1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 45 /* #define DEBUG_TLB */ 46 /* #define DEBUG_TLB_LOG */ 47 48 #ifdef DEBUG_TLB 49 # define DEBUG_TLB_GATE 1 50 # ifdef DEBUG_TLB_LOG 51 # define DEBUG_TLB_LOG_GATE 1 52 # else 53 # define DEBUG_TLB_LOG_GATE 0 54 # endif 55 #else 56 # define DEBUG_TLB_GATE 0 57 # define DEBUG_TLB_LOG_GATE 0 58 #endif 59 60 #define tlb_debug(fmt, ...) do { \ 61 if (DEBUG_TLB_LOG_GATE) { \ 62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 63 ## __VA_ARGS__); \ 64 } else if (DEBUG_TLB_GATE) { \ 65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define assert_cpu_is_self(cpu) do { \ 70 if (DEBUG_TLB_GATE) { \ 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 72 } \ 73 } while (0) 74 75 /* run_on_cpu_data.target_ptr should always be big enough for a 76 * target_ulong even on 32 bit builds */ 77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 78 79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 80 */ 81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 83 84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 85 { 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 87 } 88 89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 90 { 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 92 } 93 94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 95 size_t max_entries) 96 { 97 desc->window_begin_ns = ns; 98 desc->window_max_entries = max_entries; 99 } 100 101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 102 { 103 int i, i0 = tb_jmp_cache_hash_page(page_addr); 104 CPUJumpCache *jc = cpu->tb_jmp_cache; 105 106 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 107 qatomic_set(&jc->array[i0 + i].tb, NULL); 108 } 109 } 110 111 /** 112 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 113 * @desc: The CPUTLBDesc portion of the TLB 114 * @fast: The CPUTLBDescFast portion of the same TLB 115 * 116 * Called with tlb_lock_held. 117 * 118 * We have two main constraints when resizing a TLB: (1) we only resize it 119 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 120 * the array or unnecessarily flushing it), which means we do not control how 121 * frequently the resizing can occur; (2) we don't have access to the guest's 122 * future scheduling decisions, and therefore have to decide the magnitude of 123 * the resize based on past observations. 124 * 125 * In general, a memory-hungry process can benefit greatly from an appropriately 126 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 127 * we just have to make the TLB as large as possible; while an oversized TLB 128 * results in minimal TLB miss rates, it also takes longer to be flushed 129 * (flushes can be _very_ frequent), and the reduced locality can also hurt 130 * performance. 131 * 132 * To achieve near-optimal performance for all kinds of workloads, we: 133 * 134 * 1. Aggressively increase the size of the TLB when the use rate of the 135 * TLB being flushed is high, since it is likely that in the near future this 136 * memory-hungry process will execute again, and its memory hungriness will 137 * probably be similar. 138 * 139 * 2. Slowly reduce the size of the TLB as the use rate declines over a 140 * reasonably large time window. The rationale is that if in such a time window 141 * we have not observed a high TLB use rate, it is likely that we won't observe 142 * it in the near future. In that case, once a time window expires we downsize 143 * the TLB to match the maximum use rate observed in the window. 144 * 145 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 146 * since in that range performance is likely near-optimal. Recall that the TLB 147 * is direct mapped, so we want the use rate to be low (or at least not too 148 * high), since otherwise we are likely to have a significant amount of 149 * conflict misses. 150 */ 151 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 152 int64_t now) 153 { 154 size_t old_size = tlb_n_entries(fast); 155 size_t rate; 156 size_t new_size = old_size; 157 int64_t window_len_ms = 100; 158 int64_t window_len_ns = window_len_ms * 1000 * 1000; 159 bool window_expired = now > desc->window_begin_ns + window_len_ns; 160 161 if (desc->n_used_entries > desc->window_max_entries) { 162 desc->window_max_entries = desc->n_used_entries; 163 } 164 rate = desc->window_max_entries * 100 / old_size; 165 166 if (rate > 70) { 167 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 168 } else if (rate < 30 && window_expired) { 169 size_t ceil = pow2ceil(desc->window_max_entries); 170 size_t expected_rate = desc->window_max_entries * 100 / ceil; 171 172 /* 173 * Avoid undersizing when the max number of entries seen is just below 174 * a pow2. For instance, if max_entries == 1025, the expected use rate 175 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 176 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 177 * later. Thus, make sure that the expected use rate remains below 70%. 178 * (and since we double the size, that means the lowest rate we'd 179 * expect to get is 35%, which is still in the 30-70% range where 180 * we consider that the size is appropriate.) 181 */ 182 if (expected_rate > 70) { 183 ceil *= 2; 184 } 185 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 186 } 187 188 if (new_size == old_size) { 189 if (window_expired) { 190 tlb_window_reset(desc, now, desc->n_used_entries); 191 } 192 return; 193 } 194 195 g_free(fast->table); 196 g_free(desc->fulltlb); 197 198 tlb_window_reset(desc, now, 0); 199 /* desc->n_used_entries is cleared by the caller */ 200 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 201 fast->table = g_try_new(CPUTLBEntry, new_size); 202 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 203 204 /* 205 * If the allocations fail, try smaller sizes. We just freed some 206 * memory, so going back to half of new_size has a good chance of working. 207 * Increased memory pressure elsewhere in the system might cause the 208 * allocations to fail though, so we progressively reduce the allocation 209 * size, aborting if we cannot even allocate the smallest TLB we support. 210 */ 211 while (fast->table == NULL || desc->fulltlb == NULL) { 212 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 213 error_report("%s: %s", __func__, strerror(errno)); 214 abort(); 215 } 216 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 217 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 218 219 g_free(fast->table); 220 g_free(desc->fulltlb); 221 fast->table = g_try_new(CPUTLBEntry, new_size); 222 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 223 } 224 } 225 226 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 227 { 228 desc->n_used_entries = 0; 229 desc->large_page_addr = -1; 230 desc->large_page_mask = -1; 231 desc->vindex = 0; 232 memset(fast->table, -1, sizeof_tlb(fast)); 233 memset(desc->vtable, -1, sizeof(desc->vtable)); 234 } 235 236 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 237 int64_t now) 238 { 239 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 240 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 241 242 tlb_mmu_resize_locked(desc, fast, now); 243 tlb_mmu_flush_locked(desc, fast); 244 } 245 246 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 247 { 248 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 249 250 tlb_window_reset(desc, now, 0); 251 desc->n_used_entries = 0; 252 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 253 fast->table = g_new(CPUTLBEntry, n_entries); 254 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 255 tlb_mmu_flush_locked(desc, fast); 256 } 257 258 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 259 { 260 env_tlb(env)->d[mmu_idx].n_used_entries++; 261 } 262 263 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 264 { 265 env_tlb(env)->d[mmu_idx].n_used_entries--; 266 } 267 268 void tlb_init(CPUState *cpu) 269 { 270 CPUArchState *env = cpu->env_ptr; 271 int64_t now = get_clock_realtime(); 272 int i; 273 274 qemu_spin_init(&env_tlb(env)->c.lock); 275 276 /* All tlbs are initialized flushed. */ 277 env_tlb(env)->c.dirty = 0; 278 279 for (i = 0; i < NB_MMU_MODES; i++) { 280 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 281 } 282 } 283 284 void tlb_destroy(CPUState *cpu) 285 { 286 CPUArchState *env = cpu->env_ptr; 287 int i; 288 289 qemu_spin_destroy(&env_tlb(env)->c.lock); 290 for (i = 0; i < NB_MMU_MODES; i++) { 291 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 292 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 293 294 g_free(fast->table); 295 g_free(desc->fulltlb); 296 } 297 } 298 299 /* flush_all_helper: run fn across all cpus 300 * 301 * If the wait flag is set then the src cpu's helper will be queued as 302 * "safe" work and the loop exited creating a synchronisation point 303 * where all queued work will be finished before execution starts 304 * again. 305 */ 306 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 307 run_on_cpu_data d) 308 { 309 CPUState *cpu; 310 311 CPU_FOREACH(cpu) { 312 if (cpu != src) { 313 async_run_on_cpu(cpu, fn, d); 314 } 315 } 316 } 317 318 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 319 { 320 CPUState *cpu; 321 size_t full = 0, part = 0, elide = 0; 322 323 CPU_FOREACH(cpu) { 324 CPUArchState *env = cpu->env_ptr; 325 326 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 327 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 328 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 329 } 330 *pfull = full; 331 *ppart = part; 332 *pelide = elide; 333 } 334 335 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 336 { 337 CPUArchState *env = cpu->env_ptr; 338 uint16_t asked = data.host_int; 339 uint16_t all_dirty, work, to_clean; 340 int64_t now = get_clock_realtime(); 341 342 assert_cpu_is_self(cpu); 343 344 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 345 346 qemu_spin_lock(&env_tlb(env)->c.lock); 347 348 all_dirty = env_tlb(env)->c.dirty; 349 to_clean = asked & all_dirty; 350 all_dirty &= ~to_clean; 351 env_tlb(env)->c.dirty = all_dirty; 352 353 for (work = to_clean; work != 0; work &= work - 1) { 354 int mmu_idx = ctz32(work); 355 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 356 } 357 358 qemu_spin_unlock(&env_tlb(env)->c.lock); 359 360 tcg_flush_jmp_cache(cpu); 361 362 if (to_clean == ALL_MMUIDX_BITS) { 363 qatomic_set(&env_tlb(env)->c.full_flush_count, 364 env_tlb(env)->c.full_flush_count + 1); 365 } else { 366 qatomic_set(&env_tlb(env)->c.part_flush_count, 367 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 368 if (to_clean != asked) { 369 qatomic_set(&env_tlb(env)->c.elide_flush_count, 370 env_tlb(env)->c.elide_flush_count + 371 ctpop16(asked & ~to_clean)); 372 } 373 } 374 } 375 376 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 377 { 378 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 379 380 if (cpu->created && !qemu_cpu_is_self(cpu)) { 381 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 382 RUN_ON_CPU_HOST_INT(idxmap)); 383 } else { 384 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 385 } 386 } 387 388 void tlb_flush(CPUState *cpu) 389 { 390 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 391 } 392 393 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 394 { 395 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 396 397 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 398 399 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 400 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 401 } 402 403 void tlb_flush_all_cpus(CPUState *src_cpu) 404 { 405 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 406 } 407 408 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 409 { 410 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 411 412 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 413 414 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 415 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 416 } 417 418 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 419 { 420 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 421 } 422 423 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 424 target_ulong page, target_ulong mask) 425 { 426 page &= mask; 427 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 428 429 return (page == (tlb_entry->addr_read & mask) || 430 page == (tlb_addr_write(tlb_entry) & mask) || 431 page == (tlb_entry->addr_code & mask)); 432 } 433 434 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 435 target_ulong page) 436 { 437 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 438 } 439 440 /** 441 * tlb_entry_is_empty - return true if the entry is not in use 442 * @te: pointer to CPUTLBEntry 443 */ 444 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 445 { 446 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 447 } 448 449 /* Called with tlb_c.lock held */ 450 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 451 target_ulong page, 452 target_ulong mask) 453 { 454 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 455 memset(tlb_entry, -1, sizeof(*tlb_entry)); 456 return true; 457 } 458 return false; 459 } 460 461 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 462 target_ulong page) 463 { 464 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 465 } 466 467 /* Called with tlb_c.lock held */ 468 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 469 target_ulong page, 470 target_ulong mask) 471 { 472 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 473 int k; 474 475 assert_cpu_is_self(env_cpu(env)); 476 for (k = 0; k < CPU_VTLB_SIZE; k++) { 477 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 478 tlb_n_used_entries_dec(env, mmu_idx); 479 } 480 } 481 } 482 483 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 484 target_ulong page) 485 { 486 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 487 } 488 489 static void tlb_flush_page_locked(CPUArchState *env, int midx, 490 target_ulong page) 491 { 492 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 493 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 494 495 /* Check if we need to flush due to large pages. */ 496 if ((page & lp_mask) == lp_addr) { 497 tlb_debug("forcing full flush midx %d (" 498 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 499 midx, lp_addr, lp_mask); 500 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 501 } else { 502 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 503 tlb_n_used_entries_dec(env, midx); 504 } 505 tlb_flush_vtlb_page_locked(env, midx, page); 506 } 507 } 508 509 /** 510 * tlb_flush_page_by_mmuidx_async_0: 511 * @cpu: cpu on which to flush 512 * @addr: page of virtual address to flush 513 * @idxmap: set of mmu_idx to flush 514 * 515 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 516 * at @addr from the tlbs indicated by @idxmap from @cpu. 517 */ 518 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 519 target_ulong addr, 520 uint16_t idxmap) 521 { 522 CPUArchState *env = cpu->env_ptr; 523 int mmu_idx; 524 525 assert_cpu_is_self(cpu); 526 527 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 528 529 qemu_spin_lock(&env_tlb(env)->c.lock); 530 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 531 if ((idxmap >> mmu_idx) & 1) { 532 tlb_flush_page_locked(env, mmu_idx, addr); 533 } 534 } 535 qemu_spin_unlock(&env_tlb(env)->c.lock); 536 537 /* 538 * Discard jump cache entries for any tb which might potentially 539 * overlap the flushed page, which includes the previous. 540 */ 541 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 542 tb_jmp_cache_clear_page(cpu, addr); 543 } 544 545 /** 546 * tlb_flush_page_by_mmuidx_async_1: 547 * @cpu: cpu on which to flush 548 * @data: encoded addr + idxmap 549 * 550 * Helper for tlb_flush_page_by_mmuidx and friends, called through 551 * async_run_on_cpu. The idxmap parameter is encoded in the page 552 * offset of the target_ptr field. This limits the set of mmu_idx 553 * that can be passed via this method. 554 */ 555 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 556 run_on_cpu_data data) 557 { 558 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 559 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 560 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 561 562 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 563 } 564 565 typedef struct { 566 target_ulong addr; 567 uint16_t idxmap; 568 } TLBFlushPageByMMUIdxData; 569 570 /** 571 * tlb_flush_page_by_mmuidx_async_2: 572 * @cpu: cpu on which to flush 573 * @data: allocated addr + idxmap 574 * 575 * Helper for tlb_flush_page_by_mmuidx and friends, called through 576 * async_run_on_cpu. The addr+idxmap parameters are stored in a 577 * TLBFlushPageByMMUIdxData structure that has been allocated 578 * specifically for this helper. Free the structure when done. 579 */ 580 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 581 run_on_cpu_data data) 582 { 583 TLBFlushPageByMMUIdxData *d = data.host_ptr; 584 585 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 586 g_free(d); 587 } 588 589 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 590 { 591 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 592 593 /* This should already be page aligned */ 594 addr &= TARGET_PAGE_MASK; 595 596 if (qemu_cpu_is_self(cpu)) { 597 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 598 } else if (idxmap < TARGET_PAGE_SIZE) { 599 /* 600 * Most targets have only a few mmu_idx. In the case where 601 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 602 * allocating memory for this operation. 603 */ 604 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 605 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 606 } else { 607 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 608 609 /* Otherwise allocate a structure, freed by the worker. */ 610 d->addr = addr; 611 d->idxmap = idxmap; 612 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 613 RUN_ON_CPU_HOST_PTR(d)); 614 } 615 } 616 617 void tlb_flush_page(CPUState *cpu, target_ulong addr) 618 { 619 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 620 } 621 622 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 623 uint16_t idxmap) 624 { 625 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 626 627 /* This should already be page aligned */ 628 addr &= TARGET_PAGE_MASK; 629 630 /* 631 * Allocate memory to hold addr+idxmap only when needed. 632 * See tlb_flush_page_by_mmuidx for details. 633 */ 634 if (idxmap < TARGET_PAGE_SIZE) { 635 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 636 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 637 } else { 638 CPUState *dst_cpu; 639 640 /* Allocate a separate data block for each destination cpu. */ 641 CPU_FOREACH(dst_cpu) { 642 if (dst_cpu != src_cpu) { 643 TLBFlushPageByMMUIdxData *d 644 = g_new(TLBFlushPageByMMUIdxData, 1); 645 646 d->addr = addr; 647 d->idxmap = idxmap; 648 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 649 RUN_ON_CPU_HOST_PTR(d)); 650 } 651 } 652 } 653 654 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 655 } 656 657 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 658 { 659 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 660 } 661 662 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 663 target_ulong addr, 664 uint16_t idxmap) 665 { 666 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 667 668 /* This should already be page aligned */ 669 addr &= TARGET_PAGE_MASK; 670 671 /* 672 * Allocate memory to hold addr+idxmap only when needed. 673 * See tlb_flush_page_by_mmuidx for details. 674 */ 675 if (idxmap < TARGET_PAGE_SIZE) { 676 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 677 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 678 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 679 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 680 } else { 681 CPUState *dst_cpu; 682 TLBFlushPageByMMUIdxData *d; 683 684 /* Allocate a separate data block for each destination cpu. */ 685 CPU_FOREACH(dst_cpu) { 686 if (dst_cpu != src_cpu) { 687 d = g_new(TLBFlushPageByMMUIdxData, 1); 688 d->addr = addr; 689 d->idxmap = idxmap; 690 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 691 RUN_ON_CPU_HOST_PTR(d)); 692 } 693 } 694 695 d = g_new(TLBFlushPageByMMUIdxData, 1); 696 d->addr = addr; 697 d->idxmap = idxmap; 698 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 699 RUN_ON_CPU_HOST_PTR(d)); 700 } 701 } 702 703 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 704 { 705 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 706 } 707 708 static void tlb_flush_range_locked(CPUArchState *env, int midx, 709 target_ulong addr, target_ulong len, 710 unsigned bits) 711 { 712 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 713 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 714 target_ulong mask = MAKE_64BIT_MASK(0, bits); 715 716 /* 717 * If @bits is smaller than the tlb size, there may be multiple entries 718 * within the TLB; otherwise all addresses that match under @mask hit 719 * the same TLB entry. 720 * TODO: Perhaps allow bits to be a few bits less than the size. 721 * For now, just flush the entire TLB. 722 * 723 * If @len is larger than the tlb size, then it will take longer to 724 * test all of the entries in the TLB than it will to flush it all. 725 */ 726 if (mask < f->mask || len > f->mask) { 727 tlb_debug("forcing full flush midx %d (" 728 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 729 midx, addr, mask, len); 730 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 731 return; 732 } 733 734 /* 735 * Check if we need to flush due to large pages. 736 * Because large_page_mask contains all 1's from the msb, 737 * we only need to test the end of the range. 738 */ 739 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 740 tlb_debug("forcing full flush midx %d (" 741 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 742 midx, d->large_page_addr, d->large_page_mask); 743 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 744 return; 745 } 746 747 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 748 target_ulong page = addr + i; 749 CPUTLBEntry *entry = tlb_entry(env, midx, page); 750 751 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 752 tlb_n_used_entries_dec(env, midx); 753 } 754 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 755 } 756 } 757 758 typedef struct { 759 target_ulong addr; 760 target_ulong len; 761 uint16_t idxmap; 762 uint16_t bits; 763 } TLBFlushRangeData; 764 765 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 766 TLBFlushRangeData d) 767 { 768 CPUArchState *env = cpu->env_ptr; 769 int mmu_idx; 770 771 assert_cpu_is_self(cpu); 772 773 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 774 d.addr, d.bits, d.len, d.idxmap); 775 776 qemu_spin_lock(&env_tlb(env)->c.lock); 777 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 778 if ((d.idxmap >> mmu_idx) & 1) { 779 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 780 } 781 } 782 qemu_spin_unlock(&env_tlb(env)->c.lock); 783 784 /* 785 * If the length is larger than the jump cache size, then it will take 786 * longer to clear each entry individually than it will to clear it all. 787 */ 788 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 789 tcg_flush_jmp_cache(cpu); 790 return; 791 } 792 793 /* 794 * Discard jump cache entries for any tb which might potentially 795 * overlap the flushed pages, which includes the previous. 796 */ 797 d.addr -= TARGET_PAGE_SIZE; 798 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 799 tb_jmp_cache_clear_page(cpu, d.addr); 800 d.addr += TARGET_PAGE_SIZE; 801 } 802 } 803 804 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 805 run_on_cpu_data data) 806 { 807 TLBFlushRangeData *d = data.host_ptr; 808 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 809 g_free(d); 810 } 811 812 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 813 target_ulong len, uint16_t idxmap, 814 unsigned bits) 815 { 816 TLBFlushRangeData d; 817 818 /* 819 * If all bits are significant, and len is small, 820 * this devolves to tlb_flush_page. 821 */ 822 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 823 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 824 return; 825 } 826 /* If no page bits are significant, this devolves to tlb_flush. */ 827 if (bits < TARGET_PAGE_BITS) { 828 tlb_flush_by_mmuidx(cpu, idxmap); 829 return; 830 } 831 832 /* This should already be page aligned */ 833 d.addr = addr & TARGET_PAGE_MASK; 834 d.len = len; 835 d.idxmap = idxmap; 836 d.bits = bits; 837 838 if (qemu_cpu_is_self(cpu)) { 839 tlb_flush_range_by_mmuidx_async_0(cpu, d); 840 } else { 841 /* Otherwise allocate a structure, freed by the worker. */ 842 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 843 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 844 RUN_ON_CPU_HOST_PTR(p)); 845 } 846 } 847 848 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 849 uint16_t idxmap, unsigned bits) 850 { 851 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 852 } 853 854 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 855 target_ulong addr, target_ulong len, 856 uint16_t idxmap, unsigned bits) 857 { 858 TLBFlushRangeData d; 859 CPUState *dst_cpu; 860 861 /* 862 * If all bits are significant, and len is small, 863 * this devolves to tlb_flush_page. 864 */ 865 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 866 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 867 return; 868 } 869 /* If no page bits are significant, this devolves to tlb_flush. */ 870 if (bits < TARGET_PAGE_BITS) { 871 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 872 return; 873 } 874 875 /* This should already be page aligned */ 876 d.addr = addr & TARGET_PAGE_MASK; 877 d.len = len; 878 d.idxmap = idxmap; 879 d.bits = bits; 880 881 /* Allocate a separate data block for each destination cpu. */ 882 CPU_FOREACH(dst_cpu) { 883 if (dst_cpu != src_cpu) { 884 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 885 async_run_on_cpu(dst_cpu, 886 tlb_flush_range_by_mmuidx_async_1, 887 RUN_ON_CPU_HOST_PTR(p)); 888 } 889 } 890 891 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 892 } 893 894 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 895 target_ulong addr, 896 uint16_t idxmap, unsigned bits) 897 { 898 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 899 idxmap, bits); 900 } 901 902 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 903 target_ulong addr, 904 target_ulong len, 905 uint16_t idxmap, 906 unsigned bits) 907 { 908 TLBFlushRangeData d, *p; 909 CPUState *dst_cpu; 910 911 /* 912 * If all bits are significant, and len is small, 913 * this devolves to tlb_flush_page. 914 */ 915 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 916 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 917 return; 918 } 919 /* If no page bits are significant, this devolves to tlb_flush. */ 920 if (bits < TARGET_PAGE_BITS) { 921 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 922 return; 923 } 924 925 /* This should already be page aligned */ 926 d.addr = addr & TARGET_PAGE_MASK; 927 d.len = len; 928 d.idxmap = idxmap; 929 d.bits = bits; 930 931 /* Allocate a separate data block for each destination cpu. */ 932 CPU_FOREACH(dst_cpu) { 933 if (dst_cpu != src_cpu) { 934 p = g_memdup(&d, sizeof(d)); 935 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 936 RUN_ON_CPU_HOST_PTR(p)); 937 } 938 } 939 940 p = g_memdup(&d, sizeof(d)); 941 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 942 RUN_ON_CPU_HOST_PTR(p)); 943 } 944 945 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 946 target_ulong addr, 947 uint16_t idxmap, 948 unsigned bits) 949 { 950 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 951 idxmap, bits); 952 } 953 954 /* update the TLBs so that writes to code in the virtual page 'addr' 955 can be detected */ 956 void tlb_protect_code(ram_addr_t ram_addr) 957 { 958 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 959 TARGET_PAGE_SIZE, 960 DIRTY_MEMORY_CODE); 961 } 962 963 /* update the TLB so that writes in physical page 'phys_addr' are no longer 964 tested for self modifying code */ 965 void tlb_unprotect_code(ram_addr_t ram_addr) 966 { 967 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 968 } 969 970 971 /* 972 * Dirty write flag handling 973 * 974 * When the TCG code writes to a location it looks up the address in 975 * the TLB and uses that data to compute the final address. If any of 976 * the lower bits of the address are set then the slow path is forced. 977 * There are a number of reasons to do this but for normal RAM the 978 * most usual is detecting writes to code regions which may invalidate 979 * generated code. 980 * 981 * Other vCPUs might be reading their TLBs during guest execution, so we update 982 * te->addr_write with qatomic_set. We don't need to worry about this for 983 * oversized guests as MTTCG is disabled for them. 984 * 985 * Called with tlb_c.lock held. 986 */ 987 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 988 uintptr_t start, uintptr_t length) 989 { 990 uintptr_t addr = tlb_entry->addr_write; 991 992 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 993 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 994 addr &= TARGET_PAGE_MASK; 995 addr += tlb_entry->addend; 996 if ((addr - start) < length) { 997 #if TCG_OVERSIZED_GUEST 998 tlb_entry->addr_write |= TLB_NOTDIRTY; 999 #else 1000 qatomic_set(&tlb_entry->addr_write, 1001 tlb_entry->addr_write | TLB_NOTDIRTY); 1002 #endif 1003 } 1004 } 1005 } 1006 1007 /* 1008 * Called with tlb_c.lock held. 1009 * Called only from the vCPU context, i.e. the TLB's owner thread. 1010 */ 1011 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1012 { 1013 *d = *s; 1014 } 1015 1016 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1017 * the target vCPU). 1018 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1019 * thing actually updated is the target TLB entry ->addr_write flags. 1020 */ 1021 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1022 { 1023 CPUArchState *env; 1024 1025 int mmu_idx; 1026 1027 env = cpu->env_ptr; 1028 qemu_spin_lock(&env_tlb(env)->c.lock); 1029 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1030 unsigned int i; 1031 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1032 1033 for (i = 0; i < n; i++) { 1034 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1035 start1, length); 1036 } 1037 1038 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1039 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1040 start1, length); 1041 } 1042 } 1043 qemu_spin_unlock(&env_tlb(env)->c.lock); 1044 } 1045 1046 /* Called with tlb_c.lock held */ 1047 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1048 target_ulong vaddr) 1049 { 1050 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1051 tlb_entry->addr_write = vaddr; 1052 } 1053 } 1054 1055 /* update the TLB corresponding to virtual page vaddr 1056 so that it is no longer dirty */ 1057 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1058 { 1059 CPUArchState *env = cpu->env_ptr; 1060 int mmu_idx; 1061 1062 assert_cpu_is_self(cpu); 1063 1064 vaddr &= TARGET_PAGE_MASK; 1065 qemu_spin_lock(&env_tlb(env)->c.lock); 1066 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1067 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1068 } 1069 1070 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1071 int k; 1072 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1073 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1074 } 1075 } 1076 qemu_spin_unlock(&env_tlb(env)->c.lock); 1077 } 1078 1079 /* Our TLB does not support large pages, so remember the area covered by 1080 large pages and trigger a full TLB flush if these are invalidated. */ 1081 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1082 target_ulong vaddr, target_ulong size) 1083 { 1084 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1085 target_ulong lp_mask = ~(size - 1); 1086 1087 if (lp_addr == (target_ulong)-1) { 1088 /* No previous large page. */ 1089 lp_addr = vaddr; 1090 } else { 1091 /* Extend the existing region to include the new page. 1092 This is a compromise between unnecessary flushes and 1093 the cost of maintaining a full variable size TLB. */ 1094 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1095 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1096 lp_mask <<= 1; 1097 } 1098 } 1099 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1100 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1101 } 1102 1103 /* 1104 * Add a new TLB entry. At most one entry for a given virtual address 1105 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1106 * supplied size is only used by tlb_flush_page. 1107 * 1108 * Called from TCG-generated code, which is under an RCU read-side 1109 * critical section. 1110 */ 1111 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1112 target_ulong vaddr, CPUTLBEntryFull *full) 1113 { 1114 CPUArchState *env = cpu->env_ptr; 1115 CPUTLB *tlb = env_tlb(env); 1116 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1117 MemoryRegionSection *section; 1118 unsigned int index; 1119 target_ulong address; 1120 target_ulong write_address; 1121 uintptr_t addend; 1122 CPUTLBEntry *te, tn; 1123 hwaddr iotlb, xlat, sz, paddr_page; 1124 target_ulong vaddr_page; 1125 int asidx, wp_flags, prot; 1126 bool is_ram, is_romd; 1127 1128 assert_cpu_is_self(cpu); 1129 1130 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1131 sz = TARGET_PAGE_SIZE; 1132 } else { 1133 sz = (hwaddr)1 << full->lg_page_size; 1134 tlb_add_large_page(env, mmu_idx, vaddr, sz); 1135 } 1136 vaddr_page = vaddr & TARGET_PAGE_MASK; 1137 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1138 1139 prot = full->prot; 1140 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1141 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1142 &xlat, &sz, full->attrs, &prot); 1143 assert(sz >= TARGET_PAGE_SIZE); 1144 1145 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 1146 " prot=%x idx=%d\n", 1147 vaddr, full->phys_addr, prot, mmu_idx); 1148 1149 address = vaddr_page; 1150 if (full->lg_page_size < TARGET_PAGE_BITS) { 1151 /* Repeat the MMU check and TLB fill on every access. */ 1152 address |= TLB_INVALID_MASK; 1153 } 1154 if (full->attrs.byte_swap) { 1155 address |= TLB_BSWAP; 1156 } 1157 1158 is_ram = memory_region_is_ram(section->mr); 1159 is_romd = memory_region_is_romd(section->mr); 1160 1161 if (is_ram || is_romd) { 1162 /* RAM and ROMD both have associated host memory. */ 1163 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1164 } else { 1165 /* I/O does not; force the host address to NULL. */ 1166 addend = 0; 1167 } 1168 1169 write_address = address; 1170 if (is_ram) { 1171 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1172 /* 1173 * Computing is_clean is expensive; avoid all that unless 1174 * the page is actually writable. 1175 */ 1176 if (prot & PAGE_WRITE) { 1177 if (section->readonly) { 1178 write_address |= TLB_DISCARD_WRITE; 1179 } else if (cpu_physical_memory_is_clean(iotlb)) { 1180 write_address |= TLB_NOTDIRTY; 1181 } 1182 } 1183 } else { 1184 /* I/O or ROMD */ 1185 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1186 /* 1187 * Writes to romd devices must go through MMIO to enable write. 1188 * Reads to romd devices go through the ram_ptr found above, 1189 * but of course reads to I/O must go through MMIO. 1190 */ 1191 write_address |= TLB_MMIO; 1192 if (!is_romd) { 1193 address = write_address; 1194 } 1195 } 1196 1197 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1198 TARGET_PAGE_SIZE); 1199 1200 index = tlb_index(env, mmu_idx, vaddr_page); 1201 te = tlb_entry(env, mmu_idx, vaddr_page); 1202 1203 /* 1204 * Hold the TLB lock for the rest of the function. We could acquire/release 1205 * the lock several times in the function, but it is faster to amortize the 1206 * acquisition cost by acquiring it just once. Note that this leads to 1207 * a longer critical section, but this is not a concern since the TLB lock 1208 * is unlikely to be contended. 1209 */ 1210 qemu_spin_lock(&tlb->c.lock); 1211 1212 /* Note that the tlb is no longer clean. */ 1213 tlb->c.dirty |= 1 << mmu_idx; 1214 1215 /* Make sure there's no cached translation for the new page. */ 1216 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1217 1218 /* 1219 * Only evict the old entry to the victim tlb if it's for a 1220 * different page; otherwise just overwrite the stale data. 1221 */ 1222 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1223 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1224 CPUTLBEntry *tv = &desc->vtable[vidx]; 1225 1226 /* Evict the old entry into the victim tlb. */ 1227 copy_tlb_helper_locked(tv, te); 1228 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1229 tlb_n_used_entries_dec(env, mmu_idx); 1230 } 1231 1232 /* refill the tlb */ 1233 /* 1234 * At this point iotlb contains a physical section number in the lower 1235 * TARGET_PAGE_BITS, and either 1236 * + the ram_addr_t of the page base of the target RAM (RAM) 1237 * + the offset within section->mr of the page base (I/O, ROMD) 1238 * We subtract the vaddr_page (which is page aligned and thus won't 1239 * disturb the low bits) to give an offset which can be added to the 1240 * (non-page-aligned) vaddr of the eventual memory access to get 1241 * the MemoryRegion offset for the access. Note that the vaddr we 1242 * subtract here is that of the page base, and not the same as the 1243 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1244 */ 1245 desc->fulltlb[index] = *full; 1246 desc->fulltlb[index].xlat_section = iotlb - vaddr_page; 1247 desc->fulltlb[index].phys_addr = paddr_page; 1248 desc->fulltlb[index].prot = prot; 1249 1250 /* Now calculate the new entry */ 1251 tn.addend = addend - vaddr_page; 1252 if (prot & PAGE_READ) { 1253 tn.addr_read = address; 1254 if (wp_flags & BP_MEM_READ) { 1255 tn.addr_read |= TLB_WATCHPOINT; 1256 } 1257 } else { 1258 tn.addr_read = -1; 1259 } 1260 1261 if (prot & PAGE_EXEC) { 1262 tn.addr_code = address; 1263 } else { 1264 tn.addr_code = -1; 1265 } 1266 1267 tn.addr_write = -1; 1268 if (prot & PAGE_WRITE) { 1269 tn.addr_write = write_address; 1270 if (prot & PAGE_WRITE_INV) { 1271 tn.addr_write |= TLB_INVALID_MASK; 1272 } 1273 if (wp_flags & BP_MEM_WRITE) { 1274 tn.addr_write |= TLB_WATCHPOINT; 1275 } 1276 } 1277 1278 copy_tlb_helper_locked(te, &tn); 1279 tlb_n_used_entries_inc(env, mmu_idx); 1280 qemu_spin_unlock(&tlb->c.lock); 1281 } 1282 1283 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1284 hwaddr paddr, MemTxAttrs attrs, int prot, 1285 int mmu_idx, target_ulong size) 1286 { 1287 CPUTLBEntryFull full = { 1288 .phys_addr = paddr, 1289 .attrs = attrs, 1290 .prot = prot, 1291 .lg_page_size = ctz64(size) 1292 }; 1293 1294 assert(is_power_of_2(size)); 1295 tlb_set_page_full(cpu, mmu_idx, vaddr, &full); 1296 } 1297 1298 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1299 hwaddr paddr, int prot, 1300 int mmu_idx, target_ulong size) 1301 { 1302 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1303 prot, mmu_idx, size); 1304 } 1305 1306 /* 1307 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1308 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1309 * be discarded and looked up again (e.g. via tlb_entry()). 1310 */ 1311 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1312 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1313 { 1314 bool ok; 1315 1316 /* 1317 * This is not a probe, so only valid return is success; failure 1318 * should result in exception + longjmp to the cpu loop. 1319 */ 1320 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1321 access_type, mmu_idx, false, retaddr); 1322 assert(ok); 1323 } 1324 1325 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1326 MMUAccessType access_type, 1327 int mmu_idx, uintptr_t retaddr) 1328 { 1329 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1330 mmu_idx, retaddr); 1331 } 1332 1333 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1334 vaddr addr, unsigned size, 1335 MMUAccessType access_type, 1336 int mmu_idx, MemTxAttrs attrs, 1337 MemTxResult response, 1338 uintptr_t retaddr) 1339 { 1340 CPUClass *cc = CPU_GET_CLASS(cpu); 1341 1342 if (!cpu->ignore_memory_transaction_failures && 1343 cc->tcg_ops->do_transaction_failed) { 1344 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1345 access_type, mmu_idx, attrs, 1346 response, retaddr); 1347 } 1348 } 1349 1350 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1351 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1352 MMUAccessType access_type, MemOp op) 1353 { 1354 CPUState *cpu = env_cpu(env); 1355 hwaddr mr_offset; 1356 MemoryRegionSection *section; 1357 MemoryRegion *mr; 1358 uint64_t val; 1359 bool locked = false; 1360 MemTxResult r; 1361 1362 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1363 mr = section->mr; 1364 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1365 cpu->mem_io_pc = retaddr; 1366 if (!cpu->can_do_io) { 1367 cpu_io_recompile(cpu, retaddr); 1368 } 1369 1370 if (!qemu_mutex_iothread_locked()) { 1371 qemu_mutex_lock_iothread(); 1372 locked = true; 1373 } 1374 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1375 if (r != MEMTX_OK) { 1376 hwaddr physaddr = mr_offset + 1377 section->offset_within_address_space - 1378 section->offset_within_region; 1379 1380 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1381 mmu_idx, full->attrs, r, retaddr); 1382 } 1383 if (locked) { 1384 qemu_mutex_unlock_iothread(); 1385 } 1386 1387 return val; 1388 } 1389 1390 /* 1391 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1392 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1393 * because of the side effect of io_writex changing memory layout. 1394 */ 1395 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1396 hwaddr mr_offset) 1397 { 1398 #ifdef CONFIG_PLUGIN 1399 SavedIOTLB *saved = &cs->saved_iotlb; 1400 saved->section = section; 1401 saved->mr_offset = mr_offset; 1402 #endif 1403 } 1404 1405 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1406 int mmu_idx, uint64_t val, target_ulong addr, 1407 uintptr_t retaddr, MemOp op) 1408 { 1409 CPUState *cpu = env_cpu(env); 1410 hwaddr mr_offset; 1411 MemoryRegionSection *section; 1412 MemoryRegion *mr; 1413 bool locked = false; 1414 MemTxResult r; 1415 1416 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1417 mr = section->mr; 1418 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1419 if (!cpu->can_do_io) { 1420 cpu_io_recompile(cpu, retaddr); 1421 } 1422 cpu->mem_io_pc = retaddr; 1423 1424 /* 1425 * The memory_region_dispatch may trigger a flush/resize 1426 * so for plugins we save the iotlb_data just in case. 1427 */ 1428 save_iotlb_data(cpu, section, mr_offset); 1429 1430 if (!qemu_mutex_iothread_locked()) { 1431 qemu_mutex_lock_iothread(); 1432 locked = true; 1433 } 1434 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1435 if (r != MEMTX_OK) { 1436 hwaddr physaddr = mr_offset + 1437 section->offset_within_address_space - 1438 section->offset_within_region; 1439 1440 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1441 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1442 retaddr); 1443 } 1444 if (locked) { 1445 qemu_mutex_unlock_iothread(); 1446 } 1447 } 1448 1449 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 1450 { 1451 #if TCG_OVERSIZED_GUEST 1452 return *(target_ulong *)((uintptr_t)entry + ofs); 1453 #else 1454 /* ofs might correspond to .addr_write, so use qatomic_read */ 1455 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); 1456 #endif 1457 } 1458 1459 /* Return true if ADDR is present in the victim tlb, and has been copied 1460 back to the main tlb. */ 1461 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1462 size_t elt_ofs, target_ulong page) 1463 { 1464 size_t vidx; 1465 1466 assert_cpu_is_self(env_cpu(env)); 1467 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1468 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1469 target_ulong cmp; 1470 1471 /* elt_ofs might correspond to .addr_write, so use qatomic_read */ 1472 #if TCG_OVERSIZED_GUEST 1473 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1474 #else 1475 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1476 #endif 1477 1478 if (cmp == page) { 1479 /* Found entry in victim tlb, swap tlb and iotlb. */ 1480 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1481 1482 qemu_spin_lock(&env_tlb(env)->c.lock); 1483 copy_tlb_helper_locked(&tmptlb, tlb); 1484 copy_tlb_helper_locked(tlb, vtlb); 1485 copy_tlb_helper_locked(vtlb, &tmptlb); 1486 qemu_spin_unlock(&env_tlb(env)->c.lock); 1487 1488 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1489 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1490 CPUTLBEntryFull tmpf; 1491 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1492 return true; 1493 } 1494 } 1495 return false; 1496 } 1497 1498 /* Macro to call the above, with local variables from the use context. */ 1499 #define VICTIM_TLB_HIT(TY, ADDR) \ 1500 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1501 (ADDR) & TARGET_PAGE_MASK) 1502 1503 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1504 CPUTLBEntryFull *full, uintptr_t retaddr) 1505 { 1506 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1507 1508 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1509 1510 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1511 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1512 } 1513 1514 /* 1515 * Set both VGA and migration bits for simplicity and to remove 1516 * the notdirty callback faster. 1517 */ 1518 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1519 1520 /* We remove the notdirty callback only if the code has been flushed. */ 1521 if (!cpu_physical_memory_is_clean(ram_addr)) { 1522 trace_memory_notdirty_set_dirty(mem_vaddr); 1523 tlb_set_dirty(cpu, mem_vaddr); 1524 } 1525 } 1526 1527 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1528 int fault_size, MMUAccessType access_type, 1529 int mmu_idx, bool nonfault, 1530 void **phost, CPUTLBEntryFull **pfull, 1531 uintptr_t retaddr) 1532 { 1533 uintptr_t index = tlb_index(env, mmu_idx, addr); 1534 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1535 target_ulong tlb_addr, page_addr; 1536 size_t elt_ofs; 1537 int flags; 1538 1539 switch (access_type) { 1540 case MMU_DATA_LOAD: 1541 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1542 break; 1543 case MMU_DATA_STORE: 1544 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1545 break; 1546 case MMU_INST_FETCH: 1547 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1548 break; 1549 default: 1550 g_assert_not_reached(); 1551 } 1552 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1553 1554 flags = TLB_FLAGS_MASK; 1555 page_addr = addr & TARGET_PAGE_MASK; 1556 if (!tlb_hit_page(tlb_addr, page_addr)) { 1557 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { 1558 CPUState *cs = env_cpu(env); 1559 1560 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1561 mmu_idx, nonfault, retaddr)) { 1562 /* Non-faulting page table read failed. */ 1563 *phost = NULL; 1564 *pfull = NULL; 1565 return TLB_INVALID_MASK; 1566 } 1567 1568 /* TLB resize via tlb_fill may have moved the entry. */ 1569 index = tlb_index(env, mmu_idx, addr); 1570 entry = tlb_entry(env, mmu_idx, addr); 1571 1572 /* 1573 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1574 * to force the next access through tlb_fill. We've just 1575 * called tlb_fill, so we know that this entry *is* valid. 1576 */ 1577 flags &= ~TLB_INVALID_MASK; 1578 } 1579 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1580 } 1581 flags &= tlb_addr; 1582 1583 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1584 1585 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1586 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1587 *phost = NULL; 1588 return TLB_MMIO; 1589 } 1590 1591 /* Everything else is RAM. */ 1592 *phost = (void *)((uintptr_t)addr + entry->addend); 1593 return flags; 1594 } 1595 1596 int probe_access_full(CPUArchState *env, target_ulong addr, 1597 MMUAccessType access_type, int mmu_idx, 1598 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1599 uintptr_t retaddr) 1600 { 1601 int flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, 1602 nonfault, phost, pfull, retaddr); 1603 1604 /* Handle clean RAM pages. */ 1605 if (unlikely(flags & TLB_NOTDIRTY)) { 1606 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1607 flags &= ~TLB_NOTDIRTY; 1608 } 1609 1610 return flags; 1611 } 1612 1613 int probe_access_flags(CPUArchState *env, target_ulong addr, 1614 MMUAccessType access_type, int mmu_idx, 1615 bool nonfault, void **phost, uintptr_t retaddr) 1616 { 1617 CPUTLBEntryFull *full; 1618 1619 return probe_access_full(env, addr, access_type, mmu_idx, 1620 nonfault, phost, &full, retaddr); 1621 } 1622 1623 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1624 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1625 { 1626 CPUTLBEntryFull *full; 1627 void *host; 1628 int flags; 1629 1630 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1631 1632 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1633 false, &host, &full, retaddr); 1634 1635 /* Per the interface, size == 0 merely faults the access. */ 1636 if (size == 0) { 1637 return NULL; 1638 } 1639 1640 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1641 /* Handle watchpoints. */ 1642 if (flags & TLB_WATCHPOINT) { 1643 int wp_access = (access_type == MMU_DATA_STORE 1644 ? BP_MEM_WRITE : BP_MEM_READ); 1645 cpu_check_watchpoint(env_cpu(env), addr, size, 1646 full->attrs, wp_access, retaddr); 1647 } 1648 1649 /* Handle clean RAM pages. */ 1650 if (flags & TLB_NOTDIRTY) { 1651 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1652 } 1653 } 1654 1655 return host; 1656 } 1657 1658 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1659 MMUAccessType access_type, int mmu_idx) 1660 { 1661 CPUTLBEntryFull *full; 1662 void *host; 1663 int flags; 1664 1665 flags = probe_access_internal(env, addr, 0, access_type, 1666 mmu_idx, true, &host, &full, 0); 1667 1668 /* No combination of flags are expected by the caller. */ 1669 return flags ? NULL : host; 1670 } 1671 1672 /* 1673 * Return a ram_addr_t for the virtual address for execution. 1674 * 1675 * Return -1 if we can't translate and execute from an entire page 1676 * of RAM. This will force us to execute by loading and translating 1677 * one insn at a time, without caching. 1678 * 1679 * NOTE: This function will trigger an exception if the page is 1680 * not executable. 1681 */ 1682 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1683 void **hostp) 1684 { 1685 CPUTLBEntryFull *full; 1686 void *p; 1687 1688 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1689 cpu_mmu_index(env, true), false, &p, &full, 0); 1690 if (p == NULL) { 1691 return -1; 1692 } 1693 if (hostp) { 1694 *hostp = p; 1695 } 1696 return qemu_ram_addr_from_host_nofail(p); 1697 } 1698 1699 #ifdef CONFIG_PLUGIN 1700 /* 1701 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1702 * This should be a hot path as we will have just looked this path up 1703 * in the softmmu lookup code (or helper). We don't handle re-fills or 1704 * checking the victim table. This is purely informational. 1705 * 1706 * This almost never fails as the memory access being instrumented 1707 * should have just filled the TLB. The one corner case is io_writex 1708 * which can cause TLB flushes and potential resizing of the TLBs 1709 * losing the information we need. In those cases we need to recover 1710 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1711 * from the same thread (which a mem callback will be) this is safe. 1712 */ 1713 1714 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1715 bool is_store, struct qemu_plugin_hwaddr *data) 1716 { 1717 CPUArchState *env = cpu->env_ptr; 1718 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1719 uintptr_t index = tlb_index(env, mmu_idx, addr); 1720 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1721 1722 if (likely(tlb_hit(tlb_addr, addr))) { 1723 /* We must have an iotlb entry for MMIO */ 1724 if (tlb_addr & TLB_MMIO) { 1725 CPUTLBEntryFull *full; 1726 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1727 data->is_io = true; 1728 data->v.io.section = 1729 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1730 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1731 } else { 1732 data->is_io = false; 1733 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1734 } 1735 return true; 1736 } else { 1737 SavedIOTLB *saved = &cpu->saved_iotlb; 1738 data->is_io = true; 1739 data->v.io.section = saved->section; 1740 data->v.io.offset = saved->mr_offset; 1741 return true; 1742 } 1743 } 1744 1745 #endif 1746 1747 /* 1748 * Probe for an atomic operation. Do not allow unaligned operations, 1749 * or io operations to proceed. Return the host address. 1750 * 1751 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1752 */ 1753 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1754 MemOpIdx oi, int size, int prot, 1755 uintptr_t retaddr) 1756 { 1757 uintptr_t mmu_idx = get_mmuidx(oi); 1758 MemOp mop = get_memop(oi); 1759 int a_bits = get_alignment_bits(mop); 1760 uintptr_t index; 1761 CPUTLBEntry *tlbe; 1762 target_ulong tlb_addr; 1763 void *hostaddr; 1764 1765 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1766 1767 /* Adjust the given return address. */ 1768 retaddr -= GETPC_ADJ; 1769 1770 /* Enforce guest required alignment. */ 1771 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1772 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1773 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1774 mmu_idx, retaddr); 1775 } 1776 1777 /* Enforce qemu required alignment. */ 1778 if (unlikely(addr & (size - 1))) { 1779 /* We get here if guest alignment was not requested, 1780 or was not enforced by cpu_unaligned_access above. 1781 We might widen the access and emulate, but for now 1782 mark an exception and exit the cpu loop. */ 1783 goto stop_the_world; 1784 } 1785 1786 index = tlb_index(env, mmu_idx, addr); 1787 tlbe = tlb_entry(env, mmu_idx, addr); 1788 1789 /* Check TLB entry and enforce page permissions. */ 1790 if (prot & PAGE_WRITE) { 1791 tlb_addr = tlb_addr_write(tlbe); 1792 if (!tlb_hit(tlb_addr, addr)) { 1793 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1794 tlb_fill(env_cpu(env), addr, size, 1795 MMU_DATA_STORE, mmu_idx, retaddr); 1796 index = tlb_index(env, mmu_idx, addr); 1797 tlbe = tlb_entry(env, mmu_idx, addr); 1798 } 1799 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1800 } 1801 1802 /* Let the guest notice RMW on a write-only page. */ 1803 if ((prot & PAGE_READ) && 1804 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1805 tlb_fill(env_cpu(env), addr, size, 1806 MMU_DATA_LOAD, mmu_idx, retaddr); 1807 /* 1808 * Since we don't support reads and writes to different addresses, 1809 * and we do have the proper page loaded for write, this shouldn't 1810 * ever return. But just in case, handle via stop-the-world. 1811 */ 1812 goto stop_the_world; 1813 } 1814 } else /* if (prot & PAGE_READ) */ { 1815 tlb_addr = tlbe->addr_read; 1816 if (!tlb_hit(tlb_addr, addr)) { 1817 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1818 tlb_fill(env_cpu(env), addr, size, 1819 MMU_DATA_LOAD, mmu_idx, retaddr); 1820 index = tlb_index(env, mmu_idx, addr); 1821 tlbe = tlb_entry(env, mmu_idx, addr); 1822 } 1823 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1824 } 1825 } 1826 1827 /* Notice an IO access or a needs-MMU-lookup access */ 1828 if (unlikely(tlb_addr & TLB_MMIO)) { 1829 /* There's really nothing that can be done to 1830 support this apart from stop-the-world. */ 1831 goto stop_the_world; 1832 } 1833 1834 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1835 1836 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1837 notdirty_write(env_cpu(env), addr, size, 1838 &env_tlb(env)->d[mmu_idx].fulltlb[index], retaddr); 1839 } 1840 1841 return hostaddr; 1842 1843 stop_the_world: 1844 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1845 } 1846 1847 /* 1848 * Verify that we have passed the correct MemOp to the correct function. 1849 * 1850 * In the case of the helper_*_mmu functions, we will have done this by 1851 * using the MemOp to look up the helper during code generation. 1852 * 1853 * In the case of the cpu_*_mmu functions, this is up to the caller. 1854 * We could present one function to target code, and dispatch based on 1855 * the MemOp, but so far we have worked hard to avoid an indirect function 1856 * call along the memory path. 1857 */ 1858 static void validate_memop(MemOpIdx oi, MemOp expected) 1859 { 1860 #ifdef CONFIG_DEBUG_TCG 1861 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); 1862 assert(have == expected); 1863 #endif 1864 } 1865 1866 /* 1867 * Load Helpers 1868 * 1869 * We support two different access types. SOFTMMU_CODE_ACCESS is 1870 * specifically for reading instructions from system memory. It is 1871 * called by the translation loop and in some helpers where the code 1872 * is disassembled. It shouldn't be called directly by guest code. 1873 */ 1874 1875 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1876 MemOpIdx oi, uintptr_t retaddr); 1877 1878 static inline uint64_t QEMU_ALWAYS_INLINE 1879 load_memop(const void *haddr, MemOp op) 1880 { 1881 switch (op) { 1882 case MO_UB: 1883 return ldub_p(haddr); 1884 case MO_BEUW: 1885 return lduw_be_p(haddr); 1886 case MO_LEUW: 1887 return lduw_le_p(haddr); 1888 case MO_BEUL: 1889 return (uint32_t)ldl_be_p(haddr); 1890 case MO_LEUL: 1891 return (uint32_t)ldl_le_p(haddr); 1892 case MO_BEUQ: 1893 return ldq_be_p(haddr); 1894 case MO_LEUQ: 1895 return ldq_le_p(haddr); 1896 default: 1897 qemu_build_not_reached(); 1898 } 1899 } 1900 1901 static inline uint64_t QEMU_ALWAYS_INLINE 1902 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1903 uintptr_t retaddr, MemOp op, bool code_read, 1904 FullLoadHelper *full_load) 1905 { 1906 const size_t tlb_off = code_read ? 1907 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1908 const MMUAccessType access_type = 1909 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1910 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 1911 const size_t size = memop_size(op); 1912 uintptr_t mmu_idx = get_mmuidx(oi); 1913 uintptr_t index; 1914 CPUTLBEntry *entry; 1915 target_ulong tlb_addr; 1916 void *haddr; 1917 uint64_t res; 1918 1919 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1920 1921 /* Handle CPU specific unaligned behaviour */ 1922 if (addr & ((1 << a_bits) - 1)) { 1923 cpu_unaligned_access(env_cpu(env), addr, access_type, 1924 mmu_idx, retaddr); 1925 } 1926 1927 index = tlb_index(env, mmu_idx, addr); 1928 entry = tlb_entry(env, mmu_idx, addr); 1929 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1930 1931 /* If the TLB entry is for a different page, reload and try again. */ 1932 if (!tlb_hit(tlb_addr, addr)) { 1933 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1934 addr & TARGET_PAGE_MASK)) { 1935 tlb_fill(env_cpu(env), addr, size, 1936 access_type, mmu_idx, retaddr); 1937 index = tlb_index(env, mmu_idx, addr); 1938 entry = tlb_entry(env, mmu_idx, addr); 1939 } 1940 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1941 tlb_addr &= ~TLB_INVALID_MASK; 1942 } 1943 1944 /* Handle anything that isn't just a straight memory access. */ 1945 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1946 CPUTLBEntryFull *full; 1947 bool need_swap; 1948 1949 /* For anything that is unaligned, recurse through full_load. */ 1950 if ((addr & (size - 1)) != 0) { 1951 goto do_unaligned_access; 1952 } 1953 1954 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1955 1956 /* Handle watchpoints. */ 1957 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1958 /* On watchpoint hit, this will longjmp out. */ 1959 cpu_check_watchpoint(env_cpu(env), addr, size, 1960 full->attrs, BP_MEM_READ, retaddr); 1961 } 1962 1963 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 1964 1965 /* Handle I/O access. */ 1966 if (likely(tlb_addr & TLB_MMIO)) { 1967 return io_readx(env, full, mmu_idx, addr, retaddr, 1968 access_type, op ^ (need_swap * MO_BSWAP)); 1969 } 1970 1971 haddr = (void *)((uintptr_t)addr + entry->addend); 1972 1973 /* 1974 * Keep these two load_memop separate to ensure that the compiler 1975 * is able to fold the entire function to a single instruction. 1976 * There is a build-time assert inside to remind you of this. ;-) 1977 */ 1978 if (unlikely(need_swap)) { 1979 return load_memop(haddr, op ^ MO_BSWAP); 1980 } 1981 return load_memop(haddr, op); 1982 } 1983 1984 /* Handle slow unaligned access (it spans two pages or IO). */ 1985 if (size > 1 1986 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1987 >= TARGET_PAGE_SIZE)) { 1988 target_ulong addr1, addr2; 1989 uint64_t r1, r2; 1990 unsigned shift; 1991 do_unaligned_access: 1992 addr1 = addr & ~((target_ulong)size - 1); 1993 addr2 = addr1 + size; 1994 r1 = full_load(env, addr1, oi, retaddr); 1995 r2 = full_load(env, addr2, oi, retaddr); 1996 shift = (addr & (size - 1)) * 8; 1997 1998 if (memop_big_endian(op)) { 1999 /* Big-endian combine. */ 2000 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 2001 } else { 2002 /* Little-endian combine. */ 2003 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 2004 } 2005 return res & MAKE_64BIT_MASK(0, size * 8); 2006 } 2007 2008 haddr = (void *)((uintptr_t)addr + entry->addend); 2009 return load_memop(haddr, op); 2010 } 2011 2012 /* 2013 * For the benefit of TCG generated code, we want to avoid the 2014 * complication of ABI-specific return type promotion and always 2015 * return a value extended to the register size of the host. This is 2016 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2017 * data, and for that we always have uint64_t. 2018 * 2019 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2020 */ 2021 2022 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 2023 MemOpIdx oi, uintptr_t retaddr) 2024 { 2025 validate_memop(oi, MO_UB); 2026 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 2027 } 2028 2029 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 2030 MemOpIdx oi, uintptr_t retaddr) 2031 { 2032 return full_ldub_mmu(env, addr, oi, retaddr); 2033 } 2034 2035 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2036 MemOpIdx oi, uintptr_t retaddr) 2037 { 2038 validate_memop(oi, MO_LEUW); 2039 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 2040 full_le_lduw_mmu); 2041 } 2042 2043 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2044 MemOpIdx oi, uintptr_t retaddr) 2045 { 2046 return full_le_lduw_mmu(env, addr, oi, retaddr); 2047 } 2048 2049 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2050 MemOpIdx oi, uintptr_t retaddr) 2051 { 2052 validate_memop(oi, MO_BEUW); 2053 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 2054 full_be_lduw_mmu); 2055 } 2056 2057 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2058 MemOpIdx oi, uintptr_t retaddr) 2059 { 2060 return full_be_lduw_mmu(env, addr, oi, retaddr); 2061 } 2062 2063 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2064 MemOpIdx oi, uintptr_t retaddr) 2065 { 2066 validate_memop(oi, MO_LEUL); 2067 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 2068 full_le_ldul_mmu); 2069 } 2070 2071 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2072 MemOpIdx oi, uintptr_t retaddr) 2073 { 2074 return full_le_ldul_mmu(env, addr, oi, retaddr); 2075 } 2076 2077 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2078 MemOpIdx oi, uintptr_t retaddr) 2079 { 2080 validate_memop(oi, MO_BEUL); 2081 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 2082 full_be_ldul_mmu); 2083 } 2084 2085 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2086 MemOpIdx oi, uintptr_t retaddr) 2087 { 2088 return full_be_ldul_mmu(env, addr, oi, retaddr); 2089 } 2090 2091 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 2092 MemOpIdx oi, uintptr_t retaddr) 2093 { 2094 validate_memop(oi, MO_LEUQ); 2095 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false, 2096 helper_le_ldq_mmu); 2097 } 2098 2099 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 2100 MemOpIdx oi, uintptr_t retaddr) 2101 { 2102 validate_memop(oi, MO_BEUQ); 2103 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false, 2104 helper_be_ldq_mmu); 2105 } 2106 2107 /* 2108 * Provide signed versions of the load routines as well. We can of course 2109 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2110 */ 2111 2112 2113 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 2114 MemOpIdx oi, uintptr_t retaddr) 2115 { 2116 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 2117 } 2118 2119 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 2120 MemOpIdx oi, uintptr_t retaddr) 2121 { 2122 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 2123 } 2124 2125 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 2126 MemOpIdx oi, uintptr_t retaddr) 2127 { 2128 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 2129 } 2130 2131 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 2132 MemOpIdx oi, uintptr_t retaddr) 2133 { 2134 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 2135 } 2136 2137 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 2138 MemOpIdx oi, uintptr_t retaddr) 2139 { 2140 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 2141 } 2142 2143 /* 2144 * Load helpers for cpu_ldst.h. 2145 */ 2146 2147 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, 2148 MemOpIdx oi, uintptr_t retaddr, 2149 FullLoadHelper *full_load) 2150 { 2151 uint64_t ret; 2152 2153 ret = full_load(env, addr, oi, retaddr); 2154 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2155 return ret; 2156 } 2157 2158 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2159 { 2160 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu); 2161 } 2162 2163 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 2164 MemOpIdx oi, uintptr_t ra) 2165 { 2166 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu); 2167 } 2168 2169 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 2170 MemOpIdx oi, uintptr_t ra) 2171 { 2172 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu); 2173 } 2174 2175 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 2176 MemOpIdx oi, uintptr_t ra) 2177 { 2178 return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu); 2179 } 2180 2181 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 2182 MemOpIdx oi, uintptr_t ra) 2183 { 2184 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu); 2185 } 2186 2187 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 2188 MemOpIdx oi, uintptr_t ra) 2189 { 2190 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu); 2191 } 2192 2193 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 2194 MemOpIdx oi, uintptr_t ra) 2195 { 2196 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu); 2197 } 2198 2199 /* 2200 * Store Helpers 2201 */ 2202 2203 static inline void QEMU_ALWAYS_INLINE 2204 store_memop(void *haddr, uint64_t val, MemOp op) 2205 { 2206 switch (op) { 2207 case MO_UB: 2208 stb_p(haddr, val); 2209 break; 2210 case MO_BEUW: 2211 stw_be_p(haddr, val); 2212 break; 2213 case MO_LEUW: 2214 stw_le_p(haddr, val); 2215 break; 2216 case MO_BEUL: 2217 stl_be_p(haddr, val); 2218 break; 2219 case MO_LEUL: 2220 stl_le_p(haddr, val); 2221 break; 2222 case MO_BEUQ: 2223 stq_be_p(haddr, val); 2224 break; 2225 case MO_LEUQ: 2226 stq_le_p(haddr, val); 2227 break; 2228 default: 2229 qemu_build_not_reached(); 2230 } 2231 } 2232 2233 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2234 MemOpIdx oi, uintptr_t retaddr); 2235 2236 static void __attribute__((noinline)) 2237 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, 2238 uintptr_t retaddr, size_t size, uintptr_t mmu_idx, 2239 bool big_endian) 2240 { 2241 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2242 uintptr_t index, index2; 2243 CPUTLBEntry *entry, *entry2; 2244 target_ulong page1, page2, tlb_addr, tlb_addr2; 2245 MemOpIdx oi; 2246 size_t size2; 2247 int i; 2248 2249 /* 2250 * Ensure the second page is in the TLB. Note that the first page 2251 * is already guaranteed to be filled, and that the second page 2252 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV 2253 * handling: the first page could have evicted itself. 2254 */ 2255 page1 = addr & TARGET_PAGE_MASK; 2256 page2 = (addr + size) & TARGET_PAGE_MASK; 2257 size2 = (addr + size) & ~TARGET_PAGE_MASK; 2258 index2 = tlb_index(env, mmu_idx, page2); 2259 entry2 = tlb_entry(env, mmu_idx, page2); 2260 2261 tlb_addr2 = tlb_addr_write(entry2); 2262 if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) { 2263 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { 2264 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, 2265 mmu_idx, retaddr); 2266 index2 = tlb_index(env, mmu_idx, page2); 2267 entry2 = tlb_entry(env, mmu_idx, page2); 2268 } 2269 tlb_addr2 = tlb_addr_write(entry2); 2270 } 2271 2272 index = tlb_index(env, mmu_idx, addr); 2273 entry = tlb_entry(env, mmu_idx, addr); 2274 tlb_addr = tlb_addr_write(entry); 2275 2276 /* 2277 * Handle watchpoints. Since this may trap, all checks 2278 * must happen before any store. 2279 */ 2280 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2281 cpu_check_watchpoint(env_cpu(env), addr, size - size2, 2282 env_tlb(env)->d[mmu_idx].fulltlb[index].attrs, 2283 BP_MEM_WRITE, retaddr); 2284 } 2285 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { 2286 cpu_check_watchpoint(env_cpu(env), page2, size2, 2287 env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs, 2288 BP_MEM_WRITE, retaddr); 2289 } 2290 2291 /* 2292 * XXX: not efficient, but simple. 2293 * This loop must go in the forward direction to avoid issues 2294 * with self-modifying code in Windows 64-bit. 2295 */ 2296 oi = make_memop_idx(MO_UB, mmu_idx); 2297 if (big_endian) { 2298 for (i = 0; i < size; ++i) { 2299 /* Big-endian extract. */ 2300 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); 2301 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2302 } 2303 } else { 2304 for (i = 0; i < size; ++i) { 2305 /* Little-endian extract. */ 2306 uint8_t val8 = val >> (i * 8); 2307 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2308 } 2309 } 2310 } 2311 2312 static inline void QEMU_ALWAYS_INLINE 2313 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 2314 MemOpIdx oi, uintptr_t retaddr, MemOp op) 2315 { 2316 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2317 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 2318 const size_t size = memop_size(op); 2319 uintptr_t mmu_idx = get_mmuidx(oi); 2320 uintptr_t index; 2321 CPUTLBEntry *entry; 2322 target_ulong tlb_addr; 2323 void *haddr; 2324 2325 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 2326 2327 /* Handle CPU specific unaligned behaviour */ 2328 if (addr & ((1 << a_bits) - 1)) { 2329 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2330 mmu_idx, retaddr); 2331 } 2332 2333 index = tlb_index(env, mmu_idx, addr); 2334 entry = tlb_entry(env, mmu_idx, addr); 2335 tlb_addr = tlb_addr_write(entry); 2336 2337 /* If the TLB entry is for a different page, reload and try again. */ 2338 if (!tlb_hit(tlb_addr, addr)) { 2339 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 2340 addr & TARGET_PAGE_MASK)) { 2341 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 2342 mmu_idx, retaddr); 2343 index = tlb_index(env, mmu_idx, addr); 2344 entry = tlb_entry(env, mmu_idx, addr); 2345 } 2346 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 2347 } 2348 2349 /* Handle anything that isn't just a straight memory access. */ 2350 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 2351 CPUTLBEntryFull *full; 2352 bool need_swap; 2353 2354 /* For anything that is unaligned, recurse through byte stores. */ 2355 if ((addr & (size - 1)) != 0) { 2356 goto do_unaligned_access; 2357 } 2358 2359 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 2360 2361 /* Handle watchpoints. */ 2362 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2363 /* On watchpoint hit, this will longjmp out. */ 2364 cpu_check_watchpoint(env_cpu(env), addr, size, 2365 full->attrs, BP_MEM_WRITE, retaddr); 2366 } 2367 2368 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 2369 2370 /* Handle I/O access. */ 2371 if (tlb_addr & TLB_MMIO) { 2372 io_writex(env, full, mmu_idx, val, addr, retaddr, 2373 op ^ (need_swap * MO_BSWAP)); 2374 return; 2375 } 2376 2377 /* Ignore writes to ROM. */ 2378 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { 2379 return; 2380 } 2381 2382 /* Handle clean RAM pages. */ 2383 if (tlb_addr & TLB_NOTDIRTY) { 2384 notdirty_write(env_cpu(env), addr, size, full, retaddr); 2385 } 2386 2387 haddr = (void *)((uintptr_t)addr + entry->addend); 2388 2389 /* 2390 * Keep these two store_memop separate to ensure that the compiler 2391 * is able to fold the entire function to a single instruction. 2392 * There is a build-time assert inside to remind you of this. ;-) 2393 */ 2394 if (unlikely(need_swap)) { 2395 store_memop(haddr, val, op ^ MO_BSWAP); 2396 } else { 2397 store_memop(haddr, val, op); 2398 } 2399 return; 2400 } 2401 2402 /* Handle slow unaligned access (it spans two pages or IO). */ 2403 if (size > 1 2404 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 2405 >= TARGET_PAGE_SIZE)) { 2406 do_unaligned_access: 2407 store_helper_unaligned(env, addr, val, retaddr, size, 2408 mmu_idx, memop_big_endian(op)); 2409 return; 2410 } 2411 2412 haddr = (void *)((uintptr_t)addr + entry->addend); 2413 store_memop(haddr, val, op); 2414 } 2415 2416 static void __attribute__((noinline)) 2417 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2418 MemOpIdx oi, uintptr_t retaddr) 2419 { 2420 validate_memop(oi, MO_UB); 2421 store_helper(env, addr, val, oi, retaddr, MO_UB); 2422 } 2423 2424 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2425 MemOpIdx oi, uintptr_t retaddr) 2426 { 2427 full_stb_mmu(env, addr, val, oi, retaddr); 2428 } 2429 2430 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2431 MemOpIdx oi, uintptr_t retaddr) 2432 { 2433 validate_memop(oi, MO_LEUW); 2434 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 2435 } 2436 2437 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2438 MemOpIdx oi, uintptr_t retaddr) 2439 { 2440 full_le_stw_mmu(env, addr, val, oi, retaddr); 2441 } 2442 2443 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2444 MemOpIdx oi, uintptr_t retaddr) 2445 { 2446 validate_memop(oi, MO_BEUW); 2447 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 2448 } 2449 2450 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2451 MemOpIdx oi, uintptr_t retaddr) 2452 { 2453 full_be_stw_mmu(env, addr, val, oi, retaddr); 2454 } 2455 2456 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2457 MemOpIdx oi, uintptr_t retaddr) 2458 { 2459 validate_memop(oi, MO_LEUL); 2460 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 2461 } 2462 2463 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2464 MemOpIdx oi, uintptr_t retaddr) 2465 { 2466 full_le_stl_mmu(env, addr, val, oi, retaddr); 2467 } 2468 2469 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2470 MemOpIdx oi, uintptr_t retaddr) 2471 { 2472 validate_memop(oi, MO_BEUL); 2473 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 2474 } 2475 2476 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2477 MemOpIdx oi, uintptr_t retaddr) 2478 { 2479 full_be_stl_mmu(env, addr, val, oi, retaddr); 2480 } 2481 2482 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2483 MemOpIdx oi, uintptr_t retaddr) 2484 { 2485 validate_memop(oi, MO_LEUQ); 2486 store_helper(env, addr, val, oi, retaddr, MO_LEUQ); 2487 } 2488 2489 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2490 MemOpIdx oi, uintptr_t retaddr) 2491 { 2492 validate_memop(oi, MO_BEUQ); 2493 store_helper(env, addr, val, oi, retaddr, MO_BEUQ); 2494 } 2495 2496 /* 2497 * Store Helpers for cpu_ldst.h 2498 */ 2499 2500 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr, 2501 uint64_t val, MemOpIdx oi, uintptr_t retaddr); 2502 2503 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr, 2504 uint64_t val, MemOpIdx oi, uintptr_t ra, 2505 FullStoreHelper *full_store) 2506 { 2507 full_store(env, addr, val, oi, ra); 2508 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2509 } 2510 2511 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2512 MemOpIdx oi, uintptr_t retaddr) 2513 { 2514 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu); 2515 } 2516 2517 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2518 MemOpIdx oi, uintptr_t retaddr) 2519 { 2520 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu); 2521 } 2522 2523 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2524 MemOpIdx oi, uintptr_t retaddr) 2525 { 2526 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu); 2527 } 2528 2529 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2530 MemOpIdx oi, uintptr_t retaddr) 2531 { 2532 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu); 2533 } 2534 2535 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2536 MemOpIdx oi, uintptr_t retaddr) 2537 { 2538 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu); 2539 } 2540 2541 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2542 MemOpIdx oi, uintptr_t retaddr) 2543 { 2544 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu); 2545 } 2546 2547 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2548 MemOpIdx oi, uintptr_t retaddr) 2549 { 2550 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu); 2551 } 2552 2553 #include "ldst_common.c.inc" 2554 2555 /* 2556 * First set of functions passes in OI and RETADDR. 2557 * This makes them callable from other helpers. 2558 */ 2559 2560 #define ATOMIC_NAME(X) \ 2561 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2562 2563 #define ATOMIC_MMU_CLEANUP 2564 2565 #include "atomic_common.c.inc" 2566 2567 #define DATA_SIZE 1 2568 #include "atomic_template.h" 2569 2570 #define DATA_SIZE 2 2571 #include "atomic_template.h" 2572 2573 #define DATA_SIZE 4 2574 #include "atomic_template.h" 2575 2576 #ifdef CONFIG_ATOMIC64 2577 #define DATA_SIZE 8 2578 #include "atomic_template.h" 2579 #endif 2580 2581 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2582 #define DATA_SIZE 16 2583 #include "atomic_template.h" 2584 #endif 2585 2586 /* Code access functions. */ 2587 2588 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, 2589 MemOpIdx oi, uintptr_t retaddr) 2590 { 2591 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); 2592 } 2593 2594 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2595 { 2596 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2597 return full_ldub_code(env, addr, oi, 0); 2598 } 2599 2600 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, 2601 MemOpIdx oi, uintptr_t retaddr) 2602 { 2603 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); 2604 } 2605 2606 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2607 { 2608 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2609 return full_lduw_code(env, addr, oi, 0); 2610 } 2611 2612 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, 2613 MemOpIdx oi, uintptr_t retaddr) 2614 { 2615 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); 2616 } 2617 2618 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2619 { 2620 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2621 return full_ldl_code(env, addr, oi, 0); 2622 } 2623 2624 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, 2625 MemOpIdx oi, uintptr_t retaddr) 2626 { 2627 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code); 2628 } 2629 2630 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2631 { 2632 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2633 return full_ldq_code(env, addr, oi, 0); 2634 } 2635