xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 61b01bbc)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 
36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
37 /* #define DEBUG_TLB */
38 /* #define DEBUG_TLB_LOG */
39 
40 #ifdef DEBUG_TLB
41 # define DEBUG_TLB_GATE 1
42 # ifdef DEBUG_TLB_LOG
43 #  define DEBUG_TLB_LOG_GATE 1
44 # else
45 #  define DEBUG_TLB_LOG_GATE 0
46 # endif
47 #else
48 # define DEBUG_TLB_GATE 0
49 # define DEBUG_TLB_LOG_GATE 0
50 #endif
51 
52 #define tlb_debug(fmt, ...) do { \
53     if (DEBUG_TLB_LOG_GATE) { \
54         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
55                       ## __VA_ARGS__); \
56     } else if (DEBUG_TLB_GATE) { \
57         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
58     } \
59 } while (0)
60 
61 #define assert_cpu_is_self(this_cpu) do {                         \
62         if (DEBUG_TLB_GATE) {                                     \
63             g_assert(!cpu->created || qemu_cpu_is_self(cpu));     \
64         }                                                         \
65     } while (0)
66 
67 /* run_on_cpu_data.target_ptr should always be big enough for a
68  * target_ulong even on 32 bit builds */
69 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
70 
71 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
72  */
73 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
74 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
75 
76 /* flush_all_helper: run fn across all cpus
77  *
78  * If the wait flag is set then the src cpu's helper will be queued as
79  * "safe" work and the loop exited creating a synchronisation point
80  * where all queued work will be finished before execution starts
81  * again.
82  */
83 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
84                              run_on_cpu_data d)
85 {
86     CPUState *cpu;
87 
88     CPU_FOREACH(cpu) {
89         if (cpu != src) {
90             async_run_on_cpu(cpu, fn, d);
91         }
92     }
93 }
94 
95 size_t tlb_flush_count(void)
96 {
97     CPUState *cpu;
98     size_t count = 0;
99 
100     CPU_FOREACH(cpu) {
101         CPUArchState *env = cpu->env_ptr;
102 
103         count += atomic_read(&env->tlb_flush_count);
104     }
105     return count;
106 }
107 
108 /* This is OK because CPU architectures generally permit an
109  * implementation to drop entries from the TLB at any time, so
110  * flushing more entries than required is only an efficiency issue,
111  * not a correctness issue.
112  */
113 static void tlb_flush_nocheck(CPUState *cpu)
114 {
115     CPUArchState *env = cpu->env_ptr;
116 
117     /* The QOM tests will trigger tlb_flushes without setting up TCG
118      * so we bug out here in that case.
119      */
120     if (!tcg_enabled()) {
121         return;
122     }
123 
124     assert_cpu_is_self(cpu);
125     atomic_set(&env->tlb_flush_count, env->tlb_flush_count + 1);
126     tlb_debug("(count: %zu)\n", tlb_flush_count());
127 
128     tb_lock();
129 
130     memset(env->tlb_table, -1, sizeof(env->tlb_table));
131     memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
132     cpu_tb_jmp_cache_clear(cpu);
133 
134     env->vtlb_index = 0;
135     env->tlb_flush_addr = -1;
136     env->tlb_flush_mask = 0;
137 
138     tb_unlock();
139 
140     atomic_mb_set(&cpu->pending_tlb_flush, 0);
141 }
142 
143 static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data)
144 {
145     tlb_flush_nocheck(cpu);
146 }
147 
148 void tlb_flush(CPUState *cpu)
149 {
150     if (cpu->created && !qemu_cpu_is_self(cpu)) {
151         if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) {
152             atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS);
153             async_run_on_cpu(cpu, tlb_flush_global_async_work,
154                              RUN_ON_CPU_NULL);
155         }
156     } else {
157         tlb_flush_nocheck(cpu);
158     }
159 }
160 
161 void tlb_flush_all_cpus(CPUState *src_cpu)
162 {
163     const run_on_cpu_func fn = tlb_flush_global_async_work;
164     flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
165     fn(src_cpu, RUN_ON_CPU_NULL);
166 }
167 
168 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
169 {
170     const run_on_cpu_func fn = tlb_flush_global_async_work;
171     flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
172     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL);
173 }
174 
175 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
176 {
177     CPUArchState *env = cpu->env_ptr;
178     unsigned long mmu_idx_bitmask = data.host_int;
179     int mmu_idx;
180 
181     assert_cpu_is_self(cpu);
182 
183     tb_lock();
184 
185     tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask);
186 
187     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
188 
189         if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
190             tlb_debug("%d\n", mmu_idx);
191 
192             memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
193             memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
194         }
195     }
196 
197     cpu_tb_jmp_cache_clear(cpu);
198 
199     tlb_debug("done\n");
200 
201     tb_unlock();
202 }
203 
204 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
205 {
206     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
207 
208     if (!qemu_cpu_is_self(cpu)) {
209         uint16_t pending_flushes = idxmap;
210         pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush);
211 
212         if (pending_flushes) {
213             tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes);
214 
215             atomic_or(&cpu->pending_tlb_flush, pending_flushes);
216             async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
217                              RUN_ON_CPU_HOST_INT(pending_flushes));
218         }
219     } else {
220         tlb_flush_by_mmuidx_async_work(cpu,
221                                        RUN_ON_CPU_HOST_INT(idxmap));
222     }
223 }
224 
225 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
226 {
227     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
228 
229     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
230 
231     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
232     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
233 }
234 
235 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
236                                                        uint16_t idxmap)
237 {
238     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
239 
240     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
241 
242     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
243     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
244 }
245 
246 
247 
248 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
249 {
250     if (addr == (tlb_entry->addr_read &
251                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
252         addr == (tlb_entry->addr_write &
253                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
254         addr == (tlb_entry->addr_code &
255                  (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
256         memset(tlb_entry, -1, sizeof(*tlb_entry));
257     }
258 }
259 
260 static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
261 {
262     CPUArchState *env = cpu->env_ptr;
263     target_ulong addr = (target_ulong) data.target_ptr;
264     int i;
265     int mmu_idx;
266 
267     assert_cpu_is_self(cpu);
268 
269     tlb_debug("page :" TARGET_FMT_lx "\n", addr);
270 
271     /* Check if we need to flush due to large pages.  */
272     if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
273         tlb_debug("forcing full flush ("
274                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
275                   env->tlb_flush_addr, env->tlb_flush_mask);
276 
277         tlb_flush(cpu);
278         return;
279     }
280 
281     addr &= TARGET_PAGE_MASK;
282     i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
283     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
284         tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
285     }
286 
287     /* check whether there are entries that need to be flushed in the vtlb */
288     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
289         int k;
290         for (k = 0; k < CPU_VTLB_SIZE; k++) {
291             tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
292         }
293     }
294 
295     tb_flush_jmp_cache(cpu, addr);
296 }
297 
298 void tlb_flush_page(CPUState *cpu, target_ulong addr)
299 {
300     tlb_debug("page :" TARGET_FMT_lx "\n", addr);
301 
302     if (!qemu_cpu_is_self(cpu)) {
303         async_run_on_cpu(cpu, tlb_flush_page_async_work,
304                          RUN_ON_CPU_TARGET_PTR(addr));
305     } else {
306         tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
307     }
308 }
309 
310 /* As we are going to hijack the bottom bits of the page address for a
311  * mmuidx bit mask we need to fail to build if we can't do that
312  */
313 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
314 
315 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
316                                                 run_on_cpu_data data)
317 {
318     CPUArchState *env = cpu->env_ptr;
319     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
320     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
321     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
322     int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
323     int mmu_idx;
324     int i;
325 
326     assert_cpu_is_self(cpu);
327 
328     tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n",
329               page, addr, mmu_idx_bitmap);
330 
331     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
332         if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
333             tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
334 
335             /* check whether there are vltb entries that need to be flushed */
336             for (i = 0; i < CPU_VTLB_SIZE; i++) {
337                 tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr);
338             }
339         }
340     }
341 
342     tb_flush_jmp_cache(cpu, addr);
343 }
344 
345 static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu,
346                                                           run_on_cpu_data data)
347 {
348     CPUArchState *env = cpu->env_ptr;
349     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
350     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
351     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
352 
353     tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap);
354 
355     /* Check if we need to flush due to large pages.  */
356     if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
357         tlb_debug("forced full flush ("
358                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
359                   env->tlb_flush_addr, env->tlb_flush_mask);
360 
361         tlb_flush_by_mmuidx_async_work(cpu,
362                                        RUN_ON_CPU_HOST_INT(mmu_idx_bitmap));
363     } else {
364         tlb_flush_page_by_mmuidx_async_work(cpu, data);
365     }
366 }
367 
368 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
369 {
370     target_ulong addr_and_mmu_idx;
371 
372     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
373 
374     /* This should already be page aligned */
375     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
376     addr_and_mmu_idx |= idxmap;
377 
378     if (!qemu_cpu_is_self(cpu)) {
379         async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work,
380                          RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
381     } else {
382         tlb_check_page_and_flush_by_mmuidx_async_work(
383             cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
384     }
385 }
386 
387 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
388                                        uint16_t idxmap)
389 {
390     const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
391     target_ulong addr_and_mmu_idx;
392 
393     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
394 
395     /* This should already be page aligned */
396     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
397     addr_and_mmu_idx |= idxmap;
398 
399     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
400     fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
401 }
402 
403 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
404                                                             target_ulong addr,
405                                                             uint16_t idxmap)
406 {
407     const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
408     target_ulong addr_and_mmu_idx;
409 
410     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
411 
412     /* This should already be page aligned */
413     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
414     addr_and_mmu_idx |= idxmap;
415 
416     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
417     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
418 }
419 
420 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
421 {
422     const run_on_cpu_func fn = tlb_flush_page_async_work;
423 
424     flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
425     fn(src, RUN_ON_CPU_TARGET_PTR(addr));
426 }
427 
428 void tlb_flush_page_all_cpus_synced(CPUState *src,
429                                                   target_ulong addr)
430 {
431     const run_on_cpu_func fn = tlb_flush_page_async_work;
432 
433     flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
434     async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
435 }
436 
437 /* update the TLBs so that writes to code in the virtual page 'addr'
438    can be detected */
439 void tlb_protect_code(ram_addr_t ram_addr)
440 {
441     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
442                                              DIRTY_MEMORY_CODE);
443 }
444 
445 /* update the TLB so that writes in physical page 'phys_addr' are no longer
446    tested for self modifying code */
447 void tlb_unprotect_code(ram_addr_t ram_addr)
448 {
449     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
450 }
451 
452 
453 /*
454  * Dirty write flag handling
455  *
456  * When the TCG code writes to a location it looks up the address in
457  * the TLB and uses that data to compute the final address. If any of
458  * the lower bits of the address are set then the slow path is forced.
459  * There are a number of reasons to do this but for normal RAM the
460  * most usual is detecting writes to code regions which may invalidate
461  * generated code.
462  *
463  * Because we want other vCPUs to respond to changes straight away we
464  * update the te->addr_write field atomically. If the TLB entry has
465  * been changed by the vCPU in the mean time we skip the update.
466  *
467  * As this function uses atomic accesses we also need to ensure
468  * updates to tlb_entries follow the same access rules. We don't need
469  * to worry about this for oversized guests as MTTCG is disabled for
470  * them.
471  */
472 
473 static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
474                            uintptr_t length)
475 {
476 #if TCG_OVERSIZED_GUEST
477     uintptr_t addr = tlb_entry->addr_write;
478 
479     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
480         addr &= TARGET_PAGE_MASK;
481         addr += tlb_entry->addend;
482         if ((addr - start) < length) {
483             tlb_entry->addr_write |= TLB_NOTDIRTY;
484         }
485     }
486 #else
487     /* paired with atomic_mb_set in tlb_set_page_with_attrs */
488     uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write);
489     uintptr_t addr = orig_addr;
490 
491     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
492         addr &= TARGET_PAGE_MASK;
493         addr += atomic_read(&tlb_entry->addend);
494         if ((addr - start) < length) {
495             uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY;
496             atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr);
497         }
498     }
499 #endif
500 }
501 
502 /* For atomic correctness when running MTTCG we need to use the right
503  * primitives when copying entries */
504 static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s,
505                                    bool atomic_set)
506 {
507 #if TCG_OVERSIZED_GUEST
508     *d = *s;
509 #else
510     if (atomic_set) {
511         d->addr_read = s->addr_read;
512         d->addr_code = s->addr_code;
513         atomic_set(&d->addend, atomic_read(&s->addend));
514         /* Pairs with flag setting in tlb_reset_dirty_range */
515         atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write));
516     } else {
517         d->addr_read = s->addr_read;
518         d->addr_write = atomic_read(&s->addr_write);
519         d->addr_code = s->addr_code;
520         d->addend = atomic_read(&s->addend);
521     }
522 #endif
523 }
524 
525 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
526  * the target vCPU). As such care needs to be taken that we don't
527  * dangerously race with another vCPU update. The only thing actually
528  * updated is the target TLB entry ->addr_write flags.
529  */
530 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
531 {
532     CPUArchState *env;
533 
534     int mmu_idx;
535 
536     env = cpu->env_ptr;
537     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
538         unsigned int i;
539 
540         for (i = 0; i < CPU_TLB_SIZE; i++) {
541             tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
542                                   start1, length);
543         }
544 
545         for (i = 0; i < CPU_VTLB_SIZE; i++) {
546             tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
547                                   start1, length);
548         }
549     }
550 }
551 
552 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
553 {
554     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
555         tlb_entry->addr_write = vaddr;
556     }
557 }
558 
559 /* update the TLB corresponding to virtual page vaddr
560    so that it is no longer dirty */
561 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
562 {
563     CPUArchState *env = cpu->env_ptr;
564     int i;
565     int mmu_idx;
566 
567     assert_cpu_is_self(cpu);
568 
569     vaddr &= TARGET_PAGE_MASK;
570     i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
571     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
572         tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
573     }
574 
575     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
576         int k;
577         for (k = 0; k < CPU_VTLB_SIZE; k++) {
578             tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
579         }
580     }
581 }
582 
583 /* Our TLB does not support large pages, so remember the area covered by
584    large pages and trigger a full TLB flush if these are invalidated.  */
585 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
586                                target_ulong size)
587 {
588     target_ulong mask = ~(size - 1);
589 
590     if (env->tlb_flush_addr == (target_ulong)-1) {
591         env->tlb_flush_addr = vaddr & mask;
592         env->tlb_flush_mask = mask;
593         return;
594     }
595     /* Extend the existing region to include the new page.
596        This is a compromise between unnecessary flushes and the cost
597        of maintaining a full variable size TLB.  */
598     mask &= env->tlb_flush_mask;
599     while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
600         mask <<= 1;
601     }
602     env->tlb_flush_addr &= mask;
603     env->tlb_flush_mask = mask;
604 }
605 
606 /* Add a new TLB entry. At most one entry for a given virtual address
607  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
608  * supplied size is only used by tlb_flush_page.
609  *
610  * Called from TCG-generated code, which is under an RCU read-side
611  * critical section.
612  */
613 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
614                              hwaddr paddr, MemTxAttrs attrs, int prot,
615                              int mmu_idx, target_ulong size)
616 {
617     CPUArchState *env = cpu->env_ptr;
618     MemoryRegionSection *section;
619     unsigned int index;
620     target_ulong address;
621     target_ulong code_address;
622     uintptr_t addend;
623     CPUTLBEntry *te, *tv, tn;
624     hwaddr iotlb, xlat, sz;
625     unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
626     int asidx = cpu_asidx_from_attrs(cpu, attrs);
627 
628     assert_cpu_is_self(cpu);
629     assert(size >= TARGET_PAGE_SIZE);
630     if (size != TARGET_PAGE_SIZE) {
631         tlb_add_large_page(env, vaddr, size);
632     }
633 
634     sz = size;
635     section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
636     assert(sz >= TARGET_PAGE_SIZE);
637 
638     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
639               " prot=%x idx=%d\n",
640               vaddr, paddr, prot, mmu_idx);
641 
642     address = vaddr;
643     if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
644         /* IO memory case */
645         address |= TLB_MMIO;
646         addend = 0;
647     } else {
648         /* TLB_MMIO for rom/romd handled below */
649         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
650     }
651 
652     code_address = address;
653     iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
654                                             prot, &address);
655 
656     index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
657     te = &env->tlb_table[mmu_idx][index];
658     /* do not discard the translation in te, evict it into a victim tlb */
659     tv = &env->tlb_v_table[mmu_idx][vidx];
660 
661     /* addr_write can race with tlb_reset_dirty_range */
662     copy_tlb_helper(tv, te, true);
663 
664     env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
665 
666     /* refill the tlb */
667     env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
668     env->iotlb[mmu_idx][index].attrs = attrs;
669 
670     /* Now calculate the new entry */
671     tn.addend = addend - vaddr;
672     if (prot & PAGE_READ) {
673         tn.addr_read = address;
674     } else {
675         tn.addr_read = -1;
676     }
677 
678     if (prot & PAGE_EXEC) {
679         tn.addr_code = code_address;
680     } else {
681         tn.addr_code = -1;
682     }
683 
684     tn.addr_write = -1;
685     if (prot & PAGE_WRITE) {
686         if ((memory_region_is_ram(section->mr) && section->readonly)
687             || memory_region_is_romd(section->mr)) {
688             /* Write access calls the I/O callback.  */
689             tn.addr_write = address | TLB_MMIO;
690         } else if (memory_region_is_ram(section->mr)
691                    && cpu_physical_memory_is_clean(
692                         memory_region_get_ram_addr(section->mr) + xlat)) {
693             tn.addr_write = address | TLB_NOTDIRTY;
694         } else {
695             tn.addr_write = address;
696         }
697         if (prot & PAGE_WRITE_INV) {
698             tn.addr_write |= TLB_INVALID_MASK;
699         }
700     }
701 
702     /* Pairs with flag setting in tlb_reset_dirty_range */
703     copy_tlb_helper(te, &tn, true);
704     /* atomic_mb_set(&te->addr_write, write_address); */
705 }
706 
707 /* Add a new TLB entry, but without specifying the memory
708  * transaction attributes to be used.
709  */
710 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
711                   hwaddr paddr, int prot,
712                   int mmu_idx, target_ulong size)
713 {
714     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
715                             prot, mmu_idx, size);
716 }
717 
718 static void report_bad_exec(CPUState *cpu, target_ulong addr)
719 {
720     /* Accidentally executing outside RAM or ROM is quite common for
721      * several user-error situations, so report it in a way that
722      * makes it clear that this isn't a QEMU bug and provide suggestions
723      * about what a user could do to fix things.
724      */
725     error_report("Trying to execute code outside RAM or ROM at 0x"
726                  TARGET_FMT_lx, addr);
727     error_printf("This usually means one of the following happened:\n\n"
728                  "(1) You told QEMU to execute a kernel for the wrong machine "
729                  "type, and it crashed on startup (eg trying to run a "
730                  "raspberry pi kernel on a versatilepb QEMU machine)\n"
731                  "(2) You didn't give QEMU a kernel or BIOS filename at all, "
732                  "and QEMU executed a ROM full of no-op instructions until "
733                  "it fell off the end\n"
734                  "(3) Your guest kernel has a bug and crashed by jumping "
735                  "off into nowhere\n\n"
736                  "This is almost always one of the first two, so check your "
737                  "command line and that you are using the right type of kernel "
738                  "for this machine.\n"
739                  "If you think option (3) is likely then you can try debugging "
740                  "your guest with the -d debug options; in particular "
741                  "-d guest_errors will cause the log to include a dump of the "
742                  "guest register state at this point.\n\n"
743                  "Execution cannot continue; stopping here.\n\n");
744 
745     /* Report also to the logs, with more detail including register dump */
746     qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
747                   "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
748     log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
749 }
750 
751 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
752 {
753     ram_addr_t ram_addr;
754 
755     ram_addr = qemu_ram_addr_from_host(ptr);
756     if (ram_addr == RAM_ADDR_INVALID) {
757         error_report("Bad ram pointer %p", ptr);
758         abort();
759     }
760     return ram_addr;
761 }
762 
763 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
764                          int mmu_idx,
765                          target_ulong addr, uintptr_t retaddr, int size)
766 {
767     CPUState *cpu = ENV_GET_CPU(env);
768     hwaddr physaddr = iotlbentry->addr;
769     MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
770     uint64_t val;
771     bool locked = false;
772     MemTxResult r;
773 
774     physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
775     cpu->mem_io_pc = retaddr;
776     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
777         cpu_io_recompile(cpu, retaddr);
778     }
779 
780     cpu->mem_io_vaddr = addr;
781 
782     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
783         qemu_mutex_lock_iothread();
784         locked = true;
785     }
786     r = memory_region_dispatch_read(mr, physaddr,
787                                     &val, size, iotlbentry->attrs);
788     if (r != MEMTX_OK) {
789         cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_LOAD,
790                                mmu_idx, iotlbentry->attrs, r, retaddr);
791     }
792     if (locked) {
793         qemu_mutex_unlock_iothread();
794     }
795 
796     return val;
797 }
798 
799 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
800                       int mmu_idx,
801                       uint64_t val, target_ulong addr,
802                       uintptr_t retaddr, int size)
803 {
804     CPUState *cpu = ENV_GET_CPU(env);
805     hwaddr physaddr = iotlbentry->addr;
806     MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
807     bool locked = false;
808     MemTxResult r;
809 
810     physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
811     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
812         cpu_io_recompile(cpu, retaddr);
813     }
814     cpu->mem_io_vaddr = addr;
815     cpu->mem_io_pc = retaddr;
816 
817     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
818         qemu_mutex_lock_iothread();
819         locked = true;
820     }
821     r = memory_region_dispatch_write(mr, physaddr,
822                                      val, size, iotlbentry->attrs);
823     if (r != MEMTX_OK) {
824         cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
825                                mmu_idx, iotlbentry->attrs, r, retaddr);
826     }
827     if (locked) {
828         qemu_mutex_unlock_iothread();
829     }
830 }
831 
832 /* Return true if ADDR is present in the victim tlb, and has been copied
833    back to the main tlb.  */
834 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
835                            size_t elt_ofs, target_ulong page)
836 {
837     size_t vidx;
838     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
839         CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
840         target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
841 
842         if (cmp == page) {
843             /* Found entry in victim tlb, swap tlb and iotlb.  */
844             CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
845 
846             copy_tlb_helper(&tmptlb, tlb, false);
847             copy_tlb_helper(tlb, vtlb, true);
848             copy_tlb_helper(vtlb, &tmptlb, true);
849 
850             CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
851             CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
852             tmpio = *io; *io = *vio; *vio = tmpio;
853             return true;
854         }
855     }
856     return false;
857 }
858 
859 /* Macro to call the above, with local variables from the use context.  */
860 #define VICTIM_TLB_HIT(TY, ADDR) \
861   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
862                  (ADDR) & TARGET_PAGE_MASK)
863 
864 /* NOTE: this function can trigger an exception */
865 /* NOTE2: the returned address is not exactly the physical address: it
866  * is actually a ram_addr_t (in system mode; the user mode emulation
867  * version of this function returns a guest virtual address).
868  */
869 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
870 {
871     int mmu_idx, index, pd;
872     void *p;
873     MemoryRegion *mr;
874     CPUState *cpu = ENV_GET_CPU(env);
875     CPUIOTLBEntry *iotlbentry;
876     hwaddr physaddr;
877 
878     index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
879     mmu_idx = cpu_mmu_index(env, true);
880     if (unlikely(env->tlb_table[mmu_idx][index].addr_code !=
881                  (addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)))) {
882         if (!VICTIM_TLB_HIT(addr_read, addr)) {
883             tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
884         }
885     }
886     iotlbentry = &env->iotlb[mmu_idx][index];
887     pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
888     mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
889     if (memory_region_is_unassigned(mr)) {
890         qemu_mutex_lock_iothread();
891         if (memory_region_request_mmio_ptr(mr, addr)) {
892             qemu_mutex_unlock_iothread();
893             /* A MemoryRegion is potentially added so re-run the
894              * get_page_addr_code.
895              */
896             return get_page_addr_code(env, addr);
897         }
898         qemu_mutex_unlock_iothread();
899 
900         /* Give the new-style cpu_transaction_failed() hook first chance
901          * to handle this.
902          * This is not the ideal place to detect and generate CPU
903          * exceptions for instruction fetch failure (for instance
904          * we don't know the length of the access that the CPU would
905          * use, and it would be better to go ahead and try the access
906          * and use the MemTXResult it produced). However it is the
907          * simplest place we have currently available for the check.
908          */
909         physaddr = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
910         cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx,
911                                iotlbentry->attrs, MEMTX_DECODE_ERROR, 0);
912 
913         cpu_unassigned_access(cpu, addr, false, true, 0, 4);
914         /* The CPU's unassigned access hook might have longjumped out
915          * with an exception. If it didn't (or there was no hook) then
916          * we can't proceed further.
917          */
918         report_bad_exec(cpu, addr);
919         exit(1);
920     }
921     p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend);
922     return qemu_ram_addr_from_host_nofail(p);
923 }
924 
925 /* Probe for whether the specified guest write access is permitted.
926  * If it is not permitted then an exception will be taken in the same
927  * way as if this were a real write access (and we will not return).
928  * Otherwise the function will return, and there will be a valid
929  * entry in the TLB for this access.
930  */
931 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
932                  uintptr_t retaddr)
933 {
934     int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
935     target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
936 
937     if ((addr & TARGET_PAGE_MASK)
938         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
939         /* TLB entry is for a different page */
940         if (!VICTIM_TLB_HIT(addr_write, addr)) {
941             tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
942                      mmu_idx, retaddr);
943         }
944     }
945 }
946 
947 /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
948  * operations, or io operations to proceed.  Return the host address.  */
949 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
950                                TCGMemOpIdx oi, uintptr_t retaddr,
951                                NotDirtyInfo *ndi)
952 {
953     size_t mmu_idx = get_mmuidx(oi);
954     size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
955     CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
956     target_ulong tlb_addr = tlbe->addr_write;
957     TCGMemOp mop = get_memop(oi);
958     int a_bits = get_alignment_bits(mop);
959     int s_bits = mop & MO_SIZE;
960     void *hostaddr;
961 
962     /* Adjust the given return address.  */
963     retaddr -= GETPC_ADJ;
964 
965     /* Enforce guest required alignment.  */
966     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
967         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
968         cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
969                              mmu_idx, retaddr);
970     }
971 
972     /* Enforce qemu required alignment.  */
973     if (unlikely(addr & ((1 << s_bits) - 1))) {
974         /* We get here if guest alignment was not requested,
975            or was not enforced by cpu_unaligned_access above.
976            We might widen the access and emulate, but for now
977            mark an exception and exit the cpu loop.  */
978         goto stop_the_world;
979     }
980 
981     /* Check TLB entry and enforce page permissions.  */
982     if ((addr & TARGET_PAGE_MASK)
983         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
984         if (!VICTIM_TLB_HIT(addr_write, addr)) {
985             tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
986                      mmu_idx, retaddr);
987         }
988         tlb_addr = tlbe->addr_write & ~TLB_INVALID_MASK;
989     }
990 
991     /* Notice an IO access  */
992     if (unlikely(tlb_addr & TLB_MMIO)) {
993         /* There's really nothing that can be done to
994            support this apart from stop-the-world.  */
995         goto stop_the_world;
996     }
997 
998     /* Let the guest notice RMW on a write-only page.  */
999     if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1000         tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1001                  mmu_idx, retaddr);
1002         /* Since we don't support reads and writes to different addresses,
1003            and we do have the proper page loaded for write, this shouldn't
1004            ever return.  But just in case, handle via stop-the-world.  */
1005         goto stop_the_world;
1006     }
1007 
1008     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1009 
1010     ndi->active = false;
1011     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1012         ndi->active = true;
1013         memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr,
1014                                       qemu_ram_addr_from_host_nofail(hostaddr),
1015                                       1 << s_bits);
1016     }
1017 
1018     return hostaddr;
1019 
1020  stop_the_world:
1021     cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
1022 }
1023 
1024 #ifdef TARGET_WORDS_BIGENDIAN
1025 # define TGT_BE(X)  (X)
1026 # define TGT_LE(X)  BSWAP(X)
1027 #else
1028 # define TGT_BE(X)  BSWAP(X)
1029 # define TGT_LE(X)  (X)
1030 #endif
1031 
1032 #define MMUSUFFIX _mmu
1033 
1034 #define DATA_SIZE 1
1035 #include "softmmu_template.h"
1036 
1037 #define DATA_SIZE 2
1038 #include "softmmu_template.h"
1039 
1040 #define DATA_SIZE 4
1041 #include "softmmu_template.h"
1042 
1043 #define DATA_SIZE 8
1044 #include "softmmu_template.h"
1045 
1046 /* First set of helpers allows passing in of OI and RETADDR.  This makes
1047    them callable from other helpers.  */
1048 
1049 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1050 #define ATOMIC_NAME(X) \
1051     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1052 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1053 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1054 #define ATOMIC_MMU_CLEANUP                              \
1055     do {                                                \
1056         if (unlikely(ndi.active)) {                     \
1057             memory_notdirty_write_complete(&ndi);       \
1058         }                                               \
1059     } while (0)
1060 
1061 #define DATA_SIZE 1
1062 #include "atomic_template.h"
1063 
1064 #define DATA_SIZE 2
1065 #include "atomic_template.h"
1066 
1067 #define DATA_SIZE 4
1068 #include "atomic_template.h"
1069 
1070 #ifdef CONFIG_ATOMIC64
1071 #define DATA_SIZE 8
1072 #include "atomic_template.h"
1073 #endif
1074 
1075 #ifdef CONFIG_ATOMIC128
1076 #define DATA_SIZE 16
1077 #include "atomic_template.h"
1078 #endif
1079 
1080 /* Second set of helpers are directly callable from TCG as helpers.  */
1081 
1082 #undef EXTRA_ARGS
1083 #undef ATOMIC_NAME
1084 #undef ATOMIC_MMU_LOOKUP
1085 #define EXTRA_ARGS         , TCGMemOpIdx oi
1086 #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1087 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1088 
1089 #define DATA_SIZE 1
1090 #include "atomic_template.h"
1091 
1092 #define DATA_SIZE 2
1093 #include "atomic_template.h"
1094 
1095 #define DATA_SIZE 4
1096 #include "atomic_template.h"
1097 
1098 #ifdef CONFIG_ATOMIC64
1099 #define DATA_SIZE 8
1100 #include "atomic_template.h"
1101 #endif
1102 
1103 /* Code access functions.  */
1104 
1105 #undef MMUSUFFIX
1106 #define MMUSUFFIX _cmmu
1107 #undef GETPC
1108 #define GETPC() ((uintptr_t)0)
1109 #define SOFTMMU_CODE_ACCESS
1110 
1111 #define DATA_SIZE 1
1112 #include "softmmu_template.h"
1113 
1114 #define DATA_SIZE 2
1115 #include "softmmu_template.h"
1116 
1117 #define DATA_SIZE 4
1118 #include "softmmu_template.h"
1119 
1120 #define DATA_SIZE 8
1121 #include "softmmu_template.h"
1122