xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 62a4db55)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace/trace-root.h"
37 #include "trace/mem.h"
38 #include "tb-hash.h"
39 #include "internal.h"
40 #ifdef CONFIG_PLUGIN
41 #include "qemu/plugin-memory.h"
42 #endif
43 
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
47 
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 #  define DEBUG_TLB_LOG_GATE 1
52 # else
53 #  define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
59 
60 #define tlb_debug(fmt, ...) do { \
61     if (DEBUG_TLB_LOG_GATE) { \
62         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63                       ## __VA_ARGS__); \
64     } else if (DEBUG_TLB_GATE) { \
65         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66     } \
67 } while (0)
68 
69 #define assert_cpu_is_self(cpu) do {                              \
70         if (DEBUG_TLB_GATE) {                                     \
71             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
72         }                                                         \
73     } while (0)
74 
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76  * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78 
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80  */
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83 
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
85 {
86     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
87 }
88 
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
90 {
91     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
92 }
93 
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95                              size_t max_entries)
96 {
97     desc->window_begin_ns = ns;
98     desc->window_max_entries = max_entries;
99 }
100 
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
102 {
103     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
104 
105     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
106         qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
107     }
108 }
109 
110 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
111 {
112     /* Discard jump cache entries for any tb which might potentially
113        overlap the flushed page.  */
114     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
115     tb_jmp_cache_clear_page(cpu, addr);
116 }
117 
118 /**
119  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120  * @desc: The CPUTLBDesc portion of the TLB
121  * @fast: The CPUTLBDescFast portion of the same TLB
122  *
123  * Called with tlb_lock_held.
124  *
125  * We have two main constraints when resizing a TLB: (1) we only resize it
126  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127  * the array or unnecessarily flushing it), which means we do not control how
128  * frequently the resizing can occur; (2) we don't have access to the guest's
129  * future scheduling decisions, and therefore have to decide the magnitude of
130  * the resize based on past observations.
131  *
132  * In general, a memory-hungry process can benefit greatly from an appropriately
133  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134  * we just have to make the TLB as large as possible; while an oversized TLB
135  * results in minimal TLB miss rates, it also takes longer to be flushed
136  * (flushes can be _very_ frequent), and the reduced locality can also hurt
137  * performance.
138  *
139  * To achieve near-optimal performance for all kinds of workloads, we:
140  *
141  * 1. Aggressively increase the size of the TLB when the use rate of the
142  * TLB being flushed is high, since it is likely that in the near future this
143  * memory-hungry process will execute again, and its memory hungriness will
144  * probably be similar.
145  *
146  * 2. Slowly reduce the size of the TLB as the use rate declines over a
147  * reasonably large time window. The rationale is that if in such a time window
148  * we have not observed a high TLB use rate, it is likely that we won't observe
149  * it in the near future. In that case, once a time window expires we downsize
150  * the TLB to match the maximum use rate observed in the window.
151  *
152  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153  * since in that range performance is likely near-optimal. Recall that the TLB
154  * is direct mapped, so we want the use rate to be low (or at least not too
155  * high), since otherwise we are likely to have a significant amount of
156  * conflict misses.
157  */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159                                   int64_t now)
160 {
161     size_t old_size = tlb_n_entries(fast);
162     size_t rate;
163     size_t new_size = old_size;
164     int64_t window_len_ms = 100;
165     int64_t window_len_ns = window_len_ms * 1000 * 1000;
166     bool window_expired = now > desc->window_begin_ns + window_len_ns;
167 
168     if (desc->n_used_entries > desc->window_max_entries) {
169         desc->window_max_entries = desc->n_used_entries;
170     }
171     rate = desc->window_max_entries * 100 / old_size;
172 
173     if (rate > 70) {
174         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175     } else if (rate < 30 && window_expired) {
176         size_t ceil = pow2ceil(desc->window_max_entries);
177         size_t expected_rate = desc->window_max_entries * 100 / ceil;
178 
179         /*
180          * Avoid undersizing when the max number of entries seen is just below
181          * a pow2. For instance, if max_entries == 1025, the expected use rate
182          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184          * later. Thus, make sure that the expected use rate remains below 70%.
185          * (and since we double the size, that means the lowest rate we'd
186          * expect to get is 35%, which is still in the 30-70% range where
187          * we consider that the size is appropriate.)
188          */
189         if (expected_rate > 70) {
190             ceil *= 2;
191         }
192         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193     }
194 
195     if (new_size == old_size) {
196         if (window_expired) {
197             tlb_window_reset(desc, now, desc->n_used_entries);
198         }
199         return;
200     }
201 
202     g_free(fast->table);
203     g_free(desc->iotlb);
204 
205     tlb_window_reset(desc, now, 0);
206     /* desc->n_used_entries is cleared by the caller */
207     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208     fast->table = g_try_new(CPUTLBEntry, new_size);
209     desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
210 
211     /*
212      * If the allocations fail, try smaller sizes. We just freed some
213      * memory, so going back to half of new_size has a good chance of working.
214      * Increased memory pressure elsewhere in the system might cause the
215      * allocations to fail though, so we progressively reduce the allocation
216      * size, aborting if we cannot even allocate the smallest TLB we support.
217      */
218     while (fast->table == NULL || desc->iotlb == NULL) {
219         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220             error_report("%s: %s", __func__, strerror(errno));
221             abort();
222         }
223         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225 
226         g_free(fast->table);
227         g_free(desc->iotlb);
228         fast->table = g_try_new(CPUTLBEntry, new_size);
229         desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
230     }
231 }
232 
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235     desc->n_used_entries = 0;
236     desc->large_page_addr = -1;
237     desc->large_page_mask = -1;
238     desc->vindex = 0;
239     memset(fast->table, -1, sizeof_tlb(fast));
240     memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242 
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244                                         int64_t now)
245 {
246     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248 
249     tlb_mmu_resize_locked(desc, fast, now);
250     tlb_mmu_flush_locked(desc, fast);
251 }
252 
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256 
257     tlb_window_reset(desc, now, 0);
258     desc->n_used_entries = 0;
259     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260     fast->table = g_new(CPUTLBEntry, n_entries);
261     desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
262     tlb_mmu_flush_locked(desc, fast);
263 }
264 
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267     env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269 
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272     env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274 
275 void tlb_init(CPUState *cpu)
276 {
277     CPUArchState *env = cpu->env_ptr;
278     int64_t now = get_clock_realtime();
279     int i;
280 
281     qemu_spin_init(&env_tlb(env)->c.lock);
282 
283     /* All tlbs are initialized flushed. */
284     env_tlb(env)->c.dirty = 0;
285 
286     for (i = 0; i < NB_MMU_MODES; i++) {
287         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288     }
289 }
290 
291 void tlb_destroy(CPUState *cpu)
292 {
293     CPUArchState *env = cpu->env_ptr;
294     int i;
295 
296     qemu_spin_destroy(&env_tlb(env)->c.lock);
297     for (i = 0; i < NB_MMU_MODES; i++) {
298         CPUTLBDesc *desc = &env_tlb(env)->d[i];
299         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300 
301         g_free(fast->table);
302         g_free(desc->iotlb);
303     }
304 }
305 
306 /* flush_all_helper: run fn across all cpus
307  *
308  * If the wait flag is set then the src cpu's helper will be queued as
309  * "safe" work and the loop exited creating a synchronisation point
310  * where all queued work will be finished before execution starts
311  * again.
312  */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314                              run_on_cpu_data d)
315 {
316     CPUState *cpu;
317 
318     CPU_FOREACH(cpu) {
319         if (cpu != src) {
320             async_run_on_cpu(cpu, fn, d);
321         }
322     }
323 }
324 
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327     CPUState *cpu;
328     size_t full = 0, part = 0, elide = 0;
329 
330     CPU_FOREACH(cpu) {
331         CPUArchState *env = cpu->env_ptr;
332 
333         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336     }
337     *pfull = full;
338     *ppart = part;
339     *pelide = elide;
340 }
341 
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344     CPUArchState *env = cpu->env_ptr;
345     uint16_t asked = data.host_int;
346     uint16_t all_dirty, work, to_clean;
347     int64_t now = get_clock_realtime();
348 
349     assert_cpu_is_self(cpu);
350 
351     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352 
353     qemu_spin_lock(&env_tlb(env)->c.lock);
354 
355     all_dirty = env_tlb(env)->c.dirty;
356     to_clean = asked & all_dirty;
357     all_dirty &= ~to_clean;
358     env_tlb(env)->c.dirty = all_dirty;
359 
360     for (work = to_clean; work != 0; work &= work - 1) {
361         int mmu_idx = ctz32(work);
362         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363     }
364 
365     qemu_spin_unlock(&env_tlb(env)->c.lock);
366 
367     cpu_tb_jmp_cache_clear(cpu);
368 
369     if (to_clean == ALL_MMUIDX_BITS) {
370         qatomic_set(&env_tlb(env)->c.full_flush_count,
371                    env_tlb(env)->c.full_flush_count + 1);
372     } else {
373         qatomic_set(&env_tlb(env)->c.part_flush_count,
374                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375         if (to_clean != asked) {
376             qatomic_set(&env_tlb(env)->c.elide_flush_count,
377                        env_tlb(env)->c.elide_flush_count +
378                        ctpop16(asked & ~to_clean));
379         }
380     }
381 }
382 
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386 
387     if (cpu->created && !qemu_cpu_is_self(cpu)) {
388         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389                          RUN_ON_CPU_HOST_INT(idxmap));
390     } else {
391         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392     }
393 }
394 
395 void tlb_flush(CPUState *cpu)
396 {
397     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399 
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403 
404     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405 
406     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409 
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414 
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418 
419     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420 
421     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424 
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429 
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431                                       target_ulong page, target_ulong mask)
432 {
433     page &= mask;
434     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435 
436     return (page == (tlb_entry->addr_read & mask) ||
437             page == (tlb_addr_write(tlb_entry) & mask) ||
438             page == (tlb_entry->addr_code & mask));
439 }
440 
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
442                                         target_ulong page)
443 {
444     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
445 }
446 
447 /**
448  * tlb_entry_is_empty - return true if the entry is not in use
449  * @te: pointer to CPUTLBEntry
450  */
451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
452 {
453     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
454 }
455 
456 /* Called with tlb_c.lock held */
457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
458                                         target_ulong page,
459                                         target_ulong mask)
460 {
461     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
462         memset(tlb_entry, -1, sizeof(*tlb_entry));
463         return true;
464     }
465     return false;
466 }
467 
468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
469                                           target_ulong page)
470 {
471     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
472 }
473 
474 /* Called with tlb_c.lock held */
475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
476                                             target_ulong page,
477                                             target_ulong mask)
478 {
479     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
480     int k;
481 
482     assert_cpu_is_self(env_cpu(env));
483     for (k = 0; k < CPU_VTLB_SIZE; k++) {
484         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
485             tlb_n_used_entries_dec(env, mmu_idx);
486         }
487     }
488 }
489 
490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
491                                               target_ulong page)
492 {
493     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
494 }
495 
496 static void tlb_flush_page_locked(CPUArchState *env, int midx,
497                                   target_ulong page)
498 {
499     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
500     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
501 
502     /* Check if we need to flush due to large pages.  */
503     if ((page & lp_mask) == lp_addr) {
504         tlb_debug("forcing full flush midx %d ("
505                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
506                   midx, lp_addr, lp_mask);
507         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
508     } else {
509         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
510             tlb_n_used_entries_dec(env, midx);
511         }
512         tlb_flush_vtlb_page_locked(env, midx, page);
513     }
514 }
515 
516 /**
517  * tlb_flush_page_by_mmuidx_async_0:
518  * @cpu: cpu on which to flush
519  * @addr: page of virtual address to flush
520  * @idxmap: set of mmu_idx to flush
521  *
522  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
523  * at @addr from the tlbs indicated by @idxmap from @cpu.
524  */
525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
526                                              target_ulong addr,
527                                              uint16_t idxmap)
528 {
529     CPUArchState *env = cpu->env_ptr;
530     int mmu_idx;
531 
532     assert_cpu_is_self(cpu);
533 
534     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
535 
536     qemu_spin_lock(&env_tlb(env)->c.lock);
537     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
538         if ((idxmap >> mmu_idx) & 1) {
539             tlb_flush_page_locked(env, mmu_idx, addr);
540         }
541     }
542     qemu_spin_unlock(&env_tlb(env)->c.lock);
543 
544     tb_flush_jmp_cache(cpu, addr);
545 }
546 
547 /**
548  * tlb_flush_page_by_mmuidx_async_1:
549  * @cpu: cpu on which to flush
550  * @data: encoded addr + idxmap
551  *
552  * Helper for tlb_flush_page_by_mmuidx and friends, called through
553  * async_run_on_cpu.  The idxmap parameter is encoded in the page
554  * offset of the target_ptr field.  This limits the set of mmu_idx
555  * that can be passed via this method.
556  */
557 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
558                                              run_on_cpu_data data)
559 {
560     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
561     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
562     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
563 
564     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
565 }
566 
567 typedef struct {
568     target_ulong addr;
569     uint16_t idxmap;
570 } TLBFlushPageByMMUIdxData;
571 
572 /**
573  * tlb_flush_page_by_mmuidx_async_2:
574  * @cpu: cpu on which to flush
575  * @data: allocated addr + idxmap
576  *
577  * Helper for tlb_flush_page_by_mmuidx and friends, called through
578  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
579  * TLBFlushPageByMMUIdxData structure that has been allocated
580  * specifically for this helper.  Free the structure when done.
581  */
582 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
583                                              run_on_cpu_data data)
584 {
585     TLBFlushPageByMMUIdxData *d = data.host_ptr;
586 
587     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
588     g_free(d);
589 }
590 
591 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
592 {
593     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
594 
595     /* This should already be page aligned */
596     addr &= TARGET_PAGE_MASK;
597 
598     if (qemu_cpu_is_self(cpu)) {
599         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
600     } else if (idxmap < TARGET_PAGE_SIZE) {
601         /*
602          * Most targets have only a few mmu_idx.  In the case where
603          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
604          * allocating memory for this operation.
605          */
606         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
607                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
608     } else {
609         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
610 
611         /* Otherwise allocate a structure, freed by the worker.  */
612         d->addr = addr;
613         d->idxmap = idxmap;
614         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
615                          RUN_ON_CPU_HOST_PTR(d));
616     }
617 }
618 
619 void tlb_flush_page(CPUState *cpu, target_ulong addr)
620 {
621     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
622 }
623 
624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
625                                        uint16_t idxmap)
626 {
627     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
628 
629     /* This should already be page aligned */
630     addr &= TARGET_PAGE_MASK;
631 
632     /*
633      * Allocate memory to hold addr+idxmap only when needed.
634      * See tlb_flush_page_by_mmuidx for details.
635      */
636     if (idxmap < TARGET_PAGE_SIZE) {
637         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639     } else {
640         CPUState *dst_cpu;
641 
642         /* Allocate a separate data block for each destination cpu.  */
643         CPU_FOREACH(dst_cpu) {
644             if (dst_cpu != src_cpu) {
645                 TLBFlushPageByMMUIdxData *d
646                     = g_new(TLBFlushPageByMMUIdxData, 1);
647 
648                 d->addr = addr;
649                 d->idxmap = idxmap;
650                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
651                                  RUN_ON_CPU_HOST_PTR(d));
652             }
653         }
654     }
655 
656     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
657 }
658 
659 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
660 {
661     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
662 }
663 
664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
665                                               target_ulong addr,
666                                               uint16_t idxmap)
667 {
668     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
669 
670     /* This should already be page aligned */
671     addr &= TARGET_PAGE_MASK;
672 
673     /*
674      * Allocate memory to hold addr+idxmap only when needed.
675      * See tlb_flush_page_by_mmuidx for details.
676      */
677     if (idxmap < TARGET_PAGE_SIZE) {
678         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
679                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
680         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682     } else {
683         CPUState *dst_cpu;
684         TLBFlushPageByMMUIdxData *d;
685 
686         /* Allocate a separate data block for each destination cpu.  */
687         CPU_FOREACH(dst_cpu) {
688             if (dst_cpu != src_cpu) {
689                 d = g_new(TLBFlushPageByMMUIdxData, 1);
690                 d->addr = addr;
691                 d->idxmap = idxmap;
692                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
693                                  RUN_ON_CPU_HOST_PTR(d));
694             }
695         }
696 
697         d = g_new(TLBFlushPageByMMUIdxData, 1);
698         d->addr = addr;
699         d->idxmap = idxmap;
700         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
701                               RUN_ON_CPU_HOST_PTR(d));
702     }
703 }
704 
705 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
706 {
707     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
708 }
709 
710 static void tlb_flush_range_locked(CPUArchState *env, int midx,
711                                    target_ulong addr, target_ulong len,
712                                    unsigned bits)
713 {
714     CPUTLBDesc *d = &env_tlb(env)->d[midx];
715     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
716     target_ulong mask = MAKE_64BIT_MASK(0, bits);
717 
718     /*
719      * If @bits is smaller than the tlb size, there may be multiple entries
720      * within the TLB; otherwise all addresses that match under @mask hit
721      * the same TLB entry.
722      * TODO: Perhaps allow bits to be a few bits less than the size.
723      * For now, just flush the entire TLB.
724      *
725      * If @len is larger than the tlb size, then it will take longer to
726      * test all of the entries in the TLB than it will to flush it all.
727      */
728     if (mask < f->mask || len > f->mask) {
729         tlb_debug("forcing full flush midx %d ("
730                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
731                   midx, addr, mask, len);
732         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
733         return;
734     }
735 
736     /*
737      * Check if we need to flush due to large pages.
738      * Because large_page_mask contains all 1's from the msb,
739      * we only need to test the end of the range.
740      */
741     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
742         tlb_debug("forcing full flush midx %d ("
743                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
744                   midx, d->large_page_addr, d->large_page_mask);
745         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
746         return;
747     }
748 
749     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
750         target_ulong page = addr + i;
751         CPUTLBEntry *entry = tlb_entry(env, midx, page);
752 
753         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
754             tlb_n_used_entries_dec(env, midx);
755         }
756         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
757     }
758 }
759 
760 typedef struct {
761     target_ulong addr;
762     target_ulong len;
763     uint16_t idxmap;
764     uint16_t bits;
765 } TLBFlushRangeData;
766 
767 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
768                                               TLBFlushRangeData d)
769 {
770     CPUArchState *env = cpu->env_ptr;
771     int mmu_idx;
772 
773     assert_cpu_is_self(cpu);
774 
775     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
776               d.addr, d.bits, d.len, d.idxmap);
777 
778     qemu_spin_lock(&env_tlb(env)->c.lock);
779     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
780         if ((d.idxmap >> mmu_idx) & 1) {
781             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
782         }
783     }
784     qemu_spin_unlock(&env_tlb(env)->c.lock);
785 
786     for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
787         tb_flush_jmp_cache(cpu, d.addr + i);
788     }
789 }
790 
791 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
792                                               run_on_cpu_data data)
793 {
794     TLBFlushRangeData *d = data.host_ptr;
795     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
796     g_free(d);
797 }
798 
799 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
800                                target_ulong len, uint16_t idxmap,
801                                unsigned bits)
802 {
803     TLBFlushRangeData d;
804 
805     /*
806      * If all bits are significant, and len is small,
807      * this devolves to tlb_flush_page.
808      */
809     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
810         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
811         return;
812     }
813     /* If no page bits are significant, this devolves to tlb_flush. */
814     if (bits < TARGET_PAGE_BITS) {
815         tlb_flush_by_mmuidx(cpu, idxmap);
816         return;
817     }
818 
819     /* This should already be page aligned */
820     d.addr = addr & TARGET_PAGE_MASK;
821     d.len = len;
822     d.idxmap = idxmap;
823     d.bits = bits;
824 
825     if (qemu_cpu_is_self(cpu)) {
826         tlb_flush_range_by_mmuidx_async_0(cpu, d);
827     } else {
828         /* Otherwise allocate a structure, freed by the worker.  */
829         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
830         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
831                          RUN_ON_CPU_HOST_PTR(p));
832     }
833 }
834 
835 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
836                                    uint16_t idxmap, unsigned bits)
837 {
838     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
839 }
840 
841 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
842                                         target_ulong addr, target_ulong len,
843                                         uint16_t idxmap, unsigned bits)
844 {
845     TLBFlushRangeData d;
846     CPUState *dst_cpu;
847 
848     /*
849      * If all bits are significant, and len is small,
850      * this devolves to tlb_flush_page.
851      */
852     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
853         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
854         return;
855     }
856     /* If no page bits are significant, this devolves to tlb_flush. */
857     if (bits < TARGET_PAGE_BITS) {
858         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
859         return;
860     }
861 
862     /* This should already be page aligned */
863     d.addr = addr & TARGET_PAGE_MASK;
864     d.len = len;
865     d.idxmap = idxmap;
866     d.bits = bits;
867 
868     /* Allocate a separate data block for each destination cpu.  */
869     CPU_FOREACH(dst_cpu) {
870         if (dst_cpu != src_cpu) {
871             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
872             async_run_on_cpu(dst_cpu,
873                              tlb_flush_range_by_mmuidx_async_1,
874                              RUN_ON_CPU_HOST_PTR(p));
875         }
876     }
877 
878     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
879 }
880 
881 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
882                                             target_ulong addr,
883                                             uint16_t idxmap, unsigned bits)
884 {
885     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
886                                        idxmap, bits);
887 }
888 
889 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
890                                                target_ulong addr,
891                                                target_ulong len,
892                                                uint16_t idxmap,
893                                                unsigned bits)
894 {
895     TLBFlushRangeData d, *p;
896     CPUState *dst_cpu;
897 
898     /*
899      * If all bits are significant, and len is small,
900      * this devolves to tlb_flush_page.
901      */
902     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
903         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
904         return;
905     }
906     /* If no page bits are significant, this devolves to tlb_flush. */
907     if (bits < TARGET_PAGE_BITS) {
908         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
909         return;
910     }
911 
912     /* This should already be page aligned */
913     d.addr = addr & TARGET_PAGE_MASK;
914     d.len = len;
915     d.idxmap = idxmap;
916     d.bits = bits;
917 
918     /* Allocate a separate data block for each destination cpu.  */
919     CPU_FOREACH(dst_cpu) {
920         if (dst_cpu != src_cpu) {
921             p = g_memdup(&d, sizeof(d));
922             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
923                              RUN_ON_CPU_HOST_PTR(p));
924         }
925     }
926 
927     p = g_memdup(&d, sizeof(d));
928     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
929                           RUN_ON_CPU_HOST_PTR(p));
930 }
931 
932 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
933                                                    target_ulong addr,
934                                                    uint16_t idxmap,
935                                                    unsigned bits)
936 {
937     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
938                                               idxmap, bits);
939 }
940 
941 /* update the TLBs so that writes to code in the virtual page 'addr'
942    can be detected */
943 void tlb_protect_code(ram_addr_t ram_addr)
944 {
945     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
946                                              DIRTY_MEMORY_CODE);
947 }
948 
949 /* update the TLB so that writes in physical page 'phys_addr' are no longer
950    tested for self modifying code */
951 void tlb_unprotect_code(ram_addr_t ram_addr)
952 {
953     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
954 }
955 
956 
957 /*
958  * Dirty write flag handling
959  *
960  * When the TCG code writes to a location it looks up the address in
961  * the TLB and uses that data to compute the final address. If any of
962  * the lower bits of the address are set then the slow path is forced.
963  * There are a number of reasons to do this but for normal RAM the
964  * most usual is detecting writes to code regions which may invalidate
965  * generated code.
966  *
967  * Other vCPUs might be reading their TLBs during guest execution, so we update
968  * te->addr_write with qatomic_set. We don't need to worry about this for
969  * oversized guests as MTTCG is disabled for them.
970  *
971  * Called with tlb_c.lock held.
972  */
973 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
974                                          uintptr_t start, uintptr_t length)
975 {
976     uintptr_t addr = tlb_entry->addr_write;
977 
978     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
979                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
980         addr &= TARGET_PAGE_MASK;
981         addr += tlb_entry->addend;
982         if ((addr - start) < length) {
983 #if TCG_OVERSIZED_GUEST
984             tlb_entry->addr_write |= TLB_NOTDIRTY;
985 #else
986             qatomic_set(&tlb_entry->addr_write,
987                        tlb_entry->addr_write | TLB_NOTDIRTY);
988 #endif
989         }
990     }
991 }
992 
993 /*
994  * Called with tlb_c.lock held.
995  * Called only from the vCPU context, i.e. the TLB's owner thread.
996  */
997 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
998 {
999     *d = *s;
1000 }
1001 
1002 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1003  * the target vCPU).
1004  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1005  * thing actually updated is the target TLB entry ->addr_write flags.
1006  */
1007 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1008 {
1009     CPUArchState *env;
1010 
1011     int mmu_idx;
1012 
1013     env = cpu->env_ptr;
1014     qemu_spin_lock(&env_tlb(env)->c.lock);
1015     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1016         unsigned int i;
1017         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1018 
1019         for (i = 0; i < n; i++) {
1020             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1021                                          start1, length);
1022         }
1023 
1024         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1025             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1026                                          start1, length);
1027         }
1028     }
1029     qemu_spin_unlock(&env_tlb(env)->c.lock);
1030 }
1031 
1032 /* Called with tlb_c.lock held */
1033 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1034                                          target_ulong vaddr)
1035 {
1036     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1037         tlb_entry->addr_write = vaddr;
1038     }
1039 }
1040 
1041 /* update the TLB corresponding to virtual page vaddr
1042    so that it is no longer dirty */
1043 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1044 {
1045     CPUArchState *env = cpu->env_ptr;
1046     int mmu_idx;
1047 
1048     assert_cpu_is_self(cpu);
1049 
1050     vaddr &= TARGET_PAGE_MASK;
1051     qemu_spin_lock(&env_tlb(env)->c.lock);
1052     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1053         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1054     }
1055 
1056     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1057         int k;
1058         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1059             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1060         }
1061     }
1062     qemu_spin_unlock(&env_tlb(env)->c.lock);
1063 }
1064 
1065 /* Our TLB does not support large pages, so remember the area covered by
1066    large pages and trigger a full TLB flush if these are invalidated.  */
1067 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1068                                target_ulong vaddr, target_ulong size)
1069 {
1070     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1071     target_ulong lp_mask = ~(size - 1);
1072 
1073     if (lp_addr == (target_ulong)-1) {
1074         /* No previous large page.  */
1075         lp_addr = vaddr;
1076     } else {
1077         /* Extend the existing region to include the new page.
1078            This is a compromise between unnecessary flushes and
1079            the cost of maintaining a full variable size TLB.  */
1080         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1081         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1082             lp_mask <<= 1;
1083         }
1084     }
1085     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1086     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1087 }
1088 
1089 /* Add a new TLB entry. At most one entry for a given virtual address
1090  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1091  * supplied size is only used by tlb_flush_page.
1092  *
1093  * Called from TCG-generated code, which is under an RCU read-side
1094  * critical section.
1095  */
1096 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1097                              hwaddr paddr, MemTxAttrs attrs, int prot,
1098                              int mmu_idx, target_ulong size)
1099 {
1100     CPUArchState *env = cpu->env_ptr;
1101     CPUTLB *tlb = env_tlb(env);
1102     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1103     MemoryRegionSection *section;
1104     unsigned int index;
1105     target_ulong address;
1106     target_ulong write_address;
1107     uintptr_t addend;
1108     CPUTLBEntry *te, tn;
1109     hwaddr iotlb, xlat, sz, paddr_page;
1110     target_ulong vaddr_page;
1111     int asidx = cpu_asidx_from_attrs(cpu, attrs);
1112     int wp_flags;
1113     bool is_ram, is_romd;
1114 
1115     assert_cpu_is_self(cpu);
1116 
1117     if (size <= TARGET_PAGE_SIZE) {
1118         sz = TARGET_PAGE_SIZE;
1119     } else {
1120         tlb_add_large_page(env, mmu_idx, vaddr, size);
1121         sz = size;
1122     }
1123     vaddr_page = vaddr & TARGET_PAGE_MASK;
1124     paddr_page = paddr & TARGET_PAGE_MASK;
1125 
1126     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1127                                                 &xlat, &sz, attrs, &prot);
1128     assert(sz >= TARGET_PAGE_SIZE);
1129 
1130     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1131               " prot=%x idx=%d\n",
1132               vaddr, paddr, prot, mmu_idx);
1133 
1134     address = vaddr_page;
1135     if (size < TARGET_PAGE_SIZE) {
1136         /* Repeat the MMU check and TLB fill on every access.  */
1137         address |= TLB_INVALID_MASK;
1138     }
1139     if (attrs.byte_swap) {
1140         address |= TLB_BSWAP;
1141     }
1142 
1143     is_ram = memory_region_is_ram(section->mr);
1144     is_romd = memory_region_is_romd(section->mr);
1145 
1146     if (is_ram || is_romd) {
1147         /* RAM and ROMD both have associated host memory. */
1148         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1149     } else {
1150         /* I/O does not; force the host address to NULL. */
1151         addend = 0;
1152     }
1153 
1154     write_address = address;
1155     if (is_ram) {
1156         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1157         /*
1158          * Computing is_clean is expensive; avoid all that unless
1159          * the page is actually writable.
1160          */
1161         if (prot & PAGE_WRITE) {
1162             if (section->readonly) {
1163                 write_address |= TLB_DISCARD_WRITE;
1164             } else if (cpu_physical_memory_is_clean(iotlb)) {
1165                 write_address |= TLB_NOTDIRTY;
1166             }
1167         }
1168     } else {
1169         /* I/O or ROMD */
1170         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1171         /*
1172          * Writes to romd devices must go through MMIO to enable write.
1173          * Reads to romd devices go through the ram_ptr found above,
1174          * but of course reads to I/O must go through MMIO.
1175          */
1176         write_address |= TLB_MMIO;
1177         if (!is_romd) {
1178             address = write_address;
1179         }
1180     }
1181 
1182     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1183                                               TARGET_PAGE_SIZE);
1184 
1185     index = tlb_index(env, mmu_idx, vaddr_page);
1186     te = tlb_entry(env, mmu_idx, vaddr_page);
1187 
1188     /*
1189      * Hold the TLB lock for the rest of the function. We could acquire/release
1190      * the lock several times in the function, but it is faster to amortize the
1191      * acquisition cost by acquiring it just once. Note that this leads to
1192      * a longer critical section, but this is not a concern since the TLB lock
1193      * is unlikely to be contended.
1194      */
1195     qemu_spin_lock(&tlb->c.lock);
1196 
1197     /* Note that the tlb is no longer clean.  */
1198     tlb->c.dirty |= 1 << mmu_idx;
1199 
1200     /* Make sure there's no cached translation for the new page.  */
1201     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1202 
1203     /*
1204      * Only evict the old entry to the victim tlb if it's for a
1205      * different page; otherwise just overwrite the stale data.
1206      */
1207     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1208         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1209         CPUTLBEntry *tv = &desc->vtable[vidx];
1210 
1211         /* Evict the old entry into the victim tlb.  */
1212         copy_tlb_helper_locked(tv, te);
1213         desc->viotlb[vidx] = desc->iotlb[index];
1214         tlb_n_used_entries_dec(env, mmu_idx);
1215     }
1216 
1217     /* refill the tlb */
1218     /*
1219      * At this point iotlb contains a physical section number in the lower
1220      * TARGET_PAGE_BITS, and either
1221      *  + the ram_addr_t of the page base of the target RAM (RAM)
1222      *  + the offset within section->mr of the page base (I/O, ROMD)
1223      * We subtract the vaddr_page (which is page aligned and thus won't
1224      * disturb the low bits) to give an offset which can be added to the
1225      * (non-page-aligned) vaddr of the eventual memory access to get
1226      * the MemoryRegion offset for the access. Note that the vaddr we
1227      * subtract here is that of the page base, and not the same as the
1228      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1229      */
1230     desc->iotlb[index].addr = iotlb - vaddr_page;
1231     desc->iotlb[index].attrs = attrs;
1232 
1233     /* Now calculate the new entry */
1234     tn.addend = addend - vaddr_page;
1235     if (prot & PAGE_READ) {
1236         tn.addr_read = address;
1237         if (wp_flags & BP_MEM_READ) {
1238             tn.addr_read |= TLB_WATCHPOINT;
1239         }
1240     } else {
1241         tn.addr_read = -1;
1242     }
1243 
1244     if (prot & PAGE_EXEC) {
1245         tn.addr_code = address;
1246     } else {
1247         tn.addr_code = -1;
1248     }
1249 
1250     tn.addr_write = -1;
1251     if (prot & PAGE_WRITE) {
1252         tn.addr_write = write_address;
1253         if (prot & PAGE_WRITE_INV) {
1254             tn.addr_write |= TLB_INVALID_MASK;
1255         }
1256         if (wp_flags & BP_MEM_WRITE) {
1257             tn.addr_write |= TLB_WATCHPOINT;
1258         }
1259     }
1260 
1261     copy_tlb_helper_locked(te, &tn);
1262     tlb_n_used_entries_inc(env, mmu_idx);
1263     qemu_spin_unlock(&tlb->c.lock);
1264 }
1265 
1266 /* Add a new TLB entry, but without specifying the memory
1267  * transaction attributes to be used.
1268  */
1269 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1270                   hwaddr paddr, int prot,
1271                   int mmu_idx, target_ulong size)
1272 {
1273     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1274                             prot, mmu_idx, size);
1275 }
1276 
1277 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1278 {
1279     ram_addr_t ram_addr;
1280 
1281     ram_addr = qemu_ram_addr_from_host(ptr);
1282     if (ram_addr == RAM_ADDR_INVALID) {
1283         error_report("Bad ram pointer %p", ptr);
1284         abort();
1285     }
1286     return ram_addr;
1287 }
1288 
1289 /*
1290  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1291  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1292  * be discarded and looked up again (e.g. via tlb_entry()).
1293  */
1294 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1295                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1296 {
1297     CPUClass *cc = CPU_GET_CLASS(cpu);
1298     bool ok;
1299 
1300     /*
1301      * This is not a probe, so only valid return is success; failure
1302      * should result in exception + longjmp to the cpu loop.
1303      */
1304     ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1305                                access_type, mmu_idx, false, retaddr);
1306     assert(ok);
1307 }
1308 
1309 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1310                                         MMUAccessType access_type,
1311                                         int mmu_idx, uintptr_t retaddr)
1312 {
1313     CPUClass *cc = CPU_GET_CLASS(cpu);
1314 
1315     cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1316 }
1317 
1318 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1319                                           vaddr addr, unsigned size,
1320                                           MMUAccessType access_type,
1321                                           int mmu_idx, MemTxAttrs attrs,
1322                                           MemTxResult response,
1323                                           uintptr_t retaddr)
1324 {
1325     CPUClass *cc = CPU_GET_CLASS(cpu);
1326 
1327     if (!cpu->ignore_memory_transaction_failures &&
1328         cc->tcg_ops->do_transaction_failed) {
1329         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1330                                            access_type, mmu_idx, attrs,
1331                                            response, retaddr);
1332     }
1333 }
1334 
1335 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1336                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
1337                          MMUAccessType access_type, MemOp op)
1338 {
1339     CPUState *cpu = env_cpu(env);
1340     hwaddr mr_offset;
1341     MemoryRegionSection *section;
1342     MemoryRegion *mr;
1343     uint64_t val;
1344     bool locked = false;
1345     MemTxResult r;
1346 
1347     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1348     mr = section->mr;
1349     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1350     cpu->mem_io_pc = retaddr;
1351     if (!cpu->can_do_io) {
1352         cpu_io_recompile(cpu, retaddr);
1353     }
1354 
1355     if (!qemu_mutex_iothread_locked()) {
1356         qemu_mutex_lock_iothread();
1357         locked = true;
1358     }
1359     r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1360     if (r != MEMTX_OK) {
1361         hwaddr physaddr = mr_offset +
1362             section->offset_within_address_space -
1363             section->offset_within_region;
1364 
1365         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1366                                mmu_idx, iotlbentry->attrs, r, retaddr);
1367     }
1368     if (locked) {
1369         qemu_mutex_unlock_iothread();
1370     }
1371 
1372     return val;
1373 }
1374 
1375 /*
1376  * Save a potentially trashed IOTLB entry for later lookup by plugin.
1377  * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1378  * because of the side effect of io_writex changing memory layout.
1379  */
1380 static void save_iotlb_data(CPUState *cs, hwaddr addr,
1381                             MemoryRegionSection *section, hwaddr mr_offset)
1382 {
1383 #ifdef CONFIG_PLUGIN
1384     SavedIOTLB *saved = &cs->saved_iotlb;
1385     saved->addr = addr;
1386     saved->section = section;
1387     saved->mr_offset = mr_offset;
1388 #endif
1389 }
1390 
1391 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1392                       int mmu_idx, uint64_t val, target_ulong addr,
1393                       uintptr_t retaddr, MemOp op)
1394 {
1395     CPUState *cpu = env_cpu(env);
1396     hwaddr mr_offset;
1397     MemoryRegionSection *section;
1398     MemoryRegion *mr;
1399     bool locked = false;
1400     MemTxResult r;
1401 
1402     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1403     mr = section->mr;
1404     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1405     if (!cpu->can_do_io) {
1406         cpu_io_recompile(cpu, retaddr);
1407     }
1408     cpu->mem_io_pc = retaddr;
1409 
1410     /*
1411      * The memory_region_dispatch may trigger a flush/resize
1412      * so for plugins we save the iotlb_data just in case.
1413      */
1414     save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1415 
1416     if (!qemu_mutex_iothread_locked()) {
1417         qemu_mutex_lock_iothread();
1418         locked = true;
1419     }
1420     r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1421     if (r != MEMTX_OK) {
1422         hwaddr physaddr = mr_offset +
1423             section->offset_within_address_space -
1424             section->offset_within_region;
1425 
1426         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1427                                MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1428                                retaddr);
1429     }
1430     if (locked) {
1431         qemu_mutex_unlock_iothread();
1432     }
1433 }
1434 
1435 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1436 {
1437 #if TCG_OVERSIZED_GUEST
1438     return *(target_ulong *)((uintptr_t)entry + ofs);
1439 #else
1440     /* ofs might correspond to .addr_write, so use qatomic_read */
1441     return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1442 #endif
1443 }
1444 
1445 /* Return true if ADDR is present in the victim tlb, and has been copied
1446    back to the main tlb.  */
1447 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1448                            size_t elt_ofs, target_ulong page)
1449 {
1450     size_t vidx;
1451 
1452     assert_cpu_is_self(env_cpu(env));
1453     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1454         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1455         target_ulong cmp;
1456 
1457         /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1458 #if TCG_OVERSIZED_GUEST
1459         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1460 #else
1461         cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1462 #endif
1463 
1464         if (cmp == page) {
1465             /* Found entry in victim tlb, swap tlb and iotlb.  */
1466             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1467 
1468             qemu_spin_lock(&env_tlb(env)->c.lock);
1469             copy_tlb_helper_locked(&tmptlb, tlb);
1470             copy_tlb_helper_locked(tlb, vtlb);
1471             copy_tlb_helper_locked(vtlb, &tmptlb);
1472             qemu_spin_unlock(&env_tlb(env)->c.lock);
1473 
1474             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1475             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1476             tmpio = *io; *io = *vio; *vio = tmpio;
1477             return true;
1478         }
1479     }
1480     return false;
1481 }
1482 
1483 /* Macro to call the above, with local variables from the use context.  */
1484 #define VICTIM_TLB_HIT(TY, ADDR) \
1485   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1486                  (ADDR) & TARGET_PAGE_MASK)
1487 
1488 /*
1489  * Return a ram_addr_t for the virtual address for execution.
1490  *
1491  * Return -1 if we can't translate and execute from an entire page
1492  * of RAM.  This will force us to execute by loading and translating
1493  * one insn at a time, without caching.
1494  *
1495  * NOTE: This function will trigger an exception if the page is
1496  * not executable.
1497  */
1498 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1499                                         void **hostp)
1500 {
1501     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1502     uintptr_t index = tlb_index(env, mmu_idx, addr);
1503     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1504     void *p;
1505 
1506     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1507         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1508             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1509             index = tlb_index(env, mmu_idx, addr);
1510             entry = tlb_entry(env, mmu_idx, addr);
1511 
1512             if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1513                 /*
1514                  * The MMU protection covers a smaller range than a target
1515                  * page, so we must redo the MMU check for every insn.
1516                  */
1517                 return -1;
1518             }
1519         }
1520         assert(tlb_hit(entry->addr_code, addr));
1521     }
1522 
1523     if (unlikely(entry->addr_code & TLB_MMIO)) {
1524         /* The region is not backed by RAM.  */
1525         if (hostp) {
1526             *hostp = NULL;
1527         }
1528         return -1;
1529     }
1530 
1531     p = (void *)((uintptr_t)addr + entry->addend);
1532     if (hostp) {
1533         *hostp = p;
1534     }
1535     return qemu_ram_addr_from_host_nofail(p);
1536 }
1537 
1538 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1539 {
1540     return get_page_addr_code_hostp(env, addr, NULL);
1541 }
1542 
1543 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1544                            CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1545 {
1546     ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1547 
1548     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1549 
1550     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1551         struct page_collection *pages
1552             = page_collection_lock(ram_addr, ram_addr + size);
1553         tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1554         page_collection_unlock(pages);
1555     }
1556 
1557     /*
1558      * Set both VGA and migration bits for simplicity and to remove
1559      * the notdirty callback faster.
1560      */
1561     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1562 
1563     /* We remove the notdirty callback only if the code has been flushed. */
1564     if (!cpu_physical_memory_is_clean(ram_addr)) {
1565         trace_memory_notdirty_set_dirty(mem_vaddr);
1566         tlb_set_dirty(cpu, mem_vaddr);
1567     }
1568 }
1569 
1570 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1571                                  int fault_size, MMUAccessType access_type,
1572                                  int mmu_idx, bool nonfault,
1573                                  void **phost, uintptr_t retaddr)
1574 {
1575     uintptr_t index = tlb_index(env, mmu_idx, addr);
1576     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1577     target_ulong tlb_addr, page_addr;
1578     size_t elt_ofs;
1579     int flags;
1580 
1581     switch (access_type) {
1582     case MMU_DATA_LOAD:
1583         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1584         break;
1585     case MMU_DATA_STORE:
1586         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1587         break;
1588     case MMU_INST_FETCH:
1589         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1590         break;
1591     default:
1592         g_assert_not_reached();
1593     }
1594     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1595 
1596     page_addr = addr & TARGET_PAGE_MASK;
1597     if (!tlb_hit_page(tlb_addr, page_addr)) {
1598         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1599             CPUState *cs = env_cpu(env);
1600             CPUClass *cc = CPU_GET_CLASS(cs);
1601 
1602             if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1603                                        mmu_idx, nonfault, retaddr)) {
1604                 /* Non-faulting page table read failed.  */
1605                 *phost = NULL;
1606                 return TLB_INVALID_MASK;
1607             }
1608 
1609             /* TLB resize via tlb_fill may have moved the entry.  */
1610             entry = tlb_entry(env, mmu_idx, addr);
1611         }
1612         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1613     }
1614     flags = tlb_addr & TLB_FLAGS_MASK;
1615 
1616     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1617     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1618         *phost = NULL;
1619         return TLB_MMIO;
1620     }
1621 
1622     /* Everything else is RAM. */
1623     *phost = (void *)((uintptr_t)addr + entry->addend);
1624     return flags;
1625 }
1626 
1627 int probe_access_flags(CPUArchState *env, target_ulong addr,
1628                        MMUAccessType access_type, int mmu_idx,
1629                        bool nonfault, void **phost, uintptr_t retaddr)
1630 {
1631     int flags;
1632 
1633     flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1634                                   nonfault, phost, retaddr);
1635 
1636     /* Handle clean RAM pages.  */
1637     if (unlikely(flags & TLB_NOTDIRTY)) {
1638         uintptr_t index = tlb_index(env, mmu_idx, addr);
1639         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1640 
1641         notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1642         flags &= ~TLB_NOTDIRTY;
1643     }
1644 
1645     return flags;
1646 }
1647 
1648 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1649                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1650 {
1651     void *host;
1652     int flags;
1653 
1654     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1655 
1656     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1657                                   false, &host, retaddr);
1658 
1659     /* Per the interface, size == 0 merely faults the access. */
1660     if (size == 0) {
1661         return NULL;
1662     }
1663 
1664     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1665         uintptr_t index = tlb_index(env, mmu_idx, addr);
1666         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1667 
1668         /* Handle watchpoints.  */
1669         if (flags & TLB_WATCHPOINT) {
1670             int wp_access = (access_type == MMU_DATA_STORE
1671                              ? BP_MEM_WRITE : BP_MEM_READ);
1672             cpu_check_watchpoint(env_cpu(env), addr, size,
1673                                  iotlbentry->attrs, wp_access, retaddr);
1674         }
1675 
1676         /* Handle clean RAM pages.  */
1677         if (flags & TLB_NOTDIRTY) {
1678             notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1679         }
1680     }
1681 
1682     return host;
1683 }
1684 
1685 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1686                         MMUAccessType access_type, int mmu_idx)
1687 {
1688     void *host;
1689     int flags;
1690 
1691     flags = probe_access_internal(env, addr, 0, access_type,
1692                                   mmu_idx, true, &host, 0);
1693 
1694     /* No combination of flags are expected by the caller. */
1695     return flags ? NULL : host;
1696 }
1697 
1698 #ifdef CONFIG_PLUGIN
1699 /*
1700  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1701  * This should be a hot path as we will have just looked this path up
1702  * in the softmmu lookup code (or helper). We don't handle re-fills or
1703  * checking the victim table. This is purely informational.
1704  *
1705  * This almost never fails as the memory access being instrumented
1706  * should have just filled the TLB. The one corner case is io_writex
1707  * which can cause TLB flushes and potential resizing of the TLBs
1708  * losing the information we need. In those cases we need to recover
1709  * data from a copy of the iotlbentry. As long as this always occurs
1710  * from the same thread (which a mem callback will be) this is safe.
1711  */
1712 
1713 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1714                        bool is_store, struct qemu_plugin_hwaddr *data)
1715 {
1716     CPUArchState *env = cpu->env_ptr;
1717     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1718     uintptr_t index = tlb_index(env, mmu_idx, addr);
1719     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1720 
1721     if (likely(tlb_hit(tlb_addr, addr))) {
1722         /* We must have an iotlb entry for MMIO */
1723         if (tlb_addr & TLB_MMIO) {
1724             CPUIOTLBEntry *iotlbentry;
1725             iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1726             data->is_io = true;
1727             data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1728             data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1729         } else {
1730             data->is_io = false;
1731             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1732         }
1733         return true;
1734     } else {
1735         SavedIOTLB *saved = &cpu->saved_iotlb;
1736         data->is_io = true;
1737         data->v.io.section = saved->section;
1738         data->v.io.offset = saved->mr_offset;
1739         return true;
1740     }
1741 }
1742 
1743 #endif
1744 
1745 /*
1746  * Probe for an atomic operation.  Do not allow unaligned operations,
1747  * or io operations to proceed.  Return the host address.
1748  *
1749  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1750  */
1751 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1752                                TCGMemOpIdx oi, int size, int prot,
1753                                uintptr_t retaddr)
1754 {
1755     size_t mmu_idx = get_mmuidx(oi);
1756     MemOp mop = get_memop(oi);
1757     int a_bits = get_alignment_bits(mop);
1758     uintptr_t index;
1759     CPUTLBEntry *tlbe;
1760     target_ulong tlb_addr;
1761     void *hostaddr;
1762 
1763     /* Adjust the given return address.  */
1764     retaddr -= GETPC_ADJ;
1765 
1766     /* Enforce guest required alignment.  */
1767     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1768         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1769         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1770                              mmu_idx, retaddr);
1771     }
1772 
1773     /* Enforce qemu required alignment.  */
1774     if (unlikely(addr & (size - 1))) {
1775         /* We get here if guest alignment was not requested,
1776            or was not enforced by cpu_unaligned_access above.
1777            We might widen the access and emulate, but for now
1778            mark an exception and exit the cpu loop.  */
1779         goto stop_the_world;
1780     }
1781 
1782     index = tlb_index(env, mmu_idx, addr);
1783     tlbe = tlb_entry(env, mmu_idx, addr);
1784 
1785     /* Check TLB entry and enforce page permissions.  */
1786     if (prot & PAGE_WRITE) {
1787         tlb_addr = tlb_addr_write(tlbe);
1788         if (!tlb_hit(tlb_addr, addr)) {
1789             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1790                 tlb_fill(env_cpu(env), addr, size,
1791                          MMU_DATA_STORE, mmu_idx, retaddr);
1792                 index = tlb_index(env, mmu_idx, addr);
1793                 tlbe = tlb_entry(env, mmu_idx, addr);
1794             }
1795             tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1796         }
1797 
1798         /* Let the guest notice RMW on a write-only page.  */
1799         if ((prot & PAGE_READ) &&
1800             unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1801             tlb_fill(env_cpu(env), addr, size,
1802                      MMU_DATA_LOAD, mmu_idx, retaddr);
1803             /*
1804              * Since we don't support reads and writes to different addresses,
1805              * and we do have the proper page loaded for write, this shouldn't
1806              * ever return.  But just in case, handle via stop-the-world.
1807              */
1808             goto stop_the_world;
1809         }
1810     } else /* if (prot & PAGE_READ) */ {
1811         tlb_addr = tlbe->addr_read;
1812         if (!tlb_hit(tlb_addr, addr)) {
1813             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1814                 tlb_fill(env_cpu(env), addr, size,
1815                          MMU_DATA_LOAD, mmu_idx, retaddr);
1816                 index = tlb_index(env, mmu_idx, addr);
1817                 tlbe = tlb_entry(env, mmu_idx, addr);
1818             }
1819             tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1820         }
1821     }
1822 
1823     /* Notice an IO access or a needs-MMU-lookup access */
1824     if (unlikely(tlb_addr & TLB_MMIO)) {
1825         /* There's really nothing that can be done to
1826            support this apart from stop-the-world.  */
1827         goto stop_the_world;
1828     }
1829 
1830     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1831 
1832     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1833         notdirty_write(env_cpu(env), addr, size,
1834                        &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1835     }
1836 
1837     return hostaddr;
1838 
1839  stop_the_world:
1840     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1841 }
1842 
1843 /*
1844  * Load Helpers
1845  *
1846  * We support two different access types. SOFTMMU_CODE_ACCESS is
1847  * specifically for reading instructions from system memory. It is
1848  * called by the translation loop and in some helpers where the code
1849  * is disassembled. It shouldn't be called directly by guest code.
1850  */
1851 
1852 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1853                                 TCGMemOpIdx oi, uintptr_t retaddr);
1854 
1855 static inline uint64_t QEMU_ALWAYS_INLINE
1856 load_memop(const void *haddr, MemOp op)
1857 {
1858     switch (op) {
1859     case MO_UB:
1860         return ldub_p(haddr);
1861     case MO_BEUW:
1862         return lduw_be_p(haddr);
1863     case MO_LEUW:
1864         return lduw_le_p(haddr);
1865     case MO_BEUL:
1866         return (uint32_t)ldl_be_p(haddr);
1867     case MO_LEUL:
1868         return (uint32_t)ldl_le_p(haddr);
1869     case MO_BEQ:
1870         return ldq_be_p(haddr);
1871     case MO_LEQ:
1872         return ldq_le_p(haddr);
1873     default:
1874         qemu_build_not_reached();
1875     }
1876 }
1877 
1878 static inline uint64_t QEMU_ALWAYS_INLINE
1879 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1880             uintptr_t retaddr, MemOp op, bool code_read,
1881             FullLoadHelper *full_load)
1882 {
1883     uintptr_t mmu_idx = get_mmuidx(oi);
1884     uintptr_t index = tlb_index(env, mmu_idx, addr);
1885     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1886     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1887     const size_t tlb_off = code_read ?
1888         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1889     const MMUAccessType access_type =
1890         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1891     unsigned a_bits = get_alignment_bits(get_memop(oi));
1892     void *haddr;
1893     uint64_t res;
1894     size_t size = memop_size(op);
1895 
1896     /* Handle CPU specific unaligned behaviour */
1897     if (addr & ((1 << a_bits) - 1)) {
1898         cpu_unaligned_access(env_cpu(env), addr, access_type,
1899                              mmu_idx, retaddr);
1900     }
1901 
1902     /* If the TLB entry is for a different page, reload and try again.  */
1903     if (!tlb_hit(tlb_addr, addr)) {
1904         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1905                             addr & TARGET_PAGE_MASK)) {
1906             tlb_fill(env_cpu(env), addr, size,
1907                      access_type, mmu_idx, retaddr);
1908             index = tlb_index(env, mmu_idx, addr);
1909             entry = tlb_entry(env, mmu_idx, addr);
1910         }
1911         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1912         tlb_addr &= ~TLB_INVALID_MASK;
1913     }
1914 
1915     /* Handle anything that isn't just a straight memory access.  */
1916     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1917         CPUIOTLBEntry *iotlbentry;
1918         bool need_swap;
1919 
1920         /* For anything that is unaligned, recurse through full_load.  */
1921         if ((addr & (size - 1)) != 0) {
1922             goto do_unaligned_access;
1923         }
1924 
1925         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1926 
1927         /* Handle watchpoints.  */
1928         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1929             /* On watchpoint hit, this will longjmp out.  */
1930             cpu_check_watchpoint(env_cpu(env), addr, size,
1931                                  iotlbentry->attrs, BP_MEM_READ, retaddr);
1932         }
1933 
1934         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1935 
1936         /* Handle I/O access.  */
1937         if (likely(tlb_addr & TLB_MMIO)) {
1938             return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1939                             access_type, op ^ (need_swap * MO_BSWAP));
1940         }
1941 
1942         haddr = (void *)((uintptr_t)addr + entry->addend);
1943 
1944         /*
1945          * Keep these two load_memop separate to ensure that the compiler
1946          * is able to fold the entire function to a single instruction.
1947          * There is a build-time assert inside to remind you of this.  ;-)
1948          */
1949         if (unlikely(need_swap)) {
1950             return load_memop(haddr, op ^ MO_BSWAP);
1951         }
1952         return load_memop(haddr, op);
1953     }
1954 
1955     /* Handle slow unaligned access (it spans two pages or IO).  */
1956     if (size > 1
1957         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1958                     >= TARGET_PAGE_SIZE)) {
1959         target_ulong addr1, addr2;
1960         uint64_t r1, r2;
1961         unsigned shift;
1962     do_unaligned_access:
1963         addr1 = addr & ~((target_ulong)size - 1);
1964         addr2 = addr1 + size;
1965         r1 = full_load(env, addr1, oi, retaddr);
1966         r2 = full_load(env, addr2, oi, retaddr);
1967         shift = (addr & (size - 1)) * 8;
1968 
1969         if (memop_big_endian(op)) {
1970             /* Big-endian combine.  */
1971             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1972         } else {
1973             /* Little-endian combine.  */
1974             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1975         }
1976         return res & MAKE_64BIT_MASK(0, size * 8);
1977     }
1978 
1979     haddr = (void *)((uintptr_t)addr + entry->addend);
1980     return load_memop(haddr, op);
1981 }
1982 
1983 /*
1984  * For the benefit of TCG generated code, we want to avoid the
1985  * complication of ABI-specific return type promotion and always
1986  * return a value extended to the register size of the host. This is
1987  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1988  * data, and for that we always have uint64_t.
1989  *
1990  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1991  */
1992 
1993 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1994                               TCGMemOpIdx oi, uintptr_t retaddr)
1995 {
1996     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1997 }
1998 
1999 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2000                                      TCGMemOpIdx oi, uintptr_t retaddr)
2001 {
2002     return full_ldub_mmu(env, addr, oi, retaddr);
2003 }
2004 
2005 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2006                                  TCGMemOpIdx oi, uintptr_t retaddr)
2007 {
2008     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2009                        full_le_lduw_mmu);
2010 }
2011 
2012 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2013                                     TCGMemOpIdx oi, uintptr_t retaddr)
2014 {
2015     return full_le_lduw_mmu(env, addr, oi, retaddr);
2016 }
2017 
2018 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2019                                  TCGMemOpIdx oi, uintptr_t retaddr)
2020 {
2021     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2022                        full_be_lduw_mmu);
2023 }
2024 
2025 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2026                                     TCGMemOpIdx oi, uintptr_t retaddr)
2027 {
2028     return full_be_lduw_mmu(env, addr, oi, retaddr);
2029 }
2030 
2031 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2032                                  TCGMemOpIdx oi, uintptr_t retaddr)
2033 {
2034     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2035                        full_le_ldul_mmu);
2036 }
2037 
2038 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2039                                     TCGMemOpIdx oi, uintptr_t retaddr)
2040 {
2041     return full_le_ldul_mmu(env, addr, oi, retaddr);
2042 }
2043 
2044 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2045                                  TCGMemOpIdx oi, uintptr_t retaddr)
2046 {
2047     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2048                        full_be_ldul_mmu);
2049 }
2050 
2051 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2052                                     TCGMemOpIdx oi, uintptr_t retaddr)
2053 {
2054     return full_be_ldul_mmu(env, addr, oi, retaddr);
2055 }
2056 
2057 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2058                            TCGMemOpIdx oi, uintptr_t retaddr)
2059 {
2060     return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
2061                        helper_le_ldq_mmu);
2062 }
2063 
2064 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2065                            TCGMemOpIdx oi, uintptr_t retaddr)
2066 {
2067     return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
2068                        helper_be_ldq_mmu);
2069 }
2070 
2071 /*
2072  * Provide signed versions of the load routines as well.  We can of course
2073  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2074  */
2075 
2076 
2077 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2078                                      TCGMemOpIdx oi, uintptr_t retaddr)
2079 {
2080     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2081 }
2082 
2083 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2084                                     TCGMemOpIdx oi, uintptr_t retaddr)
2085 {
2086     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2087 }
2088 
2089 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2090                                     TCGMemOpIdx oi, uintptr_t retaddr)
2091 {
2092     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2093 }
2094 
2095 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2096                                     TCGMemOpIdx oi, uintptr_t retaddr)
2097 {
2098     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2099 }
2100 
2101 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2102                                     TCGMemOpIdx oi, uintptr_t retaddr)
2103 {
2104     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2105 }
2106 
2107 /*
2108  * Load helpers for cpu_ldst.h.
2109  */
2110 
2111 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2112                                        int mmu_idx, uintptr_t retaddr,
2113                                        MemOp op, FullLoadHelper *full_load)
2114 {
2115     uint16_t meminfo;
2116     TCGMemOpIdx oi;
2117     uint64_t ret;
2118 
2119     meminfo = trace_mem_get_info(op, mmu_idx, false);
2120     trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
2121 
2122     op &= ~MO_SIGN;
2123     oi = make_memop_idx(op, mmu_idx);
2124     ret = full_load(env, addr, oi, retaddr);
2125 
2126     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
2127 
2128     return ret;
2129 }
2130 
2131 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2132                             int mmu_idx, uintptr_t ra)
2133 {
2134     return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu);
2135 }
2136 
2137 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2138                        int mmu_idx, uintptr_t ra)
2139 {
2140     return (int8_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_SB,
2141                                    full_ldub_mmu);
2142 }
2143 
2144 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2145                                int mmu_idx, uintptr_t ra)
2146 {
2147     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu);
2148 }
2149 
2150 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2151                           int mmu_idx, uintptr_t ra)
2152 {
2153     return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_BESW,
2154                                     full_be_lduw_mmu);
2155 }
2156 
2157 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2158                               int mmu_idx, uintptr_t ra)
2159 {
2160     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu);
2161 }
2162 
2163 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2164                               int mmu_idx, uintptr_t ra)
2165 {
2166     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu);
2167 }
2168 
2169 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2170                                int mmu_idx, uintptr_t ra)
2171 {
2172     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu);
2173 }
2174 
2175 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2176                           int mmu_idx, uintptr_t ra)
2177 {
2178     return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_LESW,
2179                                     full_le_lduw_mmu);
2180 }
2181 
2182 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2183                               int mmu_idx, uintptr_t ra)
2184 {
2185     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu);
2186 }
2187 
2188 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2189                               int mmu_idx, uintptr_t ra)
2190 {
2191     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu);
2192 }
2193 
2194 uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr,
2195                           uintptr_t retaddr)
2196 {
2197     return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2198 }
2199 
2200 int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2201 {
2202     return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2203 }
2204 
2205 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr,
2206                              uintptr_t retaddr)
2207 {
2208     return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2209 }
2210 
2211 int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2212 {
2213     return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2214 }
2215 
2216 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr,
2217                             uintptr_t retaddr)
2218 {
2219     return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2220 }
2221 
2222 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr,
2223                             uintptr_t retaddr)
2224 {
2225     return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2226 }
2227 
2228 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr,
2229                              uintptr_t retaddr)
2230 {
2231     return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2232 }
2233 
2234 int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2235 {
2236     return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2237 }
2238 
2239 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr,
2240                             uintptr_t retaddr)
2241 {
2242     return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2243 }
2244 
2245 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr,
2246                             uintptr_t retaddr)
2247 {
2248     return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2249 }
2250 
2251 uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr)
2252 {
2253     return cpu_ldub_data_ra(env, ptr, 0);
2254 }
2255 
2256 int cpu_ldsb_data(CPUArchState *env, target_ulong ptr)
2257 {
2258     return cpu_ldsb_data_ra(env, ptr, 0);
2259 }
2260 
2261 uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr)
2262 {
2263     return cpu_lduw_be_data_ra(env, ptr, 0);
2264 }
2265 
2266 int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr)
2267 {
2268     return cpu_ldsw_be_data_ra(env, ptr, 0);
2269 }
2270 
2271 uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr)
2272 {
2273     return cpu_ldl_be_data_ra(env, ptr, 0);
2274 }
2275 
2276 uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr)
2277 {
2278     return cpu_ldq_be_data_ra(env, ptr, 0);
2279 }
2280 
2281 uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr)
2282 {
2283     return cpu_lduw_le_data_ra(env, ptr, 0);
2284 }
2285 
2286 int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr)
2287 {
2288     return cpu_ldsw_le_data_ra(env, ptr, 0);
2289 }
2290 
2291 uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr)
2292 {
2293     return cpu_ldl_le_data_ra(env, ptr, 0);
2294 }
2295 
2296 uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr)
2297 {
2298     return cpu_ldq_le_data_ra(env, ptr, 0);
2299 }
2300 
2301 /*
2302  * Store Helpers
2303  */
2304 
2305 static inline void QEMU_ALWAYS_INLINE
2306 store_memop(void *haddr, uint64_t val, MemOp op)
2307 {
2308     switch (op) {
2309     case MO_UB:
2310         stb_p(haddr, val);
2311         break;
2312     case MO_BEUW:
2313         stw_be_p(haddr, val);
2314         break;
2315     case MO_LEUW:
2316         stw_le_p(haddr, val);
2317         break;
2318     case MO_BEUL:
2319         stl_be_p(haddr, val);
2320         break;
2321     case MO_LEUL:
2322         stl_le_p(haddr, val);
2323         break;
2324     case MO_BEQ:
2325         stq_be_p(haddr, val);
2326         break;
2327     case MO_LEQ:
2328         stq_le_p(haddr, val);
2329         break;
2330     default:
2331         qemu_build_not_reached();
2332     }
2333 }
2334 
2335 static void __attribute__((noinline))
2336 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2337                        uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2338                        bool big_endian)
2339 {
2340     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2341     uintptr_t index, index2;
2342     CPUTLBEntry *entry, *entry2;
2343     target_ulong page2, tlb_addr, tlb_addr2;
2344     TCGMemOpIdx oi;
2345     size_t size2;
2346     int i;
2347 
2348     /*
2349      * Ensure the second page is in the TLB.  Note that the first page
2350      * is already guaranteed to be filled, and that the second page
2351      * cannot evict the first.
2352      */
2353     page2 = (addr + size) & TARGET_PAGE_MASK;
2354     size2 = (addr + size) & ~TARGET_PAGE_MASK;
2355     index2 = tlb_index(env, mmu_idx, page2);
2356     entry2 = tlb_entry(env, mmu_idx, page2);
2357 
2358     tlb_addr2 = tlb_addr_write(entry2);
2359     if (!tlb_hit_page(tlb_addr2, page2)) {
2360         if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2361             tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2362                      mmu_idx, retaddr);
2363             index2 = tlb_index(env, mmu_idx, page2);
2364             entry2 = tlb_entry(env, mmu_idx, page2);
2365         }
2366         tlb_addr2 = tlb_addr_write(entry2);
2367     }
2368 
2369     index = tlb_index(env, mmu_idx, addr);
2370     entry = tlb_entry(env, mmu_idx, addr);
2371     tlb_addr = tlb_addr_write(entry);
2372 
2373     /*
2374      * Handle watchpoints.  Since this may trap, all checks
2375      * must happen before any store.
2376      */
2377     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2378         cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2379                              env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2380                              BP_MEM_WRITE, retaddr);
2381     }
2382     if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2383         cpu_check_watchpoint(env_cpu(env), page2, size2,
2384                              env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2385                              BP_MEM_WRITE, retaddr);
2386     }
2387 
2388     /*
2389      * XXX: not efficient, but simple.
2390      * This loop must go in the forward direction to avoid issues
2391      * with self-modifying code in Windows 64-bit.
2392      */
2393     oi = make_memop_idx(MO_UB, mmu_idx);
2394     if (big_endian) {
2395         for (i = 0; i < size; ++i) {
2396             /* Big-endian extract.  */
2397             uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2398             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2399         }
2400     } else {
2401         for (i = 0; i < size; ++i) {
2402             /* Little-endian extract.  */
2403             uint8_t val8 = val >> (i * 8);
2404             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2405         }
2406     }
2407 }
2408 
2409 static inline void QEMU_ALWAYS_INLINE
2410 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2411              TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
2412 {
2413     uintptr_t mmu_idx = get_mmuidx(oi);
2414     uintptr_t index = tlb_index(env, mmu_idx, addr);
2415     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2416     target_ulong tlb_addr = tlb_addr_write(entry);
2417     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2418     unsigned a_bits = get_alignment_bits(get_memop(oi));
2419     void *haddr;
2420     size_t size = memop_size(op);
2421 
2422     /* Handle CPU specific unaligned behaviour */
2423     if (addr & ((1 << a_bits) - 1)) {
2424         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2425                              mmu_idx, retaddr);
2426     }
2427 
2428     /* If the TLB entry is for a different page, reload and try again.  */
2429     if (!tlb_hit(tlb_addr, addr)) {
2430         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2431             addr & TARGET_PAGE_MASK)) {
2432             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2433                      mmu_idx, retaddr);
2434             index = tlb_index(env, mmu_idx, addr);
2435             entry = tlb_entry(env, mmu_idx, addr);
2436         }
2437         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2438     }
2439 
2440     /* Handle anything that isn't just a straight memory access.  */
2441     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2442         CPUIOTLBEntry *iotlbentry;
2443         bool need_swap;
2444 
2445         /* For anything that is unaligned, recurse through byte stores.  */
2446         if ((addr & (size - 1)) != 0) {
2447             goto do_unaligned_access;
2448         }
2449 
2450         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2451 
2452         /* Handle watchpoints.  */
2453         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2454             /* On watchpoint hit, this will longjmp out.  */
2455             cpu_check_watchpoint(env_cpu(env), addr, size,
2456                                  iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2457         }
2458 
2459         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2460 
2461         /* Handle I/O access.  */
2462         if (tlb_addr & TLB_MMIO) {
2463             io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2464                       op ^ (need_swap * MO_BSWAP));
2465             return;
2466         }
2467 
2468         /* Ignore writes to ROM.  */
2469         if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2470             return;
2471         }
2472 
2473         /* Handle clean RAM pages.  */
2474         if (tlb_addr & TLB_NOTDIRTY) {
2475             notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2476         }
2477 
2478         haddr = (void *)((uintptr_t)addr + entry->addend);
2479 
2480         /*
2481          * Keep these two store_memop separate to ensure that the compiler
2482          * is able to fold the entire function to a single instruction.
2483          * There is a build-time assert inside to remind you of this.  ;-)
2484          */
2485         if (unlikely(need_swap)) {
2486             store_memop(haddr, val, op ^ MO_BSWAP);
2487         } else {
2488             store_memop(haddr, val, op);
2489         }
2490         return;
2491     }
2492 
2493     /* Handle slow unaligned access (it spans two pages or IO).  */
2494     if (size > 1
2495         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2496                      >= TARGET_PAGE_SIZE)) {
2497     do_unaligned_access:
2498         store_helper_unaligned(env, addr, val, retaddr, size,
2499                                mmu_idx, memop_big_endian(op));
2500         return;
2501     }
2502 
2503     haddr = (void *)((uintptr_t)addr + entry->addend);
2504     store_memop(haddr, val, op);
2505 }
2506 
2507 void __attribute__((noinline))
2508 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2509                    TCGMemOpIdx oi, uintptr_t retaddr)
2510 {
2511     store_helper(env, addr, val, oi, retaddr, MO_UB);
2512 }
2513 
2514 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2515                        TCGMemOpIdx oi, uintptr_t retaddr)
2516 {
2517     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2518 }
2519 
2520 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2521                        TCGMemOpIdx oi, uintptr_t retaddr)
2522 {
2523     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2524 }
2525 
2526 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2527                        TCGMemOpIdx oi, uintptr_t retaddr)
2528 {
2529     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2530 }
2531 
2532 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2533                        TCGMemOpIdx oi, uintptr_t retaddr)
2534 {
2535     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2536 }
2537 
2538 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2539                        TCGMemOpIdx oi, uintptr_t retaddr)
2540 {
2541     store_helper(env, addr, val, oi, retaddr, MO_LEQ);
2542 }
2543 
2544 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2545                        TCGMemOpIdx oi, uintptr_t retaddr)
2546 {
2547     store_helper(env, addr, val, oi, retaddr, MO_BEQ);
2548 }
2549 
2550 /*
2551  * Store Helpers for cpu_ldst.h
2552  */
2553 
2554 static inline void QEMU_ALWAYS_INLINE
2555 cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2556                  int mmu_idx, uintptr_t retaddr, MemOp op)
2557 {
2558     TCGMemOpIdx oi;
2559     uint16_t meminfo;
2560 
2561     meminfo = trace_mem_get_info(op, mmu_idx, true);
2562     trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
2563 
2564     oi = make_memop_idx(op, mmu_idx);
2565     store_helper(env, addr, val, oi, retaddr, op);
2566 
2567     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
2568 }
2569 
2570 void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2571                        int mmu_idx, uintptr_t retaddr)
2572 {
2573     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
2574 }
2575 
2576 void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2577                           int mmu_idx, uintptr_t retaddr)
2578 {
2579     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW);
2580 }
2581 
2582 void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2583                           int mmu_idx, uintptr_t retaddr)
2584 {
2585     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL);
2586 }
2587 
2588 void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2589                           int mmu_idx, uintptr_t retaddr)
2590 {
2591     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ);
2592 }
2593 
2594 void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2595                           int mmu_idx, uintptr_t retaddr)
2596 {
2597     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW);
2598 }
2599 
2600 void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2601                           int mmu_idx, uintptr_t retaddr)
2602 {
2603     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL);
2604 }
2605 
2606 void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2607                           int mmu_idx, uintptr_t retaddr)
2608 {
2609     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ);
2610 }
2611 
2612 void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr,
2613                      uint32_t val, uintptr_t retaddr)
2614 {
2615     cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2616 }
2617 
2618 void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr,
2619                         uint32_t val, uintptr_t retaddr)
2620 {
2621     cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2622 }
2623 
2624 void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr,
2625                         uint32_t val, uintptr_t retaddr)
2626 {
2627     cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2628 }
2629 
2630 void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr,
2631                         uint64_t val, uintptr_t retaddr)
2632 {
2633     cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2634 }
2635 
2636 void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr,
2637                         uint32_t val, uintptr_t retaddr)
2638 {
2639     cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2640 }
2641 
2642 void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr,
2643                         uint32_t val, uintptr_t retaddr)
2644 {
2645     cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2646 }
2647 
2648 void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr,
2649                         uint64_t val, uintptr_t retaddr)
2650 {
2651     cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2652 }
2653 
2654 void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2655 {
2656     cpu_stb_data_ra(env, ptr, val, 0);
2657 }
2658 
2659 void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2660 {
2661     cpu_stw_be_data_ra(env, ptr, val, 0);
2662 }
2663 
2664 void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2665 {
2666     cpu_stl_be_data_ra(env, ptr, val, 0);
2667 }
2668 
2669 void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2670 {
2671     cpu_stq_be_data_ra(env, ptr, val, 0);
2672 }
2673 
2674 void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2675 {
2676     cpu_stw_le_data_ra(env, ptr, val, 0);
2677 }
2678 
2679 void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2680 {
2681     cpu_stl_le_data_ra(env, ptr, val, 0);
2682 }
2683 
2684 void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2685 {
2686     cpu_stq_le_data_ra(env, ptr, val, 0);
2687 }
2688 
2689 /*
2690  * First set of functions passes in OI and RETADDR.
2691  * This makes them callable from other helpers.
2692  */
2693 
2694 #define ATOMIC_NAME(X) \
2695     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2696 
2697 #define ATOMIC_MMU_CLEANUP
2698 #define ATOMIC_MMU_IDX   get_mmuidx(oi)
2699 
2700 #include "atomic_common.c.inc"
2701 
2702 #define DATA_SIZE 1
2703 #include "atomic_template.h"
2704 
2705 #define DATA_SIZE 2
2706 #include "atomic_template.h"
2707 
2708 #define DATA_SIZE 4
2709 #include "atomic_template.h"
2710 
2711 #ifdef CONFIG_ATOMIC64
2712 #define DATA_SIZE 8
2713 #include "atomic_template.h"
2714 #endif
2715 
2716 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2717 #define DATA_SIZE 16
2718 #include "atomic_template.h"
2719 #endif
2720 
2721 /* Code access functions.  */
2722 
2723 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2724                                TCGMemOpIdx oi, uintptr_t retaddr)
2725 {
2726     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2727 }
2728 
2729 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2730 {
2731     TCGMemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2732     return full_ldub_code(env, addr, oi, 0);
2733 }
2734 
2735 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2736                                TCGMemOpIdx oi, uintptr_t retaddr)
2737 {
2738     return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2739 }
2740 
2741 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2742 {
2743     TCGMemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2744     return full_lduw_code(env, addr, oi, 0);
2745 }
2746 
2747 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2748                               TCGMemOpIdx oi, uintptr_t retaddr)
2749 {
2750     return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2751 }
2752 
2753 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2754 {
2755     TCGMemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2756     return full_ldl_code(env, addr, oi, 0);
2757 }
2758 
2759 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2760                               TCGMemOpIdx oi, uintptr_t retaddr)
2761 {
2762     return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
2763 }
2764 
2765 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2766 {
2767     TCGMemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
2768     return full_ldq_code(env, addr, oi, 0);
2769 }
2770