \ 1168 if (unlikely(ndi.active)) { \ 1169 memory_notdirty_write_complete(&ndi); \ 1170 } \ 1171 } while (0) 1172 1173 #define DATA_SIZE 1 1174 #include "atomic_template.h" 1175 1176 #define DATA_SIZE 2 1177 #include "atomic_template.h" 1178 1179 #define DATA_SIZE 4 1180 #include "atomic_template.h" 1181 1182 #ifdef CONFIG_ATOMIC64 1183 #define DATA_SIZE 8 1184 #include "atomic_template.h" 1185 #endif 1186 1187 #ifdef CONFIG_ATOMIC128 1188 #define DATA_SIZE 16 1189 #include "atomic_template.h" 1190 #endif 1191 1192 /* Second set of helpers are directly callable from TCG as helpers. */ 1193 1194 #undef EXTRA_ARGS 1195 #undef ATOMIC_NAME 1196 #undef ATOMIC_MMU_LOOKUP 1197 #define EXTRA_ARGS , TCGMemOpIdx oi 1198 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 1199 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi) 1200 1201 #define DATA_SIZE 1 1202 #include "atomic_template.h" 1203 1204 #define DATA_SIZE 2 1205 #include "atomic_template.h" 1206 1207 #define DATA_SIZE 4 1208 #include "atomic_template.h" 1209 1210 #ifdef CONFIG_ATOMIC64 1211 #define DATA_SIZE 8 1212 #include "atomic_template.h" 1213 #endif 1214 1215 /* Code access functions. */ 1216 1217 #undef MMUSUFFIX 1218 #define MMUSUFFIX _cmmu 1219 #undef GETPC 1220 #define GETPC() ((uintptr_t)0) 1221 #define SOFTMMU_CODE_ACCESS 1222 1223 #define DATA_SIZE 1 1224 #include "softmmu_template.h" 1225 1226 #define DATA_SIZE 2 1227 #include "softmmu_template.h" 1228 1229 #define DATA_SIZE 4 1230 #include "softmmu_template.h" 1231 1232 #define DATA_SIZE 8 1233 #include "softmmu_template.h" 1234