1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 #include "tcg/oversized-guest.h" 44 #include "exec/helper-proto.h" 45 46 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 47 /* #define DEBUG_TLB */ 48 /* #define DEBUG_TLB_LOG */ 49 50 #ifdef DEBUG_TLB 51 # define DEBUG_TLB_GATE 1 52 # ifdef DEBUG_TLB_LOG 53 # define DEBUG_TLB_LOG_GATE 1 54 # else 55 # define DEBUG_TLB_LOG_GATE 0 56 # endif 57 #else 58 # define DEBUG_TLB_GATE 0 59 # define DEBUG_TLB_LOG_GATE 0 60 #endif 61 62 #define tlb_debug(fmt, ...) do { \ 63 if (DEBUG_TLB_LOG_GATE) { \ 64 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 65 ## __VA_ARGS__); \ 66 } else if (DEBUG_TLB_GATE) { \ 67 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 68 } \ 69 } while (0) 70 71 #define assert_cpu_is_self(cpu) do { \ 72 if (DEBUG_TLB_GATE) { \ 73 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 74 } \ 75 } while (0) 76 77 /* run_on_cpu_data.target_ptr should always be big enough for a 78 * target_ulong even on 32 bit builds */ 79 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 80 81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 82 */ 83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 85 86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 87 { 88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 89 } 90 91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 92 { 93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 94 } 95 96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 97 size_t max_entries) 98 { 99 desc->window_begin_ns = ns; 100 desc->window_max_entries = max_entries; 101 } 102 103 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 104 { 105 CPUJumpCache *jc = cpu->tb_jmp_cache; 106 int i, i0; 107 108 if (unlikely(!jc)) { 109 return; 110 } 111 112 i0 = tb_jmp_cache_hash_page(page_addr); 113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 114 qatomic_set(&jc->array[i0 + i].tb, NULL); 115 } 116 } 117 118 /** 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 120 * @desc: The CPUTLBDesc portion of the TLB 121 * @fast: The CPUTLBDescFast portion of the same TLB 122 * 123 * Called with tlb_lock_held. 124 * 125 * We have two main constraints when resizing a TLB: (1) we only resize it 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 127 * the array or unnecessarily flushing it), which means we do not control how 128 * frequently the resizing can occur; (2) we don't have access to the guest's 129 * future scheduling decisions, and therefore have to decide the magnitude of 130 * the resize based on past observations. 131 * 132 * In general, a memory-hungry process can benefit greatly from an appropriately 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 134 * we just have to make the TLB as large as possible; while an oversized TLB 135 * results in minimal TLB miss rates, it also takes longer to be flushed 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt 137 * performance. 138 * 139 * To achieve near-optimal performance for all kinds of workloads, we: 140 * 141 * 1. Aggressively increase the size of the TLB when the use rate of the 142 * TLB being flushed is high, since it is likely that in the near future this 143 * memory-hungry process will execute again, and its memory hungriness will 144 * probably be similar. 145 * 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a 147 * reasonably large time window. The rationale is that if in such a time window 148 * we have not observed a high TLB use rate, it is likely that we won't observe 149 * it in the near future. In that case, once a time window expires we downsize 150 * the TLB to match the maximum use rate observed in the window. 151 * 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 153 * since in that range performance is likely near-optimal. Recall that the TLB 154 * is direct mapped, so we want the use rate to be low (or at least not too 155 * high), since otherwise we are likely to have a significant amount of 156 * conflict misses. 157 */ 158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 159 int64_t now) 160 { 161 size_t old_size = tlb_n_entries(fast); 162 size_t rate; 163 size_t new_size = old_size; 164 int64_t window_len_ms = 100; 165 int64_t window_len_ns = window_len_ms * 1000 * 1000; 166 bool window_expired = now > desc->window_begin_ns + window_len_ns; 167 168 if (desc->n_used_entries > desc->window_max_entries) { 169 desc->window_max_entries = desc->n_used_entries; 170 } 171 rate = desc->window_max_entries * 100 / old_size; 172 173 if (rate > 70) { 174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 175 } else if (rate < 30 && window_expired) { 176 size_t ceil = pow2ceil(desc->window_max_entries); 177 size_t expected_rate = desc->window_max_entries * 100 / ceil; 178 179 /* 180 * Avoid undersizing when the max number of entries seen is just below 181 * a pow2. For instance, if max_entries == 1025, the expected use rate 182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 184 * later. Thus, make sure that the expected use rate remains below 70%. 185 * (and since we double the size, that means the lowest rate we'd 186 * expect to get is 35%, which is still in the 30-70% range where 187 * we consider that the size is appropriate.) 188 */ 189 if (expected_rate > 70) { 190 ceil *= 2; 191 } 192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 193 } 194 195 if (new_size == old_size) { 196 if (window_expired) { 197 tlb_window_reset(desc, now, desc->n_used_entries); 198 } 199 return; 200 } 201 202 g_free(fast->table); 203 g_free(desc->fulltlb); 204 205 tlb_window_reset(desc, now, 0); 206 /* desc->n_used_entries is cleared by the caller */ 207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 208 fast->table = g_try_new(CPUTLBEntry, new_size); 209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 210 211 /* 212 * If the allocations fail, try smaller sizes. We just freed some 213 * memory, so going back to half of new_size has a good chance of working. 214 * Increased memory pressure elsewhere in the system might cause the 215 * allocations to fail though, so we progressively reduce the allocation 216 * size, aborting if we cannot even allocate the smallest TLB we support. 217 */ 218 while (fast->table == NULL || desc->fulltlb == NULL) { 219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 220 error_report("%s: %s", __func__, strerror(errno)); 221 abort(); 222 } 223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 225 226 g_free(fast->table); 227 g_free(desc->fulltlb); 228 fast->table = g_try_new(CPUTLBEntry, new_size); 229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 230 } 231 } 232 233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 234 { 235 desc->n_used_entries = 0; 236 desc->large_page_addr = -1; 237 desc->large_page_mask = -1; 238 desc->vindex = 0; 239 memset(fast->table, -1, sizeof_tlb(fast)); 240 memset(desc->vtable, -1, sizeof(desc->vtable)); 241 } 242 243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 244 int64_t now) 245 { 246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 248 249 tlb_mmu_resize_locked(desc, fast, now); 250 tlb_mmu_flush_locked(desc, fast); 251 } 252 253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 254 { 255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 256 257 tlb_window_reset(desc, now, 0); 258 desc->n_used_entries = 0; 259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 260 fast->table = g_new(CPUTLBEntry, n_entries); 261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 262 tlb_mmu_flush_locked(desc, fast); 263 } 264 265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 266 { 267 env_tlb(env)->d[mmu_idx].n_used_entries++; 268 } 269 270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 271 { 272 env_tlb(env)->d[mmu_idx].n_used_entries--; 273 } 274 275 void tlb_init(CPUState *cpu) 276 { 277 CPUArchState *env = cpu->env_ptr; 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&env_tlb(env)->c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 env_tlb(env)->c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 CPUArchState *env = cpu->env_ptr; 294 int i; 295 296 qemu_spin_destroy(&env_tlb(env)->c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 299 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 300 301 g_free(fast->table); 302 g_free(desc->fulltlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 326 { 327 CPUState *cpu; 328 size_t full = 0, part = 0, elide = 0; 329 330 CPU_FOREACH(cpu) { 331 CPUArchState *env = cpu->env_ptr; 332 333 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 334 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 336 } 337 *pfull = full; 338 *ppart = part; 339 *pelide = elide; 340 } 341 342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 343 { 344 CPUArchState *env = cpu->env_ptr; 345 uint16_t asked = data.host_int; 346 uint16_t all_dirty, work, to_clean; 347 int64_t now = get_clock_realtime(); 348 349 assert_cpu_is_self(cpu); 350 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 352 353 qemu_spin_lock(&env_tlb(env)->c.lock); 354 355 all_dirty = env_tlb(env)->c.dirty; 356 to_clean = asked & all_dirty; 357 all_dirty &= ~to_clean; 358 env_tlb(env)->c.dirty = all_dirty; 359 360 for (work = to_clean; work != 0; work &= work - 1) { 361 int mmu_idx = ctz32(work); 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 363 } 364 365 qemu_spin_unlock(&env_tlb(env)->c.lock); 366 367 tcg_flush_jmp_cache(cpu); 368 369 if (to_clean == ALL_MMUIDX_BITS) { 370 qatomic_set(&env_tlb(env)->c.full_flush_count, 371 env_tlb(env)->c.full_flush_count + 1); 372 } else { 373 qatomic_set(&env_tlb(env)->c.part_flush_count, 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 375 if (to_clean != asked) { 376 qatomic_set(&env_tlb(env)->c.elide_flush_count, 377 env_tlb(env)->c.elide_flush_count + 378 ctpop16(asked & ~to_clean)); 379 } 380 } 381 } 382 383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 384 { 385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 386 387 if (cpu->created && !qemu_cpu_is_self(cpu)) { 388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 389 RUN_ON_CPU_HOST_INT(idxmap)); 390 } else { 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 392 } 393 } 394 395 void tlb_flush(CPUState *cpu) 396 { 397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 398 } 399 400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 401 { 402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 403 404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 405 406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 408 } 409 410 void tlb_flush_all_cpus(CPUState *src_cpu) 411 { 412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 413 } 414 415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 416 { 417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 418 419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 420 421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 423 } 424 425 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 426 { 427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 428 } 429 430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 431 target_ulong page, target_ulong mask) 432 { 433 page &= mask; 434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 435 436 return (page == (tlb_entry->addr_read & mask) || 437 page == (tlb_addr_write(tlb_entry) & mask) || 438 page == (tlb_entry->addr_code & mask)); 439 } 440 441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 442 target_ulong page) 443 { 444 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 445 } 446 447 /** 448 * tlb_entry_is_empty - return true if the entry is not in use 449 * @te: pointer to CPUTLBEntry 450 */ 451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 452 { 453 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 454 } 455 456 /* Called with tlb_c.lock held */ 457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 458 target_ulong page, 459 target_ulong mask) 460 { 461 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 462 memset(tlb_entry, -1, sizeof(*tlb_entry)); 463 return true; 464 } 465 return false; 466 } 467 468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 469 target_ulong page) 470 { 471 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 472 } 473 474 /* Called with tlb_c.lock held */ 475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 476 target_ulong page, 477 target_ulong mask) 478 { 479 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 480 int k; 481 482 assert_cpu_is_self(env_cpu(env)); 483 for (k = 0; k < CPU_VTLB_SIZE; k++) { 484 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 485 tlb_n_used_entries_dec(env, mmu_idx); 486 } 487 } 488 } 489 490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 491 target_ulong page) 492 { 493 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 494 } 495 496 static void tlb_flush_page_locked(CPUArchState *env, int midx, 497 target_ulong page) 498 { 499 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 500 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 501 502 /* Check if we need to flush due to large pages. */ 503 if ((page & lp_mask) == lp_addr) { 504 tlb_debug("forcing full flush midx %d (" 505 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 506 midx, lp_addr, lp_mask); 507 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 508 } else { 509 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 510 tlb_n_used_entries_dec(env, midx); 511 } 512 tlb_flush_vtlb_page_locked(env, midx, page); 513 } 514 } 515 516 /** 517 * tlb_flush_page_by_mmuidx_async_0: 518 * @cpu: cpu on which to flush 519 * @addr: page of virtual address to flush 520 * @idxmap: set of mmu_idx to flush 521 * 522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 523 * at @addr from the tlbs indicated by @idxmap from @cpu. 524 */ 525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 526 target_ulong addr, 527 uint16_t idxmap) 528 { 529 CPUArchState *env = cpu->env_ptr; 530 int mmu_idx; 531 532 assert_cpu_is_self(cpu); 533 534 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 535 536 qemu_spin_lock(&env_tlb(env)->c.lock); 537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 538 if ((idxmap >> mmu_idx) & 1) { 539 tlb_flush_page_locked(env, mmu_idx, addr); 540 } 541 } 542 qemu_spin_unlock(&env_tlb(env)->c.lock); 543 544 /* 545 * Discard jump cache entries for any tb which might potentially 546 * overlap the flushed page, which includes the previous. 547 */ 548 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 549 tb_jmp_cache_clear_page(cpu, addr); 550 } 551 552 /** 553 * tlb_flush_page_by_mmuidx_async_1: 554 * @cpu: cpu on which to flush 555 * @data: encoded addr + idxmap 556 * 557 * Helper for tlb_flush_page_by_mmuidx and friends, called through 558 * async_run_on_cpu. The idxmap parameter is encoded in the page 559 * offset of the target_ptr field. This limits the set of mmu_idx 560 * that can be passed via this method. 561 */ 562 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 563 run_on_cpu_data data) 564 { 565 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 566 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 567 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 568 569 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 570 } 571 572 typedef struct { 573 target_ulong addr; 574 uint16_t idxmap; 575 } TLBFlushPageByMMUIdxData; 576 577 /** 578 * tlb_flush_page_by_mmuidx_async_2: 579 * @cpu: cpu on which to flush 580 * @data: allocated addr + idxmap 581 * 582 * Helper for tlb_flush_page_by_mmuidx and friends, called through 583 * async_run_on_cpu. The addr+idxmap parameters are stored in a 584 * TLBFlushPageByMMUIdxData structure that has been allocated 585 * specifically for this helper. Free the structure when done. 586 */ 587 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 588 run_on_cpu_data data) 589 { 590 TLBFlushPageByMMUIdxData *d = data.host_ptr; 591 592 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 593 g_free(d); 594 } 595 596 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 597 { 598 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 599 600 /* This should already be page aligned */ 601 addr &= TARGET_PAGE_MASK; 602 603 if (qemu_cpu_is_self(cpu)) { 604 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 605 } else if (idxmap < TARGET_PAGE_SIZE) { 606 /* 607 * Most targets have only a few mmu_idx. In the case where 608 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 609 * allocating memory for this operation. 610 */ 611 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 612 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 613 } else { 614 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 615 616 /* Otherwise allocate a structure, freed by the worker. */ 617 d->addr = addr; 618 d->idxmap = idxmap; 619 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 620 RUN_ON_CPU_HOST_PTR(d)); 621 } 622 } 623 624 void tlb_flush_page(CPUState *cpu, target_ulong addr) 625 { 626 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 627 } 628 629 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 630 uint16_t idxmap) 631 { 632 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 633 634 /* This should already be page aligned */ 635 addr &= TARGET_PAGE_MASK; 636 637 /* 638 * Allocate memory to hold addr+idxmap only when needed. 639 * See tlb_flush_page_by_mmuidx for details. 640 */ 641 if (idxmap < TARGET_PAGE_SIZE) { 642 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 643 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 644 } else { 645 CPUState *dst_cpu; 646 647 /* Allocate a separate data block for each destination cpu. */ 648 CPU_FOREACH(dst_cpu) { 649 if (dst_cpu != src_cpu) { 650 TLBFlushPageByMMUIdxData *d 651 = g_new(TLBFlushPageByMMUIdxData, 1); 652 653 d->addr = addr; 654 d->idxmap = idxmap; 655 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 656 RUN_ON_CPU_HOST_PTR(d)); 657 } 658 } 659 } 660 661 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 662 } 663 664 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 665 { 666 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 667 } 668 669 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 670 target_ulong addr, 671 uint16_t idxmap) 672 { 673 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 674 675 /* This should already be page aligned */ 676 addr &= TARGET_PAGE_MASK; 677 678 /* 679 * Allocate memory to hold addr+idxmap only when needed. 680 * See tlb_flush_page_by_mmuidx for details. 681 */ 682 if (idxmap < TARGET_PAGE_SIZE) { 683 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 684 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 685 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 686 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 687 } else { 688 CPUState *dst_cpu; 689 TLBFlushPageByMMUIdxData *d; 690 691 /* Allocate a separate data block for each destination cpu. */ 692 CPU_FOREACH(dst_cpu) { 693 if (dst_cpu != src_cpu) { 694 d = g_new(TLBFlushPageByMMUIdxData, 1); 695 d->addr = addr; 696 d->idxmap = idxmap; 697 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 698 RUN_ON_CPU_HOST_PTR(d)); 699 } 700 } 701 702 d = g_new(TLBFlushPageByMMUIdxData, 1); 703 d->addr = addr; 704 d->idxmap = idxmap; 705 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 706 RUN_ON_CPU_HOST_PTR(d)); 707 } 708 } 709 710 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 711 { 712 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 713 } 714 715 static void tlb_flush_range_locked(CPUArchState *env, int midx, 716 target_ulong addr, target_ulong len, 717 unsigned bits) 718 { 719 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 720 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 721 target_ulong mask = MAKE_64BIT_MASK(0, bits); 722 723 /* 724 * If @bits is smaller than the tlb size, there may be multiple entries 725 * within the TLB; otherwise all addresses that match under @mask hit 726 * the same TLB entry. 727 * TODO: Perhaps allow bits to be a few bits less than the size. 728 * For now, just flush the entire TLB. 729 * 730 * If @len is larger than the tlb size, then it will take longer to 731 * test all of the entries in the TLB than it will to flush it all. 732 */ 733 if (mask < f->mask || len > f->mask) { 734 tlb_debug("forcing full flush midx %d (" 735 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 736 midx, addr, mask, len); 737 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 738 return; 739 } 740 741 /* 742 * Check if we need to flush due to large pages. 743 * Because large_page_mask contains all 1's from the msb, 744 * we only need to test the end of the range. 745 */ 746 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 747 tlb_debug("forcing full flush midx %d (" 748 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 749 midx, d->large_page_addr, d->large_page_mask); 750 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 751 return; 752 } 753 754 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 755 target_ulong page = addr + i; 756 CPUTLBEntry *entry = tlb_entry(env, midx, page); 757 758 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 759 tlb_n_used_entries_dec(env, midx); 760 } 761 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 762 } 763 } 764 765 typedef struct { 766 target_ulong addr; 767 target_ulong len; 768 uint16_t idxmap; 769 uint16_t bits; 770 } TLBFlushRangeData; 771 772 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 773 TLBFlushRangeData d) 774 { 775 CPUArchState *env = cpu->env_ptr; 776 int mmu_idx; 777 778 assert_cpu_is_self(cpu); 779 780 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 781 d.addr, d.bits, d.len, d.idxmap); 782 783 qemu_spin_lock(&env_tlb(env)->c.lock); 784 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 785 if ((d.idxmap >> mmu_idx) & 1) { 786 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 787 } 788 } 789 qemu_spin_unlock(&env_tlb(env)->c.lock); 790 791 /* 792 * If the length is larger than the jump cache size, then it will take 793 * longer to clear each entry individually than it will to clear it all. 794 */ 795 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 796 tcg_flush_jmp_cache(cpu); 797 return; 798 } 799 800 /* 801 * Discard jump cache entries for any tb which might potentially 802 * overlap the flushed pages, which includes the previous. 803 */ 804 d.addr -= TARGET_PAGE_SIZE; 805 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 806 tb_jmp_cache_clear_page(cpu, d.addr); 807 d.addr += TARGET_PAGE_SIZE; 808 } 809 } 810 811 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 812 run_on_cpu_data data) 813 { 814 TLBFlushRangeData *d = data.host_ptr; 815 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 816 g_free(d); 817 } 818 819 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 820 target_ulong len, uint16_t idxmap, 821 unsigned bits) 822 { 823 TLBFlushRangeData d; 824 825 /* 826 * If all bits are significant, and len is small, 827 * this devolves to tlb_flush_page. 828 */ 829 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 830 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 831 return; 832 } 833 /* If no page bits are significant, this devolves to tlb_flush. */ 834 if (bits < TARGET_PAGE_BITS) { 835 tlb_flush_by_mmuidx(cpu, idxmap); 836 return; 837 } 838 839 /* This should already be page aligned */ 840 d.addr = addr & TARGET_PAGE_MASK; 841 d.len = len; 842 d.idxmap = idxmap; 843 d.bits = bits; 844 845 if (qemu_cpu_is_self(cpu)) { 846 tlb_flush_range_by_mmuidx_async_0(cpu, d); 847 } else { 848 /* Otherwise allocate a structure, freed by the worker. */ 849 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 850 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 851 RUN_ON_CPU_HOST_PTR(p)); 852 } 853 } 854 855 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 856 uint16_t idxmap, unsigned bits) 857 { 858 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 859 } 860 861 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 862 target_ulong addr, target_ulong len, 863 uint16_t idxmap, unsigned bits) 864 { 865 TLBFlushRangeData d; 866 CPUState *dst_cpu; 867 868 /* 869 * If all bits are significant, and len is small, 870 * this devolves to tlb_flush_page. 871 */ 872 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 873 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 874 return; 875 } 876 /* If no page bits are significant, this devolves to tlb_flush. */ 877 if (bits < TARGET_PAGE_BITS) { 878 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 879 return; 880 } 881 882 /* This should already be page aligned */ 883 d.addr = addr & TARGET_PAGE_MASK; 884 d.len = len; 885 d.idxmap = idxmap; 886 d.bits = bits; 887 888 /* Allocate a separate data block for each destination cpu. */ 889 CPU_FOREACH(dst_cpu) { 890 if (dst_cpu != src_cpu) { 891 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 892 async_run_on_cpu(dst_cpu, 893 tlb_flush_range_by_mmuidx_async_1, 894 RUN_ON_CPU_HOST_PTR(p)); 895 } 896 } 897 898 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 899 } 900 901 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 902 target_ulong addr, 903 uint16_t idxmap, unsigned bits) 904 { 905 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 906 idxmap, bits); 907 } 908 909 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 910 target_ulong addr, 911 target_ulong len, 912 uint16_t idxmap, 913 unsigned bits) 914 { 915 TLBFlushRangeData d, *p; 916 CPUState *dst_cpu; 917 918 /* 919 * If all bits are significant, and len is small, 920 * this devolves to tlb_flush_page. 921 */ 922 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 923 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 924 return; 925 } 926 /* If no page bits are significant, this devolves to tlb_flush. */ 927 if (bits < TARGET_PAGE_BITS) { 928 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 929 return; 930 } 931 932 /* This should already be page aligned */ 933 d.addr = addr & TARGET_PAGE_MASK; 934 d.len = len; 935 d.idxmap = idxmap; 936 d.bits = bits; 937 938 /* Allocate a separate data block for each destination cpu. */ 939 CPU_FOREACH(dst_cpu) { 940 if (dst_cpu != src_cpu) { 941 p = g_memdup(&d, sizeof(d)); 942 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 943 RUN_ON_CPU_HOST_PTR(p)); 944 } 945 } 946 947 p = g_memdup(&d, sizeof(d)); 948 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 949 RUN_ON_CPU_HOST_PTR(p)); 950 } 951 952 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 953 target_ulong addr, 954 uint16_t idxmap, 955 unsigned bits) 956 { 957 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 958 idxmap, bits); 959 } 960 961 /* update the TLBs so that writes to code in the virtual page 'addr' 962 can be detected */ 963 void tlb_protect_code(ram_addr_t ram_addr) 964 { 965 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 966 TARGET_PAGE_SIZE, 967 DIRTY_MEMORY_CODE); 968 } 969 970 /* update the TLB so that writes in physical page 'phys_addr' are no longer 971 tested for self modifying code */ 972 void tlb_unprotect_code(ram_addr_t ram_addr) 973 { 974 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 975 } 976 977 978 /* 979 * Dirty write flag handling 980 * 981 * When the TCG code writes to a location it looks up the address in 982 * the TLB and uses that data to compute the final address. If any of 983 * the lower bits of the address are set then the slow path is forced. 984 * There are a number of reasons to do this but for normal RAM the 985 * most usual is detecting writes to code regions which may invalidate 986 * generated code. 987 * 988 * Other vCPUs might be reading their TLBs during guest execution, so we update 989 * te->addr_write with qatomic_set. We don't need to worry about this for 990 * oversized guests as MTTCG is disabled for them. 991 * 992 * Called with tlb_c.lock held. 993 */ 994 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 995 uintptr_t start, uintptr_t length) 996 { 997 uintptr_t addr = tlb_entry->addr_write; 998 999 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 1000 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 1001 addr &= TARGET_PAGE_MASK; 1002 addr += tlb_entry->addend; 1003 if ((addr - start) < length) { 1004 #if TARGET_LONG_BITS == 32 1005 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1006 ptr_write += HOST_BIG_ENDIAN; 1007 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1008 #elif TCG_OVERSIZED_GUEST 1009 tlb_entry->addr_write |= TLB_NOTDIRTY; 1010 #else 1011 qatomic_set(&tlb_entry->addr_write, 1012 tlb_entry->addr_write | TLB_NOTDIRTY); 1013 #endif 1014 } 1015 } 1016 } 1017 1018 /* 1019 * Called with tlb_c.lock held. 1020 * Called only from the vCPU context, i.e. the TLB's owner thread. 1021 */ 1022 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1023 { 1024 *d = *s; 1025 } 1026 1027 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1028 * the target vCPU). 1029 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1030 * thing actually updated is the target TLB entry ->addr_write flags. 1031 */ 1032 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1033 { 1034 CPUArchState *env; 1035 1036 int mmu_idx; 1037 1038 env = cpu->env_ptr; 1039 qemu_spin_lock(&env_tlb(env)->c.lock); 1040 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1041 unsigned int i; 1042 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1043 1044 for (i = 0; i < n; i++) { 1045 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1046 start1, length); 1047 } 1048 1049 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1050 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1051 start1, length); 1052 } 1053 } 1054 qemu_spin_unlock(&env_tlb(env)->c.lock); 1055 } 1056 1057 /* Called with tlb_c.lock held */ 1058 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1059 target_ulong vaddr) 1060 { 1061 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1062 tlb_entry->addr_write = vaddr; 1063 } 1064 } 1065 1066 /* update the TLB corresponding to virtual page vaddr 1067 so that it is no longer dirty */ 1068 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1069 { 1070 CPUArchState *env = cpu->env_ptr; 1071 int mmu_idx; 1072 1073 assert_cpu_is_self(cpu); 1074 1075 vaddr &= TARGET_PAGE_MASK; 1076 qemu_spin_lock(&env_tlb(env)->c.lock); 1077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1078 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1079 } 1080 1081 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1082 int k; 1083 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1084 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1085 } 1086 } 1087 qemu_spin_unlock(&env_tlb(env)->c.lock); 1088 } 1089 1090 /* Our TLB does not support large pages, so remember the area covered by 1091 large pages and trigger a full TLB flush if these are invalidated. */ 1092 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1093 target_ulong vaddr, target_ulong size) 1094 { 1095 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1096 target_ulong lp_mask = ~(size - 1); 1097 1098 if (lp_addr == (target_ulong)-1) { 1099 /* No previous large page. */ 1100 lp_addr = vaddr; 1101 } else { 1102 /* Extend the existing region to include the new page. 1103 This is a compromise between unnecessary flushes and 1104 the cost of maintaining a full variable size TLB. */ 1105 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1106 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1107 lp_mask <<= 1; 1108 } 1109 } 1110 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1111 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1112 } 1113 1114 /* 1115 * Add a new TLB entry. At most one entry for a given virtual address 1116 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1117 * supplied size is only used by tlb_flush_page. 1118 * 1119 * Called from TCG-generated code, which is under an RCU read-side 1120 * critical section. 1121 */ 1122 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1123 target_ulong vaddr, CPUTLBEntryFull *full) 1124 { 1125 CPUArchState *env = cpu->env_ptr; 1126 CPUTLB *tlb = env_tlb(env); 1127 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1128 MemoryRegionSection *section; 1129 unsigned int index; 1130 target_ulong address; 1131 target_ulong write_address; 1132 uintptr_t addend; 1133 CPUTLBEntry *te, tn; 1134 hwaddr iotlb, xlat, sz, paddr_page; 1135 target_ulong vaddr_page; 1136 int asidx, wp_flags, prot; 1137 bool is_ram, is_romd; 1138 1139 assert_cpu_is_self(cpu); 1140 1141 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1142 sz = TARGET_PAGE_SIZE; 1143 } else { 1144 sz = (hwaddr)1 << full->lg_page_size; 1145 tlb_add_large_page(env, mmu_idx, vaddr, sz); 1146 } 1147 vaddr_page = vaddr & TARGET_PAGE_MASK; 1148 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1149 1150 prot = full->prot; 1151 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1152 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1153 &xlat, &sz, full->attrs, &prot); 1154 assert(sz >= TARGET_PAGE_SIZE); 1155 1156 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx 1157 " prot=%x idx=%d\n", 1158 vaddr, full->phys_addr, prot, mmu_idx); 1159 1160 address = vaddr_page; 1161 if (full->lg_page_size < TARGET_PAGE_BITS) { 1162 /* Repeat the MMU check and TLB fill on every access. */ 1163 address |= TLB_INVALID_MASK; 1164 } 1165 if (full->attrs.byte_swap) { 1166 address |= TLB_BSWAP; 1167 } 1168 1169 is_ram = memory_region_is_ram(section->mr); 1170 is_romd = memory_region_is_romd(section->mr); 1171 1172 if (is_ram || is_romd) { 1173 /* RAM and ROMD both have associated host memory. */ 1174 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1175 } else { 1176 /* I/O does not; force the host address to NULL. */ 1177 addend = 0; 1178 } 1179 1180 write_address = address; 1181 if (is_ram) { 1182 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1183 /* 1184 * Computing is_clean is expensive; avoid all that unless 1185 * the page is actually writable. 1186 */ 1187 if (prot & PAGE_WRITE) { 1188 if (section->readonly) { 1189 write_address |= TLB_DISCARD_WRITE; 1190 } else if (cpu_physical_memory_is_clean(iotlb)) { 1191 write_address |= TLB_NOTDIRTY; 1192 } 1193 } 1194 } else { 1195 /* I/O or ROMD */ 1196 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1197 /* 1198 * Writes to romd devices must go through MMIO to enable write. 1199 * Reads to romd devices go through the ram_ptr found above, 1200 * but of course reads to I/O must go through MMIO. 1201 */ 1202 write_address |= TLB_MMIO; 1203 if (!is_romd) { 1204 address = write_address; 1205 } 1206 } 1207 1208 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1209 TARGET_PAGE_SIZE); 1210 1211 index = tlb_index(env, mmu_idx, vaddr_page); 1212 te = tlb_entry(env, mmu_idx, vaddr_page); 1213 1214 /* 1215 * Hold the TLB lock for the rest of the function. We could acquire/release 1216 * the lock several times in the function, but it is faster to amortize the 1217 * acquisition cost by acquiring it just once. Note that this leads to 1218 * a longer critical section, but this is not a concern since the TLB lock 1219 * is unlikely to be contended. 1220 */ 1221 qemu_spin_lock(&tlb->c.lock); 1222 1223 /* Note that the tlb is no longer clean. */ 1224 tlb->c.dirty |= 1 << mmu_idx; 1225 1226 /* Make sure there's no cached translation for the new page. */ 1227 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1228 1229 /* 1230 * Only evict the old entry to the victim tlb if it's for a 1231 * different page; otherwise just overwrite the stale data. 1232 */ 1233 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1234 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1235 CPUTLBEntry *tv = &desc->vtable[vidx]; 1236 1237 /* Evict the old entry into the victim tlb. */ 1238 copy_tlb_helper_locked(tv, te); 1239 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1240 tlb_n_used_entries_dec(env, mmu_idx); 1241 } 1242 1243 /* refill the tlb */ 1244 /* 1245 * At this point iotlb contains a physical section number in the lower 1246 * TARGET_PAGE_BITS, and either 1247 * + the ram_addr_t of the page base of the target RAM (RAM) 1248 * + the offset within section->mr of the page base (I/O, ROMD) 1249 * We subtract the vaddr_page (which is page aligned and thus won't 1250 * disturb the low bits) to give an offset which can be added to the 1251 * (non-page-aligned) vaddr of the eventual memory access to get 1252 * the MemoryRegion offset for the access. Note that the vaddr we 1253 * subtract here is that of the page base, and not the same as the 1254 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1255 */ 1256 desc->fulltlb[index] = *full; 1257 desc->fulltlb[index].xlat_section = iotlb - vaddr_page; 1258 desc->fulltlb[index].phys_addr = paddr_page; 1259 1260 /* Now calculate the new entry */ 1261 tn.addend = addend - vaddr_page; 1262 if (prot & PAGE_READ) { 1263 tn.addr_read = address; 1264 if (wp_flags & BP_MEM_READ) { 1265 tn.addr_read |= TLB_WATCHPOINT; 1266 } 1267 } else { 1268 tn.addr_read = -1; 1269 } 1270 1271 if (prot & PAGE_EXEC) { 1272 tn.addr_code = address; 1273 } else { 1274 tn.addr_code = -1; 1275 } 1276 1277 tn.addr_write = -1; 1278 if (prot & PAGE_WRITE) { 1279 tn.addr_write = write_address; 1280 if (prot & PAGE_WRITE_INV) { 1281 tn.addr_write |= TLB_INVALID_MASK; 1282 } 1283 if (wp_flags & BP_MEM_WRITE) { 1284 tn.addr_write |= TLB_WATCHPOINT; 1285 } 1286 } 1287 1288 copy_tlb_helper_locked(te, &tn); 1289 tlb_n_used_entries_inc(env, mmu_idx); 1290 qemu_spin_unlock(&tlb->c.lock); 1291 } 1292 1293 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1294 hwaddr paddr, MemTxAttrs attrs, int prot, 1295 int mmu_idx, target_ulong size) 1296 { 1297 CPUTLBEntryFull full = { 1298 .phys_addr = paddr, 1299 .attrs = attrs, 1300 .prot = prot, 1301 .lg_page_size = ctz64(size) 1302 }; 1303 1304 assert(is_power_of_2(size)); 1305 tlb_set_page_full(cpu, mmu_idx, vaddr, &full); 1306 } 1307 1308 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1309 hwaddr paddr, int prot, 1310 int mmu_idx, target_ulong size) 1311 { 1312 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1313 prot, mmu_idx, size); 1314 } 1315 1316 /* 1317 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1318 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1319 * be discarded and looked up again (e.g. via tlb_entry()). 1320 */ 1321 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1322 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1323 { 1324 bool ok; 1325 1326 /* 1327 * This is not a probe, so only valid return is success; failure 1328 * should result in exception + longjmp to the cpu loop. 1329 */ 1330 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1331 access_type, mmu_idx, false, retaddr); 1332 assert(ok); 1333 } 1334 1335 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1336 MMUAccessType access_type, 1337 int mmu_idx, uintptr_t retaddr) 1338 { 1339 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1340 mmu_idx, retaddr); 1341 } 1342 1343 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1344 vaddr addr, unsigned size, 1345 MMUAccessType access_type, 1346 int mmu_idx, MemTxAttrs attrs, 1347 MemTxResult response, 1348 uintptr_t retaddr) 1349 { 1350 CPUClass *cc = CPU_GET_CLASS(cpu); 1351 1352 if (!cpu->ignore_memory_transaction_failures && 1353 cc->tcg_ops->do_transaction_failed) { 1354 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1355 access_type, mmu_idx, attrs, 1356 response, retaddr); 1357 } 1358 } 1359 1360 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1361 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1362 MMUAccessType access_type, MemOp op) 1363 { 1364 CPUState *cpu = env_cpu(env); 1365 hwaddr mr_offset; 1366 MemoryRegionSection *section; 1367 MemoryRegion *mr; 1368 uint64_t val; 1369 MemTxResult r; 1370 1371 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1372 mr = section->mr; 1373 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1374 cpu->mem_io_pc = retaddr; 1375 if (!cpu->can_do_io) { 1376 cpu_io_recompile(cpu, retaddr); 1377 } 1378 1379 { 1380 QEMU_IOTHREAD_LOCK_GUARD(); 1381 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1382 } 1383 1384 if (r != MEMTX_OK) { 1385 hwaddr physaddr = mr_offset + 1386 section->offset_within_address_space - 1387 section->offset_within_region; 1388 1389 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1390 mmu_idx, full->attrs, r, retaddr); 1391 } 1392 return val; 1393 } 1394 1395 /* 1396 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1397 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1398 * because of the side effect of io_writex changing memory layout. 1399 */ 1400 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1401 hwaddr mr_offset) 1402 { 1403 #ifdef CONFIG_PLUGIN 1404 SavedIOTLB *saved = &cs->saved_iotlb; 1405 saved->section = section; 1406 saved->mr_offset = mr_offset; 1407 #endif 1408 } 1409 1410 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1411 int mmu_idx, uint64_t val, target_ulong addr, 1412 uintptr_t retaddr, MemOp op) 1413 { 1414 CPUState *cpu = env_cpu(env); 1415 hwaddr mr_offset; 1416 MemoryRegionSection *section; 1417 MemoryRegion *mr; 1418 MemTxResult r; 1419 1420 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1421 mr = section->mr; 1422 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1423 if (!cpu->can_do_io) { 1424 cpu_io_recompile(cpu, retaddr); 1425 } 1426 cpu->mem_io_pc = retaddr; 1427 1428 /* 1429 * The memory_region_dispatch may trigger a flush/resize 1430 * so for plugins we save the iotlb_data just in case. 1431 */ 1432 save_iotlb_data(cpu, section, mr_offset); 1433 1434 { 1435 QEMU_IOTHREAD_LOCK_GUARD(); 1436 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1437 } 1438 1439 if (r != MEMTX_OK) { 1440 hwaddr physaddr = mr_offset + 1441 section->offset_within_address_space - 1442 section->offset_within_region; 1443 1444 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1445 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1446 retaddr); 1447 } 1448 } 1449 1450 /* Return true if ADDR is present in the victim tlb, and has been copied 1451 back to the main tlb. */ 1452 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1453 MMUAccessType access_type, target_ulong page) 1454 { 1455 size_t vidx; 1456 1457 assert_cpu_is_self(env_cpu(env)); 1458 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1459 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1460 target_ulong cmp = tlb_read_idx(vtlb, access_type); 1461 1462 if (cmp == page) { 1463 /* Found entry in victim tlb, swap tlb and iotlb. */ 1464 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1465 1466 qemu_spin_lock(&env_tlb(env)->c.lock); 1467 copy_tlb_helper_locked(&tmptlb, tlb); 1468 copy_tlb_helper_locked(tlb, vtlb); 1469 copy_tlb_helper_locked(vtlb, &tmptlb); 1470 qemu_spin_unlock(&env_tlb(env)->c.lock); 1471 1472 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1473 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1474 CPUTLBEntryFull tmpf; 1475 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1476 return true; 1477 } 1478 } 1479 return false; 1480 } 1481 1482 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1483 CPUTLBEntryFull *full, uintptr_t retaddr) 1484 { 1485 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1486 1487 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1488 1489 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1490 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1491 } 1492 1493 /* 1494 * Set both VGA and migration bits for simplicity and to remove 1495 * the notdirty callback faster. 1496 */ 1497 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1498 1499 /* We remove the notdirty callback only if the code has been flushed. */ 1500 if (!cpu_physical_memory_is_clean(ram_addr)) { 1501 trace_memory_notdirty_set_dirty(mem_vaddr); 1502 tlb_set_dirty(cpu, mem_vaddr); 1503 } 1504 } 1505 1506 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1507 int fault_size, MMUAccessType access_type, 1508 int mmu_idx, bool nonfault, 1509 void **phost, CPUTLBEntryFull **pfull, 1510 uintptr_t retaddr) 1511 { 1512 uintptr_t index = tlb_index(env, mmu_idx, addr); 1513 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1514 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1515 target_ulong page_addr = addr & TARGET_PAGE_MASK; 1516 int flags = TLB_FLAGS_MASK; 1517 1518 if (!tlb_hit_page(tlb_addr, page_addr)) { 1519 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1520 CPUState *cs = env_cpu(env); 1521 1522 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1523 mmu_idx, nonfault, retaddr)) { 1524 /* Non-faulting page table read failed. */ 1525 *phost = NULL; 1526 *pfull = NULL; 1527 return TLB_INVALID_MASK; 1528 } 1529 1530 /* TLB resize via tlb_fill may have moved the entry. */ 1531 index = tlb_index(env, mmu_idx, addr); 1532 entry = tlb_entry(env, mmu_idx, addr); 1533 1534 /* 1535 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1536 * to force the next access through tlb_fill. We've just 1537 * called tlb_fill, so we know that this entry *is* valid. 1538 */ 1539 flags &= ~TLB_INVALID_MASK; 1540 } 1541 tlb_addr = tlb_read_idx(entry, access_type); 1542 } 1543 flags &= tlb_addr; 1544 1545 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1546 1547 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1548 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1549 *phost = NULL; 1550 return TLB_MMIO; 1551 } 1552 1553 /* Everything else is RAM. */ 1554 *phost = (void *)((uintptr_t)addr + entry->addend); 1555 return flags; 1556 } 1557 1558 int probe_access_full(CPUArchState *env, target_ulong addr, int size, 1559 MMUAccessType access_type, int mmu_idx, 1560 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1561 uintptr_t retaddr) 1562 { 1563 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1564 nonfault, phost, pfull, retaddr); 1565 1566 /* Handle clean RAM pages. */ 1567 if (unlikely(flags & TLB_NOTDIRTY)) { 1568 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1569 flags &= ~TLB_NOTDIRTY; 1570 } 1571 1572 return flags; 1573 } 1574 1575 int probe_access_flags(CPUArchState *env, target_ulong addr, int size, 1576 MMUAccessType access_type, int mmu_idx, 1577 bool nonfault, void **phost, uintptr_t retaddr) 1578 { 1579 CPUTLBEntryFull *full; 1580 int flags; 1581 1582 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1583 1584 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1585 nonfault, phost, &full, retaddr); 1586 1587 /* Handle clean RAM pages. */ 1588 if (unlikely(flags & TLB_NOTDIRTY)) { 1589 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1590 flags &= ~TLB_NOTDIRTY; 1591 } 1592 1593 return flags; 1594 } 1595 1596 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1597 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1598 { 1599 CPUTLBEntryFull *full; 1600 void *host; 1601 int flags; 1602 1603 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1604 1605 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1606 false, &host, &full, retaddr); 1607 1608 /* Per the interface, size == 0 merely faults the access. */ 1609 if (size == 0) { 1610 return NULL; 1611 } 1612 1613 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1614 /* Handle watchpoints. */ 1615 if (flags & TLB_WATCHPOINT) { 1616 int wp_access = (access_type == MMU_DATA_STORE 1617 ? BP_MEM_WRITE : BP_MEM_READ); 1618 cpu_check_watchpoint(env_cpu(env), addr, size, 1619 full->attrs, wp_access, retaddr); 1620 } 1621 1622 /* Handle clean RAM pages. */ 1623 if (flags & TLB_NOTDIRTY) { 1624 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1625 } 1626 } 1627 1628 return host; 1629 } 1630 1631 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1632 MMUAccessType access_type, int mmu_idx) 1633 { 1634 CPUTLBEntryFull *full; 1635 void *host; 1636 int flags; 1637 1638 flags = probe_access_internal(env, addr, 0, access_type, 1639 mmu_idx, true, &host, &full, 0); 1640 1641 /* No combination of flags are expected by the caller. */ 1642 return flags ? NULL : host; 1643 } 1644 1645 /* 1646 * Return a ram_addr_t for the virtual address for execution. 1647 * 1648 * Return -1 if we can't translate and execute from an entire page 1649 * of RAM. This will force us to execute by loading and translating 1650 * one insn at a time, without caching. 1651 * 1652 * NOTE: This function will trigger an exception if the page is 1653 * not executable. 1654 */ 1655 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1656 void **hostp) 1657 { 1658 CPUTLBEntryFull *full; 1659 void *p; 1660 1661 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1662 cpu_mmu_index(env, true), false, &p, &full, 0); 1663 if (p == NULL) { 1664 return -1; 1665 } 1666 1667 if (full->lg_page_size < TARGET_PAGE_BITS) { 1668 return -1; 1669 } 1670 1671 if (hostp) { 1672 *hostp = p; 1673 } 1674 return qemu_ram_addr_from_host_nofail(p); 1675 } 1676 1677 /* Load/store with atomicity primitives. */ 1678 #include "ldst_atomicity.c.inc" 1679 1680 #ifdef CONFIG_PLUGIN 1681 /* 1682 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1683 * This should be a hot path as we will have just looked this path up 1684 * in the softmmu lookup code (or helper). We don't handle re-fills or 1685 * checking the victim table. This is purely informational. 1686 * 1687 * This almost never fails as the memory access being instrumented 1688 * should have just filled the TLB. The one corner case is io_writex 1689 * which can cause TLB flushes and potential resizing of the TLBs 1690 * losing the information we need. In those cases we need to recover 1691 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1692 * from the same thread (which a mem callback will be) this is safe. 1693 */ 1694 1695 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1696 bool is_store, struct qemu_plugin_hwaddr *data) 1697 { 1698 CPUArchState *env = cpu->env_ptr; 1699 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1700 uintptr_t index = tlb_index(env, mmu_idx, addr); 1701 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1702 1703 if (likely(tlb_hit(tlb_addr, addr))) { 1704 /* We must have an iotlb entry for MMIO */ 1705 if (tlb_addr & TLB_MMIO) { 1706 CPUTLBEntryFull *full; 1707 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1708 data->is_io = true; 1709 data->v.io.section = 1710 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1711 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1712 } else { 1713 data->is_io = false; 1714 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1715 } 1716 return true; 1717 } else { 1718 SavedIOTLB *saved = &cpu->saved_iotlb; 1719 data->is_io = true; 1720 data->v.io.section = saved->section; 1721 data->v.io.offset = saved->mr_offset; 1722 return true; 1723 } 1724 } 1725 1726 #endif 1727 1728 /* 1729 * Probe for a load/store operation. 1730 * Return the host address and into @flags. 1731 */ 1732 1733 typedef struct MMULookupPageData { 1734 CPUTLBEntryFull *full; 1735 void *haddr; 1736 target_ulong addr; 1737 int flags; 1738 int size; 1739 } MMULookupPageData; 1740 1741 typedef struct MMULookupLocals { 1742 MMULookupPageData page[2]; 1743 MemOp memop; 1744 int mmu_idx; 1745 } MMULookupLocals; 1746 1747 /** 1748 * mmu_lookup1: translate one page 1749 * @env: cpu context 1750 * @data: lookup parameters 1751 * @mmu_idx: virtual address context 1752 * @access_type: load/store/code 1753 * @ra: return address into tcg generated code, or 0 1754 * 1755 * Resolve the translation for the one page at @data.addr, filling in 1756 * the rest of @data with the results. If the translation fails, 1757 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1758 * @mmu_idx may have resized. 1759 */ 1760 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1761 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1762 { 1763 target_ulong addr = data->addr; 1764 uintptr_t index = tlb_index(env, mmu_idx, addr); 1765 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1766 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1767 bool maybe_resized = false; 1768 1769 /* If the TLB entry is for a different page, reload and try again. */ 1770 if (!tlb_hit(tlb_addr, addr)) { 1771 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1772 addr & TARGET_PAGE_MASK)) { 1773 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1774 maybe_resized = true; 1775 index = tlb_index(env, mmu_idx, addr); 1776 entry = tlb_entry(env, mmu_idx, addr); 1777 } 1778 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1779 } 1780 1781 data->flags = tlb_addr & TLB_FLAGS_MASK; 1782 data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1783 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1784 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1785 1786 return maybe_resized; 1787 } 1788 1789 /** 1790 * mmu_watch_or_dirty 1791 * @env: cpu context 1792 * @data: lookup parameters 1793 * @access_type: load/store/code 1794 * @ra: return address into tcg generated code, or 0 1795 * 1796 * Trigger watchpoints for @data.addr:@data.size; 1797 * record writes to protected clean pages. 1798 */ 1799 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1800 MMUAccessType access_type, uintptr_t ra) 1801 { 1802 CPUTLBEntryFull *full = data->full; 1803 target_ulong addr = data->addr; 1804 int flags = data->flags; 1805 int size = data->size; 1806 1807 /* On watchpoint hit, this will longjmp out. */ 1808 if (flags & TLB_WATCHPOINT) { 1809 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1810 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1811 flags &= ~TLB_WATCHPOINT; 1812 } 1813 1814 /* Note that notdirty is only set for writes. */ 1815 if (flags & TLB_NOTDIRTY) { 1816 notdirty_write(env_cpu(env), addr, size, full, ra); 1817 flags &= ~TLB_NOTDIRTY; 1818 } 1819 data->flags = flags; 1820 } 1821 1822 /** 1823 * mmu_lookup: translate page(s) 1824 * @env: cpu context 1825 * @addr: virtual address 1826 * @oi: combined mmu_idx and MemOp 1827 * @ra: return address into tcg generated code, or 0 1828 * @access_type: load/store/code 1829 * @l: output result 1830 * 1831 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1832 * bytes. Return true if the lookup crosses a page boundary. 1833 */ 1834 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1835 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1836 { 1837 unsigned a_bits; 1838 bool crosspage; 1839 int flags; 1840 1841 l->memop = get_memop(oi); 1842 l->mmu_idx = get_mmuidx(oi); 1843 1844 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1845 1846 /* Handle CPU specific unaligned behaviour */ 1847 a_bits = get_alignment_bits(l->memop); 1848 if (addr & ((1 << a_bits) - 1)) { 1849 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1850 } 1851 1852 l->page[0].addr = addr; 1853 l->page[0].size = memop_size(l->memop); 1854 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1855 l->page[1].size = 0; 1856 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1857 1858 if (likely(!crosspage)) { 1859 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1860 1861 flags = l->page[0].flags; 1862 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1863 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1864 } 1865 if (unlikely(flags & TLB_BSWAP)) { 1866 l->memop ^= MO_BSWAP; 1867 } 1868 } else { 1869 /* Finish compute of page crossing. */ 1870 int size0 = l->page[1].addr - addr; 1871 l->page[1].size = l->page[0].size - size0; 1872 l->page[0].size = size0; 1873 1874 /* 1875 * Lookup both pages, recognizing exceptions from either. If the 1876 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1877 */ 1878 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1879 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1880 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1881 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1882 } 1883 1884 flags = l->page[0].flags | l->page[1].flags; 1885 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1886 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1887 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1888 } 1889 1890 /* 1891 * Since target/sparc is the only user of TLB_BSWAP, and all 1892 * Sparc accesses are aligned, any treatment across two pages 1893 * would be arbitrary. Refuse it until there's a use. 1894 */ 1895 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1896 } 1897 1898 return crosspage; 1899 } 1900 1901 /* 1902 * Probe for an atomic operation. Do not allow unaligned operations, 1903 * or io operations to proceed. Return the host address. 1904 */ 1905 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1906 MemOpIdx oi, int size, uintptr_t retaddr) 1907 { 1908 uintptr_t mmu_idx = get_mmuidx(oi); 1909 MemOp mop = get_memop(oi); 1910 int a_bits = get_alignment_bits(mop); 1911 uintptr_t index; 1912 CPUTLBEntry *tlbe; 1913 target_ulong tlb_addr; 1914 void *hostaddr; 1915 CPUTLBEntryFull *full; 1916 1917 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1918 1919 /* Adjust the given return address. */ 1920 retaddr -= GETPC_ADJ; 1921 1922 /* Enforce guest required alignment. */ 1923 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1924 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1925 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1926 mmu_idx, retaddr); 1927 } 1928 1929 /* Enforce qemu required alignment. */ 1930 if (unlikely(addr & (size - 1))) { 1931 /* We get here if guest alignment was not requested, 1932 or was not enforced by cpu_unaligned_access above. 1933 We might widen the access and emulate, but for now 1934 mark an exception and exit the cpu loop. */ 1935 goto stop_the_world; 1936 } 1937 1938 index = tlb_index(env, mmu_idx, addr); 1939 tlbe = tlb_entry(env, mmu_idx, addr); 1940 1941 /* Check TLB entry and enforce page permissions. */ 1942 tlb_addr = tlb_addr_write(tlbe); 1943 if (!tlb_hit(tlb_addr, addr)) { 1944 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1945 addr & TARGET_PAGE_MASK)) { 1946 tlb_fill(env_cpu(env), addr, size, 1947 MMU_DATA_STORE, mmu_idx, retaddr); 1948 index = tlb_index(env, mmu_idx, addr); 1949 tlbe = tlb_entry(env, mmu_idx, addr); 1950 } 1951 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1952 } 1953 1954 /* 1955 * Let the guest notice RMW on a write-only page. 1956 * We have just verified that the page is writable. 1957 * Subpage lookups may have left TLB_INVALID_MASK set, 1958 * but addr_read will only be -1 if PAGE_READ was unset. 1959 */ 1960 if (unlikely(tlbe->addr_read == -1)) { 1961 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1962 /* 1963 * Since we don't support reads and writes to different 1964 * addresses, and we do have the proper page loaded for 1965 * write, this shouldn't ever return. But just in case, 1966 * handle via stop-the-world. 1967 */ 1968 goto stop_the_world; 1969 } 1970 /* Collect TLB_WATCHPOINT for read. */ 1971 tlb_addr |= tlbe->addr_read; 1972 1973 /* Notice an IO access or a needs-MMU-lookup access */ 1974 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1975 /* There's really nothing that can be done to 1976 support this apart from stop-the-world. */ 1977 goto stop_the_world; 1978 } 1979 1980 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1981 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1982 1983 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1984 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1985 } 1986 1987 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1988 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, 1989 BP_MEM_READ | BP_MEM_WRITE, retaddr); 1990 } 1991 1992 return hostaddr; 1993 1994 stop_the_world: 1995 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1996 } 1997 1998 /* 1999 * Load Helpers 2000 * 2001 * We support two different access types. SOFTMMU_CODE_ACCESS is 2002 * specifically for reading instructions from system memory. It is 2003 * called by the translation loop and in some helpers where the code 2004 * is disassembled. It shouldn't be called directly by guest code. 2005 * 2006 * For the benefit of TCG generated code, we want to avoid the 2007 * complication of ABI-specific return type promotion and always 2008 * return a value extended to the register size of the host. This is 2009 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2010 * data, and for that we always have uint64_t. 2011 * 2012 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2013 */ 2014 2015 /** 2016 * do_ld_mmio_beN: 2017 * @env: cpu context 2018 * @p: translation parameters 2019 * @ret_be: accumulated data 2020 * @mmu_idx: virtual address context 2021 * @ra: return address into tcg generated code, or 0 2022 * 2023 * Load @p->size bytes from @p->addr, which is memory-mapped i/o. 2024 * The bytes are concatenated in big-endian order with @ret_be. 2025 */ 2026 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p, 2027 uint64_t ret_be, int mmu_idx, 2028 MMUAccessType type, uintptr_t ra) 2029 { 2030 CPUTLBEntryFull *full = p->full; 2031 target_ulong addr = p->addr; 2032 int i, size = p->size; 2033 2034 QEMU_IOTHREAD_LOCK_GUARD(); 2035 for (i = 0; i < size; i++) { 2036 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB); 2037 ret_be = (ret_be << 8) | x; 2038 } 2039 return ret_be; 2040 } 2041 2042 /** 2043 * do_ld_bytes_beN 2044 * @p: translation parameters 2045 * @ret_be: accumulated data 2046 * 2047 * Load @p->size bytes from @p->haddr, which is RAM. 2048 * The bytes to concatenated in big-endian order with @ret_be. 2049 */ 2050 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2051 { 2052 uint8_t *haddr = p->haddr; 2053 int i, size = p->size; 2054 2055 for (i = 0; i < size; i++) { 2056 ret_be = (ret_be << 8) | haddr[i]; 2057 } 2058 return ret_be; 2059 } 2060 2061 /** 2062 * do_ld_parts_beN 2063 * @p: translation parameters 2064 * @ret_be: accumulated data 2065 * 2066 * As do_ld_bytes_beN, but atomically on each aligned part. 2067 */ 2068 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2069 { 2070 void *haddr = p->haddr; 2071 int size = p->size; 2072 2073 do { 2074 uint64_t x; 2075 int n; 2076 2077 /* 2078 * Find minimum of alignment and size. 2079 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2080 * would have only checked the low bits of addr|size once at the start, 2081 * but is just as easy. 2082 */ 2083 switch (((uintptr_t)haddr | size) & 7) { 2084 case 4: 2085 x = cpu_to_be32(load_atomic4(haddr)); 2086 ret_be = (ret_be << 32) | x; 2087 n = 4; 2088 break; 2089 case 2: 2090 case 6: 2091 x = cpu_to_be16(load_atomic2(haddr)); 2092 ret_be = (ret_be << 16) | x; 2093 n = 2; 2094 break; 2095 default: 2096 x = *(uint8_t *)haddr; 2097 ret_be = (ret_be << 8) | x; 2098 n = 1; 2099 break; 2100 case 0: 2101 g_assert_not_reached(); 2102 } 2103 haddr += n; 2104 size -= n; 2105 } while (size != 0); 2106 return ret_be; 2107 } 2108 2109 /** 2110 * do_ld_parts_be4 2111 * @p: translation parameters 2112 * @ret_be: accumulated data 2113 * 2114 * As do_ld_bytes_beN, but with one atomic load. 2115 * Four aligned bytes are guaranteed to cover the load. 2116 */ 2117 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2118 { 2119 int o = p->addr & 3; 2120 uint32_t x = load_atomic4(p->haddr - o); 2121 2122 x = cpu_to_be32(x); 2123 x <<= o * 8; 2124 x >>= (4 - p->size) * 8; 2125 return (ret_be << (p->size * 8)) | x; 2126 } 2127 2128 /** 2129 * do_ld_parts_be8 2130 * @p: translation parameters 2131 * @ret_be: accumulated data 2132 * 2133 * As do_ld_bytes_beN, but with one atomic load. 2134 * Eight aligned bytes are guaranteed to cover the load. 2135 */ 2136 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2137 MMULookupPageData *p, uint64_t ret_be) 2138 { 2139 int o = p->addr & 7; 2140 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2141 2142 x = cpu_to_be64(x); 2143 x <<= o * 8; 2144 x >>= (8 - p->size) * 8; 2145 return (ret_be << (p->size * 8)) | x; 2146 } 2147 2148 /** 2149 * do_ld_parts_be16 2150 * @p: translation parameters 2151 * @ret_be: accumulated data 2152 * 2153 * As do_ld_bytes_beN, but with one atomic load. 2154 * 16 aligned bytes are guaranteed to cover the load. 2155 */ 2156 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, 2157 MMULookupPageData *p, uint64_t ret_be) 2158 { 2159 int o = p->addr & 15; 2160 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); 2161 int size = p->size; 2162 2163 if (!HOST_BIG_ENDIAN) { 2164 y = bswap128(y); 2165 } 2166 y = int128_lshift(y, o * 8); 2167 y = int128_urshift(y, (16 - size) * 8); 2168 x = int128_make64(ret_be); 2169 x = int128_lshift(x, size * 8); 2170 return int128_or(x, y); 2171 } 2172 2173 /* 2174 * Wrapper for the above. 2175 */ 2176 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2177 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2178 MemOp mop, uintptr_t ra) 2179 { 2180 MemOp atom; 2181 unsigned tmp, half_size; 2182 2183 if (unlikely(p->flags & TLB_MMIO)) { 2184 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra); 2185 } 2186 2187 /* 2188 * It is a given that we cross a page and therefore there is no 2189 * atomicity for the load as a whole, but subobjects may need attention. 2190 */ 2191 atom = mop & MO_ATOM_MASK; 2192 switch (atom) { 2193 case MO_ATOM_SUBALIGN: 2194 return do_ld_parts_beN(p, ret_be); 2195 2196 case MO_ATOM_IFALIGN_PAIR: 2197 case MO_ATOM_WITHIN16_PAIR: 2198 tmp = mop & MO_SIZE; 2199 tmp = tmp ? tmp - 1 : 0; 2200 half_size = 1 << tmp; 2201 if (atom == MO_ATOM_IFALIGN_PAIR 2202 ? p->size == half_size 2203 : p->size >= half_size) { 2204 if (!HAVE_al8_fast && p->size < 4) { 2205 return do_ld_whole_be4(p, ret_be); 2206 } else { 2207 return do_ld_whole_be8(env, ra, p, ret_be); 2208 } 2209 } 2210 /* fall through */ 2211 2212 case MO_ATOM_IFALIGN: 2213 case MO_ATOM_WITHIN16: 2214 case MO_ATOM_NONE: 2215 return do_ld_bytes_beN(p, ret_be); 2216 2217 default: 2218 g_assert_not_reached(); 2219 } 2220 } 2221 2222 /* 2223 * Wrapper for the above, for 8 < size < 16. 2224 */ 2225 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, 2226 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2227 { 2228 int size = p->size; 2229 uint64_t b; 2230 MemOp atom; 2231 2232 if (unlikely(p->flags & TLB_MMIO)) { 2233 p->size = size - 8; 2234 a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra); 2235 p->addr += p->size; 2236 p->size = 8; 2237 b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra); 2238 return int128_make128(b, a); 2239 } 2240 2241 /* 2242 * It is a given that we cross a page and therefore there is no 2243 * atomicity for the load as a whole, but subobjects may need attention. 2244 */ 2245 atom = mop & MO_ATOM_MASK; 2246 switch (atom) { 2247 case MO_ATOM_SUBALIGN: 2248 p->size = size - 8; 2249 a = do_ld_parts_beN(p, a); 2250 p->haddr += size - 8; 2251 p->size = 8; 2252 b = do_ld_parts_beN(p, 0); 2253 break; 2254 2255 case MO_ATOM_WITHIN16_PAIR: 2256 /* Since size > 8, this is the half that must be atomic. */ 2257 return do_ld_whole_be16(env, ra, p, a); 2258 2259 case MO_ATOM_IFALIGN_PAIR: 2260 /* 2261 * Since size > 8, both halves are misaligned, 2262 * and so neither is atomic. 2263 */ 2264 case MO_ATOM_IFALIGN: 2265 case MO_ATOM_WITHIN16: 2266 case MO_ATOM_NONE: 2267 p->size = size - 8; 2268 a = do_ld_bytes_beN(p, a); 2269 b = ldq_be_p(p->haddr + size - 8); 2270 break; 2271 2272 default: 2273 g_assert_not_reached(); 2274 } 2275 2276 return int128_make128(b, a); 2277 } 2278 2279 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2280 MMUAccessType type, uintptr_t ra) 2281 { 2282 if (unlikely(p->flags & TLB_MMIO)) { 2283 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2284 } else { 2285 return *(uint8_t *)p->haddr; 2286 } 2287 } 2288 2289 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2290 MMUAccessType type, MemOp memop, uintptr_t ra) 2291 { 2292 uint64_t ret; 2293 2294 if (unlikely(p->flags & TLB_MMIO)) { 2295 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2296 } 2297 2298 /* Perform the load host endian, then swap if necessary. */ 2299 ret = load_atom_2(env, ra, p->haddr, memop); 2300 if (memop & MO_BSWAP) { 2301 ret = bswap16(ret); 2302 } 2303 return ret; 2304 } 2305 2306 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2307 MMUAccessType type, MemOp memop, uintptr_t ra) 2308 { 2309 uint32_t ret; 2310 2311 if (unlikely(p->flags & TLB_MMIO)) { 2312 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2313 } 2314 2315 /* Perform the load host endian. */ 2316 ret = load_atom_4(env, ra, p->haddr, memop); 2317 if (memop & MO_BSWAP) { 2318 ret = bswap32(ret); 2319 } 2320 return ret; 2321 } 2322 2323 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2324 MMUAccessType type, MemOp memop, uintptr_t ra) 2325 { 2326 uint64_t ret; 2327 2328 if (unlikely(p->flags & TLB_MMIO)) { 2329 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2330 } 2331 2332 /* Perform the load host endian. */ 2333 ret = load_atom_8(env, ra, p->haddr, memop); 2334 if (memop & MO_BSWAP) { 2335 ret = bswap64(ret); 2336 } 2337 return ret; 2338 } 2339 2340 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2341 uintptr_t ra, MMUAccessType access_type) 2342 { 2343 MMULookupLocals l; 2344 bool crosspage; 2345 2346 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2347 tcg_debug_assert(!crosspage); 2348 2349 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2350 } 2351 2352 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 2353 MemOpIdx oi, uintptr_t retaddr) 2354 { 2355 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2356 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2357 } 2358 2359 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2360 uintptr_t ra, MMUAccessType access_type) 2361 { 2362 MMULookupLocals l; 2363 bool crosspage; 2364 uint16_t ret; 2365 uint8_t a, b; 2366 2367 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2368 if (likely(!crosspage)) { 2369 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2370 } 2371 2372 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2373 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2374 2375 if ((l.memop & MO_BSWAP) == MO_LE) { 2376 ret = a | (b << 8); 2377 } else { 2378 ret = b | (a << 8); 2379 } 2380 return ret; 2381 } 2382 2383 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 2384 MemOpIdx oi, uintptr_t retaddr) 2385 { 2386 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2387 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2388 } 2389 2390 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2391 uintptr_t ra, MMUAccessType access_type) 2392 { 2393 MMULookupLocals l; 2394 bool crosspage; 2395 uint32_t ret; 2396 2397 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2398 if (likely(!crosspage)) { 2399 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2400 } 2401 2402 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2403 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2404 if ((l.memop & MO_BSWAP) == MO_LE) { 2405 ret = bswap32(ret); 2406 } 2407 return ret; 2408 } 2409 2410 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 2411 MemOpIdx oi, uintptr_t retaddr) 2412 { 2413 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2414 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2415 } 2416 2417 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2418 uintptr_t ra, MMUAccessType access_type) 2419 { 2420 MMULookupLocals l; 2421 bool crosspage; 2422 uint64_t ret; 2423 2424 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2425 if (likely(!crosspage)) { 2426 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2427 } 2428 2429 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2430 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2431 if ((l.memop & MO_BSWAP) == MO_LE) { 2432 ret = bswap64(ret); 2433 } 2434 return ret; 2435 } 2436 2437 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 2438 MemOpIdx oi, uintptr_t retaddr) 2439 { 2440 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2441 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2442 } 2443 2444 /* 2445 * Provide signed versions of the load routines as well. We can of course 2446 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2447 */ 2448 2449 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 2450 MemOpIdx oi, uintptr_t retaddr) 2451 { 2452 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2453 } 2454 2455 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 2456 MemOpIdx oi, uintptr_t retaddr) 2457 { 2458 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2459 } 2460 2461 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 2462 MemOpIdx oi, uintptr_t retaddr) 2463 { 2464 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2465 } 2466 2467 static Int128 do_ld16_mmu(CPUArchState *env, target_ulong addr, 2468 MemOpIdx oi, uintptr_t ra) 2469 { 2470 MMULookupLocals l; 2471 bool crosspage; 2472 uint64_t a, b; 2473 Int128 ret; 2474 int first; 2475 2476 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); 2477 if (likely(!crosspage)) { 2478 /* Perform the load host endian. */ 2479 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2480 QEMU_IOTHREAD_LOCK_GUARD(); 2481 a = io_readx(env, l.page[0].full, l.mmu_idx, addr, 2482 ra, MMU_DATA_LOAD, MO_64); 2483 b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8, 2484 ra, MMU_DATA_LOAD, MO_64); 2485 ret = int128_make128(HOST_BIG_ENDIAN ? b : a, 2486 HOST_BIG_ENDIAN ? a : b); 2487 } else { 2488 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); 2489 } 2490 if (l.memop & MO_BSWAP) { 2491 ret = bswap128(ret); 2492 } 2493 return ret; 2494 } 2495 2496 first = l.page[0].size; 2497 if (first == 8) { 2498 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2499 2500 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2501 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2502 if ((mop8 & MO_BSWAP) == MO_LE) { 2503 ret = int128_make128(a, b); 2504 } else { 2505 ret = int128_make128(b, a); 2506 } 2507 return ret; 2508 } 2509 2510 if (first < 8) { 2511 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, 2512 MMU_DATA_LOAD, l.memop, ra); 2513 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); 2514 } else { 2515 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2516 b = int128_getlo(ret); 2517 ret = int128_lshift(ret, l.page[1].size * 8); 2518 a = int128_gethi(ret); 2519 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, 2520 MMU_DATA_LOAD, l.memop, ra); 2521 ret = int128_make128(b, a); 2522 } 2523 if ((l.memop & MO_BSWAP) == MO_LE) { 2524 ret = bswap128(ret); 2525 } 2526 return ret; 2527 } 2528 2529 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 2530 uint32_t oi, uintptr_t retaddr) 2531 { 2532 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2533 return do_ld16_mmu(env, addr, oi, retaddr); 2534 } 2535 2536 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) 2537 { 2538 return helper_ld16_mmu(env, addr, oi, GETPC()); 2539 } 2540 2541 /* 2542 * Load helpers for cpu_ldst.h. 2543 */ 2544 2545 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2546 { 2547 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2548 } 2549 2550 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2551 { 2552 uint8_t ret; 2553 2554 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2555 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2556 plugin_load_cb(env, addr, oi); 2557 return ret; 2558 } 2559 2560 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 2561 MemOpIdx oi, uintptr_t ra) 2562 { 2563 uint16_t ret; 2564 2565 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2566 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2567 plugin_load_cb(env, addr, oi); 2568 return ret; 2569 } 2570 2571 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 2572 MemOpIdx oi, uintptr_t ra) 2573 { 2574 uint32_t ret; 2575 2576 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2577 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2578 plugin_load_cb(env, addr, oi); 2579 return ret; 2580 } 2581 2582 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 2583 MemOpIdx oi, uintptr_t ra) 2584 { 2585 uint64_t ret; 2586 2587 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2588 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2589 plugin_load_cb(env, addr, oi); 2590 return ret; 2591 } 2592 2593 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 2594 MemOpIdx oi, uintptr_t ra) 2595 { 2596 Int128 ret; 2597 2598 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2599 ret = do_ld16_mmu(env, addr, oi, ra); 2600 plugin_load_cb(env, addr, oi); 2601 return ret; 2602 } 2603 2604 /* 2605 * Store Helpers 2606 */ 2607 2608 /** 2609 * do_st_mmio_leN: 2610 * @env: cpu context 2611 * @p: translation parameters 2612 * @val_le: data to store 2613 * @mmu_idx: virtual address context 2614 * @ra: return address into tcg generated code, or 0 2615 * 2616 * Store @p->size bytes at @p->addr, which is memory-mapped i/o. 2617 * The bytes to store are extracted in little-endian order from @val_le; 2618 * return the bytes of @val_le beyond @p->size that have not been stored. 2619 */ 2620 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p, 2621 uint64_t val_le, int mmu_idx, uintptr_t ra) 2622 { 2623 CPUTLBEntryFull *full = p->full; 2624 target_ulong addr = p->addr; 2625 int i, size = p->size; 2626 2627 QEMU_IOTHREAD_LOCK_GUARD(); 2628 for (i = 0; i < size; i++, val_le >>= 8) { 2629 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB); 2630 } 2631 return val_le; 2632 } 2633 2634 /* 2635 * Wrapper for the above. 2636 */ 2637 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2638 uint64_t val_le, int mmu_idx, 2639 MemOp mop, uintptr_t ra) 2640 { 2641 MemOp atom; 2642 unsigned tmp, half_size; 2643 2644 if (unlikely(p->flags & TLB_MMIO)) { 2645 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra); 2646 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2647 return val_le >> (p->size * 8); 2648 } 2649 2650 /* 2651 * It is a given that we cross a page and therefore there is no atomicity 2652 * for the store as a whole, but subobjects may need attention. 2653 */ 2654 atom = mop & MO_ATOM_MASK; 2655 switch (atom) { 2656 case MO_ATOM_SUBALIGN: 2657 return store_parts_leN(p->haddr, p->size, val_le); 2658 2659 case MO_ATOM_IFALIGN_PAIR: 2660 case MO_ATOM_WITHIN16_PAIR: 2661 tmp = mop & MO_SIZE; 2662 tmp = tmp ? tmp - 1 : 0; 2663 half_size = 1 << tmp; 2664 if (atom == MO_ATOM_IFALIGN_PAIR 2665 ? p->size == half_size 2666 : p->size >= half_size) { 2667 if (!HAVE_al8_fast && p->size <= 4) { 2668 return store_whole_le4(p->haddr, p->size, val_le); 2669 } else if (HAVE_al8) { 2670 return store_whole_le8(p->haddr, p->size, val_le); 2671 } else { 2672 cpu_loop_exit_atomic(env_cpu(env), ra); 2673 } 2674 } 2675 /* fall through */ 2676 2677 case MO_ATOM_IFALIGN: 2678 case MO_ATOM_WITHIN16: 2679 case MO_ATOM_NONE: 2680 return store_bytes_leN(p->haddr, p->size, val_le); 2681 2682 default: 2683 g_assert_not_reached(); 2684 } 2685 } 2686 2687 /* 2688 * Wrapper for the above, for 8 < size < 16. 2689 */ 2690 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, 2691 Int128 val_le, int mmu_idx, 2692 MemOp mop, uintptr_t ra) 2693 { 2694 int size = p->size; 2695 MemOp atom; 2696 2697 if (unlikely(p->flags & TLB_MMIO)) { 2698 p->size = 8; 2699 do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra); 2700 p->size = size - 8; 2701 p->addr += 8; 2702 return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra); 2703 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2704 return int128_gethi(val_le) >> ((size - 8) * 8); 2705 } 2706 2707 /* 2708 * It is a given that we cross a page and therefore there is no atomicity 2709 * for the store as a whole, but subobjects may need attention. 2710 */ 2711 atom = mop & MO_ATOM_MASK; 2712 switch (atom) { 2713 case MO_ATOM_SUBALIGN: 2714 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2715 return store_parts_leN(p->haddr + 8, p->size - 8, 2716 int128_gethi(val_le)); 2717 2718 case MO_ATOM_WITHIN16_PAIR: 2719 /* Since size > 8, this is the half that must be atomic. */ 2720 if (!HAVE_ATOMIC128_RW) { 2721 cpu_loop_exit_atomic(env_cpu(env), ra); 2722 } 2723 return store_whole_le16(p->haddr, p->size, val_le); 2724 2725 case MO_ATOM_IFALIGN_PAIR: 2726 /* 2727 * Since size > 8, both halves are misaligned, 2728 * and so neither is atomic. 2729 */ 2730 case MO_ATOM_IFALIGN: 2731 case MO_ATOM_NONE: 2732 stq_le_p(p->haddr, int128_getlo(val_le)); 2733 return store_bytes_leN(p->haddr + 8, p->size - 8, 2734 int128_gethi(val_le)); 2735 2736 default: 2737 g_assert_not_reached(); 2738 } 2739 } 2740 2741 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2742 int mmu_idx, uintptr_t ra) 2743 { 2744 if (unlikely(p->flags & TLB_MMIO)) { 2745 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2746 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2747 /* nothing */ 2748 } else { 2749 *(uint8_t *)p->haddr = val; 2750 } 2751 } 2752 2753 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2754 int mmu_idx, MemOp memop, uintptr_t ra) 2755 { 2756 if (unlikely(p->flags & TLB_MMIO)) { 2757 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2758 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2759 /* nothing */ 2760 } else { 2761 /* Swap to host endian if necessary, then store. */ 2762 if (memop & MO_BSWAP) { 2763 val = bswap16(val); 2764 } 2765 store_atom_2(env, ra, p->haddr, memop, val); 2766 } 2767 } 2768 2769 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2770 int mmu_idx, MemOp memop, uintptr_t ra) 2771 { 2772 if (unlikely(p->flags & TLB_MMIO)) { 2773 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2774 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2775 /* nothing */ 2776 } else { 2777 /* Swap to host endian if necessary, then store. */ 2778 if (memop & MO_BSWAP) { 2779 val = bswap32(val); 2780 } 2781 store_atom_4(env, ra, p->haddr, memop, val); 2782 } 2783 } 2784 2785 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2786 int mmu_idx, MemOp memop, uintptr_t ra) 2787 { 2788 if (unlikely(p->flags & TLB_MMIO)) { 2789 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2790 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2791 /* nothing */ 2792 } else { 2793 /* Swap to host endian if necessary, then store. */ 2794 if (memop & MO_BSWAP) { 2795 val = bswap64(val); 2796 } 2797 store_atom_8(env, ra, p->haddr, memop, val); 2798 } 2799 } 2800 2801 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2802 MemOpIdx oi, uintptr_t ra) 2803 { 2804 MMULookupLocals l; 2805 bool crosspage; 2806 2807 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2808 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2809 tcg_debug_assert(!crosspage); 2810 2811 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2812 } 2813 2814 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2815 MemOpIdx oi, uintptr_t ra) 2816 { 2817 MMULookupLocals l; 2818 bool crosspage; 2819 uint8_t a, b; 2820 2821 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2822 if (likely(!crosspage)) { 2823 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2824 return; 2825 } 2826 2827 if ((l.memop & MO_BSWAP) == MO_LE) { 2828 a = val, b = val >> 8; 2829 } else { 2830 b = val, a = val >> 8; 2831 } 2832 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2833 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2834 } 2835 2836 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2837 MemOpIdx oi, uintptr_t retaddr) 2838 { 2839 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2840 do_st2_mmu(env, addr, val, oi, retaddr); 2841 } 2842 2843 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2844 MemOpIdx oi, uintptr_t ra) 2845 { 2846 MMULookupLocals l; 2847 bool crosspage; 2848 2849 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2850 if (likely(!crosspage)) { 2851 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2852 return; 2853 } 2854 2855 /* Swap to little endian for simplicity, then store by bytes. */ 2856 if ((l.memop & MO_BSWAP) != MO_LE) { 2857 val = bswap32(val); 2858 } 2859 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2860 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2861 } 2862 2863 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2864 MemOpIdx oi, uintptr_t retaddr) 2865 { 2866 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2867 do_st4_mmu(env, addr, val, oi, retaddr); 2868 } 2869 2870 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2871 MemOpIdx oi, uintptr_t ra) 2872 { 2873 MMULookupLocals l; 2874 bool crosspage; 2875 2876 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2877 if (likely(!crosspage)) { 2878 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2879 return; 2880 } 2881 2882 /* Swap to little endian for simplicity, then store by bytes. */ 2883 if ((l.memop & MO_BSWAP) != MO_LE) { 2884 val = bswap64(val); 2885 } 2886 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2887 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2888 } 2889 2890 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 2891 MemOpIdx oi, uintptr_t retaddr) 2892 { 2893 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2894 do_st8_mmu(env, addr, val, oi, retaddr); 2895 } 2896 2897 static void do_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val, 2898 MemOpIdx oi, uintptr_t ra) 2899 { 2900 MMULookupLocals l; 2901 bool crosspage; 2902 uint64_t a, b; 2903 int first; 2904 2905 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2906 if (likely(!crosspage)) { 2907 /* Swap to host endian if necessary, then store. */ 2908 if (l.memop & MO_BSWAP) { 2909 val = bswap128(val); 2910 } 2911 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2912 QEMU_IOTHREAD_LOCK_GUARD(); 2913 if (HOST_BIG_ENDIAN) { 2914 b = int128_getlo(val), a = int128_gethi(val); 2915 } else { 2916 a = int128_getlo(val), b = int128_gethi(val); 2917 } 2918 io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64); 2919 io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64); 2920 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2921 /* nothing */ 2922 } else { 2923 store_atom_16(env, ra, l.page[0].haddr, l.memop, val); 2924 } 2925 return; 2926 } 2927 2928 first = l.page[0].size; 2929 if (first == 8) { 2930 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2931 2932 if (l.memop & MO_BSWAP) { 2933 val = bswap128(val); 2934 } 2935 if (HOST_BIG_ENDIAN) { 2936 b = int128_getlo(val), a = int128_gethi(val); 2937 } else { 2938 a = int128_getlo(val), b = int128_gethi(val); 2939 } 2940 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); 2941 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); 2942 return; 2943 } 2944 2945 if ((l.memop & MO_BSWAP) != MO_LE) { 2946 val = bswap128(val); 2947 } 2948 if (first < 8) { 2949 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2950 val = int128_urshift(val, first * 8); 2951 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2952 } else { 2953 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2954 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); 2955 } 2956 } 2957 2958 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 2959 MemOpIdx oi, uintptr_t retaddr) 2960 { 2961 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2962 do_st16_mmu(env, addr, val, oi, retaddr); 2963 } 2964 2965 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 2966 { 2967 helper_st16_mmu(env, addr, val, oi, GETPC()); 2968 } 2969 2970 /* 2971 * Store Helpers for cpu_ldst.h 2972 */ 2973 2974 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2975 { 2976 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2977 } 2978 2979 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2980 MemOpIdx oi, uintptr_t retaddr) 2981 { 2982 helper_stb_mmu(env, addr, val, oi, retaddr); 2983 plugin_store_cb(env, addr, oi); 2984 } 2985 2986 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2987 MemOpIdx oi, uintptr_t retaddr) 2988 { 2989 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2990 do_st2_mmu(env, addr, val, oi, retaddr); 2991 plugin_store_cb(env, addr, oi); 2992 } 2993 2994 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2995 MemOpIdx oi, uintptr_t retaddr) 2996 { 2997 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2998 do_st4_mmu(env, addr, val, oi, retaddr); 2999 plugin_store_cb(env, addr, oi); 3000 } 3001 3002 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 3003 MemOpIdx oi, uintptr_t retaddr) 3004 { 3005 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3006 do_st8_mmu(env, addr, val, oi, retaddr); 3007 plugin_store_cb(env, addr, oi); 3008 } 3009 3010 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val, 3011 MemOpIdx oi, uintptr_t retaddr) 3012 { 3013 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3014 do_st16_mmu(env, addr, val, oi, retaddr); 3015 plugin_store_cb(env, addr, oi); 3016 } 3017 3018 #include "ldst_common.c.inc" 3019 3020 /* 3021 * First set of functions passes in OI and RETADDR. 3022 * This makes them callable from other helpers. 3023 */ 3024 3025 #define ATOMIC_NAME(X) \ 3026 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 3027 3028 #define ATOMIC_MMU_CLEANUP 3029 3030 #include "atomic_common.c.inc" 3031 3032 #define DATA_SIZE 1 3033 #include "atomic_template.h" 3034 3035 #define DATA_SIZE 2 3036 #include "atomic_template.h" 3037 3038 #define DATA_SIZE 4 3039 #include "atomic_template.h" 3040 3041 #ifdef CONFIG_ATOMIC64 3042 #define DATA_SIZE 8 3043 #include "atomic_template.h" 3044 #endif 3045 3046 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128) 3047 #define DATA_SIZE 16 3048 #include "atomic_template.h" 3049 #endif 3050 3051 /* Code access functions. */ 3052 3053 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3054 { 3055 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 3056 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3057 } 3058 3059 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3060 { 3061 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 3062 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3063 } 3064 3065 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3066 { 3067 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 3068 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3069 } 3070 3071 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3072 { 3073 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 3074 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3075 } 3076 3077 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3078 MemOpIdx oi, uintptr_t retaddr) 3079 { 3080 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3081 } 3082 3083 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3084 MemOpIdx oi, uintptr_t retaddr) 3085 { 3086 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3087 } 3088 3089 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3090 MemOpIdx oi, uintptr_t retaddr) 3091 { 3092 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3093 } 3094 3095 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3096 MemOpIdx oi, uintptr_t retaddr) 3097 { 3098 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3099 } 3100