1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/address-spaces.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "tcg/tcg.h" 31 #include "qemu/error-report.h" 32 #include "exec/log.h" 33 #include "exec/helper-proto.h" 34 #include "qemu/atomic.h" 35 #include "qemu/atomic128.h" 36 37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 38 /* #define DEBUG_TLB */ 39 /* #define DEBUG_TLB_LOG */ 40 41 #ifdef DEBUG_TLB 42 # define DEBUG_TLB_GATE 1 43 # ifdef DEBUG_TLB_LOG 44 # define DEBUG_TLB_LOG_GATE 1 45 # else 46 # define DEBUG_TLB_LOG_GATE 0 47 # endif 48 #else 49 # define DEBUG_TLB_GATE 0 50 # define DEBUG_TLB_LOG_GATE 0 51 #endif 52 53 #define tlb_debug(fmt, ...) do { \ 54 if (DEBUG_TLB_LOG_GATE) { \ 55 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 56 ## __VA_ARGS__); \ 57 } else if (DEBUG_TLB_GATE) { \ 58 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 59 } \ 60 } while (0) 61 62 #define assert_cpu_is_self(cpu) do { \ 63 if (DEBUG_TLB_GATE) { \ 64 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 65 } \ 66 } while (0) 67 68 /* run_on_cpu_data.target_ptr should always be big enough for a 69 * target_ulong even on 32 bit builds */ 70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 71 72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 73 */ 74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 76 77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx) 78 { 79 return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS); 80 } 81 82 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 83 size_t max_entries) 84 { 85 desc->window_begin_ns = ns; 86 desc->window_max_entries = max_entries; 87 } 88 89 static void tlb_dyn_init(CPUArchState *env) 90 { 91 int i; 92 93 for (i = 0; i < NB_MMU_MODES; i++) { 94 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 95 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 96 97 tlb_window_reset(desc, get_clock_realtime(), 0); 98 desc->n_used_entries = 0; 99 env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 100 env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries); 101 env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries); 102 } 103 } 104 105 /** 106 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 107 * @env: CPU that owns the TLB 108 * @mmu_idx: MMU index of the TLB 109 * 110 * Called with tlb_lock_held. 111 * 112 * We have two main constraints when resizing a TLB: (1) we only resize it 113 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 114 * the array or unnecessarily flushing it), which means we do not control how 115 * frequently the resizing can occur; (2) we don't have access to the guest's 116 * future scheduling decisions, and therefore have to decide the magnitude of 117 * the resize based on past observations. 118 * 119 * In general, a memory-hungry process can benefit greatly from an appropriately 120 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 121 * we just have to make the TLB as large as possible; while an oversized TLB 122 * results in minimal TLB miss rates, it also takes longer to be flushed 123 * (flushes can be _very_ frequent), and the reduced locality can also hurt 124 * performance. 125 * 126 * To achieve near-optimal performance for all kinds of workloads, we: 127 * 128 * 1. Aggressively increase the size of the TLB when the use rate of the 129 * TLB being flushed is high, since it is likely that in the near future this 130 * memory-hungry process will execute again, and its memory hungriness will 131 * probably be similar. 132 * 133 * 2. Slowly reduce the size of the TLB as the use rate declines over a 134 * reasonably large time window. The rationale is that if in such a time window 135 * we have not observed a high TLB use rate, it is likely that we won't observe 136 * it in the near future. In that case, once a time window expires we downsize 137 * the TLB to match the maximum use rate observed in the window. 138 * 139 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 140 * since in that range performance is likely near-optimal. Recall that the TLB 141 * is direct mapped, so we want the use rate to be low (or at least not too 142 * high), since otherwise we are likely to have a significant amount of 143 * conflict misses. 144 */ 145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx) 146 { 147 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 148 size_t old_size = tlb_n_entries(env, mmu_idx); 149 size_t rate; 150 size_t new_size = old_size; 151 int64_t now = get_clock_realtime(); 152 int64_t window_len_ms = 100; 153 int64_t window_len_ns = window_len_ms * 1000 * 1000; 154 bool window_expired = now > desc->window_begin_ns + window_len_ns; 155 156 if (desc->n_used_entries > desc->window_max_entries) { 157 desc->window_max_entries = desc->n_used_entries; 158 } 159 rate = desc->window_max_entries * 100 / old_size; 160 161 if (rate > 70) { 162 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 163 } else if (rate < 30 && window_expired) { 164 size_t ceil = pow2ceil(desc->window_max_entries); 165 size_t expected_rate = desc->window_max_entries * 100 / ceil; 166 167 /* 168 * Avoid undersizing when the max number of entries seen is just below 169 * a pow2. For instance, if max_entries == 1025, the expected use rate 170 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 171 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 172 * later. Thus, make sure that the expected use rate remains below 70%. 173 * (and since we double the size, that means the lowest rate we'd 174 * expect to get is 35%, which is still in the 30-70% range where 175 * we consider that the size is appropriate.) 176 */ 177 if (expected_rate > 70) { 178 ceil *= 2; 179 } 180 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 181 } 182 183 if (new_size == old_size) { 184 if (window_expired) { 185 tlb_window_reset(desc, now, desc->n_used_entries); 186 } 187 return; 188 } 189 190 g_free(env_tlb(env)->f[mmu_idx].table); 191 g_free(env_tlb(env)->d[mmu_idx].iotlb); 192 193 tlb_window_reset(desc, now, 0); 194 /* desc->n_used_entries is cleared by the caller */ 195 env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 196 env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size); 197 env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size); 198 /* 199 * If the allocations fail, try smaller sizes. We just freed some 200 * memory, so going back to half of new_size has a good chance of working. 201 * Increased memory pressure elsewhere in the system might cause the 202 * allocations to fail though, so we progressively reduce the allocation 203 * size, aborting if we cannot even allocate the smallest TLB we support. 204 */ 205 while (env_tlb(env)->f[mmu_idx].table == NULL || 206 env_tlb(env)->d[mmu_idx].iotlb == NULL) { 207 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 208 error_report("%s: %s", __func__, strerror(errno)); 209 abort(); 210 } 211 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 212 env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 213 214 g_free(env_tlb(env)->f[mmu_idx].table); 215 g_free(env_tlb(env)->d[mmu_idx].iotlb); 216 env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size); 217 env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size); 218 } 219 } 220 221 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx) 222 { 223 tlb_mmu_resize_locked(env, mmu_idx); 224 memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx)); 225 env_tlb(env)->d[mmu_idx].n_used_entries = 0; 226 } 227 228 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 229 { 230 env_tlb(env)->d[mmu_idx].n_used_entries++; 231 } 232 233 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 234 { 235 env_tlb(env)->d[mmu_idx].n_used_entries--; 236 } 237 238 void tlb_init(CPUState *cpu) 239 { 240 CPUArchState *env = cpu->env_ptr; 241 242 qemu_spin_init(&env_tlb(env)->c.lock); 243 244 /* Ensure that cpu_reset performs a full flush. */ 245 env_tlb(env)->c.dirty = ALL_MMUIDX_BITS; 246 247 tlb_dyn_init(env); 248 } 249 250 /* flush_all_helper: run fn across all cpus 251 * 252 * If the wait flag is set then the src cpu's helper will be queued as 253 * "safe" work and the loop exited creating a synchronisation point 254 * where all queued work will be finished before execution starts 255 * again. 256 */ 257 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 258 run_on_cpu_data d) 259 { 260 CPUState *cpu; 261 262 CPU_FOREACH(cpu) { 263 if (cpu != src) { 264 async_run_on_cpu(cpu, fn, d); 265 } 266 } 267 } 268 269 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 270 { 271 CPUState *cpu; 272 size_t full = 0, part = 0, elide = 0; 273 274 CPU_FOREACH(cpu) { 275 CPUArchState *env = cpu->env_ptr; 276 277 full += atomic_read(&env_tlb(env)->c.full_flush_count); 278 part += atomic_read(&env_tlb(env)->c.part_flush_count); 279 elide += atomic_read(&env_tlb(env)->c.elide_flush_count); 280 } 281 *pfull = full; 282 *ppart = part; 283 *pelide = elide; 284 } 285 286 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx) 287 { 288 tlb_table_flush_by_mmuidx(env, mmu_idx); 289 env_tlb(env)->d[mmu_idx].large_page_addr = -1; 290 env_tlb(env)->d[mmu_idx].large_page_mask = -1; 291 env_tlb(env)->d[mmu_idx].vindex = 0; 292 memset(env_tlb(env)->d[mmu_idx].vtable, -1, 293 sizeof(env_tlb(env)->d[0].vtable)); 294 } 295 296 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 297 { 298 CPUArchState *env = cpu->env_ptr; 299 uint16_t asked = data.host_int; 300 uint16_t all_dirty, work, to_clean; 301 302 assert_cpu_is_self(cpu); 303 304 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 305 306 qemu_spin_lock(&env_tlb(env)->c.lock); 307 308 all_dirty = env_tlb(env)->c.dirty; 309 to_clean = asked & all_dirty; 310 all_dirty &= ~to_clean; 311 env_tlb(env)->c.dirty = all_dirty; 312 313 for (work = to_clean; work != 0; work &= work - 1) { 314 int mmu_idx = ctz32(work); 315 tlb_flush_one_mmuidx_locked(env, mmu_idx); 316 } 317 318 qemu_spin_unlock(&env_tlb(env)->c.lock); 319 320 cpu_tb_jmp_cache_clear(cpu); 321 322 if (to_clean == ALL_MMUIDX_BITS) { 323 atomic_set(&env_tlb(env)->c.full_flush_count, 324 env_tlb(env)->c.full_flush_count + 1); 325 } else { 326 atomic_set(&env_tlb(env)->c.part_flush_count, 327 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 328 if (to_clean != asked) { 329 atomic_set(&env_tlb(env)->c.elide_flush_count, 330 env_tlb(env)->c.elide_flush_count + 331 ctpop16(asked & ~to_clean)); 332 } 333 } 334 } 335 336 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 337 { 338 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 339 340 if (cpu->created && !qemu_cpu_is_self(cpu)) { 341 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 342 RUN_ON_CPU_HOST_INT(idxmap)); 343 } else { 344 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 345 } 346 } 347 348 void tlb_flush(CPUState *cpu) 349 { 350 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 351 } 352 353 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 354 { 355 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 356 357 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 358 359 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 360 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 361 } 362 363 void tlb_flush_all_cpus(CPUState *src_cpu) 364 { 365 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 366 } 367 368 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 369 { 370 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 371 372 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 373 374 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 375 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 376 } 377 378 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 379 { 380 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 381 } 382 383 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 384 target_ulong page) 385 { 386 return tlb_hit_page(tlb_entry->addr_read, page) || 387 tlb_hit_page(tlb_addr_write(tlb_entry), page) || 388 tlb_hit_page(tlb_entry->addr_code, page); 389 } 390 391 /** 392 * tlb_entry_is_empty - return true if the entry is not in use 393 * @te: pointer to CPUTLBEntry 394 */ 395 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 396 { 397 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 398 } 399 400 /* Called with tlb_c.lock held */ 401 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 402 target_ulong page) 403 { 404 if (tlb_hit_page_anyprot(tlb_entry, page)) { 405 memset(tlb_entry, -1, sizeof(*tlb_entry)); 406 return true; 407 } 408 return false; 409 } 410 411 /* Called with tlb_c.lock held */ 412 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 413 target_ulong page) 414 { 415 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 416 int k; 417 418 assert_cpu_is_self(env_cpu(env)); 419 for (k = 0; k < CPU_VTLB_SIZE; k++) { 420 if (tlb_flush_entry_locked(&d->vtable[k], page)) { 421 tlb_n_used_entries_dec(env, mmu_idx); 422 } 423 } 424 } 425 426 static void tlb_flush_page_locked(CPUArchState *env, int midx, 427 target_ulong page) 428 { 429 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 430 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 431 432 /* Check if we need to flush due to large pages. */ 433 if ((page & lp_mask) == lp_addr) { 434 tlb_debug("forcing full flush midx %d (" 435 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 436 midx, lp_addr, lp_mask); 437 tlb_flush_one_mmuidx_locked(env, midx); 438 } else { 439 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 440 tlb_n_used_entries_dec(env, midx); 441 } 442 tlb_flush_vtlb_page_locked(env, midx, page); 443 } 444 } 445 446 /* As we are going to hijack the bottom bits of the page address for a 447 * mmuidx bit mask we need to fail to build if we can't do that 448 */ 449 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); 450 451 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, 452 run_on_cpu_data data) 453 { 454 CPUArchState *env = cpu->env_ptr; 455 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 456 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 457 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 458 int mmu_idx; 459 460 assert_cpu_is_self(cpu); 461 462 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n", 463 addr, mmu_idx_bitmap); 464 465 qemu_spin_lock(&env_tlb(env)->c.lock); 466 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 467 if (test_bit(mmu_idx, &mmu_idx_bitmap)) { 468 tlb_flush_page_locked(env, mmu_idx, addr); 469 } 470 } 471 qemu_spin_unlock(&env_tlb(env)->c.lock); 472 473 tb_flush_jmp_cache(cpu, addr); 474 } 475 476 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 477 { 478 target_ulong addr_and_mmu_idx; 479 480 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 481 482 /* This should already be page aligned */ 483 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 484 addr_and_mmu_idx |= idxmap; 485 486 if (!qemu_cpu_is_self(cpu)) { 487 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work, 488 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 489 } else { 490 tlb_flush_page_by_mmuidx_async_work( 491 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 492 } 493 } 494 495 void tlb_flush_page(CPUState *cpu, target_ulong addr) 496 { 497 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 498 } 499 500 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 501 uint16_t idxmap) 502 { 503 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 504 target_ulong addr_and_mmu_idx; 505 506 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 507 508 /* This should already be page aligned */ 509 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 510 addr_and_mmu_idx |= idxmap; 511 512 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 513 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 514 } 515 516 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 517 { 518 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 519 } 520 521 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 522 target_ulong addr, 523 uint16_t idxmap) 524 { 525 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 526 target_ulong addr_and_mmu_idx; 527 528 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 529 530 /* This should already be page aligned */ 531 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 532 addr_and_mmu_idx |= idxmap; 533 534 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 535 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 536 } 537 538 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 539 { 540 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 541 } 542 543 /* update the TLBs so that writes to code in the virtual page 'addr' 544 can be detected */ 545 void tlb_protect_code(ram_addr_t ram_addr) 546 { 547 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 548 DIRTY_MEMORY_CODE); 549 } 550 551 /* update the TLB so that writes in physical page 'phys_addr' are no longer 552 tested for self modifying code */ 553 void tlb_unprotect_code(ram_addr_t ram_addr) 554 { 555 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 556 } 557 558 559 /* 560 * Dirty write flag handling 561 * 562 * When the TCG code writes to a location it looks up the address in 563 * the TLB and uses that data to compute the final address. If any of 564 * the lower bits of the address are set then the slow path is forced. 565 * There are a number of reasons to do this but for normal RAM the 566 * most usual is detecting writes to code regions which may invalidate 567 * generated code. 568 * 569 * Other vCPUs might be reading their TLBs during guest execution, so we update 570 * te->addr_write with atomic_set. We don't need to worry about this for 571 * oversized guests as MTTCG is disabled for them. 572 * 573 * Called with tlb_c.lock held. 574 */ 575 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 576 uintptr_t start, uintptr_t length) 577 { 578 uintptr_t addr = tlb_entry->addr_write; 579 580 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 581 addr &= TARGET_PAGE_MASK; 582 addr += tlb_entry->addend; 583 if ((addr - start) < length) { 584 #if TCG_OVERSIZED_GUEST 585 tlb_entry->addr_write |= TLB_NOTDIRTY; 586 #else 587 atomic_set(&tlb_entry->addr_write, 588 tlb_entry->addr_write | TLB_NOTDIRTY); 589 #endif 590 } 591 } 592 } 593 594 /* 595 * Called with tlb_c.lock held. 596 * Called only from the vCPU context, i.e. the TLB's owner thread. 597 */ 598 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 599 { 600 *d = *s; 601 } 602 603 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 604 * the target vCPU). 605 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 606 * thing actually updated is the target TLB entry ->addr_write flags. 607 */ 608 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 609 { 610 CPUArchState *env; 611 612 int mmu_idx; 613 614 env = cpu->env_ptr; 615 qemu_spin_lock(&env_tlb(env)->c.lock); 616 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 617 unsigned int i; 618 unsigned int n = tlb_n_entries(env, mmu_idx); 619 620 for (i = 0; i < n; i++) { 621 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 622 start1, length); 623 } 624 625 for (i = 0; i < CPU_VTLB_SIZE; i++) { 626 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 627 start1, length); 628 } 629 } 630 qemu_spin_unlock(&env_tlb(env)->c.lock); 631 } 632 633 /* Called with tlb_c.lock held */ 634 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 635 target_ulong vaddr) 636 { 637 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 638 tlb_entry->addr_write = vaddr; 639 } 640 } 641 642 /* update the TLB corresponding to virtual page vaddr 643 so that it is no longer dirty */ 644 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 645 { 646 CPUArchState *env = cpu->env_ptr; 647 int mmu_idx; 648 649 assert_cpu_is_self(cpu); 650 651 vaddr &= TARGET_PAGE_MASK; 652 qemu_spin_lock(&env_tlb(env)->c.lock); 653 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 654 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 655 } 656 657 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 658 int k; 659 for (k = 0; k < CPU_VTLB_SIZE; k++) { 660 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 661 } 662 } 663 qemu_spin_unlock(&env_tlb(env)->c.lock); 664 } 665 666 /* Our TLB does not support large pages, so remember the area covered by 667 large pages and trigger a full TLB flush if these are invalidated. */ 668 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 669 target_ulong vaddr, target_ulong size) 670 { 671 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 672 target_ulong lp_mask = ~(size - 1); 673 674 if (lp_addr == (target_ulong)-1) { 675 /* No previous large page. */ 676 lp_addr = vaddr; 677 } else { 678 /* Extend the existing region to include the new page. 679 This is a compromise between unnecessary flushes and 680 the cost of maintaining a full variable size TLB. */ 681 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 682 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 683 lp_mask <<= 1; 684 } 685 } 686 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 687 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 688 } 689 690 /* Add a new TLB entry. At most one entry for a given virtual address 691 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 692 * supplied size is only used by tlb_flush_page. 693 * 694 * Called from TCG-generated code, which is under an RCU read-side 695 * critical section. 696 */ 697 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 698 hwaddr paddr, MemTxAttrs attrs, int prot, 699 int mmu_idx, target_ulong size) 700 { 701 CPUArchState *env = cpu->env_ptr; 702 CPUTLB *tlb = env_tlb(env); 703 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 704 MemoryRegionSection *section; 705 unsigned int index; 706 target_ulong address; 707 target_ulong code_address; 708 uintptr_t addend; 709 CPUTLBEntry *te, tn; 710 hwaddr iotlb, xlat, sz, paddr_page; 711 target_ulong vaddr_page; 712 int asidx = cpu_asidx_from_attrs(cpu, attrs); 713 714 assert_cpu_is_self(cpu); 715 716 if (size <= TARGET_PAGE_SIZE) { 717 sz = TARGET_PAGE_SIZE; 718 } else { 719 tlb_add_large_page(env, mmu_idx, vaddr, size); 720 sz = size; 721 } 722 vaddr_page = vaddr & TARGET_PAGE_MASK; 723 paddr_page = paddr & TARGET_PAGE_MASK; 724 725 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 726 &xlat, &sz, attrs, &prot); 727 assert(sz >= TARGET_PAGE_SIZE); 728 729 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 730 " prot=%x idx=%d\n", 731 vaddr, paddr, prot, mmu_idx); 732 733 address = vaddr_page; 734 if (size < TARGET_PAGE_SIZE) { 735 /* Repeat the MMU check and TLB fill on every access. */ 736 address |= TLB_INVALID_MASK; 737 } 738 if (attrs.byte_swap) { 739 /* Force the access through the I/O slow path. */ 740 address |= TLB_MMIO; 741 } 742 if (!memory_region_is_ram(section->mr) && 743 !memory_region_is_romd(section->mr)) { 744 /* IO memory case */ 745 address |= TLB_MMIO; 746 addend = 0; 747 } else { 748 /* TLB_MMIO for rom/romd handled below */ 749 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 750 } 751 752 code_address = address; 753 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page, 754 paddr_page, xlat, prot, &address); 755 756 index = tlb_index(env, mmu_idx, vaddr_page); 757 te = tlb_entry(env, mmu_idx, vaddr_page); 758 759 /* 760 * Hold the TLB lock for the rest of the function. We could acquire/release 761 * the lock several times in the function, but it is faster to amortize the 762 * acquisition cost by acquiring it just once. Note that this leads to 763 * a longer critical section, but this is not a concern since the TLB lock 764 * is unlikely to be contended. 765 */ 766 qemu_spin_lock(&tlb->c.lock); 767 768 /* Note that the tlb is no longer clean. */ 769 tlb->c.dirty |= 1 << mmu_idx; 770 771 /* Make sure there's no cached translation for the new page. */ 772 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 773 774 /* 775 * Only evict the old entry to the victim tlb if it's for a 776 * different page; otherwise just overwrite the stale data. 777 */ 778 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 779 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 780 CPUTLBEntry *tv = &desc->vtable[vidx]; 781 782 /* Evict the old entry into the victim tlb. */ 783 copy_tlb_helper_locked(tv, te); 784 desc->viotlb[vidx] = desc->iotlb[index]; 785 tlb_n_used_entries_dec(env, mmu_idx); 786 } 787 788 /* refill the tlb */ 789 /* 790 * At this point iotlb contains a physical section number in the lower 791 * TARGET_PAGE_BITS, and either 792 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM) 793 * + the offset within section->mr of the page base (otherwise) 794 * We subtract the vaddr_page (which is page aligned and thus won't 795 * disturb the low bits) to give an offset which can be added to the 796 * (non-page-aligned) vaddr of the eventual memory access to get 797 * the MemoryRegion offset for the access. Note that the vaddr we 798 * subtract here is that of the page base, and not the same as the 799 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 800 */ 801 desc->iotlb[index].addr = iotlb - vaddr_page; 802 desc->iotlb[index].attrs = attrs; 803 804 /* Now calculate the new entry */ 805 tn.addend = addend - vaddr_page; 806 if (prot & PAGE_READ) { 807 tn.addr_read = address; 808 } else { 809 tn.addr_read = -1; 810 } 811 812 if (prot & PAGE_EXEC) { 813 tn.addr_code = code_address; 814 } else { 815 tn.addr_code = -1; 816 } 817 818 tn.addr_write = -1; 819 if (prot & PAGE_WRITE) { 820 if ((memory_region_is_ram(section->mr) && section->readonly) 821 || memory_region_is_romd(section->mr)) { 822 /* Write access calls the I/O callback. */ 823 tn.addr_write = address | TLB_MMIO; 824 } else if (memory_region_is_ram(section->mr) 825 && cpu_physical_memory_is_clean( 826 memory_region_get_ram_addr(section->mr) + xlat)) { 827 tn.addr_write = address | TLB_NOTDIRTY; 828 } else { 829 tn.addr_write = address; 830 } 831 if (prot & PAGE_WRITE_INV) { 832 tn.addr_write |= TLB_INVALID_MASK; 833 } 834 } 835 836 copy_tlb_helper_locked(te, &tn); 837 tlb_n_used_entries_inc(env, mmu_idx); 838 qemu_spin_unlock(&tlb->c.lock); 839 } 840 841 /* Add a new TLB entry, but without specifying the memory 842 * transaction attributes to be used. 843 */ 844 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 845 hwaddr paddr, int prot, 846 int mmu_idx, target_ulong size) 847 { 848 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 849 prot, mmu_idx, size); 850 } 851 852 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 853 { 854 ram_addr_t ram_addr; 855 856 ram_addr = qemu_ram_addr_from_host(ptr); 857 if (ram_addr == RAM_ADDR_INVALID) { 858 error_report("Bad ram pointer %p", ptr); 859 abort(); 860 } 861 return ram_addr; 862 } 863 864 /* 865 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 866 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 867 * be discarded and looked up again (e.g. via tlb_entry()). 868 */ 869 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 870 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 871 { 872 CPUClass *cc = CPU_GET_CLASS(cpu); 873 bool ok; 874 875 /* 876 * This is not a probe, so only valid return is success; failure 877 * should result in exception + longjmp to the cpu loop. 878 */ 879 ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr); 880 assert(ok); 881 } 882 883 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 884 int mmu_idx, target_ulong addr, uintptr_t retaddr, 885 MMUAccessType access_type, MemOp op) 886 { 887 CPUState *cpu = env_cpu(env); 888 hwaddr mr_offset; 889 MemoryRegionSection *section; 890 MemoryRegion *mr; 891 uint64_t val; 892 bool locked = false; 893 MemTxResult r; 894 895 if (iotlbentry->attrs.byte_swap) { 896 op ^= MO_BSWAP; 897 } 898 899 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 900 mr = section->mr; 901 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 902 cpu->mem_io_pc = retaddr; 903 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 904 cpu_io_recompile(cpu, retaddr); 905 } 906 907 cpu->mem_io_vaddr = addr; 908 cpu->mem_io_access_type = access_type; 909 910 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 911 qemu_mutex_lock_iothread(); 912 locked = true; 913 } 914 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs); 915 if (r != MEMTX_OK) { 916 hwaddr physaddr = mr_offset + 917 section->offset_within_address_space - 918 section->offset_within_region; 919 920 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 921 mmu_idx, iotlbentry->attrs, r, retaddr); 922 } 923 if (locked) { 924 qemu_mutex_unlock_iothread(); 925 } 926 927 return val; 928 } 929 930 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 931 int mmu_idx, uint64_t val, target_ulong addr, 932 uintptr_t retaddr, MemOp op) 933 { 934 CPUState *cpu = env_cpu(env); 935 hwaddr mr_offset; 936 MemoryRegionSection *section; 937 MemoryRegion *mr; 938 bool locked = false; 939 MemTxResult r; 940 941 if (iotlbentry->attrs.byte_swap) { 942 op ^= MO_BSWAP; 943 } 944 945 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 946 mr = section->mr; 947 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 948 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 949 cpu_io_recompile(cpu, retaddr); 950 } 951 cpu->mem_io_vaddr = addr; 952 cpu->mem_io_pc = retaddr; 953 954 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 955 qemu_mutex_lock_iothread(); 956 locked = true; 957 } 958 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs); 959 if (r != MEMTX_OK) { 960 hwaddr physaddr = mr_offset + 961 section->offset_within_address_space - 962 section->offset_within_region; 963 964 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 965 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r, 966 retaddr); 967 } 968 if (locked) { 969 qemu_mutex_unlock_iothread(); 970 } 971 } 972 973 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 974 { 975 #if TCG_OVERSIZED_GUEST 976 return *(target_ulong *)((uintptr_t)entry + ofs); 977 #else 978 /* ofs might correspond to .addr_write, so use atomic_read */ 979 return atomic_read((target_ulong *)((uintptr_t)entry + ofs)); 980 #endif 981 } 982 983 /* Return true if ADDR is present in the victim tlb, and has been copied 984 back to the main tlb. */ 985 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 986 size_t elt_ofs, target_ulong page) 987 { 988 size_t vidx; 989 990 assert_cpu_is_self(env_cpu(env)); 991 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 992 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 993 target_ulong cmp; 994 995 /* elt_ofs might correspond to .addr_write, so use atomic_read */ 996 #if TCG_OVERSIZED_GUEST 997 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 998 #else 999 cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1000 #endif 1001 1002 if (cmp == page) { 1003 /* Found entry in victim tlb, swap tlb and iotlb. */ 1004 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1005 1006 qemu_spin_lock(&env_tlb(env)->c.lock); 1007 copy_tlb_helper_locked(&tmptlb, tlb); 1008 copy_tlb_helper_locked(tlb, vtlb); 1009 copy_tlb_helper_locked(vtlb, &tmptlb); 1010 qemu_spin_unlock(&env_tlb(env)->c.lock); 1011 1012 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1013 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; 1014 tmpio = *io; *io = *vio; *vio = tmpio; 1015 return true; 1016 } 1017 } 1018 return false; 1019 } 1020 1021 /* Macro to call the above, with local variables from the use context. */ 1022 #define VICTIM_TLB_HIT(TY, ADDR) \ 1023 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1024 (ADDR) & TARGET_PAGE_MASK) 1025 1026 /* 1027 * Return a ram_addr_t for the virtual address for execution. 1028 * 1029 * Return -1 if we can't translate and execute from an entire page 1030 * of RAM. This will force us to execute by loading and translating 1031 * one insn at a time, without caching. 1032 * 1033 * NOTE: This function will trigger an exception if the page is 1034 * not executable. 1035 */ 1036 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 1037 { 1038 uintptr_t mmu_idx = cpu_mmu_index(env, true); 1039 uintptr_t index = tlb_index(env, mmu_idx, addr); 1040 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1041 void *p; 1042 1043 if (unlikely(!tlb_hit(entry->addr_code, addr))) { 1044 if (!VICTIM_TLB_HIT(addr_code, addr)) { 1045 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); 1046 index = tlb_index(env, mmu_idx, addr); 1047 entry = tlb_entry(env, mmu_idx, addr); 1048 1049 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) { 1050 /* 1051 * The MMU protection covers a smaller range than a target 1052 * page, so we must redo the MMU check for every insn. 1053 */ 1054 return -1; 1055 } 1056 } 1057 assert(tlb_hit(entry->addr_code, addr)); 1058 } 1059 1060 if (unlikely(entry->addr_code & TLB_MMIO)) { 1061 /* The region is not backed by RAM. */ 1062 return -1; 1063 } 1064 1065 p = (void *)((uintptr_t)addr + entry->addend); 1066 return qemu_ram_addr_from_host_nofail(p); 1067 } 1068 1069 /* Probe for whether the specified guest write access is permitted. 1070 * If it is not permitted then an exception will be taken in the same 1071 * way as if this were a real write access (and we will not return). 1072 * Otherwise the function will return, and there will be a valid 1073 * entry in the TLB for this access. 1074 */ 1075 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx, 1076 uintptr_t retaddr) 1077 { 1078 uintptr_t index = tlb_index(env, mmu_idx, addr); 1079 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1080 1081 if (!tlb_hit(tlb_addr_write(entry), addr)) { 1082 /* TLB entry is for a different page */ 1083 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1084 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 1085 mmu_idx, retaddr); 1086 } 1087 } 1088 } 1089 1090 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1091 MMUAccessType access_type, int mmu_idx) 1092 { 1093 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1094 uintptr_t tlb_addr, page; 1095 size_t elt_ofs; 1096 1097 switch (access_type) { 1098 case MMU_DATA_LOAD: 1099 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1100 break; 1101 case MMU_DATA_STORE: 1102 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1103 break; 1104 case MMU_INST_FETCH: 1105 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 1111 page = addr & TARGET_PAGE_MASK; 1112 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1113 1114 if (!tlb_hit_page(tlb_addr, page)) { 1115 uintptr_t index = tlb_index(env, mmu_idx, addr); 1116 1117 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) { 1118 CPUState *cs = env_cpu(env); 1119 CPUClass *cc = CPU_GET_CLASS(cs); 1120 1121 if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) { 1122 /* Non-faulting page table read failed. */ 1123 return NULL; 1124 } 1125 1126 /* TLB resize via tlb_fill may have moved the entry. */ 1127 entry = tlb_entry(env, mmu_idx, addr); 1128 } 1129 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1130 } 1131 1132 if (tlb_addr & ~TARGET_PAGE_MASK) { 1133 /* IO access */ 1134 return NULL; 1135 } 1136 1137 return (void *)((uintptr_t)addr + entry->addend); 1138 } 1139 1140 /* Probe for a read-modify-write atomic operation. Do not allow unaligned 1141 * operations, or io operations to proceed. Return the host address. */ 1142 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1143 TCGMemOpIdx oi, uintptr_t retaddr, 1144 NotDirtyInfo *ndi) 1145 { 1146 size_t mmu_idx = get_mmuidx(oi); 1147 uintptr_t index = tlb_index(env, mmu_idx, addr); 1148 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1149 target_ulong tlb_addr = tlb_addr_write(tlbe); 1150 MemOp mop = get_memop(oi); 1151 int a_bits = get_alignment_bits(mop); 1152 int s_bits = mop & MO_SIZE; 1153 void *hostaddr; 1154 1155 /* Adjust the given return address. */ 1156 retaddr -= GETPC_ADJ; 1157 1158 /* Enforce guest required alignment. */ 1159 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1160 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1161 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1162 mmu_idx, retaddr); 1163 } 1164 1165 /* Enforce qemu required alignment. */ 1166 if (unlikely(addr & ((1 << s_bits) - 1))) { 1167 /* We get here if guest alignment was not requested, 1168 or was not enforced by cpu_unaligned_access above. 1169 We might widen the access and emulate, but for now 1170 mark an exception and exit the cpu loop. */ 1171 goto stop_the_world; 1172 } 1173 1174 /* Check TLB entry and enforce page permissions. */ 1175 if (!tlb_hit(tlb_addr, addr)) { 1176 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1177 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE, 1178 mmu_idx, retaddr); 1179 index = tlb_index(env, mmu_idx, addr); 1180 tlbe = tlb_entry(env, mmu_idx, addr); 1181 } 1182 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1183 } 1184 1185 /* Notice an IO access or a needs-MMU-lookup access */ 1186 if (unlikely(tlb_addr & TLB_MMIO)) { 1187 /* There's really nothing that can be done to 1188 support this apart from stop-the-world. */ 1189 goto stop_the_world; 1190 } 1191 1192 /* Let the guest notice RMW on a write-only page. */ 1193 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1194 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD, 1195 mmu_idx, retaddr); 1196 /* Since we don't support reads and writes to different addresses, 1197 and we do have the proper page loaded for write, this shouldn't 1198 ever return. But just in case, handle via stop-the-world. */ 1199 goto stop_the_world; 1200 } 1201 1202 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1203 1204 ndi->active = false; 1205 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1206 ndi->active = true; 1207 memory_notdirty_write_prepare(ndi, env_cpu(env), addr, 1208 qemu_ram_addr_from_host_nofail(hostaddr), 1209 1 << s_bits); 1210 } 1211 1212 return hostaddr; 1213 1214 stop_the_world: 1215 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1216 } 1217 1218 /* 1219 * Load Helpers 1220 * 1221 * We support two different access types. SOFTMMU_CODE_ACCESS is 1222 * specifically for reading instructions from system memory. It is 1223 * called by the translation loop and in some helpers where the code 1224 * is disassembled. It shouldn't be called directly by guest code. 1225 */ 1226 1227 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1228 TCGMemOpIdx oi, uintptr_t retaddr); 1229 1230 static inline uint64_t __attribute__((always_inline)) 1231 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1232 uintptr_t retaddr, MemOp op, bool code_read, 1233 FullLoadHelper *full_load) 1234 { 1235 uintptr_t mmu_idx = get_mmuidx(oi); 1236 uintptr_t index = tlb_index(env, mmu_idx, addr); 1237 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1238 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1239 const size_t tlb_off = code_read ? 1240 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1241 const MMUAccessType access_type = 1242 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1243 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1244 void *haddr; 1245 uint64_t res; 1246 size_t size = memop_size(op); 1247 1248 /* Handle CPU specific unaligned behaviour */ 1249 if (addr & ((1 << a_bits) - 1)) { 1250 cpu_unaligned_access(env_cpu(env), addr, access_type, 1251 mmu_idx, retaddr); 1252 } 1253 1254 /* If the TLB entry is for a different page, reload and try again. */ 1255 if (!tlb_hit(tlb_addr, addr)) { 1256 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1257 addr & TARGET_PAGE_MASK)) { 1258 tlb_fill(env_cpu(env), addr, size, 1259 access_type, mmu_idx, retaddr); 1260 index = tlb_index(env, mmu_idx, addr); 1261 entry = tlb_entry(env, mmu_idx, addr); 1262 } 1263 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1264 tlb_addr &= ~TLB_INVALID_MASK; 1265 } 1266 1267 /* Handle an IO access. */ 1268 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1269 if ((addr & (size - 1)) != 0) { 1270 goto do_unaligned_access; 1271 } 1272 return io_readx(env, &env_tlb(env)->d[mmu_idx].iotlb[index], 1273 mmu_idx, addr, retaddr, access_type, op); 1274 } 1275 1276 /* Handle slow unaligned access (it spans two pages or IO). */ 1277 if (size > 1 1278 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1279 >= TARGET_PAGE_SIZE)) { 1280 target_ulong addr1, addr2; 1281 uint64_t r1, r2; 1282 unsigned shift; 1283 do_unaligned_access: 1284 addr1 = addr & ~((target_ulong)size - 1); 1285 addr2 = addr1 + size; 1286 r1 = full_load(env, addr1, oi, retaddr); 1287 r2 = full_load(env, addr2, oi, retaddr); 1288 shift = (addr & (size - 1)) * 8; 1289 1290 if (memop_big_endian(op)) { 1291 /* Big-endian combine. */ 1292 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1293 } else { 1294 /* Little-endian combine. */ 1295 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1296 } 1297 return res & MAKE_64BIT_MASK(0, size * 8); 1298 } 1299 1300 haddr = (void *)((uintptr_t)addr + entry->addend); 1301 switch (op) { 1302 case MO_UB: 1303 res = ldub_p(haddr); 1304 break; 1305 case MO_BEUW: 1306 res = lduw_be_p(haddr); 1307 break; 1308 case MO_LEUW: 1309 res = lduw_le_p(haddr); 1310 break; 1311 case MO_BEUL: 1312 res = (uint32_t)ldl_be_p(haddr); 1313 break; 1314 case MO_LEUL: 1315 res = (uint32_t)ldl_le_p(haddr); 1316 break; 1317 case MO_BEQ: 1318 res = ldq_be_p(haddr); 1319 break; 1320 case MO_LEQ: 1321 res = ldq_le_p(haddr); 1322 break; 1323 default: 1324 g_assert_not_reached(); 1325 } 1326 1327 return res; 1328 } 1329 1330 /* 1331 * For the benefit of TCG generated code, we want to avoid the 1332 * complication of ABI-specific return type promotion and always 1333 * return a value extended to the register size of the host. This is 1334 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1335 * data, and for that we always have uint64_t. 1336 * 1337 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1338 */ 1339 1340 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 1341 TCGMemOpIdx oi, uintptr_t retaddr) 1342 { 1343 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 1344 } 1345 1346 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 1347 TCGMemOpIdx oi, uintptr_t retaddr) 1348 { 1349 return full_ldub_mmu(env, addr, oi, retaddr); 1350 } 1351 1352 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 1353 TCGMemOpIdx oi, uintptr_t retaddr) 1354 { 1355 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 1356 full_le_lduw_mmu); 1357 } 1358 1359 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 1360 TCGMemOpIdx oi, uintptr_t retaddr) 1361 { 1362 return full_le_lduw_mmu(env, addr, oi, retaddr); 1363 } 1364 1365 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 1366 TCGMemOpIdx oi, uintptr_t retaddr) 1367 { 1368 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 1369 full_be_lduw_mmu); 1370 } 1371 1372 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 1373 TCGMemOpIdx oi, uintptr_t retaddr) 1374 { 1375 return full_be_lduw_mmu(env, addr, oi, retaddr); 1376 } 1377 1378 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 1379 TCGMemOpIdx oi, uintptr_t retaddr) 1380 { 1381 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 1382 full_le_ldul_mmu); 1383 } 1384 1385 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 1386 TCGMemOpIdx oi, uintptr_t retaddr) 1387 { 1388 return full_le_ldul_mmu(env, addr, oi, retaddr); 1389 } 1390 1391 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 1392 TCGMemOpIdx oi, uintptr_t retaddr) 1393 { 1394 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 1395 full_be_ldul_mmu); 1396 } 1397 1398 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 1399 TCGMemOpIdx oi, uintptr_t retaddr) 1400 { 1401 return full_be_ldul_mmu(env, addr, oi, retaddr); 1402 } 1403 1404 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 1405 TCGMemOpIdx oi, uintptr_t retaddr) 1406 { 1407 return load_helper(env, addr, oi, retaddr, MO_LEQ, false, 1408 helper_le_ldq_mmu); 1409 } 1410 1411 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 1412 TCGMemOpIdx oi, uintptr_t retaddr) 1413 { 1414 return load_helper(env, addr, oi, retaddr, MO_BEQ, false, 1415 helper_be_ldq_mmu); 1416 } 1417 1418 /* 1419 * Provide signed versions of the load routines as well. We can of course 1420 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 1421 */ 1422 1423 1424 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 1425 TCGMemOpIdx oi, uintptr_t retaddr) 1426 { 1427 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 1428 } 1429 1430 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 1431 TCGMemOpIdx oi, uintptr_t retaddr) 1432 { 1433 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 1434 } 1435 1436 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 1437 TCGMemOpIdx oi, uintptr_t retaddr) 1438 { 1439 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 1440 } 1441 1442 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 1443 TCGMemOpIdx oi, uintptr_t retaddr) 1444 { 1445 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 1446 } 1447 1448 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 1449 TCGMemOpIdx oi, uintptr_t retaddr) 1450 { 1451 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 1452 } 1453 1454 /* 1455 * Store Helpers 1456 */ 1457 1458 static inline void __attribute__((always_inline)) 1459 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 1460 TCGMemOpIdx oi, uintptr_t retaddr, MemOp op) 1461 { 1462 uintptr_t mmu_idx = get_mmuidx(oi); 1463 uintptr_t index = tlb_index(env, mmu_idx, addr); 1464 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1465 target_ulong tlb_addr = tlb_addr_write(entry); 1466 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 1467 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1468 void *haddr; 1469 size_t size = memop_size(op); 1470 1471 /* Handle CPU specific unaligned behaviour */ 1472 if (addr & ((1 << a_bits) - 1)) { 1473 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1474 mmu_idx, retaddr); 1475 } 1476 1477 /* If the TLB entry is for a different page, reload and try again. */ 1478 if (!tlb_hit(tlb_addr, addr)) { 1479 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1480 addr & TARGET_PAGE_MASK)) { 1481 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 1482 mmu_idx, retaddr); 1483 index = tlb_index(env, mmu_idx, addr); 1484 entry = tlb_entry(env, mmu_idx, addr); 1485 } 1486 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 1487 } 1488 1489 /* Handle an IO access. */ 1490 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1491 if ((addr & (size - 1)) != 0) { 1492 goto do_unaligned_access; 1493 } 1494 io_writex(env, &env_tlb(env)->d[mmu_idx].iotlb[index], mmu_idx, 1495 val, addr, retaddr, op); 1496 return; 1497 } 1498 1499 /* Handle slow unaligned access (it spans two pages or IO). */ 1500 if (size > 1 1501 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1502 >= TARGET_PAGE_SIZE)) { 1503 int i; 1504 uintptr_t index2; 1505 CPUTLBEntry *entry2; 1506 target_ulong page2, tlb_addr2; 1507 size_t size2; 1508 1509 do_unaligned_access: 1510 /* 1511 * Ensure the second page is in the TLB. Note that the first page 1512 * is already guaranteed to be filled, and that the second page 1513 * cannot evict the first. 1514 */ 1515 page2 = (addr + size) & TARGET_PAGE_MASK; 1516 size2 = (addr + size) & ~TARGET_PAGE_MASK; 1517 index2 = tlb_index(env, mmu_idx, page2); 1518 entry2 = tlb_entry(env, mmu_idx, page2); 1519 tlb_addr2 = tlb_addr_write(entry2); 1520 if (!tlb_hit_page(tlb_addr2, page2) 1521 && !victim_tlb_hit(env, mmu_idx, index2, tlb_off, 1522 page2 & TARGET_PAGE_MASK)) { 1523 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, 1524 mmu_idx, retaddr); 1525 } 1526 1527 /* 1528 * XXX: not efficient, but simple. 1529 * This loop must go in the forward direction to avoid issues 1530 * with self-modifying code in Windows 64-bit. 1531 */ 1532 for (i = 0; i < size; ++i) { 1533 uint8_t val8; 1534 if (memop_big_endian(op)) { 1535 /* Big-endian extract. */ 1536 val8 = val >> (((size - 1) * 8) - (i * 8)); 1537 } else { 1538 /* Little-endian extract. */ 1539 val8 = val >> (i * 8); 1540 } 1541 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr); 1542 } 1543 return; 1544 } 1545 1546 haddr = (void *)((uintptr_t)addr + entry->addend); 1547 switch (op) { 1548 case MO_UB: 1549 stb_p(haddr, val); 1550 break; 1551 case MO_BEUW: 1552 stw_be_p(haddr, val); 1553 break; 1554 case MO_LEUW: 1555 stw_le_p(haddr, val); 1556 break; 1557 case MO_BEUL: 1558 stl_be_p(haddr, val); 1559 break; 1560 case MO_LEUL: 1561 stl_le_p(haddr, val); 1562 break; 1563 case MO_BEQ: 1564 stq_be_p(haddr, val); 1565 break; 1566 case MO_LEQ: 1567 stq_le_p(haddr, val); 1568 break; 1569 default: 1570 g_assert_not_reached(); 1571 break; 1572 } 1573 } 1574 1575 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 1576 TCGMemOpIdx oi, uintptr_t retaddr) 1577 { 1578 store_helper(env, addr, val, oi, retaddr, MO_UB); 1579 } 1580 1581 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1582 TCGMemOpIdx oi, uintptr_t retaddr) 1583 { 1584 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 1585 } 1586 1587 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1588 TCGMemOpIdx oi, uintptr_t retaddr) 1589 { 1590 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 1591 } 1592 1593 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1594 TCGMemOpIdx oi, uintptr_t retaddr) 1595 { 1596 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 1597 } 1598 1599 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1600 TCGMemOpIdx oi, uintptr_t retaddr) 1601 { 1602 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 1603 } 1604 1605 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1606 TCGMemOpIdx oi, uintptr_t retaddr) 1607 { 1608 store_helper(env, addr, val, oi, retaddr, MO_LEQ); 1609 } 1610 1611 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1612 TCGMemOpIdx oi, uintptr_t retaddr) 1613 { 1614 store_helper(env, addr, val, oi, retaddr, MO_BEQ); 1615 } 1616 1617 /* First set of helpers allows passing in of OI and RETADDR. This makes 1618 them callable from other helpers. */ 1619 1620 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 1621 #define ATOMIC_NAME(X) \ 1622 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 1623 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi 1624 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi) 1625 #define ATOMIC_MMU_CLEANUP \ 1626 do { \ 1627 if (unlikely(ndi.active)) { \ 1628 memory_notdirty_write_complete(&ndi); \ 1629 } \ 1630 } while (0) 1631 1632 #define DATA_SIZE 1 1633 #include "atomic_template.h" 1634 1635 #define DATA_SIZE 2 1636 #include "atomic_template.h" 1637 1638 #define DATA_SIZE 4 1639 #include "atomic_template.h" 1640 1641 #ifdef CONFIG_ATOMIC64 1642 #define DATA_SIZE 8 1643 #include "atomic_template.h" 1644 #endif 1645 1646 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 1647 #define DATA_SIZE 16 1648 #include "atomic_template.h" 1649 #endif 1650 1651 /* Second set of helpers are directly callable from TCG as helpers. */ 1652 1653 #undef EXTRA_ARGS 1654 #undef ATOMIC_NAME 1655 #undef ATOMIC_MMU_LOOKUP 1656 #define EXTRA_ARGS , TCGMemOpIdx oi 1657 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 1658 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi) 1659 1660 #define DATA_SIZE 1 1661 #include "atomic_template.h" 1662 1663 #define DATA_SIZE 2 1664 #include "atomic_template.h" 1665 1666 #define DATA_SIZE 4 1667 #include "atomic_template.h" 1668 1669 #ifdef CONFIG_ATOMIC64 1670 #define DATA_SIZE 8 1671 #include "atomic_template.h" 1672 #endif 1673 1674 /* Code access functions. */ 1675 1676 static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr, 1677 TCGMemOpIdx oi, uintptr_t retaddr) 1678 { 1679 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_cmmu); 1680 } 1681 1682 uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr, 1683 TCGMemOpIdx oi, uintptr_t retaddr) 1684 { 1685 return full_ldub_cmmu(env, addr, oi, retaddr); 1686 } 1687 1688 static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr, 1689 TCGMemOpIdx oi, uintptr_t retaddr) 1690 { 1691 return load_helper(env, addr, oi, retaddr, MO_LEUW, true, 1692 full_le_lduw_cmmu); 1693 } 1694 1695 uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr, 1696 TCGMemOpIdx oi, uintptr_t retaddr) 1697 { 1698 return full_le_lduw_cmmu(env, addr, oi, retaddr); 1699 } 1700 1701 static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr, 1702 TCGMemOpIdx oi, uintptr_t retaddr) 1703 { 1704 return load_helper(env, addr, oi, retaddr, MO_BEUW, true, 1705 full_be_lduw_cmmu); 1706 } 1707 1708 uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr, 1709 TCGMemOpIdx oi, uintptr_t retaddr) 1710 { 1711 return full_be_lduw_cmmu(env, addr, oi, retaddr); 1712 } 1713 1714 static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr, 1715 TCGMemOpIdx oi, uintptr_t retaddr) 1716 { 1717 return load_helper(env, addr, oi, retaddr, MO_LEUL, true, 1718 full_le_ldul_cmmu); 1719 } 1720 1721 uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr, 1722 TCGMemOpIdx oi, uintptr_t retaddr) 1723 { 1724 return full_le_ldul_cmmu(env, addr, oi, retaddr); 1725 } 1726 1727 static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr, 1728 TCGMemOpIdx oi, uintptr_t retaddr) 1729 { 1730 return load_helper(env, addr, oi, retaddr, MO_BEUL, true, 1731 full_be_ldul_cmmu); 1732 } 1733 1734 uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr, 1735 TCGMemOpIdx oi, uintptr_t retaddr) 1736 { 1737 return full_be_ldul_cmmu(env, addr, oi, retaddr); 1738 } 1739 1740 uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr, 1741 TCGMemOpIdx oi, uintptr_t retaddr) 1742 { 1743 return load_helper(env, addr, oi, retaddr, MO_LEQ, true, 1744 helper_le_ldq_cmmu); 1745 } 1746 1747 uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr, 1748 TCGMemOpIdx oi, uintptr_t retaddr) 1749 { 1750 return load_helper(env, addr, oi, retaddr, MO_BEQ, true, 1751 helper_be_ldq_cmmu); 1752 } 1753