1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace/trace-root.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 45 /* #define DEBUG_TLB */ 46 /* #define DEBUG_TLB_LOG */ 47 48 #ifdef DEBUG_TLB 49 # define DEBUG_TLB_GATE 1 50 # ifdef DEBUG_TLB_LOG 51 # define DEBUG_TLB_LOG_GATE 1 52 # else 53 # define DEBUG_TLB_LOG_GATE 0 54 # endif 55 #else 56 # define DEBUG_TLB_GATE 0 57 # define DEBUG_TLB_LOG_GATE 0 58 #endif 59 60 #define tlb_debug(fmt, ...) do { \ 61 if (DEBUG_TLB_LOG_GATE) { \ 62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 63 ## __VA_ARGS__); \ 64 } else if (DEBUG_TLB_GATE) { \ 65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define assert_cpu_is_self(cpu) do { \ 70 if (DEBUG_TLB_GATE) { \ 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 72 } \ 73 } while (0) 74 75 /* run_on_cpu_data.target_ptr should always be big enough for a 76 * target_ulong even on 32 bit builds */ 77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 78 79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 80 */ 81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 83 84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 85 { 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 87 } 88 89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 90 { 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 92 } 93 94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 95 size_t max_entries) 96 { 97 desc->window_begin_ns = ns; 98 desc->window_max_entries = max_entries; 99 } 100 101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 102 { 103 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 104 105 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 106 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 107 } 108 } 109 110 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 111 { 112 /* Discard jump cache entries for any tb which might potentially 113 overlap the flushed page. */ 114 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 115 tb_jmp_cache_clear_page(cpu, addr); 116 } 117 118 /** 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 120 * @desc: The CPUTLBDesc portion of the TLB 121 * @fast: The CPUTLBDescFast portion of the same TLB 122 * 123 * Called with tlb_lock_held. 124 * 125 * We have two main constraints when resizing a TLB: (1) we only resize it 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 127 * the array or unnecessarily flushing it), which means we do not control how 128 * frequently the resizing can occur; (2) we don't have access to the guest's 129 * future scheduling decisions, and therefore have to decide the magnitude of 130 * the resize based on past observations. 131 * 132 * In general, a memory-hungry process can benefit greatly from an appropriately 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 134 * we just have to make the TLB as large as possible; while an oversized TLB 135 * results in minimal TLB miss rates, it also takes longer to be flushed 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt 137 * performance. 138 * 139 * To achieve near-optimal performance for all kinds of workloads, we: 140 * 141 * 1. Aggressively increase the size of the TLB when the use rate of the 142 * TLB being flushed is high, since it is likely that in the near future this 143 * memory-hungry process will execute again, and its memory hungriness will 144 * probably be similar. 145 * 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a 147 * reasonably large time window. The rationale is that if in such a time window 148 * we have not observed a high TLB use rate, it is likely that we won't observe 149 * it in the near future. In that case, once a time window expires we downsize 150 * the TLB to match the maximum use rate observed in the window. 151 * 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 153 * since in that range performance is likely near-optimal. Recall that the TLB 154 * is direct mapped, so we want the use rate to be low (or at least not too 155 * high), since otherwise we are likely to have a significant amount of 156 * conflict misses. 157 */ 158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 159 int64_t now) 160 { 161 size_t old_size = tlb_n_entries(fast); 162 size_t rate; 163 size_t new_size = old_size; 164 int64_t window_len_ms = 100; 165 int64_t window_len_ns = window_len_ms * 1000 * 1000; 166 bool window_expired = now > desc->window_begin_ns + window_len_ns; 167 168 if (desc->n_used_entries > desc->window_max_entries) { 169 desc->window_max_entries = desc->n_used_entries; 170 } 171 rate = desc->window_max_entries * 100 / old_size; 172 173 if (rate > 70) { 174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 175 } else if (rate < 30 && window_expired) { 176 size_t ceil = pow2ceil(desc->window_max_entries); 177 size_t expected_rate = desc->window_max_entries * 100 / ceil; 178 179 /* 180 * Avoid undersizing when the max number of entries seen is just below 181 * a pow2. For instance, if max_entries == 1025, the expected use rate 182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 184 * later. Thus, make sure that the expected use rate remains below 70%. 185 * (and since we double the size, that means the lowest rate we'd 186 * expect to get is 35%, which is still in the 30-70% range where 187 * we consider that the size is appropriate.) 188 */ 189 if (expected_rate > 70) { 190 ceil *= 2; 191 } 192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 193 } 194 195 if (new_size == old_size) { 196 if (window_expired) { 197 tlb_window_reset(desc, now, desc->n_used_entries); 198 } 199 return; 200 } 201 202 g_free(fast->table); 203 g_free(desc->iotlb); 204 205 tlb_window_reset(desc, now, 0); 206 /* desc->n_used_entries is cleared by the caller */ 207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 208 fast->table = g_try_new(CPUTLBEntry, new_size); 209 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); 210 211 /* 212 * If the allocations fail, try smaller sizes. We just freed some 213 * memory, so going back to half of new_size has a good chance of working. 214 * Increased memory pressure elsewhere in the system might cause the 215 * allocations to fail though, so we progressively reduce the allocation 216 * size, aborting if we cannot even allocate the smallest TLB we support. 217 */ 218 while (fast->table == NULL || desc->iotlb == NULL) { 219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 220 error_report("%s: %s", __func__, strerror(errno)); 221 abort(); 222 } 223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 225 226 g_free(fast->table); 227 g_free(desc->iotlb); 228 fast->table = g_try_new(CPUTLBEntry, new_size); 229 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); 230 } 231 } 232 233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 234 { 235 desc->n_used_entries = 0; 236 desc->large_page_addr = -1; 237 desc->large_page_mask = -1; 238 desc->vindex = 0; 239 memset(fast->table, -1, sizeof_tlb(fast)); 240 memset(desc->vtable, -1, sizeof(desc->vtable)); 241 } 242 243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 244 int64_t now) 245 { 246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 248 249 tlb_mmu_resize_locked(desc, fast, now); 250 tlb_mmu_flush_locked(desc, fast); 251 } 252 253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 254 { 255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 256 257 tlb_window_reset(desc, now, 0); 258 desc->n_used_entries = 0; 259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 260 fast->table = g_new(CPUTLBEntry, n_entries); 261 desc->iotlb = g_new(CPUIOTLBEntry, n_entries); 262 tlb_mmu_flush_locked(desc, fast); 263 } 264 265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 266 { 267 env_tlb(env)->d[mmu_idx].n_used_entries++; 268 } 269 270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 271 { 272 env_tlb(env)->d[mmu_idx].n_used_entries--; 273 } 274 275 void tlb_init(CPUState *cpu) 276 { 277 CPUArchState *env = cpu->env_ptr; 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&env_tlb(env)->c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 env_tlb(env)->c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 CPUArchState *env = cpu->env_ptr; 294 int i; 295 296 qemu_spin_destroy(&env_tlb(env)->c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 299 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 300 301 g_free(fast->table); 302 g_free(desc->iotlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 326 { 327 CPUState *cpu; 328 size_t full = 0, part = 0, elide = 0; 329 330 CPU_FOREACH(cpu) { 331 CPUArchState *env = cpu->env_ptr; 332 333 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 334 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 336 } 337 *pfull = full; 338 *ppart = part; 339 *pelide = elide; 340 } 341 342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 343 { 344 CPUArchState *env = cpu->env_ptr; 345 uint16_t asked = data.host_int; 346 uint16_t all_dirty, work, to_clean; 347 int64_t now = get_clock_realtime(); 348 349 assert_cpu_is_self(cpu); 350 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 352 353 qemu_spin_lock(&env_tlb(env)->c.lock); 354 355 all_dirty = env_tlb(env)->c.dirty; 356 to_clean = asked & all_dirty; 357 all_dirty &= ~to_clean; 358 env_tlb(env)->c.dirty = all_dirty; 359 360 for (work = to_clean; work != 0; work &= work - 1) { 361 int mmu_idx = ctz32(work); 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 363 } 364 365 qemu_spin_unlock(&env_tlb(env)->c.lock); 366 367 cpu_tb_jmp_cache_clear(cpu); 368 369 if (to_clean == ALL_MMUIDX_BITS) { 370 qatomic_set(&env_tlb(env)->c.full_flush_count, 371 env_tlb(env)->c.full_flush_count + 1); 372 } else { 373 qatomic_set(&env_tlb(env)->c.part_flush_count, 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 375 if (to_clean != asked) { 376 qatomic_set(&env_tlb(env)->c.elide_flush_count, 377 env_tlb(env)->c.elide_flush_count + 378 ctpop16(asked & ~to_clean)); 379 } 380 } 381 } 382 383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 384 { 385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 386 387 if (cpu->created && !qemu_cpu_is_self(cpu)) { 388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 389 RUN_ON_CPU_HOST_INT(idxmap)); 390 } else { 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 392 } 393 } 394 395 void tlb_flush(CPUState *cpu) 396 { 397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 398 } 399 400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 401 { 402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 403 404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 405 406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 408 } 409 410 void tlb_flush_all_cpus(CPUState *src_cpu) 411 { 412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 413 } 414 415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 416 { 417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 418 419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 420 421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 423 } 424 425 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 426 { 427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 428 } 429 430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 431 target_ulong page, target_ulong mask) 432 { 433 page &= mask; 434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 435 436 return (page == (tlb_entry->addr_read & mask) || 437 page == (tlb_addr_write(tlb_entry) & mask) || 438 page == (tlb_entry->addr_code & mask)); 439 } 440 441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 442 target_ulong page) 443 { 444 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 445 } 446 447 /** 448 * tlb_entry_is_empty - return true if the entry is not in use 449 * @te: pointer to CPUTLBEntry 450 */ 451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 452 { 453 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 454 } 455 456 /* Called with tlb_c.lock held */ 457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 458 target_ulong page, 459 target_ulong mask) 460 { 461 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 462 memset(tlb_entry, -1, sizeof(*tlb_entry)); 463 return true; 464 } 465 return false; 466 } 467 468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 469 target_ulong page) 470 { 471 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 472 } 473 474 /* Called with tlb_c.lock held */ 475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 476 target_ulong page, 477 target_ulong mask) 478 { 479 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 480 int k; 481 482 assert_cpu_is_self(env_cpu(env)); 483 for (k = 0; k < CPU_VTLB_SIZE; k++) { 484 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 485 tlb_n_used_entries_dec(env, mmu_idx); 486 } 487 } 488 } 489 490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 491 target_ulong page) 492 { 493 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 494 } 495 496 static void tlb_flush_page_locked(CPUArchState *env, int midx, 497 target_ulong page) 498 { 499 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 500 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 501 502 /* Check if we need to flush due to large pages. */ 503 if ((page & lp_mask) == lp_addr) { 504 tlb_debug("forcing full flush midx %d (" 505 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 506 midx, lp_addr, lp_mask); 507 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 508 } else { 509 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 510 tlb_n_used_entries_dec(env, midx); 511 } 512 tlb_flush_vtlb_page_locked(env, midx, page); 513 } 514 } 515 516 /** 517 * tlb_flush_page_by_mmuidx_async_0: 518 * @cpu: cpu on which to flush 519 * @addr: page of virtual address to flush 520 * @idxmap: set of mmu_idx to flush 521 * 522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 523 * at @addr from the tlbs indicated by @idxmap from @cpu. 524 */ 525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 526 target_ulong addr, 527 uint16_t idxmap) 528 { 529 CPUArchState *env = cpu->env_ptr; 530 int mmu_idx; 531 532 assert_cpu_is_self(cpu); 533 534 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 535 536 qemu_spin_lock(&env_tlb(env)->c.lock); 537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 538 if ((idxmap >> mmu_idx) & 1) { 539 tlb_flush_page_locked(env, mmu_idx, addr); 540 } 541 } 542 qemu_spin_unlock(&env_tlb(env)->c.lock); 543 544 tb_flush_jmp_cache(cpu, addr); 545 } 546 547 /** 548 * tlb_flush_page_by_mmuidx_async_1: 549 * @cpu: cpu on which to flush 550 * @data: encoded addr + idxmap 551 * 552 * Helper for tlb_flush_page_by_mmuidx and friends, called through 553 * async_run_on_cpu. The idxmap parameter is encoded in the page 554 * offset of the target_ptr field. This limits the set of mmu_idx 555 * that can be passed via this method. 556 */ 557 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 558 run_on_cpu_data data) 559 { 560 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 561 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 562 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 563 564 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 565 } 566 567 typedef struct { 568 target_ulong addr; 569 uint16_t idxmap; 570 } TLBFlushPageByMMUIdxData; 571 572 /** 573 * tlb_flush_page_by_mmuidx_async_2: 574 * @cpu: cpu on which to flush 575 * @data: allocated addr + idxmap 576 * 577 * Helper for tlb_flush_page_by_mmuidx and friends, called through 578 * async_run_on_cpu. The addr+idxmap parameters are stored in a 579 * TLBFlushPageByMMUIdxData structure that has been allocated 580 * specifically for this helper. Free the structure when done. 581 */ 582 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 583 run_on_cpu_data data) 584 { 585 TLBFlushPageByMMUIdxData *d = data.host_ptr; 586 587 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 588 g_free(d); 589 } 590 591 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 592 { 593 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 594 595 /* This should already be page aligned */ 596 addr &= TARGET_PAGE_MASK; 597 598 if (qemu_cpu_is_self(cpu)) { 599 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 600 } else if (idxmap < TARGET_PAGE_SIZE) { 601 /* 602 * Most targets have only a few mmu_idx. In the case where 603 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 604 * allocating memory for this operation. 605 */ 606 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 607 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 608 } else { 609 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 610 611 /* Otherwise allocate a structure, freed by the worker. */ 612 d->addr = addr; 613 d->idxmap = idxmap; 614 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 615 RUN_ON_CPU_HOST_PTR(d)); 616 } 617 } 618 619 void tlb_flush_page(CPUState *cpu, target_ulong addr) 620 { 621 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 622 } 623 624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 625 uint16_t idxmap) 626 { 627 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 628 629 /* This should already be page aligned */ 630 addr &= TARGET_PAGE_MASK; 631 632 /* 633 * Allocate memory to hold addr+idxmap only when needed. 634 * See tlb_flush_page_by_mmuidx for details. 635 */ 636 if (idxmap < TARGET_PAGE_SIZE) { 637 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 638 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 639 } else { 640 CPUState *dst_cpu; 641 642 /* Allocate a separate data block for each destination cpu. */ 643 CPU_FOREACH(dst_cpu) { 644 if (dst_cpu != src_cpu) { 645 TLBFlushPageByMMUIdxData *d 646 = g_new(TLBFlushPageByMMUIdxData, 1); 647 648 d->addr = addr; 649 d->idxmap = idxmap; 650 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 651 RUN_ON_CPU_HOST_PTR(d)); 652 } 653 } 654 } 655 656 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 657 } 658 659 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 660 { 661 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 662 } 663 664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 665 target_ulong addr, 666 uint16_t idxmap) 667 { 668 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 669 670 /* This should already be page aligned */ 671 addr &= TARGET_PAGE_MASK; 672 673 /* 674 * Allocate memory to hold addr+idxmap only when needed. 675 * See tlb_flush_page_by_mmuidx for details. 676 */ 677 if (idxmap < TARGET_PAGE_SIZE) { 678 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 679 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 680 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 681 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 682 } else { 683 CPUState *dst_cpu; 684 TLBFlushPageByMMUIdxData *d; 685 686 /* Allocate a separate data block for each destination cpu. */ 687 CPU_FOREACH(dst_cpu) { 688 if (dst_cpu != src_cpu) { 689 d = g_new(TLBFlushPageByMMUIdxData, 1); 690 d->addr = addr; 691 d->idxmap = idxmap; 692 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 693 RUN_ON_CPU_HOST_PTR(d)); 694 } 695 } 696 697 d = g_new(TLBFlushPageByMMUIdxData, 1); 698 d->addr = addr; 699 d->idxmap = idxmap; 700 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 701 RUN_ON_CPU_HOST_PTR(d)); 702 } 703 } 704 705 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 706 { 707 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 708 } 709 710 static void tlb_flush_range_locked(CPUArchState *env, int midx, 711 target_ulong addr, target_ulong len, 712 unsigned bits) 713 { 714 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 715 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 716 target_ulong mask = MAKE_64BIT_MASK(0, bits); 717 718 /* 719 * If @bits is smaller than the tlb size, there may be multiple entries 720 * within the TLB; otherwise all addresses that match under @mask hit 721 * the same TLB entry. 722 * TODO: Perhaps allow bits to be a few bits less than the size. 723 * For now, just flush the entire TLB. 724 * 725 * If @len is larger than the tlb size, then it will take longer to 726 * test all of the entries in the TLB than it will to flush it all. 727 */ 728 if (mask < f->mask || len > f->mask) { 729 tlb_debug("forcing full flush midx %d (" 730 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 731 midx, addr, mask, len); 732 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 733 return; 734 } 735 736 /* 737 * Check if we need to flush due to large pages. 738 * Because large_page_mask contains all 1's from the msb, 739 * we only need to test the end of the range. 740 */ 741 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 742 tlb_debug("forcing full flush midx %d (" 743 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 744 midx, d->large_page_addr, d->large_page_mask); 745 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 746 return; 747 } 748 749 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 750 target_ulong page = addr + i; 751 CPUTLBEntry *entry = tlb_entry(env, midx, page); 752 753 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 754 tlb_n_used_entries_dec(env, midx); 755 } 756 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 757 } 758 } 759 760 typedef struct { 761 target_ulong addr; 762 target_ulong len; 763 uint16_t idxmap; 764 uint16_t bits; 765 } TLBFlushRangeData; 766 767 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 768 TLBFlushRangeData d) 769 { 770 CPUArchState *env = cpu->env_ptr; 771 int mmu_idx; 772 773 assert_cpu_is_self(cpu); 774 775 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 776 d.addr, d.bits, d.len, d.idxmap); 777 778 qemu_spin_lock(&env_tlb(env)->c.lock); 779 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 780 if ((d.idxmap >> mmu_idx) & 1) { 781 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 782 } 783 } 784 qemu_spin_unlock(&env_tlb(env)->c.lock); 785 786 /* 787 * If the length is larger than the jump cache size, then it will take 788 * longer to clear each entry individually than it will to clear it all. 789 */ 790 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 791 cpu_tb_jmp_cache_clear(cpu); 792 return; 793 } 794 795 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) { 796 tb_flush_jmp_cache(cpu, d.addr + i); 797 } 798 } 799 800 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 801 run_on_cpu_data data) 802 { 803 TLBFlushRangeData *d = data.host_ptr; 804 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 805 g_free(d); 806 } 807 808 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 809 target_ulong len, uint16_t idxmap, 810 unsigned bits) 811 { 812 TLBFlushRangeData d; 813 814 /* 815 * If all bits are significant, and len is small, 816 * this devolves to tlb_flush_page. 817 */ 818 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 819 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 820 return; 821 } 822 /* If no page bits are significant, this devolves to tlb_flush. */ 823 if (bits < TARGET_PAGE_BITS) { 824 tlb_flush_by_mmuidx(cpu, idxmap); 825 return; 826 } 827 828 /* This should already be page aligned */ 829 d.addr = addr & TARGET_PAGE_MASK; 830 d.len = len; 831 d.idxmap = idxmap; 832 d.bits = bits; 833 834 if (qemu_cpu_is_self(cpu)) { 835 tlb_flush_range_by_mmuidx_async_0(cpu, d); 836 } else { 837 /* Otherwise allocate a structure, freed by the worker. */ 838 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 839 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 840 RUN_ON_CPU_HOST_PTR(p)); 841 } 842 } 843 844 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 845 uint16_t idxmap, unsigned bits) 846 { 847 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 848 } 849 850 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 851 target_ulong addr, target_ulong len, 852 uint16_t idxmap, unsigned bits) 853 { 854 TLBFlushRangeData d; 855 CPUState *dst_cpu; 856 857 /* 858 * If all bits are significant, and len is small, 859 * this devolves to tlb_flush_page. 860 */ 861 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 862 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 863 return; 864 } 865 /* If no page bits are significant, this devolves to tlb_flush. */ 866 if (bits < TARGET_PAGE_BITS) { 867 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 868 return; 869 } 870 871 /* This should already be page aligned */ 872 d.addr = addr & TARGET_PAGE_MASK; 873 d.len = len; 874 d.idxmap = idxmap; 875 d.bits = bits; 876 877 /* Allocate a separate data block for each destination cpu. */ 878 CPU_FOREACH(dst_cpu) { 879 if (dst_cpu != src_cpu) { 880 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 881 async_run_on_cpu(dst_cpu, 882 tlb_flush_range_by_mmuidx_async_1, 883 RUN_ON_CPU_HOST_PTR(p)); 884 } 885 } 886 887 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 888 } 889 890 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 891 target_ulong addr, 892 uint16_t idxmap, unsigned bits) 893 { 894 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 895 idxmap, bits); 896 } 897 898 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 899 target_ulong addr, 900 target_ulong len, 901 uint16_t idxmap, 902 unsigned bits) 903 { 904 TLBFlushRangeData d, *p; 905 CPUState *dst_cpu; 906 907 /* 908 * If all bits are significant, and len is small, 909 * this devolves to tlb_flush_page. 910 */ 911 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 912 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 913 return; 914 } 915 /* If no page bits are significant, this devolves to tlb_flush. */ 916 if (bits < TARGET_PAGE_BITS) { 917 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 918 return; 919 } 920 921 /* This should already be page aligned */ 922 d.addr = addr & TARGET_PAGE_MASK; 923 d.len = len; 924 d.idxmap = idxmap; 925 d.bits = bits; 926 927 /* Allocate a separate data block for each destination cpu. */ 928 CPU_FOREACH(dst_cpu) { 929 if (dst_cpu != src_cpu) { 930 p = g_memdup(&d, sizeof(d)); 931 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 932 RUN_ON_CPU_HOST_PTR(p)); 933 } 934 } 935 936 p = g_memdup(&d, sizeof(d)); 937 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 938 RUN_ON_CPU_HOST_PTR(p)); 939 } 940 941 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 942 target_ulong addr, 943 uint16_t idxmap, 944 unsigned bits) 945 { 946 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 947 idxmap, bits); 948 } 949 950 /* update the TLBs so that writes to code in the virtual page 'addr' 951 can be detected */ 952 void tlb_protect_code(ram_addr_t ram_addr) 953 { 954 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 955 DIRTY_MEMORY_CODE); 956 } 957 958 /* update the TLB so that writes in physical page 'phys_addr' are no longer 959 tested for self modifying code */ 960 void tlb_unprotect_code(ram_addr_t ram_addr) 961 { 962 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 963 } 964 965 966 /* 967 * Dirty write flag handling 968 * 969 * When the TCG code writes to a location it looks up the address in 970 * the TLB and uses that data to compute the final address. If any of 971 * the lower bits of the address are set then the slow path is forced. 972 * There are a number of reasons to do this but for normal RAM the 973 * most usual is detecting writes to code regions which may invalidate 974 * generated code. 975 * 976 * Other vCPUs might be reading their TLBs during guest execution, so we update 977 * te->addr_write with qatomic_set. We don't need to worry about this for 978 * oversized guests as MTTCG is disabled for them. 979 * 980 * Called with tlb_c.lock held. 981 */ 982 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 983 uintptr_t start, uintptr_t length) 984 { 985 uintptr_t addr = tlb_entry->addr_write; 986 987 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 988 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 989 addr &= TARGET_PAGE_MASK; 990 addr += tlb_entry->addend; 991 if ((addr - start) < length) { 992 #if TCG_OVERSIZED_GUEST 993 tlb_entry->addr_write |= TLB_NOTDIRTY; 994 #else 995 qatomic_set(&tlb_entry->addr_write, 996 tlb_entry->addr_write | TLB_NOTDIRTY); 997 #endif 998 } 999 } 1000 } 1001 1002 /* 1003 * Called with tlb_c.lock held. 1004 * Called only from the vCPU context, i.e. the TLB's owner thread. 1005 */ 1006 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1007 { 1008 *d = *s; 1009 } 1010 1011 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1012 * the target vCPU). 1013 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1014 * thing actually updated is the target TLB entry ->addr_write flags. 1015 */ 1016 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1017 { 1018 CPUArchState *env; 1019 1020 int mmu_idx; 1021 1022 env = cpu->env_ptr; 1023 qemu_spin_lock(&env_tlb(env)->c.lock); 1024 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1025 unsigned int i; 1026 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1027 1028 for (i = 0; i < n; i++) { 1029 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1030 start1, length); 1031 } 1032 1033 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1034 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1035 start1, length); 1036 } 1037 } 1038 qemu_spin_unlock(&env_tlb(env)->c.lock); 1039 } 1040 1041 /* Called with tlb_c.lock held */ 1042 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1043 target_ulong vaddr) 1044 { 1045 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1046 tlb_entry->addr_write = vaddr; 1047 } 1048 } 1049 1050 /* update the TLB corresponding to virtual page vaddr 1051 so that it is no longer dirty */ 1052 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1053 { 1054 CPUArchState *env = cpu->env_ptr; 1055 int mmu_idx; 1056 1057 assert_cpu_is_self(cpu); 1058 1059 vaddr &= TARGET_PAGE_MASK; 1060 qemu_spin_lock(&env_tlb(env)->c.lock); 1061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1062 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1063 } 1064 1065 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1066 int k; 1067 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1068 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1069 } 1070 } 1071 qemu_spin_unlock(&env_tlb(env)->c.lock); 1072 } 1073 1074 /* Our TLB does not support large pages, so remember the area covered by 1075 large pages and trigger a full TLB flush if these are invalidated. */ 1076 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1077 target_ulong vaddr, target_ulong size) 1078 { 1079 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1080 target_ulong lp_mask = ~(size - 1); 1081 1082 if (lp_addr == (target_ulong)-1) { 1083 /* No previous large page. */ 1084 lp_addr = vaddr; 1085 } else { 1086 /* Extend the existing region to include the new page. 1087 This is a compromise between unnecessary flushes and 1088 the cost of maintaining a full variable size TLB. */ 1089 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1090 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1091 lp_mask <<= 1; 1092 } 1093 } 1094 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1095 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1096 } 1097 1098 /* Add a new TLB entry. At most one entry for a given virtual address 1099 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1100 * supplied size is only used by tlb_flush_page. 1101 * 1102 * Called from TCG-generated code, which is under an RCU read-side 1103 * critical section. 1104 */ 1105 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1106 hwaddr paddr, MemTxAttrs attrs, int prot, 1107 int mmu_idx, target_ulong size) 1108 { 1109 CPUArchState *env = cpu->env_ptr; 1110 CPUTLB *tlb = env_tlb(env); 1111 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1112 MemoryRegionSection *section; 1113 unsigned int index; 1114 target_ulong address; 1115 target_ulong write_address; 1116 uintptr_t addend; 1117 CPUTLBEntry *te, tn; 1118 hwaddr iotlb, xlat, sz, paddr_page; 1119 target_ulong vaddr_page; 1120 int asidx = cpu_asidx_from_attrs(cpu, attrs); 1121 int wp_flags; 1122 bool is_ram, is_romd; 1123 1124 assert_cpu_is_self(cpu); 1125 1126 if (size <= TARGET_PAGE_SIZE) { 1127 sz = TARGET_PAGE_SIZE; 1128 } else { 1129 tlb_add_large_page(env, mmu_idx, vaddr, size); 1130 sz = size; 1131 } 1132 vaddr_page = vaddr & TARGET_PAGE_MASK; 1133 paddr_page = paddr & TARGET_PAGE_MASK; 1134 1135 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1136 &xlat, &sz, attrs, &prot); 1137 assert(sz >= TARGET_PAGE_SIZE); 1138 1139 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 1140 " prot=%x idx=%d\n", 1141 vaddr, paddr, prot, mmu_idx); 1142 1143 address = vaddr_page; 1144 if (size < TARGET_PAGE_SIZE) { 1145 /* Repeat the MMU check and TLB fill on every access. */ 1146 address |= TLB_INVALID_MASK; 1147 } 1148 if (attrs.byte_swap) { 1149 address |= TLB_BSWAP; 1150 } 1151 1152 is_ram = memory_region_is_ram(section->mr); 1153 is_romd = memory_region_is_romd(section->mr); 1154 1155 if (is_ram || is_romd) { 1156 /* RAM and ROMD both have associated host memory. */ 1157 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1158 } else { 1159 /* I/O does not; force the host address to NULL. */ 1160 addend = 0; 1161 } 1162 1163 write_address = address; 1164 if (is_ram) { 1165 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1166 /* 1167 * Computing is_clean is expensive; avoid all that unless 1168 * the page is actually writable. 1169 */ 1170 if (prot & PAGE_WRITE) { 1171 if (section->readonly) { 1172 write_address |= TLB_DISCARD_WRITE; 1173 } else if (cpu_physical_memory_is_clean(iotlb)) { 1174 write_address |= TLB_NOTDIRTY; 1175 } 1176 } 1177 } else { 1178 /* I/O or ROMD */ 1179 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1180 /* 1181 * Writes to romd devices must go through MMIO to enable write. 1182 * Reads to romd devices go through the ram_ptr found above, 1183 * but of course reads to I/O must go through MMIO. 1184 */ 1185 write_address |= TLB_MMIO; 1186 if (!is_romd) { 1187 address = write_address; 1188 } 1189 } 1190 1191 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1192 TARGET_PAGE_SIZE); 1193 1194 index = tlb_index(env, mmu_idx, vaddr_page); 1195 te = tlb_entry(env, mmu_idx, vaddr_page); 1196 1197 /* 1198 * Hold the TLB lock for the rest of the function. We could acquire/release 1199 * the lock several times in the function, but it is faster to amortize the 1200 * acquisition cost by acquiring it just once. Note that this leads to 1201 * a longer critical section, but this is not a concern since the TLB lock 1202 * is unlikely to be contended. 1203 */ 1204 qemu_spin_lock(&tlb->c.lock); 1205 1206 /* Note that the tlb is no longer clean. */ 1207 tlb->c.dirty |= 1 << mmu_idx; 1208 1209 /* Make sure there's no cached translation for the new page. */ 1210 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1211 1212 /* 1213 * Only evict the old entry to the victim tlb if it's for a 1214 * different page; otherwise just overwrite the stale data. 1215 */ 1216 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1217 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1218 CPUTLBEntry *tv = &desc->vtable[vidx]; 1219 1220 /* Evict the old entry into the victim tlb. */ 1221 copy_tlb_helper_locked(tv, te); 1222 desc->viotlb[vidx] = desc->iotlb[index]; 1223 tlb_n_used_entries_dec(env, mmu_idx); 1224 } 1225 1226 /* refill the tlb */ 1227 /* 1228 * At this point iotlb contains a physical section number in the lower 1229 * TARGET_PAGE_BITS, and either 1230 * + the ram_addr_t of the page base of the target RAM (RAM) 1231 * + the offset within section->mr of the page base (I/O, ROMD) 1232 * We subtract the vaddr_page (which is page aligned and thus won't 1233 * disturb the low bits) to give an offset which can be added to the 1234 * (non-page-aligned) vaddr of the eventual memory access to get 1235 * the MemoryRegion offset for the access. Note that the vaddr we 1236 * subtract here is that of the page base, and not the same as the 1237 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1238 */ 1239 desc->iotlb[index].addr = iotlb - vaddr_page; 1240 desc->iotlb[index].attrs = attrs; 1241 1242 /* Now calculate the new entry */ 1243 tn.addend = addend - vaddr_page; 1244 if (prot & PAGE_READ) { 1245 tn.addr_read = address; 1246 if (wp_flags & BP_MEM_READ) { 1247 tn.addr_read |= TLB_WATCHPOINT; 1248 } 1249 } else { 1250 tn.addr_read = -1; 1251 } 1252 1253 if (prot & PAGE_EXEC) { 1254 tn.addr_code = address; 1255 } else { 1256 tn.addr_code = -1; 1257 } 1258 1259 tn.addr_write = -1; 1260 if (prot & PAGE_WRITE) { 1261 tn.addr_write = write_address; 1262 if (prot & PAGE_WRITE_INV) { 1263 tn.addr_write |= TLB_INVALID_MASK; 1264 } 1265 if (wp_flags & BP_MEM_WRITE) { 1266 tn.addr_write |= TLB_WATCHPOINT; 1267 } 1268 } 1269 1270 copy_tlb_helper_locked(te, &tn); 1271 tlb_n_used_entries_inc(env, mmu_idx); 1272 qemu_spin_unlock(&tlb->c.lock); 1273 } 1274 1275 /* Add a new TLB entry, but without specifying the memory 1276 * transaction attributes to be used. 1277 */ 1278 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1279 hwaddr paddr, int prot, 1280 int mmu_idx, target_ulong size) 1281 { 1282 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1283 prot, mmu_idx, size); 1284 } 1285 1286 /* 1287 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1288 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1289 * be discarded and looked up again (e.g. via tlb_entry()). 1290 */ 1291 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1292 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1293 { 1294 CPUClass *cc = CPU_GET_CLASS(cpu); 1295 bool ok; 1296 1297 /* 1298 * This is not a probe, so only valid return is success; failure 1299 * should result in exception + longjmp to the cpu loop. 1300 */ 1301 ok = cc->tcg_ops->tlb_fill(cpu, addr, size, 1302 access_type, mmu_idx, false, retaddr); 1303 assert(ok); 1304 } 1305 1306 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1307 MMUAccessType access_type, 1308 int mmu_idx, uintptr_t retaddr) 1309 { 1310 CPUClass *cc = CPU_GET_CLASS(cpu); 1311 1312 cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 1313 } 1314 1315 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1316 vaddr addr, unsigned size, 1317 MMUAccessType access_type, 1318 int mmu_idx, MemTxAttrs attrs, 1319 MemTxResult response, 1320 uintptr_t retaddr) 1321 { 1322 CPUClass *cc = CPU_GET_CLASS(cpu); 1323 1324 if (!cpu->ignore_memory_transaction_failures && 1325 cc->tcg_ops->do_transaction_failed) { 1326 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1327 access_type, mmu_idx, attrs, 1328 response, retaddr); 1329 } 1330 } 1331 1332 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 1333 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1334 MMUAccessType access_type, MemOp op) 1335 { 1336 CPUState *cpu = env_cpu(env); 1337 hwaddr mr_offset; 1338 MemoryRegionSection *section; 1339 MemoryRegion *mr; 1340 uint64_t val; 1341 bool locked = false; 1342 MemTxResult r; 1343 1344 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1345 mr = section->mr; 1346 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1347 cpu->mem_io_pc = retaddr; 1348 if (!cpu->can_do_io) { 1349 cpu_io_recompile(cpu, retaddr); 1350 } 1351 1352 if (!qemu_mutex_iothread_locked()) { 1353 qemu_mutex_lock_iothread(); 1354 locked = true; 1355 } 1356 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs); 1357 if (r != MEMTX_OK) { 1358 hwaddr physaddr = mr_offset + 1359 section->offset_within_address_space - 1360 section->offset_within_region; 1361 1362 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1363 mmu_idx, iotlbentry->attrs, r, retaddr); 1364 } 1365 if (locked) { 1366 qemu_mutex_unlock_iothread(); 1367 } 1368 1369 return val; 1370 } 1371 1372 /* 1373 * Save a potentially trashed IOTLB entry for later lookup by plugin. 1374 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match 1375 * because of the side effect of io_writex changing memory layout. 1376 */ 1377 static void save_iotlb_data(CPUState *cs, hwaddr addr, 1378 MemoryRegionSection *section, hwaddr mr_offset) 1379 { 1380 #ifdef CONFIG_PLUGIN 1381 SavedIOTLB *saved = &cs->saved_iotlb; 1382 saved->addr = addr; 1383 saved->section = section; 1384 saved->mr_offset = mr_offset; 1385 #endif 1386 } 1387 1388 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 1389 int mmu_idx, uint64_t val, target_ulong addr, 1390 uintptr_t retaddr, MemOp op) 1391 { 1392 CPUState *cpu = env_cpu(env); 1393 hwaddr mr_offset; 1394 MemoryRegionSection *section; 1395 MemoryRegion *mr; 1396 bool locked = false; 1397 MemTxResult r; 1398 1399 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1400 mr = section->mr; 1401 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1402 if (!cpu->can_do_io) { 1403 cpu_io_recompile(cpu, retaddr); 1404 } 1405 cpu->mem_io_pc = retaddr; 1406 1407 /* 1408 * The memory_region_dispatch may trigger a flush/resize 1409 * so for plugins we save the iotlb_data just in case. 1410 */ 1411 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset); 1412 1413 if (!qemu_mutex_iothread_locked()) { 1414 qemu_mutex_lock_iothread(); 1415 locked = true; 1416 } 1417 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs); 1418 if (r != MEMTX_OK) { 1419 hwaddr physaddr = mr_offset + 1420 section->offset_within_address_space - 1421 section->offset_within_region; 1422 1423 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1424 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r, 1425 retaddr); 1426 } 1427 if (locked) { 1428 qemu_mutex_unlock_iothread(); 1429 } 1430 } 1431 1432 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 1433 { 1434 #if TCG_OVERSIZED_GUEST 1435 return *(target_ulong *)((uintptr_t)entry + ofs); 1436 #else 1437 /* ofs might correspond to .addr_write, so use qatomic_read */ 1438 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); 1439 #endif 1440 } 1441 1442 /* Return true if ADDR is present in the victim tlb, and has been copied 1443 back to the main tlb. */ 1444 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1445 size_t elt_ofs, target_ulong page) 1446 { 1447 size_t vidx; 1448 1449 assert_cpu_is_self(env_cpu(env)); 1450 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1451 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1452 target_ulong cmp; 1453 1454 /* elt_ofs might correspond to .addr_write, so use qatomic_read */ 1455 #if TCG_OVERSIZED_GUEST 1456 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1457 #else 1458 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1459 #endif 1460 1461 if (cmp == page) { 1462 /* Found entry in victim tlb, swap tlb and iotlb. */ 1463 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1464 1465 qemu_spin_lock(&env_tlb(env)->c.lock); 1466 copy_tlb_helper_locked(&tmptlb, tlb); 1467 copy_tlb_helper_locked(tlb, vtlb); 1468 copy_tlb_helper_locked(vtlb, &tmptlb); 1469 qemu_spin_unlock(&env_tlb(env)->c.lock); 1470 1471 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1472 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; 1473 tmpio = *io; *io = *vio; *vio = tmpio; 1474 return true; 1475 } 1476 } 1477 return false; 1478 } 1479 1480 /* Macro to call the above, with local variables from the use context. */ 1481 #define VICTIM_TLB_HIT(TY, ADDR) \ 1482 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1483 (ADDR) & TARGET_PAGE_MASK) 1484 1485 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1486 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr) 1487 { 1488 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr; 1489 1490 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1491 1492 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1493 struct page_collection *pages 1494 = page_collection_lock(ram_addr, ram_addr + size); 1495 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr); 1496 page_collection_unlock(pages); 1497 } 1498 1499 /* 1500 * Set both VGA and migration bits for simplicity and to remove 1501 * the notdirty callback faster. 1502 */ 1503 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1504 1505 /* We remove the notdirty callback only if the code has been flushed. */ 1506 if (!cpu_physical_memory_is_clean(ram_addr)) { 1507 trace_memory_notdirty_set_dirty(mem_vaddr); 1508 tlb_set_dirty(cpu, mem_vaddr); 1509 } 1510 } 1511 1512 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1513 int fault_size, MMUAccessType access_type, 1514 int mmu_idx, bool nonfault, 1515 void **phost, uintptr_t retaddr) 1516 { 1517 uintptr_t index = tlb_index(env, mmu_idx, addr); 1518 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1519 target_ulong tlb_addr, page_addr; 1520 size_t elt_ofs; 1521 int flags; 1522 1523 switch (access_type) { 1524 case MMU_DATA_LOAD: 1525 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1526 break; 1527 case MMU_DATA_STORE: 1528 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1529 break; 1530 case MMU_INST_FETCH: 1531 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1532 break; 1533 default: 1534 g_assert_not_reached(); 1535 } 1536 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1537 1538 page_addr = addr & TARGET_PAGE_MASK; 1539 if (!tlb_hit_page(tlb_addr, page_addr)) { 1540 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { 1541 CPUState *cs = env_cpu(env); 1542 CPUClass *cc = CPU_GET_CLASS(cs); 1543 1544 if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1545 mmu_idx, nonfault, retaddr)) { 1546 /* Non-faulting page table read failed. */ 1547 *phost = NULL; 1548 return TLB_INVALID_MASK; 1549 } 1550 1551 /* TLB resize via tlb_fill may have moved the entry. */ 1552 entry = tlb_entry(env, mmu_idx, addr); 1553 } 1554 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1555 } 1556 flags = tlb_addr & TLB_FLAGS_MASK; 1557 1558 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1559 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1560 *phost = NULL; 1561 return TLB_MMIO; 1562 } 1563 1564 /* Everything else is RAM. */ 1565 *phost = (void *)((uintptr_t)addr + entry->addend); 1566 return flags; 1567 } 1568 1569 int probe_access_flags(CPUArchState *env, target_ulong addr, 1570 MMUAccessType access_type, int mmu_idx, 1571 bool nonfault, void **phost, uintptr_t retaddr) 1572 { 1573 int flags; 1574 1575 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, 1576 nonfault, phost, retaddr); 1577 1578 /* Handle clean RAM pages. */ 1579 if (unlikely(flags & TLB_NOTDIRTY)) { 1580 uintptr_t index = tlb_index(env, mmu_idx, addr); 1581 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1582 1583 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); 1584 flags &= ~TLB_NOTDIRTY; 1585 } 1586 1587 return flags; 1588 } 1589 1590 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1591 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1592 { 1593 void *host; 1594 int flags; 1595 1596 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1597 1598 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1599 false, &host, retaddr); 1600 1601 /* Per the interface, size == 0 merely faults the access. */ 1602 if (size == 0) { 1603 return NULL; 1604 } 1605 1606 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1607 uintptr_t index = tlb_index(env, mmu_idx, addr); 1608 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1609 1610 /* Handle watchpoints. */ 1611 if (flags & TLB_WATCHPOINT) { 1612 int wp_access = (access_type == MMU_DATA_STORE 1613 ? BP_MEM_WRITE : BP_MEM_READ); 1614 cpu_check_watchpoint(env_cpu(env), addr, size, 1615 iotlbentry->attrs, wp_access, retaddr); 1616 } 1617 1618 /* Handle clean RAM pages. */ 1619 if (flags & TLB_NOTDIRTY) { 1620 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); 1621 } 1622 } 1623 1624 return host; 1625 } 1626 1627 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1628 MMUAccessType access_type, int mmu_idx) 1629 { 1630 void *host; 1631 int flags; 1632 1633 flags = probe_access_internal(env, addr, 0, access_type, 1634 mmu_idx, true, &host, 0); 1635 1636 /* No combination of flags are expected by the caller. */ 1637 return flags ? NULL : host; 1638 } 1639 1640 /* 1641 * Return a ram_addr_t for the virtual address for execution. 1642 * 1643 * Return -1 if we can't translate and execute from an entire page 1644 * of RAM. This will force us to execute by loading and translating 1645 * one insn at a time, without caching. 1646 * 1647 * NOTE: This function will trigger an exception if the page is 1648 * not executable. 1649 */ 1650 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1651 void **hostp) 1652 { 1653 void *p; 1654 1655 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1656 cpu_mmu_index(env, true), false, &p, 0); 1657 if (p == NULL) { 1658 return -1; 1659 } 1660 if (hostp) { 1661 *hostp = p; 1662 } 1663 return qemu_ram_addr_from_host_nofail(p); 1664 } 1665 1666 #ifdef CONFIG_PLUGIN 1667 /* 1668 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1669 * This should be a hot path as we will have just looked this path up 1670 * in the softmmu lookup code (or helper). We don't handle re-fills or 1671 * checking the victim table. This is purely informational. 1672 * 1673 * This almost never fails as the memory access being instrumented 1674 * should have just filled the TLB. The one corner case is io_writex 1675 * which can cause TLB flushes and potential resizing of the TLBs 1676 * losing the information we need. In those cases we need to recover 1677 * data from a copy of the iotlbentry. As long as this always occurs 1678 * from the same thread (which a mem callback will be) this is safe. 1679 */ 1680 1681 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1682 bool is_store, struct qemu_plugin_hwaddr *data) 1683 { 1684 CPUArchState *env = cpu->env_ptr; 1685 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1686 uintptr_t index = tlb_index(env, mmu_idx, addr); 1687 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1688 1689 if (likely(tlb_hit(tlb_addr, addr))) { 1690 /* We must have an iotlb entry for MMIO */ 1691 if (tlb_addr & TLB_MMIO) { 1692 CPUIOTLBEntry *iotlbentry; 1693 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1694 data->is_io = true; 1695 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1696 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1697 } else { 1698 data->is_io = false; 1699 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1700 } 1701 return true; 1702 } else { 1703 SavedIOTLB *saved = &cpu->saved_iotlb; 1704 data->is_io = true; 1705 data->v.io.section = saved->section; 1706 data->v.io.offset = saved->mr_offset; 1707 return true; 1708 } 1709 } 1710 1711 #endif 1712 1713 /* 1714 * Probe for an atomic operation. Do not allow unaligned operations, 1715 * or io operations to proceed. Return the host address. 1716 * 1717 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1718 */ 1719 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1720 MemOpIdx oi, int size, int prot, 1721 uintptr_t retaddr) 1722 { 1723 uintptr_t mmu_idx = get_mmuidx(oi); 1724 MemOp mop = get_memop(oi); 1725 int a_bits = get_alignment_bits(mop); 1726 uintptr_t index; 1727 CPUTLBEntry *tlbe; 1728 target_ulong tlb_addr; 1729 void *hostaddr; 1730 1731 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1732 1733 /* Adjust the given return address. */ 1734 retaddr -= GETPC_ADJ; 1735 1736 /* Enforce guest required alignment. */ 1737 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1738 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1739 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1740 mmu_idx, retaddr); 1741 } 1742 1743 /* Enforce qemu required alignment. */ 1744 if (unlikely(addr & (size - 1))) { 1745 /* We get here if guest alignment was not requested, 1746 or was not enforced by cpu_unaligned_access above. 1747 We might widen the access and emulate, but for now 1748 mark an exception and exit the cpu loop. */ 1749 goto stop_the_world; 1750 } 1751 1752 index = tlb_index(env, mmu_idx, addr); 1753 tlbe = tlb_entry(env, mmu_idx, addr); 1754 1755 /* Check TLB entry and enforce page permissions. */ 1756 if (prot & PAGE_WRITE) { 1757 tlb_addr = tlb_addr_write(tlbe); 1758 if (!tlb_hit(tlb_addr, addr)) { 1759 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1760 tlb_fill(env_cpu(env), addr, size, 1761 MMU_DATA_STORE, mmu_idx, retaddr); 1762 index = tlb_index(env, mmu_idx, addr); 1763 tlbe = tlb_entry(env, mmu_idx, addr); 1764 } 1765 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1766 } 1767 1768 /* Let the guest notice RMW on a write-only page. */ 1769 if ((prot & PAGE_READ) && 1770 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1771 tlb_fill(env_cpu(env), addr, size, 1772 MMU_DATA_LOAD, mmu_idx, retaddr); 1773 /* 1774 * Since we don't support reads and writes to different addresses, 1775 * and we do have the proper page loaded for write, this shouldn't 1776 * ever return. But just in case, handle via stop-the-world. 1777 */ 1778 goto stop_the_world; 1779 } 1780 } else /* if (prot & PAGE_READ) */ { 1781 tlb_addr = tlbe->addr_read; 1782 if (!tlb_hit(tlb_addr, addr)) { 1783 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1784 tlb_fill(env_cpu(env), addr, size, 1785 MMU_DATA_LOAD, mmu_idx, retaddr); 1786 index = tlb_index(env, mmu_idx, addr); 1787 tlbe = tlb_entry(env, mmu_idx, addr); 1788 } 1789 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1790 } 1791 } 1792 1793 /* Notice an IO access or a needs-MMU-lookup access */ 1794 if (unlikely(tlb_addr & TLB_MMIO)) { 1795 /* There's really nothing that can be done to 1796 support this apart from stop-the-world. */ 1797 goto stop_the_world; 1798 } 1799 1800 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1801 1802 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1803 notdirty_write(env_cpu(env), addr, size, 1804 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr); 1805 } 1806 1807 return hostaddr; 1808 1809 stop_the_world: 1810 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1811 } 1812 1813 /* 1814 * Verify that we have passed the correct MemOp to the correct function. 1815 * 1816 * In the case of the helper_*_mmu functions, we will have done this by 1817 * using the MemOp to look up the helper during code generation. 1818 * 1819 * In the case of the cpu_*_mmu functions, this is up to the caller. 1820 * We could present one function to target code, and dispatch based on 1821 * the MemOp, but so far we have worked hard to avoid an indirect function 1822 * call along the memory path. 1823 */ 1824 static void validate_memop(MemOpIdx oi, MemOp expected) 1825 { 1826 #ifdef CONFIG_DEBUG_TCG 1827 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); 1828 assert(have == expected); 1829 #endif 1830 } 1831 1832 /* 1833 * Load Helpers 1834 * 1835 * We support two different access types. SOFTMMU_CODE_ACCESS is 1836 * specifically for reading instructions from system memory. It is 1837 * called by the translation loop and in some helpers where the code 1838 * is disassembled. It shouldn't be called directly by guest code. 1839 */ 1840 1841 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1842 MemOpIdx oi, uintptr_t retaddr); 1843 1844 static inline uint64_t QEMU_ALWAYS_INLINE 1845 load_memop(const void *haddr, MemOp op) 1846 { 1847 switch (op) { 1848 case MO_UB: 1849 return ldub_p(haddr); 1850 case MO_BEUW: 1851 return lduw_be_p(haddr); 1852 case MO_LEUW: 1853 return lduw_le_p(haddr); 1854 case MO_BEUL: 1855 return (uint32_t)ldl_be_p(haddr); 1856 case MO_LEUL: 1857 return (uint32_t)ldl_le_p(haddr); 1858 case MO_BEUQ: 1859 return ldq_be_p(haddr); 1860 case MO_LEUQ: 1861 return ldq_le_p(haddr); 1862 default: 1863 qemu_build_not_reached(); 1864 } 1865 } 1866 1867 static inline uint64_t QEMU_ALWAYS_INLINE 1868 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1869 uintptr_t retaddr, MemOp op, bool code_read, 1870 FullLoadHelper *full_load) 1871 { 1872 const size_t tlb_off = code_read ? 1873 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1874 const MMUAccessType access_type = 1875 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1876 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 1877 const size_t size = memop_size(op); 1878 uintptr_t mmu_idx = get_mmuidx(oi); 1879 uintptr_t index; 1880 CPUTLBEntry *entry; 1881 target_ulong tlb_addr; 1882 void *haddr; 1883 uint64_t res; 1884 1885 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1886 1887 /* Handle CPU specific unaligned behaviour */ 1888 if (addr & ((1 << a_bits) - 1)) { 1889 cpu_unaligned_access(env_cpu(env), addr, access_type, 1890 mmu_idx, retaddr); 1891 } 1892 1893 index = tlb_index(env, mmu_idx, addr); 1894 entry = tlb_entry(env, mmu_idx, addr); 1895 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1896 1897 /* If the TLB entry is for a different page, reload and try again. */ 1898 if (!tlb_hit(tlb_addr, addr)) { 1899 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1900 addr & TARGET_PAGE_MASK)) { 1901 tlb_fill(env_cpu(env), addr, size, 1902 access_type, mmu_idx, retaddr); 1903 index = tlb_index(env, mmu_idx, addr); 1904 entry = tlb_entry(env, mmu_idx, addr); 1905 } 1906 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1907 tlb_addr &= ~TLB_INVALID_MASK; 1908 } 1909 1910 /* Handle anything that isn't just a straight memory access. */ 1911 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1912 CPUIOTLBEntry *iotlbentry; 1913 bool need_swap; 1914 1915 /* For anything that is unaligned, recurse through full_load. */ 1916 if ((addr & (size - 1)) != 0) { 1917 goto do_unaligned_access; 1918 } 1919 1920 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1921 1922 /* Handle watchpoints. */ 1923 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1924 /* On watchpoint hit, this will longjmp out. */ 1925 cpu_check_watchpoint(env_cpu(env), addr, size, 1926 iotlbentry->attrs, BP_MEM_READ, retaddr); 1927 } 1928 1929 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 1930 1931 /* Handle I/O access. */ 1932 if (likely(tlb_addr & TLB_MMIO)) { 1933 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, 1934 access_type, op ^ (need_swap * MO_BSWAP)); 1935 } 1936 1937 haddr = (void *)((uintptr_t)addr + entry->addend); 1938 1939 /* 1940 * Keep these two load_memop separate to ensure that the compiler 1941 * is able to fold the entire function to a single instruction. 1942 * There is a build-time assert inside to remind you of this. ;-) 1943 */ 1944 if (unlikely(need_swap)) { 1945 return load_memop(haddr, op ^ MO_BSWAP); 1946 } 1947 return load_memop(haddr, op); 1948 } 1949 1950 /* Handle slow unaligned access (it spans two pages or IO). */ 1951 if (size > 1 1952 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1953 >= TARGET_PAGE_SIZE)) { 1954 target_ulong addr1, addr2; 1955 uint64_t r1, r2; 1956 unsigned shift; 1957 do_unaligned_access: 1958 addr1 = addr & ~((target_ulong)size - 1); 1959 addr2 = addr1 + size; 1960 r1 = full_load(env, addr1, oi, retaddr); 1961 r2 = full_load(env, addr2, oi, retaddr); 1962 shift = (addr & (size - 1)) * 8; 1963 1964 if (memop_big_endian(op)) { 1965 /* Big-endian combine. */ 1966 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1967 } else { 1968 /* Little-endian combine. */ 1969 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1970 } 1971 return res & MAKE_64BIT_MASK(0, size * 8); 1972 } 1973 1974 haddr = (void *)((uintptr_t)addr + entry->addend); 1975 return load_memop(haddr, op); 1976 } 1977 1978 /* 1979 * For the benefit of TCG generated code, we want to avoid the 1980 * complication of ABI-specific return type promotion and always 1981 * return a value extended to the register size of the host. This is 1982 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1983 * data, and for that we always have uint64_t. 1984 * 1985 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1986 */ 1987 1988 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 1989 MemOpIdx oi, uintptr_t retaddr) 1990 { 1991 validate_memop(oi, MO_UB); 1992 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 1993 } 1994 1995 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 1996 MemOpIdx oi, uintptr_t retaddr) 1997 { 1998 return full_ldub_mmu(env, addr, oi, retaddr); 1999 } 2000 2001 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2002 MemOpIdx oi, uintptr_t retaddr) 2003 { 2004 validate_memop(oi, MO_LEUW); 2005 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 2006 full_le_lduw_mmu); 2007 } 2008 2009 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2010 MemOpIdx oi, uintptr_t retaddr) 2011 { 2012 return full_le_lduw_mmu(env, addr, oi, retaddr); 2013 } 2014 2015 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2016 MemOpIdx oi, uintptr_t retaddr) 2017 { 2018 validate_memop(oi, MO_BEUW); 2019 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 2020 full_be_lduw_mmu); 2021 } 2022 2023 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2024 MemOpIdx oi, uintptr_t retaddr) 2025 { 2026 return full_be_lduw_mmu(env, addr, oi, retaddr); 2027 } 2028 2029 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2030 MemOpIdx oi, uintptr_t retaddr) 2031 { 2032 validate_memop(oi, MO_LEUL); 2033 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 2034 full_le_ldul_mmu); 2035 } 2036 2037 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2038 MemOpIdx oi, uintptr_t retaddr) 2039 { 2040 return full_le_ldul_mmu(env, addr, oi, retaddr); 2041 } 2042 2043 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2044 MemOpIdx oi, uintptr_t retaddr) 2045 { 2046 validate_memop(oi, MO_BEUL); 2047 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 2048 full_be_ldul_mmu); 2049 } 2050 2051 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2052 MemOpIdx oi, uintptr_t retaddr) 2053 { 2054 return full_be_ldul_mmu(env, addr, oi, retaddr); 2055 } 2056 2057 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 2058 MemOpIdx oi, uintptr_t retaddr) 2059 { 2060 validate_memop(oi, MO_LEUQ); 2061 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false, 2062 helper_le_ldq_mmu); 2063 } 2064 2065 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 2066 MemOpIdx oi, uintptr_t retaddr) 2067 { 2068 validate_memop(oi, MO_BEUQ); 2069 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false, 2070 helper_be_ldq_mmu); 2071 } 2072 2073 /* 2074 * Provide signed versions of the load routines as well. We can of course 2075 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2076 */ 2077 2078 2079 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 2080 MemOpIdx oi, uintptr_t retaddr) 2081 { 2082 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 2083 } 2084 2085 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 2086 MemOpIdx oi, uintptr_t retaddr) 2087 { 2088 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 2089 } 2090 2091 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 2092 MemOpIdx oi, uintptr_t retaddr) 2093 { 2094 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 2095 } 2096 2097 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 2098 MemOpIdx oi, uintptr_t retaddr) 2099 { 2100 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 2101 } 2102 2103 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 2104 MemOpIdx oi, uintptr_t retaddr) 2105 { 2106 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 2107 } 2108 2109 /* 2110 * Load helpers for cpu_ldst.h. 2111 */ 2112 2113 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, 2114 MemOpIdx oi, uintptr_t retaddr, 2115 FullLoadHelper *full_load) 2116 { 2117 uint64_t ret; 2118 2119 ret = full_load(env, addr, oi, retaddr); 2120 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2121 return ret; 2122 } 2123 2124 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2125 { 2126 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu); 2127 } 2128 2129 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 2130 MemOpIdx oi, uintptr_t ra) 2131 { 2132 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu); 2133 } 2134 2135 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 2136 MemOpIdx oi, uintptr_t ra) 2137 { 2138 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu); 2139 } 2140 2141 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 2142 MemOpIdx oi, uintptr_t ra) 2143 { 2144 return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu); 2145 } 2146 2147 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 2148 MemOpIdx oi, uintptr_t ra) 2149 { 2150 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu); 2151 } 2152 2153 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 2154 MemOpIdx oi, uintptr_t ra) 2155 { 2156 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu); 2157 } 2158 2159 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 2160 MemOpIdx oi, uintptr_t ra) 2161 { 2162 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu); 2163 } 2164 2165 /* 2166 * Store Helpers 2167 */ 2168 2169 static inline void QEMU_ALWAYS_INLINE 2170 store_memop(void *haddr, uint64_t val, MemOp op) 2171 { 2172 switch (op) { 2173 case MO_UB: 2174 stb_p(haddr, val); 2175 break; 2176 case MO_BEUW: 2177 stw_be_p(haddr, val); 2178 break; 2179 case MO_LEUW: 2180 stw_le_p(haddr, val); 2181 break; 2182 case MO_BEUL: 2183 stl_be_p(haddr, val); 2184 break; 2185 case MO_LEUL: 2186 stl_le_p(haddr, val); 2187 break; 2188 case MO_BEUQ: 2189 stq_be_p(haddr, val); 2190 break; 2191 case MO_LEUQ: 2192 stq_le_p(haddr, val); 2193 break; 2194 default: 2195 qemu_build_not_reached(); 2196 } 2197 } 2198 2199 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2200 MemOpIdx oi, uintptr_t retaddr); 2201 2202 static void __attribute__((noinline)) 2203 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, 2204 uintptr_t retaddr, size_t size, uintptr_t mmu_idx, 2205 bool big_endian) 2206 { 2207 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2208 uintptr_t index, index2; 2209 CPUTLBEntry *entry, *entry2; 2210 target_ulong page1, page2, tlb_addr, tlb_addr2; 2211 MemOpIdx oi; 2212 size_t size2; 2213 int i; 2214 2215 /* 2216 * Ensure the second page is in the TLB. Note that the first page 2217 * is already guaranteed to be filled, and that the second page 2218 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV 2219 * handling: the first page could have evicted itself. 2220 */ 2221 page1 = addr & TARGET_PAGE_MASK; 2222 page2 = (addr + size) & TARGET_PAGE_MASK; 2223 size2 = (addr + size) & ~TARGET_PAGE_MASK; 2224 index2 = tlb_index(env, mmu_idx, page2); 2225 entry2 = tlb_entry(env, mmu_idx, page2); 2226 2227 tlb_addr2 = tlb_addr_write(entry2); 2228 if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) { 2229 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { 2230 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, 2231 mmu_idx, retaddr); 2232 index2 = tlb_index(env, mmu_idx, page2); 2233 entry2 = tlb_entry(env, mmu_idx, page2); 2234 } 2235 tlb_addr2 = tlb_addr_write(entry2); 2236 } 2237 2238 index = tlb_index(env, mmu_idx, addr); 2239 entry = tlb_entry(env, mmu_idx, addr); 2240 tlb_addr = tlb_addr_write(entry); 2241 2242 /* 2243 * Handle watchpoints. Since this may trap, all checks 2244 * must happen before any store. 2245 */ 2246 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2247 cpu_check_watchpoint(env_cpu(env), addr, size - size2, 2248 env_tlb(env)->d[mmu_idx].iotlb[index].attrs, 2249 BP_MEM_WRITE, retaddr); 2250 } 2251 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { 2252 cpu_check_watchpoint(env_cpu(env), page2, size2, 2253 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs, 2254 BP_MEM_WRITE, retaddr); 2255 } 2256 2257 /* 2258 * XXX: not efficient, but simple. 2259 * This loop must go in the forward direction to avoid issues 2260 * with self-modifying code in Windows 64-bit. 2261 */ 2262 oi = make_memop_idx(MO_UB, mmu_idx); 2263 if (big_endian) { 2264 for (i = 0; i < size; ++i) { 2265 /* Big-endian extract. */ 2266 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); 2267 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2268 } 2269 } else { 2270 for (i = 0; i < size; ++i) { 2271 /* Little-endian extract. */ 2272 uint8_t val8 = val >> (i * 8); 2273 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2274 } 2275 } 2276 } 2277 2278 static inline void QEMU_ALWAYS_INLINE 2279 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 2280 MemOpIdx oi, uintptr_t retaddr, MemOp op) 2281 { 2282 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2283 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 2284 const size_t size = memop_size(op); 2285 uintptr_t mmu_idx = get_mmuidx(oi); 2286 uintptr_t index; 2287 CPUTLBEntry *entry; 2288 target_ulong tlb_addr; 2289 void *haddr; 2290 2291 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 2292 2293 /* Handle CPU specific unaligned behaviour */ 2294 if (addr & ((1 << a_bits) - 1)) { 2295 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2296 mmu_idx, retaddr); 2297 } 2298 2299 index = tlb_index(env, mmu_idx, addr); 2300 entry = tlb_entry(env, mmu_idx, addr); 2301 tlb_addr = tlb_addr_write(entry); 2302 2303 /* If the TLB entry is for a different page, reload and try again. */ 2304 if (!tlb_hit(tlb_addr, addr)) { 2305 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 2306 addr & TARGET_PAGE_MASK)) { 2307 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 2308 mmu_idx, retaddr); 2309 index = tlb_index(env, mmu_idx, addr); 2310 entry = tlb_entry(env, mmu_idx, addr); 2311 } 2312 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 2313 } 2314 2315 /* Handle anything that isn't just a straight memory access. */ 2316 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 2317 CPUIOTLBEntry *iotlbentry; 2318 bool need_swap; 2319 2320 /* For anything that is unaligned, recurse through byte stores. */ 2321 if ((addr & (size - 1)) != 0) { 2322 goto do_unaligned_access; 2323 } 2324 2325 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 2326 2327 /* Handle watchpoints. */ 2328 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2329 /* On watchpoint hit, this will longjmp out. */ 2330 cpu_check_watchpoint(env_cpu(env), addr, size, 2331 iotlbentry->attrs, BP_MEM_WRITE, retaddr); 2332 } 2333 2334 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 2335 2336 /* Handle I/O access. */ 2337 if (tlb_addr & TLB_MMIO) { 2338 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, 2339 op ^ (need_swap * MO_BSWAP)); 2340 return; 2341 } 2342 2343 /* Ignore writes to ROM. */ 2344 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { 2345 return; 2346 } 2347 2348 /* Handle clean RAM pages. */ 2349 if (tlb_addr & TLB_NOTDIRTY) { 2350 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr); 2351 } 2352 2353 haddr = (void *)((uintptr_t)addr + entry->addend); 2354 2355 /* 2356 * Keep these two store_memop separate to ensure that the compiler 2357 * is able to fold the entire function to a single instruction. 2358 * There is a build-time assert inside to remind you of this. ;-) 2359 */ 2360 if (unlikely(need_swap)) { 2361 store_memop(haddr, val, op ^ MO_BSWAP); 2362 } else { 2363 store_memop(haddr, val, op); 2364 } 2365 return; 2366 } 2367 2368 /* Handle slow unaligned access (it spans two pages or IO). */ 2369 if (size > 1 2370 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 2371 >= TARGET_PAGE_SIZE)) { 2372 do_unaligned_access: 2373 store_helper_unaligned(env, addr, val, retaddr, size, 2374 mmu_idx, memop_big_endian(op)); 2375 return; 2376 } 2377 2378 haddr = (void *)((uintptr_t)addr + entry->addend); 2379 store_memop(haddr, val, op); 2380 } 2381 2382 static void __attribute__((noinline)) 2383 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2384 MemOpIdx oi, uintptr_t retaddr) 2385 { 2386 validate_memop(oi, MO_UB); 2387 store_helper(env, addr, val, oi, retaddr, MO_UB); 2388 } 2389 2390 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2391 MemOpIdx oi, uintptr_t retaddr) 2392 { 2393 full_stb_mmu(env, addr, val, oi, retaddr); 2394 } 2395 2396 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2397 MemOpIdx oi, uintptr_t retaddr) 2398 { 2399 validate_memop(oi, MO_LEUW); 2400 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 2401 } 2402 2403 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2404 MemOpIdx oi, uintptr_t retaddr) 2405 { 2406 full_le_stw_mmu(env, addr, val, oi, retaddr); 2407 } 2408 2409 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2410 MemOpIdx oi, uintptr_t retaddr) 2411 { 2412 validate_memop(oi, MO_BEUW); 2413 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 2414 } 2415 2416 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2417 MemOpIdx oi, uintptr_t retaddr) 2418 { 2419 full_be_stw_mmu(env, addr, val, oi, retaddr); 2420 } 2421 2422 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2423 MemOpIdx oi, uintptr_t retaddr) 2424 { 2425 validate_memop(oi, MO_LEUL); 2426 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 2427 } 2428 2429 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2430 MemOpIdx oi, uintptr_t retaddr) 2431 { 2432 full_le_stl_mmu(env, addr, val, oi, retaddr); 2433 } 2434 2435 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2436 MemOpIdx oi, uintptr_t retaddr) 2437 { 2438 validate_memop(oi, MO_BEUL); 2439 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 2440 } 2441 2442 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2443 MemOpIdx oi, uintptr_t retaddr) 2444 { 2445 full_be_stl_mmu(env, addr, val, oi, retaddr); 2446 } 2447 2448 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2449 MemOpIdx oi, uintptr_t retaddr) 2450 { 2451 validate_memop(oi, MO_LEUQ); 2452 store_helper(env, addr, val, oi, retaddr, MO_LEUQ); 2453 } 2454 2455 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2456 MemOpIdx oi, uintptr_t retaddr) 2457 { 2458 validate_memop(oi, MO_BEUQ); 2459 store_helper(env, addr, val, oi, retaddr, MO_BEUQ); 2460 } 2461 2462 /* 2463 * Store Helpers for cpu_ldst.h 2464 */ 2465 2466 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr, 2467 uint64_t val, MemOpIdx oi, uintptr_t retaddr); 2468 2469 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr, 2470 uint64_t val, MemOpIdx oi, uintptr_t ra, 2471 FullStoreHelper *full_store) 2472 { 2473 full_store(env, addr, val, oi, ra); 2474 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2475 } 2476 2477 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2478 MemOpIdx oi, uintptr_t retaddr) 2479 { 2480 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu); 2481 } 2482 2483 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2484 MemOpIdx oi, uintptr_t retaddr) 2485 { 2486 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu); 2487 } 2488 2489 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2490 MemOpIdx oi, uintptr_t retaddr) 2491 { 2492 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu); 2493 } 2494 2495 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2496 MemOpIdx oi, uintptr_t retaddr) 2497 { 2498 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu); 2499 } 2500 2501 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2502 MemOpIdx oi, uintptr_t retaddr) 2503 { 2504 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu); 2505 } 2506 2507 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2508 MemOpIdx oi, uintptr_t retaddr) 2509 { 2510 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu); 2511 } 2512 2513 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2514 MemOpIdx oi, uintptr_t retaddr) 2515 { 2516 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu); 2517 } 2518 2519 #include "ldst_common.c.inc" 2520 2521 /* 2522 * First set of functions passes in OI and RETADDR. 2523 * This makes them callable from other helpers. 2524 */ 2525 2526 #define ATOMIC_NAME(X) \ 2527 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2528 2529 #define ATOMIC_MMU_CLEANUP 2530 2531 #include "atomic_common.c.inc" 2532 2533 #define DATA_SIZE 1 2534 #include "atomic_template.h" 2535 2536 #define DATA_SIZE 2 2537 #include "atomic_template.h" 2538 2539 #define DATA_SIZE 4 2540 #include "atomic_template.h" 2541 2542 #ifdef CONFIG_ATOMIC64 2543 #define DATA_SIZE 8 2544 #include "atomic_template.h" 2545 #endif 2546 2547 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2548 #define DATA_SIZE 16 2549 #include "atomic_template.h" 2550 #endif 2551 2552 /* Code access functions. */ 2553 2554 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, 2555 MemOpIdx oi, uintptr_t retaddr) 2556 { 2557 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); 2558 } 2559 2560 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2561 { 2562 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2563 return full_ldub_code(env, addr, oi, 0); 2564 } 2565 2566 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, 2567 MemOpIdx oi, uintptr_t retaddr) 2568 { 2569 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); 2570 } 2571 2572 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2573 { 2574 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2575 return full_lduw_code(env, addr, oi, 0); 2576 } 2577 2578 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, 2579 MemOpIdx oi, uintptr_t retaddr) 2580 { 2581 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); 2582 } 2583 2584 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2585 { 2586 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2587 return full_ldl_code(env, addr, oi, 0); 2588 } 2589 2590 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, 2591 MemOpIdx oi, uintptr_t retaddr) 2592 { 2593 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code); 2594 } 2595 2596 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2597 { 2598 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2599 return full_ldq_code(env, addr, oi, 0); 2600 } 2601