1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/address-spaces.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "tcg/tcg.h" 31 #include "qemu/error-report.h" 32 #include "exec/log.h" 33 #include "exec/helper-proto.h" 34 #include "qemu/atomic.h" 35 #include "qemu/atomic128.h" 36 37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 38 /* #define DEBUG_TLB */ 39 /* #define DEBUG_TLB_LOG */ 40 41 #ifdef DEBUG_TLB 42 # define DEBUG_TLB_GATE 1 43 # ifdef DEBUG_TLB_LOG 44 # define DEBUG_TLB_LOG_GATE 1 45 # else 46 # define DEBUG_TLB_LOG_GATE 0 47 # endif 48 #else 49 # define DEBUG_TLB_GATE 0 50 # define DEBUG_TLB_LOG_GATE 0 51 #endif 52 53 #define tlb_debug(fmt, ...) do { \ 54 if (DEBUG_TLB_LOG_GATE) { \ 55 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 56 ## __VA_ARGS__); \ 57 } else if (DEBUG_TLB_GATE) { \ 58 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 59 } \ 60 } while (0) 61 62 #define assert_cpu_is_self(cpu) do { \ 63 if (DEBUG_TLB_GATE) { \ 64 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 65 } \ 66 } while (0) 67 68 /* run_on_cpu_data.target_ptr should always be big enough for a 69 * target_ulong even on 32 bit builds */ 70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 71 72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 73 */ 74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 76 77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx) 78 { 79 return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS); 80 } 81 82 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 83 size_t max_entries) 84 { 85 desc->window_begin_ns = ns; 86 desc->window_max_entries = max_entries; 87 } 88 89 static void tlb_dyn_init(CPUArchState *env) 90 { 91 int i; 92 93 for (i = 0; i < NB_MMU_MODES; i++) { 94 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 95 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 96 97 tlb_window_reset(desc, get_clock_realtime(), 0); 98 desc->n_used_entries = 0; 99 env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 100 env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries); 101 env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries); 102 } 103 } 104 105 /** 106 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 107 * @env: CPU that owns the TLB 108 * @mmu_idx: MMU index of the TLB 109 * 110 * Called with tlb_lock_held. 111 * 112 * We have two main constraints when resizing a TLB: (1) we only resize it 113 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 114 * the array or unnecessarily flushing it), which means we do not control how 115 * frequently the resizing can occur; (2) we don't have access to the guest's 116 * future scheduling decisions, and therefore have to decide the magnitude of 117 * the resize based on past observations. 118 * 119 * In general, a memory-hungry process can benefit greatly from an appropriately 120 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 121 * we just have to make the TLB as large as possible; while an oversized TLB 122 * results in minimal TLB miss rates, it also takes longer to be flushed 123 * (flushes can be _very_ frequent), and the reduced locality can also hurt 124 * performance. 125 * 126 * To achieve near-optimal performance for all kinds of workloads, we: 127 * 128 * 1. Aggressively increase the size of the TLB when the use rate of the 129 * TLB being flushed is high, since it is likely that in the near future this 130 * memory-hungry process will execute again, and its memory hungriness will 131 * probably be similar. 132 * 133 * 2. Slowly reduce the size of the TLB as the use rate declines over a 134 * reasonably large time window. The rationale is that if in such a time window 135 * we have not observed a high TLB use rate, it is likely that we won't observe 136 * it in the near future. In that case, once a time window expires we downsize 137 * the TLB to match the maximum use rate observed in the window. 138 * 139 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 140 * since in that range performance is likely near-optimal. Recall that the TLB 141 * is direct mapped, so we want the use rate to be low (or at least not too 142 * high), since otherwise we are likely to have a significant amount of 143 * conflict misses. 144 */ 145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx) 146 { 147 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 148 size_t old_size = tlb_n_entries(env, mmu_idx); 149 size_t rate; 150 size_t new_size = old_size; 151 int64_t now = get_clock_realtime(); 152 int64_t window_len_ms = 100; 153 int64_t window_len_ns = window_len_ms * 1000 * 1000; 154 bool window_expired = now > desc->window_begin_ns + window_len_ns; 155 156 if (desc->n_used_entries > desc->window_max_entries) { 157 desc->window_max_entries = desc->n_used_entries; 158 } 159 rate = desc->window_max_entries * 100 / old_size; 160 161 if (rate > 70) { 162 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 163 } else if (rate < 30 && window_expired) { 164 size_t ceil = pow2ceil(desc->window_max_entries); 165 size_t expected_rate = desc->window_max_entries * 100 / ceil; 166 167 /* 168 * Avoid undersizing when the max number of entries seen is just below 169 * a pow2. For instance, if max_entries == 1025, the expected use rate 170 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 171 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 172 * later. Thus, make sure that the expected use rate remains below 70%. 173 * (and since we double the size, that means the lowest rate we'd 174 * expect to get is 35%, which is still in the 30-70% range where 175 * we consider that the size is appropriate.) 176 */ 177 if (expected_rate > 70) { 178 ceil *= 2; 179 } 180 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 181 } 182 183 if (new_size == old_size) { 184 if (window_expired) { 185 tlb_window_reset(desc, now, desc->n_used_entries); 186 } 187 return; 188 } 189 190 g_free(env_tlb(env)->f[mmu_idx].table); 191 g_free(env_tlb(env)->d[mmu_idx].iotlb); 192 193 tlb_window_reset(desc, now, 0); 194 /* desc->n_used_entries is cleared by the caller */ 195 env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 196 env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size); 197 env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size); 198 /* 199 * If the allocations fail, try smaller sizes. We just freed some 200 * memory, so going back to half of new_size has a good chance of working. 201 * Increased memory pressure elsewhere in the system might cause the 202 * allocations to fail though, so we progressively reduce the allocation 203 * size, aborting if we cannot even allocate the smallest TLB we support. 204 */ 205 while (env_tlb(env)->f[mmu_idx].table == NULL || 206 env_tlb(env)->d[mmu_idx].iotlb == NULL) { 207 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 208 error_report("%s: %s", __func__, strerror(errno)); 209 abort(); 210 } 211 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 212 env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 213 214 g_free(env_tlb(env)->f[mmu_idx].table); 215 g_free(env_tlb(env)->d[mmu_idx].iotlb); 216 env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size); 217 env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size); 218 } 219 } 220 221 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx) 222 { 223 tlb_mmu_resize_locked(env, mmu_idx); 224 memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx)); 225 env_tlb(env)->d[mmu_idx].n_used_entries = 0; 226 } 227 228 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 229 { 230 env_tlb(env)->d[mmu_idx].n_used_entries++; 231 } 232 233 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 234 { 235 env_tlb(env)->d[mmu_idx].n_used_entries--; 236 } 237 238 void tlb_init(CPUState *cpu) 239 { 240 CPUArchState *env = cpu->env_ptr; 241 242 qemu_spin_init(&env_tlb(env)->c.lock); 243 244 /* Ensure that cpu_reset performs a full flush. */ 245 env_tlb(env)->c.dirty = ALL_MMUIDX_BITS; 246 247 tlb_dyn_init(env); 248 } 249 250 /* flush_all_helper: run fn across all cpus 251 * 252 * If the wait flag is set then the src cpu's helper will be queued as 253 * "safe" work and the loop exited creating a synchronisation point 254 * where all queued work will be finished before execution starts 255 * again. 256 */ 257 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 258 run_on_cpu_data d) 259 { 260 CPUState *cpu; 261 262 CPU_FOREACH(cpu) { 263 if (cpu != src) { 264 async_run_on_cpu(cpu, fn, d); 265 } 266 } 267 } 268 269 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 270 { 271 CPUState *cpu; 272 size_t full = 0, part = 0, elide = 0; 273 274 CPU_FOREACH(cpu) { 275 CPUArchState *env = cpu->env_ptr; 276 277 full += atomic_read(&env_tlb(env)->c.full_flush_count); 278 part += atomic_read(&env_tlb(env)->c.part_flush_count); 279 elide += atomic_read(&env_tlb(env)->c.elide_flush_count); 280 } 281 *pfull = full; 282 *ppart = part; 283 *pelide = elide; 284 } 285 286 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx) 287 { 288 tlb_table_flush_by_mmuidx(env, mmu_idx); 289 env_tlb(env)->d[mmu_idx].large_page_addr = -1; 290 env_tlb(env)->d[mmu_idx].large_page_mask = -1; 291 env_tlb(env)->d[mmu_idx].vindex = 0; 292 memset(env_tlb(env)->d[mmu_idx].vtable, -1, 293 sizeof(env_tlb(env)->d[0].vtable)); 294 } 295 296 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 297 { 298 CPUArchState *env = cpu->env_ptr; 299 uint16_t asked = data.host_int; 300 uint16_t all_dirty, work, to_clean; 301 302 assert_cpu_is_self(cpu); 303 304 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 305 306 qemu_spin_lock(&env_tlb(env)->c.lock); 307 308 all_dirty = env_tlb(env)->c.dirty; 309 to_clean = asked & all_dirty; 310 all_dirty &= ~to_clean; 311 env_tlb(env)->c.dirty = all_dirty; 312 313 for (work = to_clean; work != 0; work &= work - 1) { 314 int mmu_idx = ctz32(work); 315 tlb_flush_one_mmuidx_locked(env, mmu_idx); 316 } 317 318 qemu_spin_unlock(&env_tlb(env)->c.lock); 319 320 cpu_tb_jmp_cache_clear(cpu); 321 322 if (to_clean == ALL_MMUIDX_BITS) { 323 atomic_set(&env_tlb(env)->c.full_flush_count, 324 env_tlb(env)->c.full_flush_count + 1); 325 } else { 326 atomic_set(&env_tlb(env)->c.part_flush_count, 327 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 328 if (to_clean != asked) { 329 atomic_set(&env_tlb(env)->c.elide_flush_count, 330 env_tlb(env)->c.elide_flush_count + 331 ctpop16(asked & ~to_clean)); 332 } 333 } 334 } 335 336 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 337 { 338 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 339 340 if (cpu->created && !qemu_cpu_is_self(cpu)) { 341 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 342 RUN_ON_CPU_HOST_INT(idxmap)); 343 } else { 344 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 345 } 346 } 347 348 void tlb_flush(CPUState *cpu) 349 { 350 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 351 } 352 353 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 354 { 355 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 356 357 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 358 359 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 360 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 361 } 362 363 void tlb_flush_all_cpus(CPUState *src_cpu) 364 { 365 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 366 } 367 368 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 369 { 370 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 371 372 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 373 374 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 375 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 376 } 377 378 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 379 { 380 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 381 } 382 383 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 384 target_ulong page) 385 { 386 return tlb_hit_page(tlb_entry->addr_read, page) || 387 tlb_hit_page(tlb_addr_write(tlb_entry), page) || 388 tlb_hit_page(tlb_entry->addr_code, page); 389 } 390 391 /** 392 * tlb_entry_is_empty - return true if the entry is not in use 393 * @te: pointer to CPUTLBEntry 394 */ 395 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 396 { 397 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 398 } 399 400 /* Called with tlb_c.lock held */ 401 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 402 target_ulong page) 403 { 404 if (tlb_hit_page_anyprot(tlb_entry, page)) { 405 memset(tlb_entry, -1, sizeof(*tlb_entry)); 406 return true; 407 } 408 return false; 409 } 410 411 /* Called with tlb_c.lock held */ 412 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 413 target_ulong page) 414 { 415 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 416 int k; 417 418 assert_cpu_is_self(env_cpu(env)); 419 for (k = 0; k < CPU_VTLB_SIZE; k++) { 420 if (tlb_flush_entry_locked(&d->vtable[k], page)) { 421 tlb_n_used_entries_dec(env, mmu_idx); 422 } 423 } 424 } 425 426 static void tlb_flush_page_locked(CPUArchState *env, int midx, 427 target_ulong page) 428 { 429 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 430 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 431 432 /* Check if we need to flush due to large pages. */ 433 if ((page & lp_mask) == lp_addr) { 434 tlb_debug("forcing full flush midx %d (" 435 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 436 midx, lp_addr, lp_mask); 437 tlb_flush_one_mmuidx_locked(env, midx); 438 } else { 439 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 440 tlb_n_used_entries_dec(env, midx); 441 } 442 tlb_flush_vtlb_page_locked(env, midx, page); 443 } 444 } 445 446 /* As we are going to hijack the bottom bits of the page address for a 447 * mmuidx bit mask we need to fail to build if we can't do that 448 */ 449 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); 450 451 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, 452 run_on_cpu_data data) 453 { 454 CPUArchState *env = cpu->env_ptr; 455 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 456 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 457 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 458 int mmu_idx; 459 460 assert_cpu_is_self(cpu); 461 462 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n", 463 addr, mmu_idx_bitmap); 464 465 qemu_spin_lock(&env_tlb(env)->c.lock); 466 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 467 if (test_bit(mmu_idx, &mmu_idx_bitmap)) { 468 tlb_flush_page_locked(env, mmu_idx, addr); 469 } 470 } 471 qemu_spin_unlock(&env_tlb(env)->c.lock); 472 473 tb_flush_jmp_cache(cpu, addr); 474 } 475 476 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 477 { 478 target_ulong addr_and_mmu_idx; 479 480 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 481 482 /* This should already be page aligned */ 483 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 484 addr_and_mmu_idx |= idxmap; 485 486 if (!qemu_cpu_is_self(cpu)) { 487 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work, 488 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 489 } else { 490 tlb_flush_page_by_mmuidx_async_work( 491 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 492 } 493 } 494 495 void tlb_flush_page(CPUState *cpu, target_ulong addr) 496 { 497 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 498 } 499 500 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 501 uint16_t idxmap) 502 { 503 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 504 target_ulong addr_and_mmu_idx; 505 506 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 507 508 /* This should already be page aligned */ 509 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 510 addr_and_mmu_idx |= idxmap; 511 512 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 513 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 514 } 515 516 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 517 { 518 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 519 } 520 521 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 522 target_ulong addr, 523 uint16_t idxmap) 524 { 525 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 526 target_ulong addr_and_mmu_idx; 527 528 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 529 530 /* This should already be page aligned */ 531 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 532 addr_and_mmu_idx |= idxmap; 533 534 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 535 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 536 } 537 538 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 539 { 540 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 541 } 542 543 /* update the TLBs so that writes to code in the virtual page 'addr' 544 can be detected */ 545 void tlb_protect_code(ram_addr_t ram_addr) 546 { 547 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 548 DIRTY_MEMORY_CODE); 549 } 550 551 /* update the TLB so that writes in physical page 'phys_addr' are no longer 552 tested for self modifying code */ 553 void tlb_unprotect_code(ram_addr_t ram_addr) 554 { 555 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 556 } 557 558 559 /* 560 * Dirty write flag handling 561 * 562 * When the TCG code writes to a location it looks up the address in 563 * the TLB and uses that data to compute the final address. If any of 564 * the lower bits of the address are set then the slow path is forced. 565 * There are a number of reasons to do this but for normal RAM the 566 * most usual is detecting writes to code regions which may invalidate 567 * generated code. 568 * 569 * Other vCPUs might be reading their TLBs during guest execution, so we update 570 * te->addr_write with atomic_set. We don't need to worry about this for 571 * oversized guests as MTTCG is disabled for them. 572 * 573 * Called with tlb_c.lock held. 574 */ 575 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 576 uintptr_t start, uintptr_t length) 577 { 578 uintptr_t addr = tlb_entry->addr_write; 579 580 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 581 addr &= TARGET_PAGE_MASK; 582 addr += tlb_entry->addend; 583 if ((addr - start) < length) { 584 #if TCG_OVERSIZED_GUEST 585 tlb_entry->addr_write |= TLB_NOTDIRTY; 586 #else 587 atomic_set(&tlb_entry->addr_write, 588 tlb_entry->addr_write | TLB_NOTDIRTY); 589 #endif 590 } 591 } 592 } 593 594 /* 595 * Called with tlb_c.lock held. 596 * Called only from the vCPU context, i.e. the TLB's owner thread. 597 */ 598 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 599 { 600 *d = *s; 601 } 602 603 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 604 * the target vCPU). 605 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 606 * thing actually updated is the target TLB entry ->addr_write flags. 607 */ 608 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 609 { 610 CPUArchState *env; 611 612 int mmu_idx; 613 614 env = cpu->env_ptr; 615 qemu_spin_lock(&env_tlb(env)->c.lock); 616 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 617 unsigned int i; 618 unsigned int n = tlb_n_entries(env, mmu_idx); 619 620 for (i = 0; i < n; i++) { 621 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 622 start1, length); 623 } 624 625 for (i = 0; i < CPU_VTLB_SIZE; i++) { 626 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 627 start1, length); 628 } 629 } 630 qemu_spin_unlock(&env_tlb(env)->c.lock); 631 } 632 633 /* Called with tlb_c.lock held */ 634 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 635 target_ulong vaddr) 636 { 637 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 638 tlb_entry->addr_write = vaddr; 639 } 640 } 641 642 /* update the TLB corresponding to virtual page vaddr 643 so that it is no longer dirty */ 644 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 645 { 646 CPUArchState *env = cpu->env_ptr; 647 int mmu_idx; 648 649 assert_cpu_is_self(cpu); 650 651 vaddr &= TARGET_PAGE_MASK; 652 qemu_spin_lock(&env_tlb(env)->c.lock); 653 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 654 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 655 } 656 657 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 658 int k; 659 for (k = 0; k < CPU_VTLB_SIZE; k++) { 660 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 661 } 662 } 663 qemu_spin_unlock(&env_tlb(env)->c.lock); 664 } 665 666 /* Our TLB does not support large pages, so remember the area covered by 667 large pages and trigger a full TLB flush if these are invalidated. */ 668 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 669 target_ulong vaddr, target_ulong size) 670 { 671 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 672 target_ulong lp_mask = ~(size - 1); 673 674 if (lp_addr == (target_ulong)-1) { 675 /* No previous large page. */ 676 lp_addr = vaddr; 677 } else { 678 /* Extend the existing region to include the new page. 679 This is a compromise between unnecessary flushes and 680 the cost of maintaining a full variable size TLB. */ 681 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 682 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 683 lp_mask <<= 1; 684 } 685 } 686 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 687 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 688 } 689 690 /* Add a new TLB entry. At most one entry for a given virtual address 691 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 692 * supplied size is only used by tlb_flush_page. 693 * 694 * Called from TCG-generated code, which is under an RCU read-side 695 * critical section. 696 */ 697 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 698 hwaddr paddr, MemTxAttrs attrs, int prot, 699 int mmu_idx, target_ulong size) 700 { 701 CPUArchState *env = cpu->env_ptr; 702 CPUTLB *tlb = env_tlb(env); 703 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 704 MemoryRegionSection *section; 705 unsigned int index; 706 target_ulong address; 707 target_ulong code_address; 708 uintptr_t addend; 709 CPUTLBEntry *te, tn; 710 hwaddr iotlb, xlat, sz, paddr_page; 711 target_ulong vaddr_page; 712 int asidx = cpu_asidx_from_attrs(cpu, attrs); 713 714 assert_cpu_is_self(cpu); 715 716 if (size <= TARGET_PAGE_SIZE) { 717 sz = TARGET_PAGE_SIZE; 718 } else { 719 tlb_add_large_page(env, mmu_idx, vaddr, size); 720 sz = size; 721 } 722 vaddr_page = vaddr & TARGET_PAGE_MASK; 723 paddr_page = paddr & TARGET_PAGE_MASK; 724 725 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 726 &xlat, &sz, attrs, &prot); 727 assert(sz >= TARGET_PAGE_SIZE); 728 729 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 730 " prot=%x idx=%d\n", 731 vaddr, paddr, prot, mmu_idx); 732 733 address = vaddr_page; 734 if (size < TARGET_PAGE_SIZE) { 735 /* 736 * Slow-path the TLB entries; we will repeat the MMU check and TLB 737 * fill on every access. 738 */ 739 address |= TLB_RECHECK; 740 } 741 if (attrs.byte_swap) { 742 /* Force the access through the I/O slow path. */ 743 address |= TLB_MMIO; 744 } 745 if (!memory_region_is_ram(section->mr) && 746 !memory_region_is_romd(section->mr)) { 747 /* IO memory case */ 748 address |= TLB_MMIO; 749 addend = 0; 750 } else { 751 /* TLB_MMIO for rom/romd handled below */ 752 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 753 } 754 755 code_address = address; 756 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page, 757 paddr_page, xlat, prot, &address); 758 759 index = tlb_index(env, mmu_idx, vaddr_page); 760 te = tlb_entry(env, mmu_idx, vaddr_page); 761 762 /* 763 * Hold the TLB lock for the rest of the function. We could acquire/release 764 * the lock several times in the function, but it is faster to amortize the 765 * acquisition cost by acquiring it just once. Note that this leads to 766 * a longer critical section, but this is not a concern since the TLB lock 767 * is unlikely to be contended. 768 */ 769 qemu_spin_lock(&tlb->c.lock); 770 771 /* Note that the tlb is no longer clean. */ 772 tlb->c.dirty |= 1 << mmu_idx; 773 774 /* Make sure there's no cached translation for the new page. */ 775 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 776 777 /* 778 * Only evict the old entry to the victim tlb if it's for a 779 * different page; otherwise just overwrite the stale data. 780 */ 781 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 782 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 783 CPUTLBEntry *tv = &desc->vtable[vidx]; 784 785 /* Evict the old entry into the victim tlb. */ 786 copy_tlb_helper_locked(tv, te); 787 desc->viotlb[vidx] = desc->iotlb[index]; 788 tlb_n_used_entries_dec(env, mmu_idx); 789 } 790 791 /* refill the tlb */ 792 /* 793 * At this point iotlb contains a physical section number in the lower 794 * TARGET_PAGE_BITS, and either 795 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM) 796 * + the offset within section->mr of the page base (otherwise) 797 * We subtract the vaddr_page (which is page aligned and thus won't 798 * disturb the low bits) to give an offset which can be added to the 799 * (non-page-aligned) vaddr of the eventual memory access to get 800 * the MemoryRegion offset for the access. Note that the vaddr we 801 * subtract here is that of the page base, and not the same as the 802 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 803 */ 804 desc->iotlb[index].addr = iotlb - vaddr_page; 805 desc->iotlb[index].attrs = attrs; 806 807 /* Now calculate the new entry */ 808 tn.addend = addend - vaddr_page; 809 if (prot & PAGE_READ) { 810 tn.addr_read = address; 811 } else { 812 tn.addr_read = -1; 813 } 814 815 if (prot & PAGE_EXEC) { 816 tn.addr_code = code_address; 817 } else { 818 tn.addr_code = -1; 819 } 820 821 tn.addr_write = -1; 822 if (prot & PAGE_WRITE) { 823 if ((memory_region_is_ram(section->mr) && section->readonly) 824 || memory_region_is_romd(section->mr)) { 825 /* Write access calls the I/O callback. */ 826 tn.addr_write = address | TLB_MMIO; 827 } else if (memory_region_is_ram(section->mr) 828 && cpu_physical_memory_is_clean( 829 memory_region_get_ram_addr(section->mr) + xlat)) { 830 tn.addr_write = address | TLB_NOTDIRTY; 831 } else { 832 tn.addr_write = address; 833 } 834 if (prot & PAGE_WRITE_INV) { 835 tn.addr_write |= TLB_INVALID_MASK; 836 } 837 } 838 839 copy_tlb_helper_locked(te, &tn); 840 tlb_n_used_entries_inc(env, mmu_idx); 841 qemu_spin_unlock(&tlb->c.lock); 842 } 843 844 /* Add a new TLB entry, but without specifying the memory 845 * transaction attributes to be used. 846 */ 847 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 848 hwaddr paddr, int prot, 849 int mmu_idx, target_ulong size) 850 { 851 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 852 prot, mmu_idx, size); 853 } 854 855 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 856 { 857 ram_addr_t ram_addr; 858 859 ram_addr = qemu_ram_addr_from_host(ptr); 860 if (ram_addr == RAM_ADDR_INVALID) { 861 error_report("Bad ram pointer %p", ptr); 862 abort(); 863 } 864 return ram_addr; 865 } 866 867 /* 868 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 869 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 870 * be discarded and looked up again (e.g. via tlb_entry()). 871 */ 872 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 873 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 874 { 875 CPUClass *cc = CPU_GET_CLASS(cpu); 876 bool ok; 877 878 /* 879 * This is not a probe, so only valid return is success; failure 880 * should result in exception + longjmp to the cpu loop. 881 */ 882 ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr); 883 assert(ok); 884 } 885 886 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 887 int mmu_idx, target_ulong addr, uintptr_t retaddr, 888 MMUAccessType access_type, MemOp op) 889 { 890 CPUState *cpu = env_cpu(env); 891 hwaddr mr_offset; 892 MemoryRegionSection *section; 893 MemoryRegion *mr; 894 uint64_t val; 895 bool locked = false; 896 MemTxResult r; 897 898 if (iotlbentry->attrs.byte_swap) { 899 op ^= MO_BSWAP; 900 } 901 902 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 903 mr = section->mr; 904 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 905 cpu->mem_io_pc = retaddr; 906 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 907 cpu_io_recompile(cpu, retaddr); 908 } 909 910 cpu->mem_io_vaddr = addr; 911 cpu->mem_io_access_type = access_type; 912 913 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 914 qemu_mutex_lock_iothread(); 915 locked = true; 916 } 917 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs); 918 if (r != MEMTX_OK) { 919 hwaddr physaddr = mr_offset + 920 section->offset_within_address_space - 921 section->offset_within_region; 922 923 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 924 mmu_idx, iotlbentry->attrs, r, retaddr); 925 } 926 if (locked) { 927 qemu_mutex_unlock_iothread(); 928 } 929 930 return val; 931 } 932 933 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 934 int mmu_idx, uint64_t val, target_ulong addr, 935 uintptr_t retaddr, MemOp op) 936 { 937 CPUState *cpu = env_cpu(env); 938 hwaddr mr_offset; 939 MemoryRegionSection *section; 940 MemoryRegion *mr; 941 bool locked = false; 942 MemTxResult r; 943 944 if (iotlbentry->attrs.byte_swap) { 945 op ^= MO_BSWAP; 946 } 947 948 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 949 mr = section->mr; 950 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 951 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 952 cpu_io_recompile(cpu, retaddr); 953 } 954 cpu->mem_io_vaddr = addr; 955 cpu->mem_io_pc = retaddr; 956 957 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 958 qemu_mutex_lock_iothread(); 959 locked = true; 960 } 961 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs); 962 if (r != MEMTX_OK) { 963 hwaddr physaddr = mr_offset + 964 section->offset_within_address_space - 965 section->offset_within_region; 966 967 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 968 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r, 969 retaddr); 970 } 971 if (locked) { 972 qemu_mutex_unlock_iothread(); 973 } 974 } 975 976 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 977 { 978 #if TCG_OVERSIZED_GUEST 979 return *(target_ulong *)((uintptr_t)entry + ofs); 980 #else 981 /* ofs might correspond to .addr_write, so use atomic_read */ 982 return atomic_read((target_ulong *)((uintptr_t)entry + ofs)); 983 #endif 984 } 985 986 /* Return true if ADDR is present in the victim tlb, and has been copied 987 back to the main tlb. */ 988 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 989 size_t elt_ofs, target_ulong page) 990 { 991 size_t vidx; 992 993 assert_cpu_is_self(env_cpu(env)); 994 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 995 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 996 target_ulong cmp; 997 998 /* elt_ofs might correspond to .addr_write, so use atomic_read */ 999 #if TCG_OVERSIZED_GUEST 1000 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1001 #else 1002 cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1003 #endif 1004 1005 if (cmp == page) { 1006 /* Found entry in victim tlb, swap tlb and iotlb. */ 1007 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1008 1009 qemu_spin_lock(&env_tlb(env)->c.lock); 1010 copy_tlb_helper_locked(&tmptlb, tlb); 1011 copy_tlb_helper_locked(tlb, vtlb); 1012 copy_tlb_helper_locked(vtlb, &tmptlb); 1013 qemu_spin_unlock(&env_tlb(env)->c.lock); 1014 1015 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1016 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; 1017 tmpio = *io; *io = *vio; *vio = tmpio; 1018 return true; 1019 } 1020 } 1021 return false; 1022 } 1023 1024 /* Macro to call the above, with local variables from the use context. */ 1025 #define VICTIM_TLB_HIT(TY, ADDR) \ 1026 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1027 (ADDR) & TARGET_PAGE_MASK) 1028 1029 /* NOTE: this function can trigger an exception */ 1030 /* NOTE2: the returned address is not exactly the physical address: it 1031 * is actually a ram_addr_t (in system mode; the user mode emulation 1032 * version of this function returns a guest virtual address). 1033 */ 1034 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 1035 { 1036 uintptr_t mmu_idx = cpu_mmu_index(env, true); 1037 uintptr_t index = tlb_index(env, mmu_idx, addr); 1038 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1039 void *p; 1040 1041 if (unlikely(!tlb_hit(entry->addr_code, addr))) { 1042 if (!VICTIM_TLB_HIT(addr_code, addr)) { 1043 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); 1044 index = tlb_index(env, mmu_idx, addr); 1045 entry = tlb_entry(env, mmu_idx, addr); 1046 } 1047 assert(tlb_hit(entry->addr_code, addr)); 1048 } 1049 1050 if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) { 1051 /* 1052 * Return -1 if we can't translate and execute from an entire 1053 * page of RAM here, which will cause us to execute by loading 1054 * and translating one insn at a time, without caching: 1055 * - TLB_RECHECK: means the MMU protection covers a smaller range 1056 * than a target page, so we must redo the MMU check every insn 1057 * - TLB_MMIO: region is not backed by RAM 1058 */ 1059 return -1; 1060 } 1061 1062 p = (void *)((uintptr_t)addr + entry->addend); 1063 return qemu_ram_addr_from_host_nofail(p); 1064 } 1065 1066 /* Probe for whether the specified guest write access is permitted. 1067 * If it is not permitted then an exception will be taken in the same 1068 * way as if this were a real write access (and we will not return). 1069 * Otherwise the function will return, and there will be a valid 1070 * entry in the TLB for this access. 1071 */ 1072 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx, 1073 uintptr_t retaddr) 1074 { 1075 uintptr_t index = tlb_index(env, mmu_idx, addr); 1076 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1077 1078 if (!tlb_hit(tlb_addr_write(entry), addr)) { 1079 /* TLB entry is for a different page */ 1080 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1081 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 1082 mmu_idx, retaddr); 1083 } 1084 } 1085 } 1086 1087 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1088 MMUAccessType access_type, int mmu_idx) 1089 { 1090 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1091 uintptr_t tlb_addr, page; 1092 size_t elt_ofs; 1093 1094 switch (access_type) { 1095 case MMU_DATA_LOAD: 1096 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1097 break; 1098 case MMU_DATA_STORE: 1099 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1100 break; 1101 case MMU_INST_FETCH: 1102 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1103 break; 1104 default: 1105 g_assert_not_reached(); 1106 } 1107 1108 page = addr & TARGET_PAGE_MASK; 1109 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1110 1111 if (!tlb_hit_page(tlb_addr, page)) { 1112 uintptr_t index = tlb_index(env, mmu_idx, addr); 1113 1114 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) { 1115 CPUState *cs = env_cpu(env); 1116 CPUClass *cc = CPU_GET_CLASS(cs); 1117 1118 if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) { 1119 /* Non-faulting page table read failed. */ 1120 return NULL; 1121 } 1122 1123 /* TLB resize via tlb_fill may have moved the entry. */ 1124 entry = tlb_entry(env, mmu_idx, addr); 1125 } 1126 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1127 } 1128 1129 if (tlb_addr & ~TARGET_PAGE_MASK) { 1130 /* IO access */ 1131 return NULL; 1132 } 1133 1134 return (void *)((uintptr_t)addr + entry->addend); 1135 } 1136 1137 /* Probe for a read-modify-write atomic operation. Do not allow unaligned 1138 * operations, or io operations to proceed. Return the host address. */ 1139 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1140 TCGMemOpIdx oi, uintptr_t retaddr, 1141 NotDirtyInfo *ndi) 1142 { 1143 size_t mmu_idx = get_mmuidx(oi); 1144 uintptr_t index = tlb_index(env, mmu_idx, addr); 1145 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1146 target_ulong tlb_addr = tlb_addr_write(tlbe); 1147 MemOp mop = get_memop(oi); 1148 int a_bits = get_alignment_bits(mop); 1149 int s_bits = mop & MO_SIZE; 1150 void *hostaddr; 1151 1152 /* Adjust the given return address. */ 1153 retaddr -= GETPC_ADJ; 1154 1155 /* Enforce guest required alignment. */ 1156 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1157 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1158 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1159 mmu_idx, retaddr); 1160 } 1161 1162 /* Enforce qemu required alignment. */ 1163 if (unlikely(addr & ((1 << s_bits) - 1))) { 1164 /* We get here if guest alignment was not requested, 1165 or was not enforced by cpu_unaligned_access above. 1166 We might widen the access and emulate, but for now 1167 mark an exception and exit the cpu loop. */ 1168 goto stop_the_world; 1169 } 1170 1171 /* Check TLB entry and enforce page permissions. */ 1172 if (!tlb_hit(tlb_addr, addr)) { 1173 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1174 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE, 1175 mmu_idx, retaddr); 1176 index = tlb_index(env, mmu_idx, addr); 1177 tlbe = tlb_entry(env, mmu_idx, addr); 1178 } 1179 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1180 } 1181 1182 /* Notice an IO access or a needs-MMU-lookup access */ 1183 if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) { 1184 /* There's really nothing that can be done to 1185 support this apart from stop-the-world. */ 1186 goto stop_the_world; 1187 } 1188 1189 /* Let the guest notice RMW on a write-only page. */ 1190 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1191 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD, 1192 mmu_idx, retaddr); 1193 /* Since we don't support reads and writes to different addresses, 1194 and we do have the proper page loaded for write, this shouldn't 1195 ever return. But just in case, handle via stop-the-world. */ 1196 goto stop_the_world; 1197 } 1198 1199 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1200 1201 ndi->active = false; 1202 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1203 ndi->active = true; 1204 memory_notdirty_write_prepare(ndi, env_cpu(env), addr, 1205 qemu_ram_addr_from_host_nofail(hostaddr), 1206 1 << s_bits); 1207 } 1208 1209 return hostaddr; 1210 1211 stop_the_world: 1212 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1213 } 1214 1215 /* 1216 * Load Helpers 1217 * 1218 * We support two different access types. SOFTMMU_CODE_ACCESS is 1219 * specifically for reading instructions from system memory. It is 1220 * called by the translation loop and in some helpers where the code 1221 * is disassembled. It shouldn't be called directly by guest code. 1222 */ 1223 1224 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1225 TCGMemOpIdx oi, uintptr_t retaddr); 1226 1227 static inline uint64_t __attribute__((always_inline)) 1228 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1229 uintptr_t retaddr, MemOp op, bool code_read, 1230 FullLoadHelper *full_load) 1231 { 1232 uintptr_t mmu_idx = get_mmuidx(oi); 1233 uintptr_t index = tlb_index(env, mmu_idx, addr); 1234 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1235 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1236 const size_t tlb_off = code_read ? 1237 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1238 const MMUAccessType access_type = 1239 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1240 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1241 void *haddr; 1242 uint64_t res; 1243 size_t size = memop_size(op); 1244 1245 /* Handle CPU specific unaligned behaviour */ 1246 if (addr & ((1 << a_bits) - 1)) { 1247 cpu_unaligned_access(env_cpu(env), addr, access_type, 1248 mmu_idx, retaddr); 1249 } 1250 1251 /* If the TLB entry is for a different page, reload and try again. */ 1252 if (!tlb_hit(tlb_addr, addr)) { 1253 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1254 addr & TARGET_PAGE_MASK)) { 1255 tlb_fill(env_cpu(env), addr, size, 1256 access_type, mmu_idx, retaddr); 1257 index = tlb_index(env, mmu_idx, addr); 1258 entry = tlb_entry(env, mmu_idx, addr); 1259 } 1260 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1261 } 1262 1263 /* Handle an IO access. */ 1264 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1265 if ((addr & (size - 1)) != 0) { 1266 goto do_unaligned_access; 1267 } 1268 1269 if (tlb_addr & TLB_RECHECK) { 1270 /* 1271 * This is a TLB_RECHECK access, where the MMU protection 1272 * covers a smaller range than a target page, and we must 1273 * repeat the MMU check here. This tlb_fill() call might 1274 * longjump out if this access should cause a guest exception. 1275 */ 1276 tlb_fill(env_cpu(env), addr, size, 1277 access_type, mmu_idx, retaddr); 1278 index = tlb_index(env, mmu_idx, addr); 1279 entry = tlb_entry(env, mmu_idx, addr); 1280 1281 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1282 tlb_addr &= ~TLB_RECHECK; 1283 if (!(tlb_addr & ~TARGET_PAGE_MASK)) { 1284 /* RAM access */ 1285 goto do_aligned_access; 1286 } 1287 } 1288 1289 return io_readx(env, &env_tlb(env)->d[mmu_idx].iotlb[index], 1290 mmu_idx, addr, retaddr, access_type, op); 1291 } 1292 1293 /* Handle slow unaligned access (it spans two pages or IO). */ 1294 if (size > 1 1295 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1296 >= TARGET_PAGE_SIZE)) { 1297 target_ulong addr1, addr2; 1298 uint64_t r1, r2; 1299 unsigned shift; 1300 do_unaligned_access: 1301 addr1 = addr & ~((target_ulong)size - 1); 1302 addr2 = addr1 + size; 1303 r1 = full_load(env, addr1, oi, retaddr); 1304 r2 = full_load(env, addr2, oi, retaddr); 1305 shift = (addr & (size - 1)) * 8; 1306 1307 if (memop_big_endian(op)) { 1308 /* Big-endian combine. */ 1309 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1310 } else { 1311 /* Little-endian combine. */ 1312 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1313 } 1314 return res & MAKE_64BIT_MASK(0, size * 8); 1315 } 1316 1317 do_aligned_access: 1318 haddr = (void *)((uintptr_t)addr + entry->addend); 1319 switch (op) { 1320 case MO_UB: 1321 res = ldub_p(haddr); 1322 break; 1323 case MO_BEUW: 1324 res = lduw_be_p(haddr); 1325 break; 1326 case MO_LEUW: 1327 res = lduw_le_p(haddr); 1328 break; 1329 case MO_BEUL: 1330 res = (uint32_t)ldl_be_p(haddr); 1331 break; 1332 case MO_LEUL: 1333 res = (uint32_t)ldl_le_p(haddr); 1334 break; 1335 case MO_BEQ: 1336 res = ldq_be_p(haddr); 1337 break; 1338 case MO_LEQ: 1339 res = ldq_le_p(haddr); 1340 break; 1341 default: 1342 g_assert_not_reached(); 1343 } 1344 1345 return res; 1346 } 1347 1348 /* 1349 * For the benefit of TCG generated code, we want to avoid the 1350 * complication of ABI-specific return type promotion and always 1351 * return a value extended to the register size of the host. This is 1352 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1353 * data, and for that we always have uint64_t. 1354 * 1355 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1356 */ 1357 1358 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 1359 TCGMemOpIdx oi, uintptr_t retaddr) 1360 { 1361 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 1362 } 1363 1364 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 1365 TCGMemOpIdx oi, uintptr_t retaddr) 1366 { 1367 return full_ldub_mmu(env, addr, oi, retaddr); 1368 } 1369 1370 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 1371 TCGMemOpIdx oi, uintptr_t retaddr) 1372 { 1373 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 1374 full_le_lduw_mmu); 1375 } 1376 1377 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 1378 TCGMemOpIdx oi, uintptr_t retaddr) 1379 { 1380 return full_le_lduw_mmu(env, addr, oi, retaddr); 1381 } 1382 1383 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 1384 TCGMemOpIdx oi, uintptr_t retaddr) 1385 { 1386 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 1387 full_be_lduw_mmu); 1388 } 1389 1390 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 1391 TCGMemOpIdx oi, uintptr_t retaddr) 1392 { 1393 return full_be_lduw_mmu(env, addr, oi, retaddr); 1394 } 1395 1396 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 1397 TCGMemOpIdx oi, uintptr_t retaddr) 1398 { 1399 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 1400 full_le_ldul_mmu); 1401 } 1402 1403 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 1404 TCGMemOpIdx oi, uintptr_t retaddr) 1405 { 1406 return full_le_ldul_mmu(env, addr, oi, retaddr); 1407 } 1408 1409 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 1410 TCGMemOpIdx oi, uintptr_t retaddr) 1411 { 1412 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 1413 full_be_ldul_mmu); 1414 } 1415 1416 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 1417 TCGMemOpIdx oi, uintptr_t retaddr) 1418 { 1419 return full_be_ldul_mmu(env, addr, oi, retaddr); 1420 } 1421 1422 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 1423 TCGMemOpIdx oi, uintptr_t retaddr) 1424 { 1425 return load_helper(env, addr, oi, retaddr, MO_LEQ, false, 1426 helper_le_ldq_mmu); 1427 } 1428 1429 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 1430 TCGMemOpIdx oi, uintptr_t retaddr) 1431 { 1432 return load_helper(env, addr, oi, retaddr, MO_BEQ, false, 1433 helper_be_ldq_mmu); 1434 } 1435 1436 /* 1437 * Provide signed versions of the load routines as well. We can of course 1438 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 1439 */ 1440 1441 1442 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 1443 TCGMemOpIdx oi, uintptr_t retaddr) 1444 { 1445 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 1446 } 1447 1448 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 1449 TCGMemOpIdx oi, uintptr_t retaddr) 1450 { 1451 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 1452 } 1453 1454 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 1455 TCGMemOpIdx oi, uintptr_t retaddr) 1456 { 1457 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 1458 } 1459 1460 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 1461 TCGMemOpIdx oi, uintptr_t retaddr) 1462 { 1463 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 1464 } 1465 1466 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 1467 TCGMemOpIdx oi, uintptr_t retaddr) 1468 { 1469 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 1470 } 1471 1472 /* 1473 * Store Helpers 1474 */ 1475 1476 static inline void __attribute__((always_inline)) 1477 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 1478 TCGMemOpIdx oi, uintptr_t retaddr, MemOp op) 1479 { 1480 uintptr_t mmu_idx = get_mmuidx(oi); 1481 uintptr_t index = tlb_index(env, mmu_idx, addr); 1482 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1483 target_ulong tlb_addr = tlb_addr_write(entry); 1484 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 1485 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1486 void *haddr; 1487 size_t size = memop_size(op); 1488 1489 /* Handle CPU specific unaligned behaviour */ 1490 if (addr & ((1 << a_bits) - 1)) { 1491 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1492 mmu_idx, retaddr); 1493 } 1494 1495 /* If the TLB entry is for a different page, reload and try again. */ 1496 if (!tlb_hit(tlb_addr, addr)) { 1497 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1498 addr & TARGET_PAGE_MASK)) { 1499 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 1500 mmu_idx, retaddr); 1501 index = tlb_index(env, mmu_idx, addr); 1502 entry = tlb_entry(env, mmu_idx, addr); 1503 } 1504 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 1505 } 1506 1507 /* Handle an IO access. */ 1508 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1509 if ((addr & (size - 1)) != 0) { 1510 goto do_unaligned_access; 1511 } 1512 1513 if (tlb_addr & TLB_RECHECK) { 1514 /* 1515 * This is a TLB_RECHECK access, where the MMU protection 1516 * covers a smaller range than a target page, and we must 1517 * repeat the MMU check here. This tlb_fill() call might 1518 * longjump out if this access should cause a guest exception. 1519 */ 1520 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 1521 mmu_idx, retaddr); 1522 index = tlb_index(env, mmu_idx, addr); 1523 entry = tlb_entry(env, mmu_idx, addr); 1524 1525 tlb_addr = tlb_addr_write(entry); 1526 tlb_addr &= ~TLB_RECHECK; 1527 if (!(tlb_addr & ~TARGET_PAGE_MASK)) { 1528 /* RAM access */ 1529 goto do_aligned_access; 1530 } 1531 } 1532 1533 io_writex(env, &env_tlb(env)->d[mmu_idx].iotlb[index], mmu_idx, 1534 val, addr, retaddr, op); 1535 return; 1536 } 1537 1538 /* Handle slow unaligned access (it spans two pages or IO). */ 1539 if (size > 1 1540 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1541 >= TARGET_PAGE_SIZE)) { 1542 int i; 1543 uintptr_t index2; 1544 CPUTLBEntry *entry2; 1545 target_ulong page2, tlb_addr2; 1546 do_unaligned_access: 1547 /* 1548 * Ensure the second page is in the TLB. Note that the first page 1549 * is already guaranteed to be filled, and that the second page 1550 * cannot evict the first. 1551 */ 1552 page2 = (addr + size) & TARGET_PAGE_MASK; 1553 index2 = tlb_index(env, mmu_idx, page2); 1554 entry2 = tlb_entry(env, mmu_idx, page2); 1555 tlb_addr2 = tlb_addr_write(entry2); 1556 if (!tlb_hit_page(tlb_addr2, page2) 1557 && !victim_tlb_hit(env, mmu_idx, index2, tlb_off, 1558 page2 & TARGET_PAGE_MASK)) { 1559 tlb_fill(env_cpu(env), page2, size, MMU_DATA_STORE, 1560 mmu_idx, retaddr); 1561 } 1562 1563 /* 1564 * XXX: not efficient, but simple. 1565 * This loop must go in the forward direction to avoid issues 1566 * with self-modifying code in Windows 64-bit. 1567 */ 1568 for (i = 0; i < size; ++i) { 1569 uint8_t val8; 1570 if (memop_big_endian(op)) { 1571 /* Big-endian extract. */ 1572 val8 = val >> (((size - 1) * 8) - (i * 8)); 1573 } else { 1574 /* Little-endian extract. */ 1575 val8 = val >> (i * 8); 1576 } 1577 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr); 1578 } 1579 return; 1580 } 1581 1582 do_aligned_access: 1583 haddr = (void *)((uintptr_t)addr + entry->addend); 1584 switch (op) { 1585 case MO_UB: 1586 stb_p(haddr, val); 1587 break; 1588 case MO_BEUW: 1589 stw_be_p(haddr, val); 1590 break; 1591 case MO_LEUW: 1592 stw_le_p(haddr, val); 1593 break; 1594 case MO_BEUL: 1595 stl_be_p(haddr, val); 1596 break; 1597 case MO_LEUL: 1598 stl_le_p(haddr, val); 1599 break; 1600 case MO_BEQ: 1601 stq_be_p(haddr, val); 1602 break; 1603 case MO_LEQ: 1604 stq_le_p(haddr, val); 1605 break; 1606 default: 1607 g_assert_not_reached(); 1608 break; 1609 } 1610 } 1611 1612 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 1613 TCGMemOpIdx oi, uintptr_t retaddr) 1614 { 1615 store_helper(env, addr, val, oi, retaddr, MO_UB); 1616 } 1617 1618 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1619 TCGMemOpIdx oi, uintptr_t retaddr) 1620 { 1621 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 1622 } 1623 1624 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1625 TCGMemOpIdx oi, uintptr_t retaddr) 1626 { 1627 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 1628 } 1629 1630 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1631 TCGMemOpIdx oi, uintptr_t retaddr) 1632 { 1633 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 1634 } 1635 1636 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1637 TCGMemOpIdx oi, uintptr_t retaddr) 1638 { 1639 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 1640 } 1641 1642 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1643 TCGMemOpIdx oi, uintptr_t retaddr) 1644 { 1645 store_helper(env, addr, val, oi, retaddr, MO_LEQ); 1646 } 1647 1648 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1649 TCGMemOpIdx oi, uintptr_t retaddr) 1650 { 1651 store_helper(env, addr, val, oi, retaddr, MO_BEQ); 1652 } 1653 1654 /* First set of helpers allows passing in of OI and RETADDR. This makes 1655 them callable from other helpers. */ 1656 1657 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 1658 #define ATOMIC_NAME(X) \ 1659 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 1660 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi 1661 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi) 1662 #define ATOMIC_MMU_CLEANUP \ 1663 do { \ 1664 if (unlikely(ndi.active)) { \ 1665 memory_notdirty_write_complete(&ndi); \ 1666 } \ 1667 } while (0) 1668 1669 #define DATA_SIZE 1 1670 #include "atomic_template.h" 1671 1672 #define DATA_SIZE 2 1673 #include "atomic_template.h" 1674 1675 #define DATA_SIZE 4 1676 #include "atomic_template.h" 1677 1678 #ifdef CONFIG_ATOMIC64 1679 #define DATA_SIZE 8 1680 #include "atomic_template.h" 1681 #endif 1682 1683 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 1684 #define DATA_SIZE 16 1685 #include "atomic_template.h" 1686 #endif 1687 1688 /* Second set of helpers are directly callable from TCG as helpers. */ 1689 1690 #undef EXTRA_ARGS 1691 #undef ATOMIC_NAME 1692 #undef ATOMIC_MMU_LOOKUP 1693 #define EXTRA_ARGS , TCGMemOpIdx oi 1694 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 1695 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi) 1696 1697 #define DATA_SIZE 1 1698 #include "atomic_template.h" 1699 1700 #define DATA_SIZE 2 1701 #include "atomic_template.h" 1702 1703 #define DATA_SIZE 4 1704 #include "atomic_template.h" 1705 1706 #ifdef CONFIG_ATOMIC64 1707 #define DATA_SIZE 8 1708 #include "atomic_template.h" 1709 #endif 1710 1711 /* Code access functions. */ 1712 1713 static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr, 1714 TCGMemOpIdx oi, uintptr_t retaddr) 1715 { 1716 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_cmmu); 1717 } 1718 1719 uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr, 1720 TCGMemOpIdx oi, uintptr_t retaddr) 1721 { 1722 return full_ldub_cmmu(env, addr, oi, retaddr); 1723 } 1724 1725 static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr, 1726 TCGMemOpIdx oi, uintptr_t retaddr) 1727 { 1728 return load_helper(env, addr, oi, retaddr, MO_LEUW, true, 1729 full_le_lduw_cmmu); 1730 } 1731 1732 uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr, 1733 TCGMemOpIdx oi, uintptr_t retaddr) 1734 { 1735 return full_le_lduw_cmmu(env, addr, oi, retaddr); 1736 } 1737 1738 static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr, 1739 TCGMemOpIdx oi, uintptr_t retaddr) 1740 { 1741 return load_helper(env, addr, oi, retaddr, MO_BEUW, true, 1742 full_be_lduw_cmmu); 1743 } 1744 1745 uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr, 1746 TCGMemOpIdx oi, uintptr_t retaddr) 1747 { 1748 return full_be_lduw_cmmu(env, addr, oi, retaddr); 1749 } 1750 1751 static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr, 1752 TCGMemOpIdx oi, uintptr_t retaddr) 1753 { 1754 return load_helper(env, addr, oi, retaddr, MO_LEUL, true, 1755 full_le_ldul_cmmu); 1756 } 1757 1758 uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr, 1759 TCGMemOpIdx oi, uintptr_t retaddr) 1760 { 1761 return full_le_ldul_cmmu(env, addr, oi, retaddr); 1762 } 1763 1764 static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr, 1765 TCGMemOpIdx oi, uintptr_t retaddr) 1766 { 1767 return load_helper(env, addr, oi, retaddr, MO_BEUL, true, 1768 full_be_ldul_cmmu); 1769 } 1770 1771 uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr, 1772 TCGMemOpIdx oi, uintptr_t retaddr) 1773 { 1774 return full_be_ldul_cmmu(env, addr, oi, retaddr); 1775 } 1776 1777 uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr, 1778 TCGMemOpIdx oi, uintptr_t retaddr) 1779 { 1780 return load_helper(env, addr, oi, retaddr, MO_LEQ, true, 1781 helper_le_ldq_cmmu); 1782 } 1783 1784 uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr, 1785 TCGMemOpIdx oi, uintptr_t retaddr) 1786 { 1787 return load_helper(env, addr, oi, retaddr, MO_BEQ, true, 1788 helper_be_ldq_cmmu); 1789 } 1790