xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 74841f044e96644d8ed8a388fe505df5ab843d0a)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 
37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
38 /* #define DEBUG_TLB */
39 /* #define DEBUG_TLB_LOG */
40 
41 #ifdef DEBUG_TLB
42 # define DEBUG_TLB_GATE 1
43 # ifdef DEBUG_TLB_LOG
44 #  define DEBUG_TLB_LOG_GATE 1
45 # else
46 #  define DEBUG_TLB_LOG_GATE 0
47 # endif
48 #else
49 # define DEBUG_TLB_GATE 0
50 # define DEBUG_TLB_LOG_GATE 0
51 #endif
52 
53 #define tlb_debug(fmt, ...) do { \
54     if (DEBUG_TLB_LOG_GATE) { \
55         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
56                       ## __VA_ARGS__); \
57     } else if (DEBUG_TLB_GATE) { \
58         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
59     } \
60 } while (0)
61 
62 #define assert_cpu_is_self(cpu) do {                              \
63         if (DEBUG_TLB_GATE) {                                     \
64             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
65         }                                                         \
66     } while (0)
67 
68 /* run_on_cpu_data.target_ptr should always be big enough for a
69  * target_ulong even on 32 bit builds */
70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
71 
72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
73  */
74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
76 
77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx)
78 {
79     return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS);
80 }
81 
82 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
83                              size_t max_entries)
84 {
85     desc->window_begin_ns = ns;
86     desc->window_max_entries = max_entries;
87 }
88 
89 static void tlb_dyn_init(CPUArchState *env)
90 {
91     int i;
92 
93     for (i = 0; i < NB_MMU_MODES; i++) {
94         CPUTLBDesc *desc = &env_tlb(env)->d[i];
95         size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
96 
97         tlb_window_reset(desc, get_clock_realtime(), 0);
98         desc->n_used_entries = 0;
99         env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
100         env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries);
101         env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries);
102     }
103 }
104 
105 /**
106  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
107  * @env: CPU that owns the TLB
108  * @mmu_idx: MMU index of the TLB
109  *
110  * Called with tlb_lock_held.
111  *
112  * We have two main constraints when resizing a TLB: (1) we only resize it
113  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
114  * the array or unnecessarily flushing it), which means we do not control how
115  * frequently the resizing can occur; (2) we don't have access to the guest's
116  * future scheduling decisions, and therefore have to decide the magnitude of
117  * the resize based on past observations.
118  *
119  * In general, a memory-hungry process can benefit greatly from an appropriately
120  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
121  * we just have to make the TLB as large as possible; while an oversized TLB
122  * results in minimal TLB miss rates, it also takes longer to be flushed
123  * (flushes can be _very_ frequent), and the reduced locality can also hurt
124  * performance.
125  *
126  * To achieve near-optimal performance for all kinds of workloads, we:
127  *
128  * 1. Aggressively increase the size of the TLB when the use rate of the
129  * TLB being flushed is high, since it is likely that in the near future this
130  * memory-hungry process will execute again, and its memory hungriness will
131  * probably be similar.
132  *
133  * 2. Slowly reduce the size of the TLB as the use rate declines over a
134  * reasonably large time window. The rationale is that if in such a time window
135  * we have not observed a high TLB use rate, it is likely that we won't observe
136  * it in the near future. In that case, once a time window expires we downsize
137  * the TLB to match the maximum use rate observed in the window.
138  *
139  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
140  * since in that range performance is likely near-optimal. Recall that the TLB
141  * is direct mapped, so we want the use rate to be low (or at least not too
142  * high), since otherwise we are likely to have a significant amount of
143  * conflict misses.
144  */
145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx)
146 {
147     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
148     size_t old_size = tlb_n_entries(env, mmu_idx);
149     size_t rate;
150     size_t new_size = old_size;
151     int64_t now = get_clock_realtime();
152     int64_t window_len_ms = 100;
153     int64_t window_len_ns = window_len_ms * 1000 * 1000;
154     bool window_expired = now > desc->window_begin_ns + window_len_ns;
155 
156     if (desc->n_used_entries > desc->window_max_entries) {
157         desc->window_max_entries = desc->n_used_entries;
158     }
159     rate = desc->window_max_entries * 100 / old_size;
160 
161     if (rate > 70) {
162         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
163     } else if (rate < 30 && window_expired) {
164         size_t ceil = pow2ceil(desc->window_max_entries);
165         size_t expected_rate = desc->window_max_entries * 100 / ceil;
166 
167         /*
168          * Avoid undersizing when the max number of entries seen is just below
169          * a pow2. For instance, if max_entries == 1025, the expected use rate
170          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
171          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
172          * later. Thus, make sure that the expected use rate remains below 70%.
173          * (and since we double the size, that means the lowest rate we'd
174          * expect to get is 35%, which is still in the 30-70% range where
175          * we consider that the size is appropriate.)
176          */
177         if (expected_rate > 70) {
178             ceil *= 2;
179         }
180         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
181     }
182 
183     if (new_size == old_size) {
184         if (window_expired) {
185             tlb_window_reset(desc, now, desc->n_used_entries);
186         }
187         return;
188     }
189 
190     g_free(env_tlb(env)->f[mmu_idx].table);
191     g_free(env_tlb(env)->d[mmu_idx].iotlb);
192 
193     tlb_window_reset(desc, now, 0);
194     /* desc->n_used_entries is cleared by the caller */
195     env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
196     env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
197     env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
198     /*
199      * If the allocations fail, try smaller sizes. We just freed some
200      * memory, so going back to half of new_size has a good chance of working.
201      * Increased memory pressure elsewhere in the system might cause the
202      * allocations to fail though, so we progressively reduce the allocation
203      * size, aborting if we cannot even allocate the smallest TLB we support.
204      */
205     while (env_tlb(env)->f[mmu_idx].table == NULL ||
206            env_tlb(env)->d[mmu_idx].iotlb == NULL) {
207         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
208             error_report("%s: %s", __func__, strerror(errno));
209             abort();
210         }
211         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
212         env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
213 
214         g_free(env_tlb(env)->f[mmu_idx].table);
215         g_free(env_tlb(env)->d[mmu_idx].iotlb);
216         env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
217         env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
218     }
219 }
220 
221 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx)
222 {
223     tlb_mmu_resize_locked(env, mmu_idx);
224     memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx));
225     env_tlb(env)->d[mmu_idx].n_used_entries = 0;
226 }
227 
228 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
229 {
230     env_tlb(env)->d[mmu_idx].n_used_entries++;
231 }
232 
233 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
234 {
235     env_tlb(env)->d[mmu_idx].n_used_entries--;
236 }
237 
238 void tlb_init(CPUState *cpu)
239 {
240     CPUArchState *env = cpu->env_ptr;
241 
242     qemu_spin_init(&env_tlb(env)->c.lock);
243 
244     /* Ensure that cpu_reset performs a full flush.  */
245     env_tlb(env)->c.dirty = ALL_MMUIDX_BITS;
246 
247     tlb_dyn_init(env);
248 }
249 
250 /* flush_all_helper: run fn across all cpus
251  *
252  * If the wait flag is set then the src cpu's helper will be queued as
253  * "safe" work and the loop exited creating a synchronisation point
254  * where all queued work will be finished before execution starts
255  * again.
256  */
257 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
258                              run_on_cpu_data d)
259 {
260     CPUState *cpu;
261 
262     CPU_FOREACH(cpu) {
263         if (cpu != src) {
264             async_run_on_cpu(cpu, fn, d);
265         }
266     }
267 }
268 
269 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
270 {
271     CPUState *cpu;
272     size_t full = 0, part = 0, elide = 0;
273 
274     CPU_FOREACH(cpu) {
275         CPUArchState *env = cpu->env_ptr;
276 
277         full += atomic_read(&env_tlb(env)->c.full_flush_count);
278         part += atomic_read(&env_tlb(env)->c.part_flush_count);
279         elide += atomic_read(&env_tlb(env)->c.elide_flush_count);
280     }
281     *pfull = full;
282     *ppart = part;
283     *pelide = elide;
284 }
285 
286 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
287 {
288     tlb_table_flush_by_mmuidx(env, mmu_idx);
289     env_tlb(env)->d[mmu_idx].large_page_addr = -1;
290     env_tlb(env)->d[mmu_idx].large_page_mask = -1;
291     env_tlb(env)->d[mmu_idx].vindex = 0;
292     memset(env_tlb(env)->d[mmu_idx].vtable, -1,
293            sizeof(env_tlb(env)->d[0].vtable));
294 }
295 
296 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
297 {
298     CPUArchState *env = cpu->env_ptr;
299     uint16_t asked = data.host_int;
300     uint16_t all_dirty, work, to_clean;
301 
302     assert_cpu_is_self(cpu);
303 
304     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
305 
306     qemu_spin_lock(&env_tlb(env)->c.lock);
307 
308     all_dirty = env_tlb(env)->c.dirty;
309     to_clean = asked & all_dirty;
310     all_dirty &= ~to_clean;
311     env_tlb(env)->c.dirty = all_dirty;
312 
313     for (work = to_clean; work != 0; work &= work - 1) {
314         int mmu_idx = ctz32(work);
315         tlb_flush_one_mmuidx_locked(env, mmu_idx);
316     }
317 
318     qemu_spin_unlock(&env_tlb(env)->c.lock);
319 
320     cpu_tb_jmp_cache_clear(cpu);
321 
322     if (to_clean == ALL_MMUIDX_BITS) {
323         atomic_set(&env_tlb(env)->c.full_flush_count,
324                    env_tlb(env)->c.full_flush_count + 1);
325     } else {
326         atomic_set(&env_tlb(env)->c.part_flush_count,
327                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
328         if (to_clean != asked) {
329             atomic_set(&env_tlb(env)->c.elide_flush_count,
330                        env_tlb(env)->c.elide_flush_count +
331                        ctpop16(asked & ~to_clean));
332         }
333     }
334 }
335 
336 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
337 {
338     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
339 
340     if (cpu->created && !qemu_cpu_is_self(cpu)) {
341         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
342                          RUN_ON_CPU_HOST_INT(idxmap));
343     } else {
344         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
345     }
346 }
347 
348 void tlb_flush(CPUState *cpu)
349 {
350     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
351 }
352 
353 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
354 {
355     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
356 
357     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
358 
359     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
360     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
361 }
362 
363 void tlb_flush_all_cpus(CPUState *src_cpu)
364 {
365     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
366 }
367 
368 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
369 {
370     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
371 
372     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
373 
374     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
375     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
376 }
377 
378 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
379 {
380     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
381 }
382 
383 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
384                                         target_ulong page)
385 {
386     return tlb_hit_page(tlb_entry->addr_read, page) ||
387            tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
388            tlb_hit_page(tlb_entry->addr_code, page);
389 }
390 
391 /**
392  * tlb_entry_is_empty - return true if the entry is not in use
393  * @te: pointer to CPUTLBEntry
394  */
395 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
396 {
397     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
398 }
399 
400 /* Called with tlb_c.lock held */
401 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
402                                           target_ulong page)
403 {
404     if (tlb_hit_page_anyprot(tlb_entry, page)) {
405         memset(tlb_entry, -1, sizeof(*tlb_entry));
406         return true;
407     }
408     return false;
409 }
410 
411 /* Called with tlb_c.lock held */
412 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
413                                               target_ulong page)
414 {
415     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
416     int k;
417 
418     assert_cpu_is_self(env_cpu(env));
419     for (k = 0; k < CPU_VTLB_SIZE; k++) {
420         if (tlb_flush_entry_locked(&d->vtable[k], page)) {
421             tlb_n_used_entries_dec(env, mmu_idx);
422         }
423     }
424 }
425 
426 static void tlb_flush_page_locked(CPUArchState *env, int midx,
427                                   target_ulong page)
428 {
429     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
430     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
431 
432     /* Check if we need to flush due to large pages.  */
433     if ((page & lp_mask) == lp_addr) {
434         tlb_debug("forcing full flush midx %d ("
435                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
436                   midx, lp_addr, lp_mask);
437         tlb_flush_one_mmuidx_locked(env, midx);
438     } else {
439         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
440             tlb_n_used_entries_dec(env, midx);
441         }
442         tlb_flush_vtlb_page_locked(env, midx, page);
443     }
444 }
445 
446 /* As we are going to hijack the bottom bits of the page address for a
447  * mmuidx bit mask we need to fail to build if we can't do that
448  */
449 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
450 
451 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
452                                                 run_on_cpu_data data)
453 {
454     CPUArchState *env = cpu->env_ptr;
455     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
456     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
457     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
458     int mmu_idx;
459 
460     assert_cpu_is_self(cpu);
461 
462     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
463               addr, mmu_idx_bitmap);
464 
465     qemu_spin_lock(&env_tlb(env)->c.lock);
466     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
467         if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
468             tlb_flush_page_locked(env, mmu_idx, addr);
469         }
470     }
471     qemu_spin_unlock(&env_tlb(env)->c.lock);
472 
473     tb_flush_jmp_cache(cpu, addr);
474 }
475 
476 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
477 {
478     target_ulong addr_and_mmu_idx;
479 
480     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
481 
482     /* This should already be page aligned */
483     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
484     addr_and_mmu_idx |= idxmap;
485 
486     if (!qemu_cpu_is_self(cpu)) {
487         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
488                          RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
489     } else {
490         tlb_flush_page_by_mmuidx_async_work(
491             cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
492     }
493 }
494 
495 void tlb_flush_page(CPUState *cpu, target_ulong addr)
496 {
497     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
498 }
499 
500 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
501                                        uint16_t idxmap)
502 {
503     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
504     target_ulong addr_and_mmu_idx;
505 
506     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
507 
508     /* This should already be page aligned */
509     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
510     addr_and_mmu_idx |= idxmap;
511 
512     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
513     fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
514 }
515 
516 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
517 {
518     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
519 }
520 
521 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
522                                               target_ulong addr,
523                                               uint16_t idxmap)
524 {
525     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
526     target_ulong addr_and_mmu_idx;
527 
528     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
529 
530     /* This should already be page aligned */
531     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
532     addr_and_mmu_idx |= idxmap;
533 
534     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
535     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
536 }
537 
538 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
539 {
540     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
541 }
542 
543 /* update the TLBs so that writes to code in the virtual page 'addr'
544    can be detected */
545 void tlb_protect_code(ram_addr_t ram_addr)
546 {
547     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
548                                              DIRTY_MEMORY_CODE);
549 }
550 
551 /* update the TLB so that writes in physical page 'phys_addr' are no longer
552    tested for self modifying code */
553 void tlb_unprotect_code(ram_addr_t ram_addr)
554 {
555     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
556 }
557 
558 
559 /*
560  * Dirty write flag handling
561  *
562  * When the TCG code writes to a location it looks up the address in
563  * the TLB and uses that data to compute the final address. If any of
564  * the lower bits of the address are set then the slow path is forced.
565  * There are a number of reasons to do this but for normal RAM the
566  * most usual is detecting writes to code regions which may invalidate
567  * generated code.
568  *
569  * Other vCPUs might be reading their TLBs during guest execution, so we update
570  * te->addr_write with atomic_set. We don't need to worry about this for
571  * oversized guests as MTTCG is disabled for them.
572  *
573  * Called with tlb_c.lock held.
574  */
575 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
576                                          uintptr_t start, uintptr_t length)
577 {
578     uintptr_t addr = tlb_entry->addr_write;
579 
580     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
581         addr &= TARGET_PAGE_MASK;
582         addr += tlb_entry->addend;
583         if ((addr - start) < length) {
584 #if TCG_OVERSIZED_GUEST
585             tlb_entry->addr_write |= TLB_NOTDIRTY;
586 #else
587             atomic_set(&tlb_entry->addr_write,
588                        tlb_entry->addr_write | TLB_NOTDIRTY);
589 #endif
590         }
591     }
592 }
593 
594 /*
595  * Called with tlb_c.lock held.
596  * Called only from the vCPU context, i.e. the TLB's owner thread.
597  */
598 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
599 {
600     *d = *s;
601 }
602 
603 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
604  * the target vCPU).
605  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
606  * thing actually updated is the target TLB entry ->addr_write flags.
607  */
608 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
609 {
610     CPUArchState *env;
611 
612     int mmu_idx;
613 
614     env = cpu->env_ptr;
615     qemu_spin_lock(&env_tlb(env)->c.lock);
616     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
617         unsigned int i;
618         unsigned int n = tlb_n_entries(env, mmu_idx);
619 
620         for (i = 0; i < n; i++) {
621             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
622                                          start1, length);
623         }
624 
625         for (i = 0; i < CPU_VTLB_SIZE; i++) {
626             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
627                                          start1, length);
628         }
629     }
630     qemu_spin_unlock(&env_tlb(env)->c.lock);
631 }
632 
633 /* Called with tlb_c.lock held */
634 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
635                                          target_ulong vaddr)
636 {
637     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
638         tlb_entry->addr_write = vaddr;
639     }
640 }
641 
642 /* update the TLB corresponding to virtual page vaddr
643    so that it is no longer dirty */
644 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
645 {
646     CPUArchState *env = cpu->env_ptr;
647     int mmu_idx;
648 
649     assert_cpu_is_self(cpu);
650 
651     vaddr &= TARGET_PAGE_MASK;
652     qemu_spin_lock(&env_tlb(env)->c.lock);
653     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
654         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
655     }
656 
657     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
658         int k;
659         for (k = 0; k < CPU_VTLB_SIZE; k++) {
660             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
661         }
662     }
663     qemu_spin_unlock(&env_tlb(env)->c.lock);
664 }
665 
666 /* Our TLB does not support large pages, so remember the area covered by
667    large pages and trigger a full TLB flush if these are invalidated.  */
668 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
669                                target_ulong vaddr, target_ulong size)
670 {
671     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
672     target_ulong lp_mask = ~(size - 1);
673 
674     if (lp_addr == (target_ulong)-1) {
675         /* No previous large page.  */
676         lp_addr = vaddr;
677     } else {
678         /* Extend the existing region to include the new page.
679            This is a compromise between unnecessary flushes and
680            the cost of maintaining a full variable size TLB.  */
681         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
682         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
683             lp_mask <<= 1;
684         }
685     }
686     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
687     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
688 }
689 
690 /* Add a new TLB entry. At most one entry for a given virtual address
691  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
692  * supplied size is only used by tlb_flush_page.
693  *
694  * Called from TCG-generated code, which is under an RCU read-side
695  * critical section.
696  */
697 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
698                              hwaddr paddr, MemTxAttrs attrs, int prot,
699                              int mmu_idx, target_ulong size)
700 {
701     CPUArchState *env = cpu->env_ptr;
702     CPUTLB *tlb = env_tlb(env);
703     CPUTLBDesc *desc = &tlb->d[mmu_idx];
704     MemoryRegionSection *section;
705     unsigned int index;
706     target_ulong address;
707     target_ulong code_address;
708     uintptr_t addend;
709     CPUTLBEntry *te, tn;
710     hwaddr iotlb, xlat, sz, paddr_page;
711     target_ulong vaddr_page;
712     int asidx = cpu_asidx_from_attrs(cpu, attrs);
713 
714     assert_cpu_is_self(cpu);
715 
716     if (size <= TARGET_PAGE_SIZE) {
717         sz = TARGET_PAGE_SIZE;
718     } else {
719         tlb_add_large_page(env, mmu_idx, vaddr, size);
720         sz = size;
721     }
722     vaddr_page = vaddr & TARGET_PAGE_MASK;
723     paddr_page = paddr & TARGET_PAGE_MASK;
724 
725     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
726                                                 &xlat, &sz, attrs, &prot);
727     assert(sz >= TARGET_PAGE_SIZE);
728 
729     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
730               " prot=%x idx=%d\n",
731               vaddr, paddr, prot, mmu_idx);
732 
733     address = vaddr_page;
734     if (size < TARGET_PAGE_SIZE) {
735         /*
736          * Slow-path the TLB entries; we will repeat the MMU check and TLB
737          * fill on every access.
738          */
739         address |= TLB_RECHECK;
740     }
741     if (attrs.byte_swap) {
742         /* Force the access through the I/O slow path.  */
743         address |= TLB_MMIO;
744     }
745     if (!memory_region_is_ram(section->mr) &&
746         !memory_region_is_romd(section->mr)) {
747         /* IO memory case */
748         address |= TLB_MMIO;
749         addend = 0;
750     } else {
751         /* TLB_MMIO for rom/romd handled below */
752         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
753     }
754 
755     code_address = address;
756     iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
757                                             paddr_page, xlat, prot, &address);
758 
759     index = tlb_index(env, mmu_idx, vaddr_page);
760     te = tlb_entry(env, mmu_idx, vaddr_page);
761 
762     /*
763      * Hold the TLB lock for the rest of the function. We could acquire/release
764      * the lock several times in the function, but it is faster to amortize the
765      * acquisition cost by acquiring it just once. Note that this leads to
766      * a longer critical section, but this is not a concern since the TLB lock
767      * is unlikely to be contended.
768      */
769     qemu_spin_lock(&tlb->c.lock);
770 
771     /* Note that the tlb is no longer clean.  */
772     tlb->c.dirty |= 1 << mmu_idx;
773 
774     /* Make sure there's no cached translation for the new page.  */
775     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
776 
777     /*
778      * Only evict the old entry to the victim tlb if it's for a
779      * different page; otherwise just overwrite the stale data.
780      */
781     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
782         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
783         CPUTLBEntry *tv = &desc->vtable[vidx];
784 
785         /* Evict the old entry into the victim tlb.  */
786         copy_tlb_helper_locked(tv, te);
787         desc->viotlb[vidx] = desc->iotlb[index];
788         tlb_n_used_entries_dec(env, mmu_idx);
789     }
790 
791     /* refill the tlb */
792     /*
793      * At this point iotlb contains a physical section number in the lower
794      * TARGET_PAGE_BITS, and either
795      *  + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
796      *  + the offset within section->mr of the page base (otherwise)
797      * We subtract the vaddr_page (which is page aligned and thus won't
798      * disturb the low bits) to give an offset which can be added to the
799      * (non-page-aligned) vaddr of the eventual memory access to get
800      * the MemoryRegion offset for the access. Note that the vaddr we
801      * subtract here is that of the page base, and not the same as the
802      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
803      */
804     desc->iotlb[index].addr = iotlb - vaddr_page;
805     desc->iotlb[index].attrs = attrs;
806 
807     /* Now calculate the new entry */
808     tn.addend = addend - vaddr_page;
809     if (prot & PAGE_READ) {
810         tn.addr_read = address;
811     } else {
812         tn.addr_read = -1;
813     }
814 
815     if (prot & PAGE_EXEC) {
816         tn.addr_code = code_address;
817     } else {
818         tn.addr_code = -1;
819     }
820 
821     tn.addr_write = -1;
822     if (prot & PAGE_WRITE) {
823         if ((memory_region_is_ram(section->mr) && section->readonly)
824             || memory_region_is_romd(section->mr)) {
825             /* Write access calls the I/O callback.  */
826             tn.addr_write = address | TLB_MMIO;
827         } else if (memory_region_is_ram(section->mr)
828                    && cpu_physical_memory_is_clean(
829                        memory_region_get_ram_addr(section->mr) + xlat)) {
830             tn.addr_write = address | TLB_NOTDIRTY;
831         } else {
832             tn.addr_write = address;
833         }
834         if (prot & PAGE_WRITE_INV) {
835             tn.addr_write |= TLB_INVALID_MASK;
836         }
837     }
838 
839     copy_tlb_helper_locked(te, &tn);
840     tlb_n_used_entries_inc(env, mmu_idx);
841     qemu_spin_unlock(&tlb->c.lock);
842 }
843 
844 /* Add a new TLB entry, but without specifying the memory
845  * transaction attributes to be used.
846  */
847 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
848                   hwaddr paddr, int prot,
849                   int mmu_idx, target_ulong size)
850 {
851     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
852                             prot, mmu_idx, size);
853 }
854 
855 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
856 {
857     ram_addr_t ram_addr;
858 
859     ram_addr = qemu_ram_addr_from_host(ptr);
860     if (ram_addr == RAM_ADDR_INVALID) {
861         error_report("Bad ram pointer %p", ptr);
862         abort();
863     }
864     return ram_addr;
865 }
866 
867 /*
868  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
869  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
870  * be discarded and looked up again (e.g. via tlb_entry()).
871  */
872 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
873                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
874 {
875     CPUClass *cc = CPU_GET_CLASS(cpu);
876     bool ok;
877 
878     /*
879      * This is not a probe, so only valid return is success; failure
880      * should result in exception + longjmp to the cpu loop.
881      */
882     ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
883     assert(ok);
884 }
885 
886 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
887                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
888                          MMUAccessType access_type, MemOp op)
889 {
890     CPUState *cpu = env_cpu(env);
891     hwaddr mr_offset;
892     MemoryRegionSection *section;
893     MemoryRegion *mr;
894     uint64_t val;
895     bool locked = false;
896     MemTxResult r;
897 
898     if (iotlbentry->attrs.byte_swap) {
899         op ^= MO_BSWAP;
900     }
901 
902     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
903     mr = section->mr;
904     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
905     cpu->mem_io_pc = retaddr;
906     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
907         cpu_io_recompile(cpu, retaddr);
908     }
909 
910     cpu->mem_io_vaddr = addr;
911     cpu->mem_io_access_type = access_type;
912 
913     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
914         qemu_mutex_lock_iothread();
915         locked = true;
916     }
917     r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
918     if (r != MEMTX_OK) {
919         hwaddr physaddr = mr_offset +
920             section->offset_within_address_space -
921             section->offset_within_region;
922 
923         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
924                                mmu_idx, iotlbentry->attrs, r, retaddr);
925     }
926     if (locked) {
927         qemu_mutex_unlock_iothread();
928     }
929 
930     return val;
931 }
932 
933 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
934                       int mmu_idx, uint64_t val, target_ulong addr,
935                       uintptr_t retaddr, MemOp op)
936 {
937     CPUState *cpu = env_cpu(env);
938     hwaddr mr_offset;
939     MemoryRegionSection *section;
940     MemoryRegion *mr;
941     bool locked = false;
942     MemTxResult r;
943 
944     if (iotlbentry->attrs.byte_swap) {
945         op ^= MO_BSWAP;
946     }
947 
948     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
949     mr = section->mr;
950     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
951     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
952         cpu_io_recompile(cpu, retaddr);
953     }
954     cpu->mem_io_vaddr = addr;
955     cpu->mem_io_pc = retaddr;
956 
957     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
958         qemu_mutex_lock_iothread();
959         locked = true;
960     }
961     r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
962     if (r != MEMTX_OK) {
963         hwaddr physaddr = mr_offset +
964             section->offset_within_address_space -
965             section->offset_within_region;
966 
967         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
968                                MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
969                                retaddr);
970     }
971     if (locked) {
972         qemu_mutex_unlock_iothread();
973     }
974 }
975 
976 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
977 {
978 #if TCG_OVERSIZED_GUEST
979     return *(target_ulong *)((uintptr_t)entry + ofs);
980 #else
981     /* ofs might correspond to .addr_write, so use atomic_read */
982     return atomic_read((target_ulong *)((uintptr_t)entry + ofs));
983 #endif
984 }
985 
986 /* Return true if ADDR is present in the victim tlb, and has been copied
987    back to the main tlb.  */
988 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
989                            size_t elt_ofs, target_ulong page)
990 {
991     size_t vidx;
992 
993     assert_cpu_is_self(env_cpu(env));
994     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
995         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
996         target_ulong cmp;
997 
998         /* elt_ofs might correspond to .addr_write, so use atomic_read */
999 #if TCG_OVERSIZED_GUEST
1000         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1001 #else
1002         cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1003 #endif
1004 
1005         if (cmp == page) {
1006             /* Found entry in victim tlb, swap tlb and iotlb.  */
1007             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1008 
1009             qemu_spin_lock(&env_tlb(env)->c.lock);
1010             copy_tlb_helper_locked(&tmptlb, tlb);
1011             copy_tlb_helper_locked(tlb, vtlb);
1012             copy_tlb_helper_locked(vtlb, &tmptlb);
1013             qemu_spin_unlock(&env_tlb(env)->c.lock);
1014 
1015             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1016             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1017             tmpio = *io; *io = *vio; *vio = tmpio;
1018             return true;
1019         }
1020     }
1021     return false;
1022 }
1023 
1024 /* Macro to call the above, with local variables from the use context.  */
1025 #define VICTIM_TLB_HIT(TY, ADDR) \
1026   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1027                  (ADDR) & TARGET_PAGE_MASK)
1028 
1029 /* NOTE: this function can trigger an exception */
1030 /* NOTE2: the returned address is not exactly the physical address: it
1031  * is actually a ram_addr_t (in system mode; the user mode emulation
1032  * version of this function returns a guest virtual address).
1033  */
1034 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1035 {
1036     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1037     uintptr_t index = tlb_index(env, mmu_idx, addr);
1038     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1039     void *p;
1040 
1041     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1042         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1043             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1044             index = tlb_index(env, mmu_idx, addr);
1045             entry = tlb_entry(env, mmu_idx, addr);
1046         }
1047         assert(tlb_hit(entry->addr_code, addr));
1048     }
1049 
1050     if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) {
1051         /*
1052          * Return -1 if we can't translate and execute from an entire
1053          * page of RAM here, which will cause us to execute by loading
1054          * and translating one insn at a time, without caching:
1055          *  - TLB_RECHECK: means the MMU protection covers a smaller range
1056          *    than a target page, so we must redo the MMU check every insn
1057          *  - TLB_MMIO: region is not backed by RAM
1058          */
1059         return -1;
1060     }
1061 
1062     p = (void *)((uintptr_t)addr + entry->addend);
1063     return qemu_ram_addr_from_host_nofail(p);
1064 }
1065 
1066 /* Probe for whether the specified guest write access is permitted.
1067  * If it is not permitted then an exception will be taken in the same
1068  * way as if this were a real write access (and we will not return).
1069  * Otherwise the function will return, and there will be a valid
1070  * entry in the TLB for this access.
1071  */
1072 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
1073                  uintptr_t retaddr)
1074 {
1075     uintptr_t index = tlb_index(env, mmu_idx, addr);
1076     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1077 
1078     if (!tlb_hit(tlb_addr_write(entry), addr)) {
1079         /* TLB entry is for a different page */
1080         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1081             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1082                      mmu_idx, retaddr);
1083         }
1084     }
1085 }
1086 
1087 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1088                         MMUAccessType access_type, int mmu_idx)
1089 {
1090     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1091     uintptr_t tlb_addr, page;
1092     size_t elt_ofs;
1093 
1094     switch (access_type) {
1095     case MMU_DATA_LOAD:
1096         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1097         break;
1098     case MMU_DATA_STORE:
1099         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1100         break;
1101     case MMU_INST_FETCH:
1102         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1103         break;
1104     default:
1105         g_assert_not_reached();
1106     }
1107 
1108     page = addr & TARGET_PAGE_MASK;
1109     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1110 
1111     if (!tlb_hit_page(tlb_addr, page)) {
1112         uintptr_t index = tlb_index(env, mmu_idx, addr);
1113 
1114         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) {
1115             CPUState *cs = env_cpu(env);
1116             CPUClass *cc = CPU_GET_CLASS(cs);
1117 
1118             if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) {
1119                 /* Non-faulting page table read failed.  */
1120                 return NULL;
1121             }
1122 
1123             /* TLB resize via tlb_fill may have moved the entry.  */
1124             entry = tlb_entry(env, mmu_idx, addr);
1125         }
1126         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1127     }
1128 
1129     if (tlb_addr & ~TARGET_PAGE_MASK) {
1130         /* IO access */
1131         return NULL;
1132     }
1133 
1134     return (void *)((uintptr_t)addr + entry->addend);
1135 }
1136 
1137 /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
1138  * operations, or io operations to proceed.  Return the host address.  */
1139 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1140                                TCGMemOpIdx oi, uintptr_t retaddr,
1141                                NotDirtyInfo *ndi)
1142 {
1143     size_t mmu_idx = get_mmuidx(oi);
1144     uintptr_t index = tlb_index(env, mmu_idx, addr);
1145     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1146     target_ulong tlb_addr = tlb_addr_write(tlbe);
1147     MemOp mop = get_memop(oi);
1148     int a_bits = get_alignment_bits(mop);
1149     int s_bits = mop & MO_SIZE;
1150     void *hostaddr;
1151 
1152     /* Adjust the given return address.  */
1153     retaddr -= GETPC_ADJ;
1154 
1155     /* Enforce guest required alignment.  */
1156     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1157         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1158         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1159                              mmu_idx, retaddr);
1160     }
1161 
1162     /* Enforce qemu required alignment.  */
1163     if (unlikely(addr & ((1 << s_bits) - 1))) {
1164         /* We get here if guest alignment was not requested,
1165            or was not enforced by cpu_unaligned_access above.
1166            We might widen the access and emulate, but for now
1167            mark an exception and exit the cpu loop.  */
1168         goto stop_the_world;
1169     }
1170 
1171     /* Check TLB entry and enforce page permissions.  */
1172     if (!tlb_hit(tlb_addr, addr)) {
1173         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1174             tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
1175                      mmu_idx, retaddr);
1176             index = tlb_index(env, mmu_idx, addr);
1177             tlbe = tlb_entry(env, mmu_idx, addr);
1178         }
1179         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1180     }
1181 
1182     /* Notice an IO access or a needs-MMU-lookup access */
1183     if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
1184         /* There's really nothing that can be done to
1185            support this apart from stop-the-world.  */
1186         goto stop_the_world;
1187     }
1188 
1189     /* Let the guest notice RMW on a write-only page.  */
1190     if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1191         tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1192                  mmu_idx, retaddr);
1193         /* Since we don't support reads and writes to different addresses,
1194            and we do have the proper page loaded for write, this shouldn't
1195            ever return.  But just in case, handle via stop-the-world.  */
1196         goto stop_the_world;
1197     }
1198 
1199     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1200 
1201     ndi->active = false;
1202     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1203         ndi->active = true;
1204         memory_notdirty_write_prepare(ndi, env_cpu(env), addr,
1205                                       qemu_ram_addr_from_host_nofail(hostaddr),
1206                                       1 << s_bits);
1207     }
1208 
1209     return hostaddr;
1210 
1211  stop_the_world:
1212     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1213 }
1214 
1215 /*
1216  * Load Helpers
1217  *
1218  * We support two different access types. SOFTMMU_CODE_ACCESS is
1219  * specifically for reading instructions from system memory. It is
1220  * called by the translation loop and in some helpers where the code
1221  * is disassembled. It shouldn't be called directly by guest code.
1222  */
1223 
1224 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1225                                 TCGMemOpIdx oi, uintptr_t retaddr);
1226 
1227 static inline uint64_t __attribute__((always_inline))
1228 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1229             uintptr_t retaddr, MemOp op, bool code_read,
1230             FullLoadHelper *full_load)
1231 {
1232     uintptr_t mmu_idx = get_mmuidx(oi);
1233     uintptr_t index = tlb_index(env, mmu_idx, addr);
1234     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1235     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1236     const size_t tlb_off = code_read ?
1237         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1238     const MMUAccessType access_type =
1239         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1240     unsigned a_bits = get_alignment_bits(get_memop(oi));
1241     void *haddr;
1242     uint64_t res;
1243     size_t size = memop_size(op);
1244 
1245     /* Handle CPU specific unaligned behaviour */
1246     if (addr & ((1 << a_bits) - 1)) {
1247         cpu_unaligned_access(env_cpu(env), addr, access_type,
1248                              mmu_idx, retaddr);
1249     }
1250 
1251     /* If the TLB entry is for a different page, reload and try again.  */
1252     if (!tlb_hit(tlb_addr, addr)) {
1253         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1254                             addr & TARGET_PAGE_MASK)) {
1255             tlb_fill(env_cpu(env), addr, size,
1256                      access_type, mmu_idx, retaddr);
1257             index = tlb_index(env, mmu_idx, addr);
1258             entry = tlb_entry(env, mmu_idx, addr);
1259         }
1260         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1261     }
1262 
1263     /* Handle an IO access.  */
1264     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1265         if ((addr & (size - 1)) != 0) {
1266             goto do_unaligned_access;
1267         }
1268 
1269         if (tlb_addr & TLB_RECHECK) {
1270             /*
1271              * This is a TLB_RECHECK access, where the MMU protection
1272              * covers a smaller range than a target page, and we must
1273              * repeat the MMU check here. This tlb_fill() call might
1274              * longjump out if this access should cause a guest exception.
1275              */
1276             tlb_fill(env_cpu(env), addr, size,
1277                      access_type, mmu_idx, retaddr);
1278             index = tlb_index(env, mmu_idx, addr);
1279             entry = tlb_entry(env, mmu_idx, addr);
1280 
1281             tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1282             tlb_addr &= ~TLB_RECHECK;
1283             if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
1284                 /* RAM access */
1285                 goto do_aligned_access;
1286             }
1287         }
1288 
1289         return io_readx(env, &env_tlb(env)->d[mmu_idx].iotlb[index],
1290                         mmu_idx, addr, retaddr, access_type, op);
1291     }
1292 
1293     /* Handle slow unaligned access (it spans two pages or IO).  */
1294     if (size > 1
1295         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1296                     >= TARGET_PAGE_SIZE)) {
1297         target_ulong addr1, addr2;
1298         uint64_t r1, r2;
1299         unsigned shift;
1300     do_unaligned_access:
1301         addr1 = addr & ~((target_ulong)size - 1);
1302         addr2 = addr1 + size;
1303         r1 = full_load(env, addr1, oi, retaddr);
1304         r2 = full_load(env, addr2, oi, retaddr);
1305         shift = (addr & (size - 1)) * 8;
1306 
1307         if (memop_big_endian(op)) {
1308             /* Big-endian combine.  */
1309             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1310         } else {
1311             /* Little-endian combine.  */
1312             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1313         }
1314         return res & MAKE_64BIT_MASK(0, size * 8);
1315     }
1316 
1317  do_aligned_access:
1318     haddr = (void *)((uintptr_t)addr + entry->addend);
1319     switch (op) {
1320     case MO_UB:
1321         res = ldub_p(haddr);
1322         break;
1323     case MO_BEUW:
1324         res = lduw_be_p(haddr);
1325         break;
1326     case MO_LEUW:
1327         res = lduw_le_p(haddr);
1328         break;
1329     case MO_BEUL:
1330         res = (uint32_t)ldl_be_p(haddr);
1331         break;
1332     case MO_LEUL:
1333         res = (uint32_t)ldl_le_p(haddr);
1334         break;
1335     case MO_BEQ:
1336         res = ldq_be_p(haddr);
1337         break;
1338     case MO_LEQ:
1339         res = ldq_le_p(haddr);
1340         break;
1341     default:
1342         g_assert_not_reached();
1343     }
1344 
1345     return res;
1346 }
1347 
1348 /*
1349  * For the benefit of TCG generated code, we want to avoid the
1350  * complication of ABI-specific return type promotion and always
1351  * return a value extended to the register size of the host. This is
1352  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1353  * data, and for that we always have uint64_t.
1354  *
1355  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1356  */
1357 
1358 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1359                               TCGMemOpIdx oi, uintptr_t retaddr)
1360 {
1361     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1362 }
1363 
1364 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1365                                      TCGMemOpIdx oi, uintptr_t retaddr)
1366 {
1367     return full_ldub_mmu(env, addr, oi, retaddr);
1368 }
1369 
1370 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1371                                  TCGMemOpIdx oi, uintptr_t retaddr)
1372 {
1373     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
1374                        full_le_lduw_mmu);
1375 }
1376 
1377 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1378                                     TCGMemOpIdx oi, uintptr_t retaddr)
1379 {
1380     return full_le_lduw_mmu(env, addr, oi, retaddr);
1381 }
1382 
1383 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1384                                  TCGMemOpIdx oi, uintptr_t retaddr)
1385 {
1386     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
1387                        full_be_lduw_mmu);
1388 }
1389 
1390 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1391                                     TCGMemOpIdx oi, uintptr_t retaddr)
1392 {
1393     return full_be_lduw_mmu(env, addr, oi, retaddr);
1394 }
1395 
1396 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1397                                  TCGMemOpIdx oi, uintptr_t retaddr)
1398 {
1399     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
1400                        full_le_ldul_mmu);
1401 }
1402 
1403 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1404                                     TCGMemOpIdx oi, uintptr_t retaddr)
1405 {
1406     return full_le_ldul_mmu(env, addr, oi, retaddr);
1407 }
1408 
1409 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1410                                  TCGMemOpIdx oi, uintptr_t retaddr)
1411 {
1412     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
1413                        full_be_ldul_mmu);
1414 }
1415 
1416 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1417                                     TCGMemOpIdx oi, uintptr_t retaddr)
1418 {
1419     return full_be_ldul_mmu(env, addr, oi, retaddr);
1420 }
1421 
1422 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
1423                            TCGMemOpIdx oi, uintptr_t retaddr)
1424 {
1425     return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
1426                        helper_le_ldq_mmu);
1427 }
1428 
1429 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
1430                            TCGMemOpIdx oi, uintptr_t retaddr)
1431 {
1432     return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
1433                        helper_be_ldq_mmu);
1434 }
1435 
1436 /*
1437  * Provide signed versions of the load routines as well.  We can of course
1438  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
1439  */
1440 
1441 
1442 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
1443                                      TCGMemOpIdx oi, uintptr_t retaddr)
1444 {
1445     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
1446 }
1447 
1448 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
1449                                     TCGMemOpIdx oi, uintptr_t retaddr)
1450 {
1451     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
1452 }
1453 
1454 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
1455                                     TCGMemOpIdx oi, uintptr_t retaddr)
1456 {
1457     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
1458 }
1459 
1460 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
1461                                     TCGMemOpIdx oi, uintptr_t retaddr)
1462 {
1463     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
1464 }
1465 
1466 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
1467                                     TCGMemOpIdx oi, uintptr_t retaddr)
1468 {
1469     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
1470 }
1471 
1472 /*
1473  * Store Helpers
1474  */
1475 
1476 static inline void __attribute__((always_inline))
1477 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
1478              TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
1479 {
1480     uintptr_t mmu_idx = get_mmuidx(oi);
1481     uintptr_t index = tlb_index(env, mmu_idx, addr);
1482     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1483     target_ulong tlb_addr = tlb_addr_write(entry);
1484     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
1485     unsigned a_bits = get_alignment_bits(get_memop(oi));
1486     void *haddr;
1487     size_t size = memop_size(op);
1488 
1489     /* Handle CPU specific unaligned behaviour */
1490     if (addr & ((1 << a_bits) - 1)) {
1491         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1492                              mmu_idx, retaddr);
1493     }
1494 
1495     /* If the TLB entry is for a different page, reload and try again.  */
1496     if (!tlb_hit(tlb_addr, addr)) {
1497         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1498             addr & TARGET_PAGE_MASK)) {
1499             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1500                      mmu_idx, retaddr);
1501             index = tlb_index(env, mmu_idx, addr);
1502             entry = tlb_entry(env, mmu_idx, addr);
1503         }
1504         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
1505     }
1506 
1507     /* Handle an IO access.  */
1508     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1509         if ((addr & (size - 1)) != 0) {
1510             goto do_unaligned_access;
1511         }
1512 
1513         if (tlb_addr & TLB_RECHECK) {
1514             /*
1515              * This is a TLB_RECHECK access, where the MMU protection
1516              * covers a smaller range than a target page, and we must
1517              * repeat the MMU check here. This tlb_fill() call might
1518              * longjump out if this access should cause a guest exception.
1519              */
1520             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1521                      mmu_idx, retaddr);
1522             index = tlb_index(env, mmu_idx, addr);
1523             entry = tlb_entry(env, mmu_idx, addr);
1524 
1525             tlb_addr = tlb_addr_write(entry);
1526             tlb_addr &= ~TLB_RECHECK;
1527             if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
1528                 /* RAM access */
1529                 goto do_aligned_access;
1530             }
1531         }
1532 
1533         io_writex(env, &env_tlb(env)->d[mmu_idx].iotlb[index], mmu_idx,
1534                   val, addr, retaddr, op);
1535         return;
1536     }
1537 
1538     /* Handle slow unaligned access (it spans two pages or IO).  */
1539     if (size > 1
1540         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1541                      >= TARGET_PAGE_SIZE)) {
1542         int i;
1543         uintptr_t index2;
1544         CPUTLBEntry *entry2;
1545         target_ulong page2, tlb_addr2;
1546     do_unaligned_access:
1547         /*
1548          * Ensure the second page is in the TLB.  Note that the first page
1549          * is already guaranteed to be filled, and that the second page
1550          * cannot evict the first.
1551          */
1552         page2 = (addr + size) & TARGET_PAGE_MASK;
1553         index2 = tlb_index(env, mmu_idx, page2);
1554         entry2 = tlb_entry(env, mmu_idx, page2);
1555         tlb_addr2 = tlb_addr_write(entry2);
1556         if (!tlb_hit_page(tlb_addr2, page2)
1557             && !victim_tlb_hit(env, mmu_idx, index2, tlb_off,
1558                                page2 & TARGET_PAGE_MASK)) {
1559             tlb_fill(env_cpu(env), page2, size, MMU_DATA_STORE,
1560                      mmu_idx, retaddr);
1561         }
1562 
1563         /*
1564          * XXX: not efficient, but simple.
1565          * This loop must go in the forward direction to avoid issues
1566          * with self-modifying code in Windows 64-bit.
1567          */
1568         for (i = 0; i < size; ++i) {
1569             uint8_t val8;
1570             if (memop_big_endian(op)) {
1571                 /* Big-endian extract.  */
1572                 val8 = val >> (((size - 1) * 8) - (i * 8));
1573             } else {
1574                 /* Little-endian extract.  */
1575                 val8 = val >> (i * 8);
1576             }
1577             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
1578         }
1579         return;
1580     }
1581 
1582  do_aligned_access:
1583     haddr = (void *)((uintptr_t)addr + entry->addend);
1584     switch (op) {
1585     case MO_UB:
1586         stb_p(haddr, val);
1587         break;
1588     case MO_BEUW:
1589         stw_be_p(haddr, val);
1590         break;
1591     case MO_LEUW:
1592         stw_le_p(haddr, val);
1593         break;
1594     case MO_BEUL:
1595         stl_be_p(haddr, val);
1596         break;
1597     case MO_LEUL:
1598         stl_le_p(haddr, val);
1599         break;
1600     case MO_BEQ:
1601         stq_be_p(haddr, val);
1602         break;
1603     case MO_LEQ:
1604         stq_le_p(haddr, val);
1605         break;
1606     default:
1607         g_assert_not_reached();
1608         break;
1609     }
1610 }
1611 
1612 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
1613                         TCGMemOpIdx oi, uintptr_t retaddr)
1614 {
1615     store_helper(env, addr, val, oi, retaddr, MO_UB);
1616 }
1617 
1618 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1619                        TCGMemOpIdx oi, uintptr_t retaddr)
1620 {
1621     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
1622 }
1623 
1624 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1625                        TCGMemOpIdx oi, uintptr_t retaddr)
1626 {
1627     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
1628 }
1629 
1630 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1631                        TCGMemOpIdx oi, uintptr_t retaddr)
1632 {
1633     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
1634 }
1635 
1636 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1637                        TCGMemOpIdx oi, uintptr_t retaddr)
1638 {
1639     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
1640 }
1641 
1642 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1643                        TCGMemOpIdx oi, uintptr_t retaddr)
1644 {
1645     store_helper(env, addr, val, oi, retaddr, MO_LEQ);
1646 }
1647 
1648 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1649                        TCGMemOpIdx oi, uintptr_t retaddr)
1650 {
1651     store_helper(env, addr, val, oi, retaddr, MO_BEQ);
1652 }
1653 
1654 /* First set of helpers allows passing in of OI and RETADDR.  This makes
1655    them callable from other helpers.  */
1656 
1657 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1658 #define ATOMIC_NAME(X) \
1659     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1660 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1661 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1662 #define ATOMIC_MMU_CLEANUP                              \
1663     do {                                                \
1664         if (unlikely(ndi.active)) {                     \
1665             memory_notdirty_write_complete(&ndi);       \
1666         }                                               \
1667     } while (0)
1668 
1669 #define DATA_SIZE 1
1670 #include "atomic_template.h"
1671 
1672 #define DATA_SIZE 2
1673 #include "atomic_template.h"
1674 
1675 #define DATA_SIZE 4
1676 #include "atomic_template.h"
1677 
1678 #ifdef CONFIG_ATOMIC64
1679 #define DATA_SIZE 8
1680 #include "atomic_template.h"
1681 #endif
1682 
1683 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
1684 #define DATA_SIZE 16
1685 #include "atomic_template.h"
1686 #endif
1687 
1688 /* Second set of helpers are directly callable from TCG as helpers.  */
1689 
1690 #undef EXTRA_ARGS
1691 #undef ATOMIC_NAME
1692 #undef ATOMIC_MMU_LOOKUP
1693 #define EXTRA_ARGS         , TCGMemOpIdx oi
1694 #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1695 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1696 
1697 #define DATA_SIZE 1
1698 #include "atomic_template.h"
1699 
1700 #define DATA_SIZE 2
1701 #include "atomic_template.h"
1702 
1703 #define DATA_SIZE 4
1704 #include "atomic_template.h"
1705 
1706 #ifdef CONFIG_ATOMIC64
1707 #define DATA_SIZE 8
1708 #include "atomic_template.h"
1709 #endif
1710 
1711 /* Code access functions.  */
1712 
1713 static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
1714                                TCGMemOpIdx oi, uintptr_t retaddr)
1715 {
1716     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_cmmu);
1717 }
1718 
1719 uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
1720                             TCGMemOpIdx oi, uintptr_t retaddr)
1721 {
1722     return full_ldub_cmmu(env, addr, oi, retaddr);
1723 }
1724 
1725 static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
1726                                   TCGMemOpIdx oi, uintptr_t retaddr)
1727 {
1728     return load_helper(env, addr, oi, retaddr, MO_LEUW, true,
1729                        full_le_lduw_cmmu);
1730 }
1731 
1732 uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
1733                             TCGMemOpIdx oi, uintptr_t retaddr)
1734 {
1735     return full_le_lduw_cmmu(env, addr, oi, retaddr);
1736 }
1737 
1738 static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
1739                                   TCGMemOpIdx oi, uintptr_t retaddr)
1740 {
1741     return load_helper(env, addr, oi, retaddr, MO_BEUW, true,
1742                        full_be_lduw_cmmu);
1743 }
1744 
1745 uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
1746                             TCGMemOpIdx oi, uintptr_t retaddr)
1747 {
1748     return full_be_lduw_cmmu(env, addr, oi, retaddr);
1749 }
1750 
1751 static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
1752                                   TCGMemOpIdx oi, uintptr_t retaddr)
1753 {
1754     return load_helper(env, addr, oi, retaddr, MO_LEUL, true,
1755                        full_le_ldul_cmmu);
1756 }
1757 
1758 uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
1759                             TCGMemOpIdx oi, uintptr_t retaddr)
1760 {
1761     return full_le_ldul_cmmu(env, addr, oi, retaddr);
1762 }
1763 
1764 static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
1765                                   TCGMemOpIdx oi, uintptr_t retaddr)
1766 {
1767     return load_helper(env, addr, oi, retaddr, MO_BEUL, true,
1768                        full_be_ldul_cmmu);
1769 }
1770 
1771 uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
1772                             TCGMemOpIdx oi, uintptr_t retaddr)
1773 {
1774     return full_be_ldul_cmmu(env, addr, oi, retaddr);
1775 }
1776 
1777 uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
1778                             TCGMemOpIdx oi, uintptr_t retaddr)
1779 {
1780     return load_helper(env, addr, oi, retaddr, MO_LEQ, true,
1781                        helper_le_ldq_cmmu);
1782 }
1783 
1784 uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
1785                             TCGMemOpIdx oi, uintptr_t retaddr)
1786 {
1787     return load_helper(env, addr, oi, retaddr, MO_BEQ, true,
1788                        helper_be_ldq_cmmu);
1789 }
1790