xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 5f87dddb)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44 
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48 
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 #  define DEBUG_TLB_LOG_GATE 1
53 # else
54 #  define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60 
61 #define tlb_debug(fmt, ...) do { \
62     if (DEBUG_TLB_LOG_GATE) { \
63         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64                       ## __VA_ARGS__); \
65     } else if (DEBUG_TLB_GATE) { \
66         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67     } \
68 } while (0)
69 
70 #define assert_cpu_is_self(cpu) do {                              \
71         if (DEBUG_TLB_GATE) {                                     \
72             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
73         }                                                         \
74     } while (0)
75 
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77  * vaddr even on 32 bit builds
78  */
79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
80 
81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
82  */
83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
85 
86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
87 {
88     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 }
90 
91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
92 {
93     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 }
95 
96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
97                              size_t max_entries)
98 {
99     desc->window_begin_ns = ns;
100     desc->window_max_entries = max_entries;
101 }
102 
103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
104 {
105     CPUJumpCache *jc = cpu->tb_jmp_cache;
106     int i, i0;
107 
108     if (unlikely(!jc)) {
109         return;
110     }
111 
112     i0 = tb_jmp_cache_hash_page(page_addr);
113     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
114         qatomic_set(&jc->array[i0 + i].tb, NULL);
115     }
116 }
117 
118 /**
119  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120  * @desc: The CPUTLBDesc portion of the TLB
121  * @fast: The CPUTLBDescFast portion of the same TLB
122  *
123  * Called with tlb_lock_held.
124  *
125  * We have two main constraints when resizing a TLB: (1) we only resize it
126  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127  * the array or unnecessarily flushing it), which means we do not control how
128  * frequently the resizing can occur; (2) we don't have access to the guest's
129  * future scheduling decisions, and therefore have to decide the magnitude of
130  * the resize based on past observations.
131  *
132  * In general, a memory-hungry process can benefit greatly from an appropriately
133  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134  * we just have to make the TLB as large as possible; while an oversized TLB
135  * results in minimal TLB miss rates, it also takes longer to be flushed
136  * (flushes can be _very_ frequent), and the reduced locality can also hurt
137  * performance.
138  *
139  * To achieve near-optimal performance for all kinds of workloads, we:
140  *
141  * 1. Aggressively increase the size of the TLB when the use rate of the
142  * TLB being flushed is high, since it is likely that in the near future this
143  * memory-hungry process will execute again, and its memory hungriness will
144  * probably be similar.
145  *
146  * 2. Slowly reduce the size of the TLB as the use rate declines over a
147  * reasonably large time window. The rationale is that if in such a time window
148  * we have not observed a high TLB use rate, it is likely that we won't observe
149  * it in the near future. In that case, once a time window expires we downsize
150  * the TLB to match the maximum use rate observed in the window.
151  *
152  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153  * since in that range performance is likely near-optimal. Recall that the TLB
154  * is direct mapped, so we want the use rate to be low (or at least not too
155  * high), since otherwise we are likely to have a significant amount of
156  * conflict misses.
157  */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159                                   int64_t now)
160 {
161     size_t old_size = tlb_n_entries(fast);
162     size_t rate;
163     size_t new_size = old_size;
164     int64_t window_len_ms = 100;
165     int64_t window_len_ns = window_len_ms * 1000 * 1000;
166     bool window_expired = now > desc->window_begin_ns + window_len_ns;
167 
168     if (desc->n_used_entries > desc->window_max_entries) {
169         desc->window_max_entries = desc->n_used_entries;
170     }
171     rate = desc->window_max_entries * 100 / old_size;
172 
173     if (rate > 70) {
174         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175     } else if (rate < 30 && window_expired) {
176         size_t ceil = pow2ceil(desc->window_max_entries);
177         size_t expected_rate = desc->window_max_entries * 100 / ceil;
178 
179         /*
180          * Avoid undersizing when the max number of entries seen is just below
181          * a pow2. For instance, if max_entries == 1025, the expected use rate
182          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184          * later. Thus, make sure that the expected use rate remains below 70%.
185          * (and since we double the size, that means the lowest rate we'd
186          * expect to get is 35%, which is still in the 30-70% range where
187          * we consider that the size is appropriate.)
188          */
189         if (expected_rate > 70) {
190             ceil *= 2;
191         }
192         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193     }
194 
195     if (new_size == old_size) {
196         if (window_expired) {
197             tlb_window_reset(desc, now, desc->n_used_entries);
198         }
199         return;
200     }
201 
202     g_free(fast->table);
203     g_free(desc->fulltlb);
204 
205     tlb_window_reset(desc, now, 0);
206     /* desc->n_used_entries is cleared by the caller */
207     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208     fast->table = g_try_new(CPUTLBEntry, new_size);
209     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
210 
211     /*
212      * If the allocations fail, try smaller sizes. We just freed some
213      * memory, so going back to half of new_size has a good chance of working.
214      * Increased memory pressure elsewhere in the system might cause the
215      * allocations to fail though, so we progressively reduce the allocation
216      * size, aborting if we cannot even allocate the smallest TLB we support.
217      */
218     while (fast->table == NULL || desc->fulltlb == NULL) {
219         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220             error_report("%s: %s", __func__, strerror(errno));
221             abort();
222         }
223         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225 
226         g_free(fast->table);
227         g_free(desc->fulltlb);
228         fast->table = g_try_new(CPUTLBEntry, new_size);
229         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
230     }
231 }
232 
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235     desc->n_used_entries = 0;
236     desc->large_page_addr = -1;
237     desc->large_page_mask = -1;
238     desc->vindex = 0;
239     memset(fast->table, -1, sizeof_tlb(fast));
240     memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242 
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244                                         int64_t now)
245 {
246     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248 
249     tlb_mmu_resize_locked(desc, fast, now);
250     tlb_mmu_flush_locked(desc, fast);
251 }
252 
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256 
257     tlb_window_reset(desc, now, 0);
258     desc->n_used_entries = 0;
259     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260     fast->table = g_new(CPUTLBEntry, n_entries);
261     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
262     tlb_mmu_flush_locked(desc, fast);
263 }
264 
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267     env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269 
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272     env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274 
275 void tlb_init(CPUState *cpu)
276 {
277     CPUArchState *env = cpu->env_ptr;
278     int64_t now = get_clock_realtime();
279     int i;
280 
281     qemu_spin_init(&env_tlb(env)->c.lock);
282 
283     /* All tlbs are initialized flushed. */
284     env_tlb(env)->c.dirty = 0;
285 
286     for (i = 0; i < NB_MMU_MODES; i++) {
287         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288     }
289 }
290 
291 void tlb_destroy(CPUState *cpu)
292 {
293     CPUArchState *env = cpu->env_ptr;
294     int i;
295 
296     qemu_spin_destroy(&env_tlb(env)->c.lock);
297     for (i = 0; i < NB_MMU_MODES; i++) {
298         CPUTLBDesc *desc = &env_tlb(env)->d[i];
299         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300 
301         g_free(fast->table);
302         g_free(desc->fulltlb);
303     }
304 }
305 
306 /* flush_all_helper: run fn across all cpus
307  *
308  * If the wait flag is set then the src cpu's helper will be queued as
309  * "safe" work and the loop exited creating a synchronisation point
310  * where all queued work will be finished before execution starts
311  * again.
312  */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314                              run_on_cpu_data d)
315 {
316     CPUState *cpu;
317 
318     CPU_FOREACH(cpu) {
319         if (cpu != src) {
320             async_run_on_cpu(cpu, fn, d);
321         }
322     }
323 }
324 
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327     CPUState *cpu;
328     size_t full = 0, part = 0, elide = 0;
329 
330     CPU_FOREACH(cpu) {
331         CPUArchState *env = cpu->env_ptr;
332 
333         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336     }
337     *pfull = full;
338     *ppart = part;
339     *pelide = elide;
340 }
341 
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344     CPUArchState *env = cpu->env_ptr;
345     uint16_t asked = data.host_int;
346     uint16_t all_dirty, work, to_clean;
347     int64_t now = get_clock_realtime();
348 
349     assert_cpu_is_self(cpu);
350 
351     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352 
353     qemu_spin_lock(&env_tlb(env)->c.lock);
354 
355     all_dirty = env_tlb(env)->c.dirty;
356     to_clean = asked & all_dirty;
357     all_dirty &= ~to_clean;
358     env_tlb(env)->c.dirty = all_dirty;
359 
360     for (work = to_clean; work != 0; work &= work - 1) {
361         int mmu_idx = ctz32(work);
362         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363     }
364 
365     qemu_spin_unlock(&env_tlb(env)->c.lock);
366 
367     tcg_flush_jmp_cache(cpu);
368 
369     if (to_clean == ALL_MMUIDX_BITS) {
370         qatomic_set(&env_tlb(env)->c.full_flush_count,
371                    env_tlb(env)->c.full_flush_count + 1);
372     } else {
373         qatomic_set(&env_tlb(env)->c.part_flush_count,
374                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375         if (to_clean != asked) {
376             qatomic_set(&env_tlb(env)->c.elide_flush_count,
377                        env_tlb(env)->c.elide_flush_count +
378                        ctpop16(asked & ~to_clean));
379         }
380     }
381 }
382 
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386 
387     if (cpu->created && !qemu_cpu_is_self(cpu)) {
388         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389                          RUN_ON_CPU_HOST_INT(idxmap));
390     } else {
391         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392     }
393 }
394 
395 void tlb_flush(CPUState *cpu)
396 {
397     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399 
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403 
404     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405 
406     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409 
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414 
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418 
419     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420 
421     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424 
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429 
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431                                       vaddr page, vaddr mask)
432 {
433     page &= mask;
434     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435 
436     return (page == (tlb_entry->addr_read & mask) ||
437             page == (tlb_addr_write(tlb_entry) & mask) ||
438             page == (tlb_entry->addr_code & mask));
439 }
440 
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
442 {
443     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445 
446 /**
447  * tlb_entry_is_empty - return true if the entry is not in use
448  * @te: pointer to CPUTLBEntry
449  */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454 
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457                                         vaddr page,
458                                         vaddr mask)
459 {
460     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461         memset(tlb_entry, -1, sizeof(*tlb_entry));
462         return true;
463     }
464     return false;
465 }
466 
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
468 {
469     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
470 }
471 
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474                                             vaddr page,
475                                             vaddr mask)
476 {
477     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478     int k;
479 
480     assert_cpu_is_self(env_cpu(env));
481     for (k = 0; k < CPU_VTLB_SIZE; k++) {
482         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483             tlb_n_used_entries_dec(env, mmu_idx);
484         }
485     }
486 }
487 
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489                                               vaddr page)
490 {
491     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
492 }
493 
494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
495 {
496     vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
497     vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
498 
499     /* Check if we need to flush due to large pages.  */
500     if ((page & lp_mask) == lp_addr) {
501         tlb_debug("forcing full flush midx %d (%016"
502                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
503                   midx, lp_addr, lp_mask);
504         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
505     } else {
506         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
507             tlb_n_used_entries_dec(env, midx);
508         }
509         tlb_flush_vtlb_page_locked(env, midx, page);
510     }
511 }
512 
513 /**
514  * tlb_flush_page_by_mmuidx_async_0:
515  * @cpu: cpu on which to flush
516  * @addr: page of virtual address to flush
517  * @idxmap: set of mmu_idx to flush
518  *
519  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
520  * at @addr from the tlbs indicated by @idxmap from @cpu.
521  */
522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
523                                              vaddr addr,
524                                              uint16_t idxmap)
525 {
526     CPUArchState *env = cpu->env_ptr;
527     int mmu_idx;
528 
529     assert_cpu_is_self(cpu);
530 
531     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
532 
533     qemu_spin_lock(&env_tlb(env)->c.lock);
534     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
535         if ((idxmap >> mmu_idx) & 1) {
536             tlb_flush_page_locked(env, mmu_idx, addr);
537         }
538     }
539     qemu_spin_unlock(&env_tlb(env)->c.lock);
540 
541     /*
542      * Discard jump cache entries for any tb which might potentially
543      * overlap the flushed page, which includes the previous.
544      */
545     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
546     tb_jmp_cache_clear_page(cpu, addr);
547 }
548 
549 /**
550  * tlb_flush_page_by_mmuidx_async_1:
551  * @cpu: cpu on which to flush
552  * @data: encoded addr + idxmap
553  *
554  * Helper for tlb_flush_page_by_mmuidx and friends, called through
555  * async_run_on_cpu.  The idxmap parameter is encoded in the page
556  * offset of the target_ptr field.  This limits the set of mmu_idx
557  * that can be passed via this method.
558  */
559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
560                                              run_on_cpu_data data)
561 {
562     vaddr addr_and_idxmap = data.target_ptr;
563     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
564     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
565 
566     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
567 }
568 
569 typedef struct {
570     vaddr addr;
571     uint16_t idxmap;
572 } TLBFlushPageByMMUIdxData;
573 
574 /**
575  * tlb_flush_page_by_mmuidx_async_2:
576  * @cpu: cpu on which to flush
577  * @data: allocated addr + idxmap
578  *
579  * Helper for tlb_flush_page_by_mmuidx and friends, called through
580  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
581  * TLBFlushPageByMMUIdxData structure that has been allocated
582  * specifically for this helper.  Free the structure when done.
583  */
584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
585                                              run_on_cpu_data data)
586 {
587     TLBFlushPageByMMUIdxData *d = data.host_ptr;
588 
589     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
590     g_free(d);
591 }
592 
593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
594 {
595     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
596 
597     /* This should already be page aligned */
598     addr &= TARGET_PAGE_MASK;
599 
600     if (qemu_cpu_is_self(cpu)) {
601         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
602     } else if (idxmap < TARGET_PAGE_SIZE) {
603         /*
604          * Most targets have only a few mmu_idx.  In the case where
605          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
606          * allocating memory for this operation.
607          */
608         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
609                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
610     } else {
611         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
612 
613         /* Otherwise allocate a structure, freed by the worker.  */
614         d->addr = addr;
615         d->idxmap = idxmap;
616         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
617                          RUN_ON_CPU_HOST_PTR(d));
618     }
619 }
620 
621 void tlb_flush_page(CPUState *cpu, vaddr addr)
622 {
623     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
624 }
625 
626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
627                                        uint16_t idxmap)
628 {
629     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
630 
631     /* This should already be page aligned */
632     addr &= TARGET_PAGE_MASK;
633 
634     /*
635      * Allocate memory to hold addr+idxmap only when needed.
636      * See tlb_flush_page_by_mmuidx for details.
637      */
638     if (idxmap < TARGET_PAGE_SIZE) {
639         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641     } else {
642         CPUState *dst_cpu;
643 
644         /* Allocate a separate data block for each destination cpu.  */
645         CPU_FOREACH(dst_cpu) {
646             if (dst_cpu != src_cpu) {
647                 TLBFlushPageByMMUIdxData *d
648                     = g_new(TLBFlushPageByMMUIdxData, 1);
649 
650                 d->addr = addr;
651                 d->idxmap = idxmap;
652                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
653                                  RUN_ON_CPU_HOST_PTR(d));
654             }
655         }
656     }
657 
658     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
659 }
660 
661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
662 {
663     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
664 }
665 
666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
667                                               vaddr addr,
668                                               uint16_t idxmap)
669 {
670     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
671 
672     /* This should already be page aligned */
673     addr &= TARGET_PAGE_MASK;
674 
675     /*
676      * Allocate memory to hold addr+idxmap only when needed.
677      * See tlb_flush_page_by_mmuidx for details.
678      */
679     if (idxmap < TARGET_PAGE_SIZE) {
680         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684     } else {
685         CPUState *dst_cpu;
686         TLBFlushPageByMMUIdxData *d;
687 
688         /* Allocate a separate data block for each destination cpu.  */
689         CPU_FOREACH(dst_cpu) {
690             if (dst_cpu != src_cpu) {
691                 d = g_new(TLBFlushPageByMMUIdxData, 1);
692                 d->addr = addr;
693                 d->idxmap = idxmap;
694                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
695                                  RUN_ON_CPU_HOST_PTR(d));
696             }
697         }
698 
699         d = g_new(TLBFlushPageByMMUIdxData, 1);
700         d->addr = addr;
701         d->idxmap = idxmap;
702         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
703                               RUN_ON_CPU_HOST_PTR(d));
704     }
705 }
706 
707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
708 {
709     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
710 }
711 
712 static void tlb_flush_range_locked(CPUArchState *env, int midx,
713                                    vaddr addr, vaddr len,
714                                    unsigned bits)
715 {
716     CPUTLBDesc *d = &env_tlb(env)->d[midx];
717     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
718     vaddr mask = MAKE_64BIT_MASK(0, bits);
719 
720     /*
721      * If @bits is smaller than the tlb size, there may be multiple entries
722      * within the TLB; otherwise all addresses that match under @mask hit
723      * the same TLB entry.
724      * TODO: Perhaps allow bits to be a few bits less than the size.
725      * For now, just flush the entire TLB.
726      *
727      * If @len is larger than the tlb size, then it will take longer to
728      * test all of the entries in the TLB than it will to flush it all.
729      */
730     if (mask < f->mask || len > f->mask) {
731         tlb_debug("forcing full flush midx %d ("
732                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
733                   midx, addr, mask, len);
734         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
735         return;
736     }
737 
738     /*
739      * Check if we need to flush due to large pages.
740      * Because large_page_mask contains all 1's from the msb,
741      * we only need to test the end of the range.
742      */
743     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
744         tlb_debug("forcing full flush midx %d ("
745                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
746                   midx, d->large_page_addr, d->large_page_mask);
747         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
748         return;
749     }
750 
751     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
752         vaddr page = addr + i;
753         CPUTLBEntry *entry = tlb_entry(env, midx, page);
754 
755         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
756             tlb_n_used_entries_dec(env, midx);
757         }
758         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
759     }
760 }
761 
762 typedef struct {
763     vaddr addr;
764     vaddr len;
765     uint16_t idxmap;
766     uint16_t bits;
767 } TLBFlushRangeData;
768 
769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
770                                               TLBFlushRangeData d)
771 {
772     CPUArchState *env = cpu->env_ptr;
773     int mmu_idx;
774 
775     assert_cpu_is_self(cpu);
776 
777     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
778               d.addr, d.bits, d.len, d.idxmap);
779 
780     qemu_spin_lock(&env_tlb(env)->c.lock);
781     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
782         if ((d.idxmap >> mmu_idx) & 1) {
783             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
784         }
785     }
786     qemu_spin_unlock(&env_tlb(env)->c.lock);
787 
788     /*
789      * If the length is larger than the jump cache size, then it will take
790      * longer to clear each entry individually than it will to clear it all.
791      */
792     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
793         tcg_flush_jmp_cache(cpu);
794         return;
795     }
796 
797     /*
798      * Discard jump cache entries for any tb which might potentially
799      * overlap the flushed pages, which includes the previous.
800      */
801     d.addr -= TARGET_PAGE_SIZE;
802     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
803         tb_jmp_cache_clear_page(cpu, d.addr);
804         d.addr += TARGET_PAGE_SIZE;
805     }
806 }
807 
808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
809                                               run_on_cpu_data data)
810 {
811     TLBFlushRangeData *d = data.host_ptr;
812     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
813     g_free(d);
814 }
815 
816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
817                                vaddr len, uint16_t idxmap,
818                                unsigned bits)
819 {
820     TLBFlushRangeData d;
821 
822     /*
823      * If all bits are significant, and len is small,
824      * this devolves to tlb_flush_page.
825      */
826     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
827         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
828         return;
829     }
830     /* If no page bits are significant, this devolves to tlb_flush. */
831     if (bits < TARGET_PAGE_BITS) {
832         tlb_flush_by_mmuidx(cpu, idxmap);
833         return;
834     }
835 
836     /* This should already be page aligned */
837     d.addr = addr & TARGET_PAGE_MASK;
838     d.len = len;
839     d.idxmap = idxmap;
840     d.bits = bits;
841 
842     if (qemu_cpu_is_self(cpu)) {
843         tlb_flush_range_by_mmuidx_async_0(cpu, d);
844     } else {
845         /* Otherwise allocate a structure, freed by the worker.  */
846         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
847         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
848                          RUN_ON_CPU_HOST_PTR(p));
849     }
850 }
851 
852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
853                                    uint16_t idxmap, unsigned bits)
854 {
855     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
856 }
857 
858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
859                                         vaddr addr, vaddr len,
860                                         uint16_t idxmap, unsigned bits)
861 {
862     TLBFlushRangeData d;
863     CPUState *dst_cpu;
864 
865     /*
866      * If all bits are significant, and len is small,
867      * this devolves to tlb_flush_page.
868      */
869     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
870         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
871         return;
872     }
873     /* If no page bits are significant, this devolves to tlb_flush. */
874     if (bits < TARGET_PAGE_BITS) {
875         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
876         return;
877     }
878 
879     /* This should already be page aligned */
880     d.addr = addr & TARGET_PAGE_MASK;
881     d.len = len;
882     d.idxmap = idxmap;
883     d.bits = bits;
884 
885     /* Allocate a separate data block for each destination cpu.  */
886     CPU_FOREACH(dst_cpu) {
887         if (dst_cpu != src_cpu) {
888             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
889             async_run_on_cpu(dst_cpu,
890                              tlb_flush_range_by_mmuidx_async_1,
891                              RUN_ON_CPU_HOST_PTR(p));
892         }
893     }
894 
895     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
896 }
897 
898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
899                                             vaddr addr, uint16_t idxmap,
900                                             unsigned bits)
901 {
902     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
903                                        idxmap, bits);
904 }
905 
906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
907                                                vaddr addr,
908                                                vaddr len,
909                                                uint16_t idxmap,
910                                                unsigned bits)
911 {
912     TLBFlushRangeData d, *p;
913     CPUState *dst_cpu;
914 
915     /*
916      * If all bits are significant, and len is small,
917      * this devolves to tlb_flush_page.
918      */
919     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
920         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
921         return;
922     }
923     /* If no page bits are significant, this devolves to tlb_flush. */
924     if (bits < TARGET_PAGE_BITS) {
925         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
926         return;
927     }
928 
929     /* This should already be page aligned */
930     d.addr = addr & TARGET_PAGE_MASK;
931     d.len = len;
932     d.idxmap = idxmap;
933     d.bits = bits;
934 
935     /* Allocate a separate data block for each destination cpu.  */
936     CPU_FOREACH(dst_cpu) {
937         if (dst_cpu != src_cpu) {
938             p = g_memdup(&d, sizeof(d));
939             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
940                              RUN_ON_CPU_HOST_PTR(p));
941         }
942     }
943 
944     p = g_memdup(&d, sizeof(d));
945     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
946                           RUN_ON_CPU_HOST_PTR(p));
947 }
948 
949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
950                                                    vaddr addr,
951                                                    uint16_t idxmap,
952                                                    unsigned bits)
953 {
954     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
955                                               idxmap, bits);
956 }
957 
958 /* update the TLBs so that writes to code in the virtual page 'addr'
959    can be detected */
960 void tlb_protect_code(ram_addr_t ram_addr)
961 {
962     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
963                                              TARGET_PAGE_SIZE,
964                                              DIRTY_MEMORY_CODE);
965 }
966 
967 /* update the TLB so that writes in physical page 'phys_addr' are no longer
968    tested for self modifying code */
969 void tlb_unprotect_code(ram_addr_t ram_addr)
970 {
971     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
972 }
973 
974 
975 /*
976  * Dirty write flag handling
977  *
978  * When the TCG code writes to a location it looks up the address in
979  * the TLB and uses that data to compute the final address. If any of
980  * the lower bits of the address are set then the slow path is forced.
981  * There are a number of reasons to do this but for normal RAM the
982  * most usual is detecting writes to code regions which may invalidate
983  * generated code.
984  *
985  * Other vCPUs might be reading their TLBs during guest execution, so we update
986  * te->addr_write with qatomic_set. We don't need to worry about this for
987  * oversized guests as MTTCG is disabled for them.
988  *
989  * Called with tlb_c.lock held.
990  */
991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
992                                          uintptr_t start, uintptr_t length)
993 {
994     uintptr_t addr = tlb_entry->addr_write;
995 
996     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
997                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
998         addr &= TARGET_PAGE_MASK;
999         addr += tlb_entry->addend;
1000         if ((addr - start) < length) {
1001 #if TARGET_LONG_BITS == 32
1002             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1003             ptr_write += HOST_BIG_ENDIAN;
1004             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1005 #elif TCG_OVERSIZED_GUEST
1006             tlb_entry->addr_write |= TLB_NOTDIRTY;
1007 #else
1008             qatomic_set(&tlb_entry->addr_write,
1009                         tlb_entry->addr_write | TLB_NOTDIRTY);
1010 #endif
1011         }
1012     }
1013 }
1014 
1015 /*
1016  * Called with tlb_c.lock held.
1017  * Called only from the vCPU context, i.e. the TLB's owner thread.
1018  */
1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1020 {
1021     *d = *s;
1022 }
1023 
1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1025  * the target vCPU).
1026  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1027  * thing actually updated is the target TLB entry ->addr_write flags.
1028  */
1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1030 {
1031     CPUArchState *env;
1032 
1033     int mmu_idx;
1034 
1035     env = cpu->env_ptr;
1036     qemu_spin_lock(&env_tlb(env)->c.lock);
1037     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1038         unsigned int i;
1039         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1040 
1041         for (i = 0; i < n; i++) {
1042             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1043                                          start1, length);
1044         }
1045 
1046         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1047             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1048                                          start1, length);
1049         }
1050     }
1051     qemu_spin_unlock(&env_tlb(env)->c.lock);
1052 }
1053 
1054 /* Called with tlb_c.lock held */
1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1056                                          vaddr addr)
1057 {
1058     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1059         tlb_entry->addr_write = addr;
1060     }
1061 }
1062 
1063 /* update the TLB corresponding to virtual page vaddr
1064    so that it is no longer dirty */
1065 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1066 {
1067     CPUArchState *env = cpu->env_ptr;
1068     int mmu_idx;
1069 
1070     assert_cpu_is_self(cpu);
1071 
1072     addr &= TARGET_PAGE_MASK;
1073     qemu_spin_lock(&env_tlb(env)->c.lock);
1074     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1075         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1076     }
1077 
1078     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1079         int k;
1080         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1081             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1082         }
1083     }
1084     qemu_spin_unlock(&env_tlb(env)->c.lock);
1085 }
1086 
1087 /* Our TLB does not support large pages, so remember the area covered by
1088    large pages and trigger a full TLB flush if these are invalidated.  */
1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1090                                vaddr addr, uint64_t size)
1091 {
1092     vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1093     vaddr lp_mask = ~(size - 1);
1094 
1095     if (lp_addr == (vaddr)-1) {
1096         /* No previous large page.  */
1097         lp_addr = addr;
1098     } else {
1099         /* Extend the existing region to include the new page.
1100            This is a compromise between unnecessary flushes and
1101            the cost of maintaining a full variable size TLB.  */
1102         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1103         while (((lp_addr ^ addr) & lp_mask) != 0) {
1104             lp_mask <<= 1;
1105         }
1106     }
1107     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1108     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1109 }
1110 
1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1112                                    vaddr address, int flags,
1113                                    MMUAccessType access_type, bool enable)
1114 {
1115     if (enable) {
1116         address |= flags & TLB_FLAGS_MASK;
1117         flags &= TLB_SLOW_FLAGS_MASK;
1118         if (flags) {
1119             address |= TLB_FORCE_SLOW;
1120         }
1121     } else {
1122         address = -1;
1123         flags = 0;
1124     }
1125     ent->addr_idx[access_type] = address;
1126     full->slow_flags[access_type] = flags;
1127 }
1128 
1129 /*
1130  * Add a new TLB entry. At most one entry for a given virtual address
1131  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1132  * supplied size is only used by tlb_flush_page.
1133  *
1134  * Called from TCG-generated code, which is under an RCU read-side
1135  * critical section.
1136  */
1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1138                        vaddr addr, CPUTLBEntryFull *full)
1139 {
1140     CPUArchState *env = cpu->env_ptr;
1141     CPUTLB *tlb = env_tlb(env);
1142     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1143     MemoryRegionSection *section;
1144     unsigned int index, read_flags, write_flags;
1145     uintptr_t addend;
1146     CPUTLBEntry *te, tn;
1147     hwaddr iotlb, xlat, sz, paddr_page;
1148     vaddr addr_page;
1149     int asidx, wp_flags, prot;
1150     bool is_ram, is_romd;
1151 
1152     assert_cpu_is_self(cpu);
1153 
1154     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1155         sz = TARGET_PAGE_SIZE;
1156     } else {
1157         sz = (hwaddr)1 << full->lg_page_size;
1158         tlb_add_large_page(env, mmu_idx, addr, sz);
1159     }
1160     addr_page = addr & TARGET_PAGE_MASK;
1161     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1162 
1163     prot = full->prot;
1164     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1165     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1166                                                 &xlat, &sz, full->attrs, &prot);
1167     assert(sz >= TARGET_PAGE_SIZE);
1168 
1169     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1170               " prot=%x idx=%d\n",
1171               addr, full->phys_addr, prot, mmu_idx);
1172 
1173     read_flags = 0;
1174     if (full->lg_page_size < TARGET_PAGE_BITS) {
1175         /* Repeat the MMU check and TLB fill on every access.  */
1176         read_flags |= TLB_INVALID_MASK;
1177     }
1178     if (full->attrs.byte_swap) {
1179         read_flags |= TLB_BSWAP;
1180     }
1181 
1182     is_ram = memory_region_is_ram(section->mr);
1183     is_romd = memory_region_is_romd(section->mr);
1184 
1185     if (is_ram || is_romd) {
1186         /* RAM and ROMD both have associated host memory. */
1187         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1188     } else {
1189         /* I/O does not; force the host address to NULL. */
1190         addend = 0;
1191     }
1192 
1193     write_flags = read_flags;
1194     if (is_ram) {
1195         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1196         assert(!(iotlb & ~TARGET_PAGE_MASK));
1197         /*
1198          * Computing is_clean is expensive; avoid all that unless
1199          * the page is actually writable.
1200          */
1201         if (prot & PAGE_WRITE) {
1202             if (section->readonly) {
1203                 write_flags |= TLB_DISCARD_WRITE;
1204             } else if (cpu_physical_memory_is_clean(iotlb)) {
1205                 write_flags |= TLB_NOTDIRTY;
1206             }
1207         }
1208     } else {
1209         /* I/O or ROMD */
1210         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1211         /*
1212          * Writes to romd devices must go through MMIO to enable write.
1213          * Reads to romd devices go through the ram_ptr found above,
1214          * but of course reads to I/O must go through MMIO.
1215          */
1216         write_flags |= TLB_MMIO;
1217         if (!is_romd) {
1218             read_flags = write_flags;
1219         }
1220     }
1221 
1222     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1223                                               TARGET_PAGE_SIZE);
1224 
1225     index = tlb_index(env, mmu_idx, addr_page);
1226     te = tlb_entry(env, mmu_idx, addr_page);
1227 
1228     /*
1229      * Hold the TLB lock for the rest of the function. We could acquire/release
1230      * the lock several times in the function, but it is faster to amortize the
1231      * acquisition cost by acquiring it just once. Note that this leads to
1232      * a longer critical section, but this is not a concern since the TLB lock
1233      * is unlikely to be contended.
1234      */
1235     qemu_spin_lock(&tlb->c.lock);
1236 
1237     /* Note that the tlb is no longer clean.  */
1238     tlb->c.dirty |= 1 << mmu_idx;
1239 
1240     /* Make sure there's no cached translation for the new page.  */
1241     tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1242 
1243     /*
1244      * Only evict the old entry to the victim tlb if it's for a
1245      * different page; otherwise just overwrite the stale data.
1246      */
1247     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1248         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1249         CPUTLBEntry *tv = &desc->vtable[vidx];
1250 
1251         /* Evict the old entry into the victim tlb.  */
1252         copy_tlb_helper_locked(tv, te);
1253         desc->vfulltlb[vidx] = desc->fulltlb[index];
1254         tlb_n_used_entries_dec(env, mmu_idx);
1255     }
1256 
1257     /* refill the tlb */
1258     /*
1259      * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1260      * aligned ram_addr_t of the page base of the target RAM.
1261      * Otherwise, iotlb contains
1262      *  - a physical section number in the lower TARGET_PAGE_BITS
1263      *  - the offset within section->mr of the page base (I/O, ROMD) with the
1264      *    TARGET_PAGE_BITS masked off.
1265      * We subtract addr_page (which is page aligned and thus won't
1266      * disturb the low bits) to give an offset which can be added to the
1267      * (non-page-aligned) vaddr of the eventual memory access to get
1268      * the MemoryRegion offset for the access. Note that the vaddr we
1269      * subtract here is that of the page base, and not the same as the
1270      * vaddr we add back in io_prepare()/get_page_addr_code().
1271      */
1272     desc->fulltlb[index] = *full;
1273     full = &desc->fulltlb[index];
1274     full->xlat_section = iotlb - addr_page;
1275     full->phys_addr = paddr_page;
1276 
1277     /* Now calculate the new entry */
1278     tn.addend = addend - addr_page;
1279 
1280     tlb_set_compare(full, &tn, addr_page, read_flags,
1281                     MMU_INST_FETCH, prot & PAGE_EXEC);
1282 
1283     if (wp_flags & BP_MEM_READ) {
1284         read_flags |= TLB_WATCHPOINT;
1285     }
1286     tlb_set_compare(full, &tn, addr_page, read_flags,
1287                     MMU_DATA_LOAD, prot & PAGE_READ);
1288 
1289     if (prot & PAGE_WRITE_INV) {
1290         write_flags |= TLB_INVALID_MASK;
1291     }
1292     if (wp_flags & BP_MEM_WRITE) {
1293         write_flags |= TLB_WATCHPOINT;
1294     }
1295     tlb_set_compare(full, &tn, addr_page, write_flags,
1296                     MMU_DATA_STORE, prot & PAGE_WRITE);
1297 
1298     copy_tlb_helper_locked(te, &tn);
1299     tlb_n_used_entries_inc(env, mmu_idx);
1300     qemu_spin_unlock(&tlb->c.lock);
1301 }
1302 
1303 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1304                              hwaddr paddr, MemTxAttrs attrs, int prot,
1305                              int mmu_idx, uint64_t size)
1306 {
1307     CPUTLBEntryFull full = {
1308         .phys_addr = paddr,
1309         .attrs = attrs,
1310         .prot = prot,
1311         .lg_page_size = ctz64(size)
1312     };
1313 
1314     assert(is_power_of_2(size));
1315     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1316 }
1317 
1318 void tlb_set_page(CPUState *cpu, vaddr addr,
1319                   hwaddr paddr, int prot,
1320                   int mmu_idx, uint64_t size)
1321 {
1322     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1323                             prot, mmu_idx, size);
1324 }
1325 
1326 /*
1327  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1328  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1329  * be discarded and looked up again (e.g. via tlb_entry()).
1330  */
1331 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1332                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1333 {
1334     bool ok;
1335 
1336     /*
1337      * This is not a probe, so only valid return is success; failure
1338      * should result in exception + longjmp to the cpu loop.
1339      */
1340     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1341                                     access_type, mmu_idx, false, retaddr);
1342     assert(ok);
1343 }
1344 
1345 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1346                                         MMUAccessType access_type,
1347                                         int mmu_idx, uintptr_t retaddr)
1348 {
1349     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1350                                           mmu_idx, retaddr);
1351 }
1352 
1353 static MemoryRegionSection *
1354 io_prepare(hwaddr *out_offset, CPUArchState *env, hwaddr xlat,
1355            MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1356 {
1357     CPUState *cpu = env_cpu(env);
1358     MemoryRegionSection *section;
1359     hwaddr mr_offset;
1360 
1361     section = iotlb_to_section(cpu, xlat, attrs);
1362     mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1363     cpu->mem_io_pc = retaddr;
1364     if (!cpu->can_do_io) {
1365         cpu_io_recompile(cpu, retaddr);
1366     }
1367 
1368     *out_offset = mr_offset;
1369     return section;
1370 }
1371 
1372 static void io_failed(CPUArchState *env, CPUTLBEntryFull *full, vaddr addr,
1373                       unsigned size, MMUAccessType access_type, int mmu_idx,
1374                       MemTxResult response, uintptr_t retaddr)
1375 {
1376     CPUState *cpu = env_cpu(env);
1377 
1378     if (!cpu->ignore_memory_transaction_failures) {
1379         CPUClass *cc = CPU_GET_CLASS(cpu);
1380 
1381         if (cc->tcg_ops->do_transaction_failed) {
1382             hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1383 
1384             cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1385                                                access_type, mmu_idx,
1386                                                full->attrs, response, retaddr);
1387         }
1388     }
1389 }
1390 
1391 /* Return true if ADDR is present in the victim tlb, and has been copied
1392    back to the main tlb.  */
1393 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1394                            MMUAccessType access_type, vaddr page)
1395 {
1396     size_t vidx;
1397 
1398     assert_cpu_is_self(env_cpu(env));
1399     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1400         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1401         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1402 
1403         if (cmp == page) {
1404             /* Found entry in victim tlb, swap tlb and iotlb.  */
1405             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1406 
1407             qemu_spin_lock(&env_tlb(env)->c.lock);
1408             copy_tlb_helper_locked(&tmptlb, tlb);
1409             copy_tlb_helper_locked(tlb, vtlb);
1410             copy_tlb_helper_locked(vtlb, &tmptlb);
1411             qemu_spin_unlock(&env_tlb(env)->c.lock);
1412 
1413             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1414             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1415             CPUTLBEntryFull tmpf;
1416             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1417             return true;
1418         }
1419     }
1420     return false;
1421 }
1422 
1423 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1424                            CPUTLBEntryFull *full, uintptr_t retaddr)
1425 {
1426     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1427 
1428     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1429 
1430     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1431         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1432     }
1433 
1434     /*
1435      * Set both VGA and migration bits for simplicity and to remove
1436      * the notdirty callback faster.
1437      */
1438     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1439 
1440     /* We remove the notdirty callback only if the code has been flushed. */
1441     if (!cpu_physical_memory_is_clean(ram_addr)) {
1442         trace_memory_notdirty_set_dirty(mem_vaddr);
1443         tlb_set_dirty(cpu, mem_vaddr);
1444     }
1445 }
1446 
1447 static int probe_access_internal(CPUArchState *env, vaddr addr,
1448                                  int fault_size, MMUAccessType access_type,
1449                                  int mmu_idx, bool nonfault,
1450                                  void **phost, CPUTLBEntryFull **pfull,
1451                                  uintptr_t retaddr, bool check_mem_cbs)
1452 {
1453     uintptr_t index = tlb_index(env, mmu_idx, addr);
1454     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1455     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1456     vaddr page_addr = addr & TARGET_PAGE_MASK;
1457     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1458     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1459     CPUTLBEntryFull *full;
1460 
1461     if (!tlb_hit_page(tlb_addr, page_addr)) {
1462         if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1463             CPUState *cs = env_cpu(env);
1464 
1465             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1466                                            mmu_idx, nonfault, retaddr)) {
1467                 /* Non-faulting page table read failed.  */
1468                 *phost = NULL;
1469                 *pfull = NULL;
1470                 return TLB_INVALID_MASK;
1471             }
1472 
1473             /* TLB resize via tlb_fill may have moved the entry.  */
1474             index = tlb_index(env, mmu_idx, addr);
1475             entry = tlb_entry(env, mmu_idx, addr);
1476 
1477             /*
1478              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1479              * to force the next access through tlb_fill.  We've just
1480              * called tlb_fill, so we know that this entry *is* valid.
1481              */
1482             flags &= ~TLB_INVALID_MASK;
1483         }
1484         tlb_addr = tlb_read_idx(entry, access_type);
1485     }
1486     flags &= tlb_addr;
1487 
1488     *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1489     flags |= full->slow_flags[access_type];
1490 
1491     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1492     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1493         ||
1494         (access_type != MMU_INST_FETCH && force_mmio)) {
1495         *phost = NULL;
1496         return TLB_MMIO;
1497     }
1498 
1499     /* Everything else is RAM. */
1500     *phost = (void *)((uintptr_t)addr + entry->addend);
1501     return flags;
1502 }
1503 
1504 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1505                       MMUAccessType access_type, int mmu_idx,
1506                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1507                       uintptr_t retaddr)
1508 {
1509     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1510                                       nonfault, phost, pfull, retaddr, true);
1511 
1512     /* Handle clean RAM pages.  */
1513     if (unlikely(flags & TLB_NOTDIRTY)) {
1514         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1515         flags &= ~TLB_NOTDIRTY;
1516     }
1517 
1518     return flags;
1519 }
1520 
1521 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1522                           MMUAccessType access_type, int mmu_idx,
1523                           void **phost, CPUTLBEntryFull **pfull)
1524 {
1525     void *discard_phost;
1526     CPUTLBEntryFull *discard_tlb;
1527 
1528     /* privately handle users that don't need full results */
1529     phost = phost ? phost : &discard_phost;
1530     pfull = pfull ? pfull : &discard_tlb;
1531 
1532     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1533                                       true, phost, pfull, 0, false);
1534 
1535     /* Handle clean RAM pages.  */
1536     if (unlikely(flags & TLB_NOTDIRTY)) {
1537         notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1538         flags &= ~TLB_NOTDIRTY;
1539     }
1540 
1541     return flags;
1542 }
1543 
1544 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1545                        MMUAccessType access_type, int mmu_idx,
1546                        bool nonfault, void **phost, uintptr_t retaddr)
1547 {
1548     CPUTLBEntryFull *full;
1549     int flags;
1550 
1551     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1552 
1553     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1554                                   nonfault, phost, &full, retaddr, true);
1555 
1556     /* Handle clean RAM pages. */
1557     if (unlikely(flags & TLB_NOTDIRTY)) {
1558         notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1559         flags &= ~TLB_NOTDIRTY;
1560     }
1561 
1562     return flags;
1563 }
1564 
1565 void *probe_access(CPUArchState *env, vaddr addr, int size,
1566                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1567 {
1568     CPUTLBEntryFull *full;
1569     void *host;
1570     int flags;
1571 
1572     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1573 
1574     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1575                                   false, &host, &full, retaddr, true);
1576 
1577     /* Per the interface, size == 0 merely faults the access. */
1578     if (size == 0) {
1579         return NULL;
1580     }
1581 
1582     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1583         /* Handle watchpoints.  */
1584         if (flags & TLB_WATCHPOINT) {
1585             int wp_access = (access_type == MMU_DATA_STORE
1586                              ? BP_MEM_WRITE : BP_MEM_READ);
1587             cpu_check_watchpoint(env_cpu(env), addr, size,
1588                                  full->attrs, wp_access, retaddr);
1589         }
1590 
1591         /* Handle clean RAM pages.  */
1592         if (flags & TLB_NOTDIRTY) {
1593             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1594         }
1595     }
1596 
1597     return host;
1598 }
1599 
1600 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1601                         MMUAccessType access_type, int mmu_idx)
1602 {
1603     CPUTLBEntryFull *full;
1604     void *host;
1605     int flags;
1606 
1607     flags = probe_access_internal(env, addr, 0, access_type,
1608                                   mmu_idx, true, &host, &full, 0, false);
1609 
1610     /* No combination of flags are expected by the caller. */
1611     return flags ? NULL : host;
1612 }
1613 
1614 /*
1615  * Return a ram_addr_t for the virtual address for execution.
1616  *
1617  * Return -1 if we can't translate and execute from an entire page
1618  * of RAM.  This will force us to execute by loading and translating
1619  * one insn at a time, without caching.
1620  *
1621  * NOTE: This function will trigger an exception if the page is
1622  * not executable.
1623  */
1624 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1625                                         void **hostp)
1626 {
1627     CPUTLBEntryFull *full;
1628     void *p;
1629 
1630     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1631                                 cpu_mmu_index(env, true), false,
1632                                 &p, &full, 0, false);
1633     if (p == NULL) {
1634         return -1;
1635     }
1636 
1637     if (full->lg_page_size < TARGET_PAGE_BITS) {
1638         return -1;
1639     }
1640 
1641     if (hostp) {
1642         *hostp = p;
1643     }
1644     return qemu_ram_addr_from_host_nofail(p);
1645 }
1646 
1647 /* Load/store with atomicity primitives. */
1648 #include "ldst_atomicity.c.inc"
1649 
1650 #ifdef CONFIG_PLUGIN
1651 /*
1652  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1653  * This should be a hot path as we will have just looked this path up
1654  * in the softmmu lookup code (or helper). We don't handle re-fills or
1655  * checking the victim table. This is purely informational.
1656  *
1657  * The one corner case is i/o write, which can cause changes to the
1658  * address space.  Those changes, and the corresponding tlb flush,
1659  * should be delayed until the next TB, so even then this ought not fail.
1660  * But check, Just in Case.
1661  */
1662 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1663                        bool is_store, struct qemu_plugin_hwaddr *data)
1664 {
1665     CPUArchState *env = cpu->env_ptr;
1666     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1667     uintptr_t index = tlb_index(env, mmu_idx, addr);
1668     MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1669     uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1670     CPUTLBEntryFull *full;
1671 
1672     if (unlikely(!tlb_hit(tlb_addr, addr))) {
1673         return false;
1674     }
1675 
1676     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1677     data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1678 
1679     /* We must have an iotlb entry for MMIO */
1680     if (tlb_addr & TLB_MMIO) {
1681         MemoryRegionSection *section =
1682             iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1683                              full->attrs);
1684         data->is_io = true;
1685         data->mr = section->mr;
1686     } else {
1687         data->is_io = false;
1688         data->mr = NULL;
1689     }
1690     return true;
1691 }
1692 #endif
1693 
1694 /*
1695  * Probe for a load/store operation.
1696  * Return the host address and into @flags.
1697  */
1698 
1699 typedef struct MMULookupPageData {
1700     CPUTLBEntryFull *full;
1701     void *haddr;
1702     vaddr addr;
1703     int flags;
1704     int size;
1705 } MMULookupPageData;
1706 
1707 typedef struct MMULookupLocals {
1708     MMULookupPageData page[2];
1709     MemOp memop;
1710     int mmu_idx;
1711 } MMULookupLocals;
1712 
1713 /**
1714  * mmu_lookup1: translate one page
1715  * @env: cpu context
1716  * @data: lookup parameters
1717  * @mmu_idx: virtual address context
1718  * @access_type: load/store/code
1719  * @ra: return address into tcg generated code, or 0
1720  *
1721  * Resolve the translation for the one page at @data.addr, filling in
1722  * the rest of @data with the results.  If the translation fails,
1723  * tlb_fill will longjmp out.  Return true if the softmmu tlb for
1724  * @mmu_idx may have resized.
1725  */
1726 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1727                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1728 {
1729     vaddr addr = data->addr;
1730     uintptr_t index = tlb_index(env, mmu_idx, addr);
1731     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1732     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1733     bool maybe_resized = false;
1734     CPUTLBEntryFull *full;
1735     int flags;
1736 
1737     /* If the TLB entry is for a different page, reload and try again.  */
1738     if (!tlb_hit(tlb_addr, addr)) {
1739         if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1740                             addr & TARGET_PAGE_MASK)) {
1741             tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1742             maybe_resized = true;
1743             index = tlb_index(env, mmu_idx, addr);
1744             entry = tlb_entry(env, mmu_idx, addr);
1745         }
1746         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1747     }
1748 
1749     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1750     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1751     flags |= full->slow_flags[access_type];
1752 
1753     data->full = full;
1754     data->flags = flags;
1755     /* Compute haddr speculatively; depending on flags it might be invalid. */
1756     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1757 
1758     return maybe_resized;
1759 }
1760 
1761 /**
1762  * mmu_watch_or_dirty
1763  * @env: cpu context
1764  * @data: lookup parameters
1765  * @access_type: load/store/code
1766  * @ra: return address into tcg generated code, or 0
1767  *
1768  * Trigger watchpoints for @data.addr:@data.size;
1769  * record writes to protected clean pages.
1770  */
1771 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1772                                MMUAccessType access_type, uintptr_t ra)
1773 {
1774     CPUTLBEntryFull *full = data->full;
1775     vaddr addr = data->addr;
1776     int flags = data->flags;
1777     int size = data->size;
1778 
1779     /* On watchpoint hit, this will longjmp out.  */
1780     if (flags & TLB_WATCHPOINT) {
1781         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1782         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1783         flags &= ~TLB_WATCHPOINT;
1784     }
1785 
1786     /* Note that notdirty is only set for writes. */
1787     if (flags & TLB_NOTDIRTY) {
1788         notdirty_write(env_cpu(env), addr, size, full, ra);
1789         flags &= ~TLB_NOTDIRTY;
1790     }
1791     data->flags = flags;
1792 }
1793 
1794 /**
1795  * mmu_lookup: translate page(s)
1796  * @env: cpu context
1797  * @addr: virtual address
1798  * @oi: combined mmu_idx and MemOp
1799  * @ra: return address into tcg generated code, or 0
1800  * @access_type: load/store/code
1801  * @l: output result
1802  *
1803  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1804  * bytes.  Return true if the lookup crosses a page boundary.
1805  */
1806 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1807                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1808 {
1809     unsigned a_bits;
1810     bool crosspage;
1811     int flags;
1812 
1813     l->memop = get_memop(oi);
1814     l->mmu_idx = get_mmuidx(oi);
1815 
1816     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1817 
1818     /* Handle CPU specific unaligned behaviour */
1819     a_bits = get_alignment_bits(l->memop);
1820     if (addr & ((1 << a_bits) - 1)) {
1821         cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1822     }
1823 
1824     l->page[0].addr = addr;
1825     l->page[0].size = memop_size(l->memop);
1826     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1827     l->page[1].size = 0;
1828     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1829 
1830     if (likely(!crosspage)) {
1831         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1832 
1833         flags = l->page[0].flags;
1834         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1835             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1836         }
1837         if (unlikely(flags & TLB_BSWAP)) {
1838             l->memop ^= MO_BSWAP;
1839         }
1840     } else {
1841         /* Finish compute of page crossing. */
1842         int size0 = l->page[1].addr - addr;
1843         l->page[1].size = l->page[0].size - size0;
1844         l->page[0].size = size0;
1845 
1846         /*
1847          * Lookup both pages, recognizing exceptions from either.  If the
1848          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1849          */
1850         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1851         if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1852             uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1853             l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1854         }
1855 
1856         flags = l->page[0].flags | l->page[1].flags;
1857         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1858             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1859             mmu_watch_or_dirty(env, &l->page[1], type, ra);
1860         }
1861 
1862         /*
1863          * Since target/sparc is the only user of TLB_BSWAP, and all
1864          * Sparc accesses are aligned, any treatment across two pages
1865          * would be arbitrary.  Refuse it until there's a use.
1866          */
1867         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1868     }
1869 
1870     return crosspage;
1871 }
1872 
1873 /*
1874  * Probe for an atomic operation.  Do not allow unaligned operations,
1875  * or io operations to proceed.  Return the host address.
1876  */
1877 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1878                                int size, uintptr_t retaddr)
1879 {
1880     uintptr_t mmu_idx = get_mmuidx(oi);
1881     MemOp mop = get_memop(oi);
1882     int a_bits = get_alignment_bits(mop);
1883     uintptr_t index;
1884     CPUTLBEntry *tlbe;
1885     vaddr tlb_addr;
1886     void *hostaddr;
1887     CPUTLBEntryFull *full;
1888 
1889     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1890 
1891     /* Adjust the given return address.  */
1892     retaddr -= GETPC_ADJ;
1893 
1894     /* Enforce guest required alignment.  */
1895     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1896         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1897         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1898                              mmu_idx, retaddr);
1899     }
1900 
1901     /* Enforce qemu required alignment.  */
1902     if (unlikely(addr & (size - 1))) {
1903         /* We get here if guest alignment was not requested,
1904            or was not enforced by cpu_unaligned_access above.
1905            We might widen the access and emulate, but for now
1906            mark an exception and exit the cpu loop.  */
1907         goto stop_the_world;
1908     }
1909 
1910     index = tlb_index(env, mmu_idx, addr);
1911     tlbe = tlb_entry(env, mmu_idx, addr);
1912 
1913     /* Check TLB entry and enforce page permissions.  */
1914     tlb_addr = tlb_addr_write(tlbe);
1915     if (!tlb_hit(tlb_addr, addr)) {
1916         if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1917                             addr & TARGET_PAGE_MASK)) {
1918             tlb_fill(env_cpu(env), addr, size,
1919                      MMU_DATA_STORE, mmu_idx, retaddr);
1920             index = tlb_index(env, mmu_idx, addr);
1921             tlbe = tlb_entry(env, mmu_idx, addr);
1922         }
1923         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1924     }
1925 
1926     /*
1927      * Let the guest notice RMW on a write-only page.
1928      * We have just verified that the page is writable.
1929      * Subpage lookups may have left TLB_INVALID_MASK set,
1930      * but addr_read will only be -1 if PAGE_READ was unset.
1931      */
1932     if (unlikely(tlbe->addr_read == -1)) {
1933         tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1934         /*
1935          * Since we don't support reads and writes to different
1936          * addresses, and we do have the proper page loaded for
1937          * write, this shouldn't ever return.  But just in case,
1938          * handle via stop-the-world.
1939          */
1940         goto stop_the_world;
1941     }
1942     /* Collect tlb flags for read. */
1943     tlb_addr |= tlbe->addr_read;
1944 
1945     /* Notice an IO access or a needs-MMU-lookup access */
1946     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1947         /* There's really nothing that can be done to
1948            support this apart from stop-the-world.  */
1949         goto stop_the_world;
1950     }
1951 
1952     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1953     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1954 
1955     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1956         notdirty_write(env_cpu(env), addr, size, full, retaddr);
1957     }
1958 
1959     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1960         int wp_flags = 0;
1961 
1962         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1963             wp_flags |= BP_MEM_WRITE;
1964         }
1965         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1966             wp_flags |= BP_MEM_READ;
1967         }
1968         if (wp_flags) {
1969             cpu_check_watchpoint(env_cpu(env), addr, size,
1970                                  full->attrs, wp_flags, retaddr);
1971         }
1972     }
1973 
1974     return hostaddr;
1975 
1976  stop_the_world:
1977     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1978 }
1979 
1980 /*
1981  * Load Helpers
1982  *
1983  * We support two different access types. SOFTMMU_CODE_ACCESS is
1984  * specifically for reading instructions from system memory. It is
1985  * called by the translation loop and in some helpers where the code
1986  * is disassembled. It shouldn't be called directly by guest code.
1987  *
1988  * For the benefit of TCG generated code, we want to avoid the
1989  * complication of ABI-specific return type promotion and always
1990  * return a value extended to the register size of the host. This is
1991  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1992  * data, and for that we always have uint64_t.
1993  *
1994  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1995  */
1996 
1997 /**
1998  * do_ld_mmio_beN:
1999  * @env: cpu context
2000  * @full: page parameters
2001  * @ret_be: accumulated data
2002  * @addr: virtual address
2003  * @size: number of bytes
2004  * @mmu_idx: virtual address context
2005  * @ra: return address into tcg generated code, or 0
2006  * Context: iothread lock held
2007  *
2008  * Load @size bytes from @addr, which is memory-mapped i/o.
2009  * The bytes are concatenated in big-endian order with @ret_be.
2010  */
2011 static uint64_t int_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2012                                 uint64_t ret_be, vaddr addr, int size,
2013                                 int mmu_idx, MMUAccessType type, uintptr_t ra,
2014                                 MemoryRegion *mr, hwaddr mr_offset)
2015 {
2016     do {
2017         MemOp this_mop;
2018         unsigned this_size;
2019         uint64_t val;
2020         MemTxResult r;
2021 
2022         /* Read aligned pieces up to 8 bytes. */
2023         this_mop = ctz32(size | (int)addr | 8);
2024         this_size = 1 << this_mop;
2025         this_mop |= MO_BE;
2026 
2027         r = memory_region_dispatch_read(mr, mr_offset, &val,
2028                                         this_mop, full->attrs);
2029         if (unlikely(r != MEMTX_OK)) {
2030             io_failed(env, full, addr, this_size, type, mmu_idx, r, ra);
2031         }
2032         if (this_size == 8) {
2033             return val;
2034         }
2035 
2036         ret_be = (ret_be << (this_size * 8)) | val;
2037         addr += this_size;
2038         mr_offset += this_size;
2039         size -= this_size;
2040     } while (size);
2041 
2042     return ret_be;
2043 }
2044 
2045 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2046                                uint64_t ret_be, vaddr addr, int size,
2047                                int mmu_idx, MMUAccessType type, uintptr_t ra)
2048 {
2049     MemoryRegionSection *section;
2050     MemoryRegion *mr;
2051     hwaddr mr_offset;
2052     MemTxAttrs attrs;
2053     uint64_t ret;
2054 
2055     tcg_debug_assert(size > 0 && size <= 8);
2056 
2057     attrs = full->attrs;
2058     section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2059     mr = section->mr;
2060 
2061     qemu_mutex_lock_iothread();
2062     ret = int_ld_mmio_beN(env, full, ret_be, addr, size, mmu_idx,
2063                           type, ra, mr, mr_offset);
2064     qemu_mutex_unlock_iothread();
2065 
2066     return ret;
2067 }
2068 
2069 static Int128 do_ld16_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2070                                uint64_t ret_be, vaddr addr, int size,
2071                                int mmu_idx, uintptr_t ra)
2072 {
2073     MemoryRegionSection *section;
2074     MemoryRegion *mr;
2075     hwaddr mr_offset;
2076     MemTxAttrs attrs;
2077     uint64_t a, b;
2078 
2079     tcg_debug_assert(size > 8 && size <= 16);
2080 
2081     attrs = full->attrs;
2082     section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2083     mr = section->mr;
2084 
2085     qemu_mutex_lock_iothread();
2086     a = int_ld_mmio_beN(env, full, ret_be, addr, size - 8, mmu_idx,
2087                         MMU_DATA_LOAD, ra, mr, mr_offset);
2088     b = int_ld_mmio_beN(env, full, ret_be, addr + size - 8, 8, mmu_idx,
2089                         MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2090     qemu_mutex_unlock_iothread();
2091 
2092     return int128_make128(b, a);
2093 }
2094 
2095 /**
2096  * do_ld_bytes_beN
2097  * @p: translation parameters
2098  * @ret_be: accumulated data
2099  *
2100  * Load @p->size bytes from @p->haddr, which is RAM.
2101  * The bytes to concatenated in big-endian order with @ret_be.
2102  */
2103 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2104 {
2105     uint8_t *haddr = p->haddr;
2106     int i, size = p->size;
2107 
2108     for (i = 0; i < size; i++) {
2109         ret_be = (ret_be << 8) | haddr[i];
2110     }
2111     return ret_be;
2112 }
2113 
2114 /**
2115  * do_ld_parts_beN
2116  * @p: translation parameters
2117  * @ret_be: accumulated data
2118  *
2119  * As do_ld_bytes_beN, but atomically on each aligned part.
2120  */
2121 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2122 {
2123     void *haddr = p->haddr;
2124     int size = p->size;
2125 
2126     do {
2127         uint64_t x;
2128         int n;
2129 
2130         /*
2131          * Find minimum of alignment and size.
2132          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2133          * would have only checked the low bits of addr|size once at the start,
2134          * but is just as easy.
2135          */
2136         switch (((uintptr_t)haddr | size) & 7) {
2137         case 4:
2138             x = cpu_to_be32(load_atomic4(haddr));
2139             ret_be = (ret_be << 32) | x;
2140             n = 4;
2141             break;
2142         case 2:
2143         case 6:
2144             x = cpu_to_be16(load_atomic2(haddr));
2145             ret_be = (ret_be << 16) | x;
2146             n = 2;
2147             break;
2148         default:
2149             x = *(uint8_t *)haddr;
2150             ret_be = (ret_be << 8) | x;
2151             n = 1;
2152             break;
2153         case 0:
2154             g_assert_not_reached();
2155         }
2156         haddr += n;
2157         size -= n;
2158     } while (size != 0);
2159     return ret_be;
2160 }
2161 
2162 /**
2163  * do_ld_parts_be4
2164  * @p: translation parameters
2165  * @ret_be: accumulated data
2166  *
2167  * As do_ld_bytes_beN, but with one atomic load.
2168  * Four aligned bytes are guaranteed to cover the load.
2169  */
2170 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2171 {
2172     int o = p->addr & 3;
2173     uint32_t x = load_atomic4(p->haddr - o);
2174 
2175     x = cpu_to_be32(x);
2176     x <<= o * 8;
2177     x >>= (4 - p->size) * 8;
2178     return (ret_be << (p->size * 8)) | x;
2179 }
2180 
2181 /**
2182  * do_ld_parts_be8
2183  * @p: translation parameters
2184  * @ret_be: accumulated data
2185  *
2186  * As do_ld_bytes_beN, but with one atomic load.
2187  * Eight aligned bytes are guaranteed to cover the load.
2188  */
2189 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2190                                 MMULookupPageData *p, uint64_t ret_be)
2191 {
2192     int o = p->addr & 7;
2193     uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2194 
2195     x = cpu_to_be64(x);
2196     x <<= o * 8;
2197     x >>= (8 - p->size) * 8;
2198     return (ret_be << (p->size * 8)) | x;
2199 }
2200 
2201 /**
2202  * do_ld_parts_be16
2203  * @p: translation parameters
2204  * @ret_be: accumulated data
2205  *
2206  * As do_ld_bytes_beN, but with one atomic load.
2207  * 16 aligned bytes are guaranteed to cover the load.
2208  */
2209 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2210                                MMULookupPageData *p, uint64_t ret_be)
2211 {
2212     int o = p->addr & 15;
2213     Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2214     int size = p->size;
2215 
2216     if (!HOST_BIG_ENDIAN) {
2217         y = bswap128(y);
2218     }
2219     y = int128_lshift(y, o * 8);
2220     y = int128_urshift(y, (16 - size) * 8);
2221     x = int128_make64(ret_be);
2222     x = int128_lshift(x, size * 8);
2223     return int128_or(x, y);
2224 }
2225 
2226 /*
2227  * Wrapper for the above.
2228  */
2229 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2230                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2231                           MemOp mop, uintptr_t ra)
2232 {
2233     MemOp atom;
2234     unsigned tmp, half_size;
2235 
2236     if (unlikely(p->flags & TLB_MMIO)) {
2237         return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2238                               mmu_idx, type, ra);
2239     }
2240 
2241     /*
2242      * It is a given that we cross a page and therefore there is no
2243      * atomicity for the load as a whole, but subobjects may need attention.
2244      */
2245     atom = mop & MO_ATOM_MASK;
2246     switch (atom) {
2247     case MO_ATOM_SUBALIGN:
2248         return do_ld_parts_beN(p, ret_be);
2249 
2250     case MO_ATOM_IFALIGN_PAIR:
2251     case MO_ATOM_WITHIN16_PAIR:
2252         tmp = mop & MO_SIZE;
2253         tmp = tmp ? tmp - 1 : 0;
2254         half_size = 1 << tmp;
2255         if (atom == MO_ATOM_IFALIGN_PAIR
2256             ? p->size == half_size
2257             : p->size >= half_size) {
2258             if (!HAVE_al8_fast && p->size < 4) {
2259                 return do_ld_whole_be4(p, ret_be);
2260             } else {
2261                 return do_ld_whole_be8(env, ra, p, ret_be);
2262             }
2263         }
2264         /* fall through */
2265 
2266     case MO_ATOM_IFALIGN:
2267     case MO_ATOM_WITHIN16:
2268     case MO_ATOM_NONE:
2269         return do_ld_bytes_beN(p, ret_be);
2270 
2271     default:
2272         g_assert_not_reached();
2273     }
2274 }
2275 
2276 /*
2277  * Wrapper for the above, for 8 < size < 16.
2278  */
2279 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2280                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2281 {
2282     int size = p->size;
2283     uint64_t b;
2284     MemOp atom;
2285 
2286     if (unlikely(p->flags & TLB_MMIO)) {
2287         return do_ld16_mmio_beN(env, p->full, a, p->addr, size, mmu_idx, ra);
2288     }
2289 
2290     /*
2291      * It is a given that we cross a page and therefore there is no
2292      * atomicity for the load as a whole, but subobjects may need attention.
2293      */
2294     atom = mop & MO_ATOM_MASK;
2295     switch (atom) {
2296     case MO_ATOM_SUBALIGN:
2297         p->size = size - 8;
2298         a = do_ld_parts_beN(p, a);
2299         p->haddr += size - 8;
2300         p->size = 8;
2301         b = do_ld_parts_beN(p, 0);
2302         break;
2303 
2304     case MO_ATOM_WITHIN16_PAIR:
2305         /* Since size > 8, this is the half that must be atomic. */
2306         return do_ld_whole_be16(env, ra, p, a);
2307 
2308     case MO_ATOM_IFALIGN_PAIR:
2309         /*
2310          * Since size > 8, both halves are misaligned,
2311          * and so neither is atomic.
2312          */
2313     case MO_ATOM_IFALIGN:
2314     case MO_ATOM_WITHIN16:
2315     case MO_ATOM_NONE:
2316         p->size = size - 8;
2317         a = do_ld_bytes_beN(p, a);
2318         b = ldq_be_p(p->haddr + size - 8);
2319         break;
2320 
2321     default:
2322         g_assert_not_reached();
2323     }
2324 
2325     return int128_make128(b, a);
2326 }
2327 
2328 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2329                        MMUAccessType type, uintptr_t ra)
2330 {
2331     if (unlikely(p->flags & TLB_MMIO)) {
2332         return do_ld_mmio_beN(env, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2333     } else {
2334         return *(uint8_t *)p->haddr;
2335     }
2336 }
2337 
2338 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2339                         MMUAccessType type, MemOp memop, uintptr_t ra)
2340 {
2341     uint16_t ret;
2342 
2343     if (unlikely(p->flags & TLB_MMIO)) {
2344         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2345         if ((memop & MO_BSWAP) == MO_LE) {
2346             ret = bswap16(ret);
2347         }
2348     } else {
2349         /* Perform the load host endian, then swap if necessary. */
2350         ret = load_atom_2(env, ra, p->haddr, memop);
2351         if (memop & MO_BSWAP) {
2352             ret = bswap16(ret);
2353         }
2354     }
2355     return ret;
2356 }
2357 
2358 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2359                         MMUAccessType type, MemOp memop, uintptr_t ra)
2360 {
2361     uint32_t ret;
2362 
2363     if (unlikely(p->flags & TLB_MMIO)) {
2364         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2365         if ((memop & MO_BSWAP) == MO_LE) {
2366             ret = bswap32(ret);
2367         }
2368     } else {
2369         /* Perform the load host endian. */
2370         ret = load_atom_4(env, ra, p->haddr, memop);
2371         if (memop & MO_BSWAP) {
2372             ret = bswap32(ret);
2373         }
2374     }
2375     return ret;
2376 }
2377 
2378 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2379                         MMUAccessType type, MemOp memop, uintptr_t ra)
2380 {
2381     uint64_t ret;
2382 
2383     if (unlikely(p->flags & TLB_MMIO)) {
2384         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2385         if ((memop & MO_BSWAP) == MO_LE) {
2386             ret = bswap64(ret);
2387         }
2388     } else {
2389         /* Perform the load host endian. */
2390         ret = load_atom_8(env, ra, p->haddr, memop);
2391         if (memop & MO_BSWAP) {
2392             ret = bswap64(ret);
2393         }
2394     }
2395     return ret;
2396 }
2397 
2398 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2399                           uintptr_t ra, MMUAccessType access_type)
2400 {
2401     MMULookupLocals l;
2402     bool crosspage;
2403 
2404     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2405     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2406     tcg_debug_assert(!crosspage);
2407 
2408     return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2409 }
2410 
2411 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2412                                  MemOpIdx oi, uintptr_t retaddr)
2413 {
2414     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2415     return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2416 }
2417 
2418 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2419                            uintptr_t ra, MMUAccessType access_type)
2420 {
2421     MMULookupLocals l;
2422     bool crosspage;
2423     uint16_t ret;
2424     uint8_t a, b;
2425 
2426     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2427     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2428     if (likely(!crosspage)) {
2429         return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2430     }
2431 
2432     a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2433     b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2434 
2435     if ((l.memop & MO_BSWAP) == MO_LE) {
2436         ret = a | (b << 8);
2437     } else {
2438         ret = b | (a << 8);
2439     }
2440     return ret;
2441 }
2442 
2443 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2444                                  MemOpIdx oi, uintptr_t retaddr)
2445 {
2446     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2447     return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2448 }
2449 
2450 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2451                            uintptr_t ra, MMUAccessType access_type)
2452 {
2453     MMULookupLocals l;
2454     bool crosspage;
2455     uint32_t ret;
2456 
2457     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2458     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2459     if (likely(!crosspage)) {
2460         return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2461     }
2462 
2463     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2464     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2465     if ((l.memop & MO_BSWAP) == MO_LE) {
2466         ret = bswap32(ret);
2467     }
2468     return ret;
2469 }
2470 
2471 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2472                                  MemOpIdx oi, uintptr_t retaddr)
2473 {
2474     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2475     return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2476 }
2477 
2478 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2479                            uintptr_t ra, MMUAccessType access_type)
2480 {
2481     MMULookupLocals l;
2482     bool crosspage;
2483     uint64_t ret;
2484 
2485     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2486     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2487     if (likely(!crosspage)) {
2488         return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2489     }
2490 
2491     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2492     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2493     if ((l.memop & MO_BSWAP) == MO_LE) {
2494         ret = bswap64(ret);
2495     }
2496     return ret;
2497 }
2498 
2499 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2500                         MemOpIdx oi, uintptr_t retaddr)
2501 {
2502     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2503     return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2504 }
2505 
2506 /*
2507  * Provide signed versions of the load routines as well.  We can of course
2508  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2509  */
2510 
2511 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2512                                  MemOpIdx oi, uintptr_t retaddr)
2513 {
2514     return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2515 }
2516 
2517 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2518                                  MemOpIdx oi, uintptr_t retaddr)
2519 {
2520     return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2521 }
2522 
2523 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2524                                  MemOpIdx oi, uintptr_t retaddr)
2525 {
2526     return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2527 }
2528 
2529 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2530                           MemOpIdx oi, uintptr_t ra)
2531 {
2532     MMULookupLocals l;
2533     bool crosspage;
2534     uint64_t a, b;
2535     Int128 ret;
2536     int first;
2537 
2538     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2539     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2540     if (likely(!crosspage)) {
2541         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2542             ret = do_ld16_mmio_beN(env, l.page[0].full, 0, addr, 16,
2543                                    l.mmu_idx, ra);
2544             if ((l.memop & MO_BSWAP) == MO_LE) {
2545                 ret = bswap128(ret);
2546             }
2547         } else {
2548             /* Perform the load host endian. */
2549             ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2550             if (l.memop & MO_BSWAP) {
2551                 ret = bswap128(ret);
2552             }
2553         }
2554         return ret;
2555     }
2556 
2557     first = l.page[0].size;
2558     if (first == 8) {
2559         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2560 
2561         a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2562         b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2563         if ((mop8 & MO_BSWAP) == MO_LE) {
2564             ret = int128_make128(a, b);
2565         } else {
2566             ret = int128_make128(b, a);
2567         }
2568         return ret;
2569     }
2570 
2571     if (first < 8) {
2572         a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2573                       MMU_DATA_LOAD, l.memop, ra);
2574         ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2575     } else {
2576         ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2577         b = int128_getlo(ret);
2578         ret = int128_lshift(ret, l.page[1].size * 8);
2579         a = int128_gethi(ret);
2580         b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2581                       MMU_DATA_LOAD, l.memop, ra);
2582         ret = int128_make128(b, a);
2583     }
2584     if ((l.memop & MO_BSWAP) == MO_LE) {
2585         ret = bswap128(ret);
2586     }
2587     return ret;
2588 }
2589 
2590 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2591                        uint32_t oi, uintptr_t retaddr)
2592 {
2593     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2594     return do_ld16_mmu(env, addr, oi, retaddr);
2595 }
2596 
2597 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2598 {
2599     return helper_ld16_mmu(env, addr, oi, GETPC());
2600 }
2601 
2602 /*
2603  * Load helpers for cpu_ldst.h.
2604  */
2605 
2606 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2607 {
2608     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2609 }
2610 
2611 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2612 {
2613     uint8_t ret;
2614 
2615     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2616     ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2617     plugin_load_cb(env, addr, oi);
2618     return ret;
2619 }
2620 
2621 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2622                      MemOpIdx oi, uintptr_t ra)
2623 {
2624     uint16_t ret;
2625 
2626     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2627     ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2628     plugin_load_cb(env, addr, oi);
2629     return ret;
2630 }
2631 
2632 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2633                      MemOpIdx oi, uintptr_t ra)
2634 {
2635     uint32_t ret;
2636 
2637     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2638     ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2639     plugin_load_cb(env, addr, oi);
2640     return ret;
2641 }
2642 
2643 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2644                      MemOpIdx oi, uintptr_t ra)
2645 {
2646     uint64_t ret;
2647 
2648     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2649     ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2650     plugin_load_cb(env, addr, oi);
2651     return ret;
2652 }
2653 
2654 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2655                     MemOpIdx oi, uintptr_t ra)
2656 {
2657     Int128 ret;
2658 
2659     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2660     ret = do_ld16_mmu(env, addr, oi, ra);
2661     plugin_load_cb(env, addr, oi);
2662     return ret;
2663 }
2664 
2665 /*
2666  * Store Helpers
2667  */
2668 
2669 /**
2670  * do_st_mmio_leN:
2671  * @env: cpu context
2672  * @full: page parameters
2673  * @val_le: data to store
2674  * @addr: virtual address
2675  * @size: number of bytes
2676  * @mmu_idx: virtual address context
2677  * @ra: return address into tcg generated code, or 0
2678  * Context: iothread lock held
2679  *
2680  * Store @size bytes at @addr, which is memory-mapped i/o.
2681  * The bytes to store are extracted in little-endian order from @val_le;
2682  * return the bytes of @val_le beyond @p->size that have not been stored.
2683  */
2684 static uint64_t int_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2685                                 uint64_t val_le, vaddr addr, int size,
2686                                 int mmu_idx, uintptr_t ra,
2687                                 MemoryRegion *mr, hwaddr mr_offset)
2688 {
2689     do {
2690         MemOp this_mop;
2691         unsigned this_size;
2692         MemTxResult r;
2693 
2694         /* Store aligned pieces up to 8 bytes. */
2695         this_mop = ctz32(size | (int)addr | 8);
2696         this_size = 1 << this_mop;
2697         this_mop |= MO_LE;
2698 
2699         r = memory_region_dispatch_write(mr, mr_offset, val_le,
2700                                          this_mop, full->attrs);
2701         if (unlikely(r != MEMTX_OK)) {
2702             io_failed(env, full, addr, this_size, MMU_DATA_STORE,
2703                       mmu_idx, r, ra);
2704         }
2705         if (this_size == 8) {
2706             return 0;
2707         }
2708 
2709         val_le >>= this_size * 8;
2710         addr += this_size;
2711         mr_offset += this_size;
2712         size -= this_size;
2713     } while (size);
2714 
2715     return val_le;
2716 }
2717 
2718 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2719                                uint64_t val_le, vaddr addr, int size,
2720                                int mmu_idx, uintptr_t ra)
2721 {
2722     MemoryRegionSection *section;
2723     hwaddr mr_offset;
2724     MemoryRegion *mr;
2725     MemTxAttrs attrs;
2726     uint64_t ret;
2727 
2728     tcg_debug_assert(size > 0 && size <= 8);
2729 
2730     attrs = full->attrs;
2731     section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2732     mr = section->mr;
2733 
2734     qemu_mutex_lock_iothread();
2735     ret = int_st_mmio_leN(env, full, val_le, addr, size, mmu_idx,
2736                           ra, mr, mr_offset);
2737     qemu_mutex_unlock_iothread();
2738 
2739     return ret;
2740 }
2741 
2742 static uint64_t do_st16_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2743                                  Int128 val_le, vaddr addr, int size,
2744                                  int mmu_idx, uintptr_t ra)
2745 {
2746     MemoryRegionSection *section;
2747     MemoryRegion *mr;
2748     hwaddr mr_offset;
2749     MemTxAttrs attrs;
2750     uint64_t ret;
2751 
2752     tcg_debug_assert(size > 8 && size <= 16);
2753 
2754     attrs = full->attrs;
2755     section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2756     mr = section->mr;
2757 
2758     qemu_mutex_lock_iothread();
2759     int_st_mmio_leN(env, full, int128_getlo(val_le), addr, 8,
2760                     mmu_idx, ra, mr, mr_offset);
2761     ret = int_st_mmio_leN(env, full, int128_gethi(val_le), addr + 8,
2762                           size - 8, mmu_idx, ra, mr, mr_offset + 8);
2763     qemu_mutex_unlock_iothread();
2764 
2765     return ret;
2766 }
2767 
2768 /*
2769  * Wrapper for the above.
2770  */
2771 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2772                           uint64_t val_le, int mmu_idx,
2773                           MemOp mop, uintptr_t ra)
2774 {
2775     MemOp atom;
2776     unsigned tmp, half_size;
2777 
2778     if (unlikely(p->flags & TLB_MMIO)) {
2779         return do_st_mmio_leN(env, p->full, val_le, p->addr,
2780                               p->size, mmu_idx, ra);
2781     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2782         return val_le >> (p->size * 8);
2783     }
2784 
2785     /*
2786      * It is a given that we cross a page and therefore there is no atomicity
2787      * for the store as a whole, but subobjects may need attention.
2788      */
2789     atom = mop & MO_ATOM_MASK;
2790     switch (atom) {
2791     case MO_ATOM_SUBALIGN:
2792         return store_parts_leN(p->haddr, p->size, val_le);
2793 
2794     case MO_ATOM_IFALIGN_PAIR:
2795     case MO_ATOM_WITHIN16_PAIR:
2796         tmp = mop & MO_SIZE;
2797         tmp = tmp ? tmp - 1 : 0;
2798         half_size = 1 << tmp;
2799         if (atom == MO_ATOM_IFALIGN_PAIR
2800             ? p->size == half_size
2801             : p->size >= half_size) {
2802             if (!HAVE_al8_fast && p->size <= 4) {
2803                 return store_whole_le4(p->haddr, p->size, val_le);
2804             } else if (HAVE_al8) {
2805                 return store_whole_le8(p->haddr, p->size, val_le);
2806             } else {
2807                 cpu_loop_exit_atomic(env_cpu(env), ra);
2808             }
2809         }
2810         /* fall through */
2811 
2812     case MO_ATOM_IFALIGN:
2813     case MO_ATOM_WITHIN16:
2814     case MO_ATOM_NONE:
2815         return store_bytes_leN(p->haddr, p->size, val_le);
2816 
2817     default:
2818         g_assert_not_reached();
2819     }
2820 }
2821 
2822 /*
2823  * Wrapper for the above, for 8 < size < 16.
2824  */
2825 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2826                             Int128 val_le, int mmu_idx,
2827                             MemOp mop, uintptr_t ra)
2828 {
2829     int size = p->size;
2830     MemOp atom;
2831 
2832     if (unlikely(p->flags & TLB_MMIO)) {
2833         return do_st16_mmio_leN(env, p->full, val_le, p->addr,
2834                                 size, mmu_idx, ra);
2835     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2836         return int128_gethi(val_le) >> ((size - 8) * 8);
2837     }
2838 
2839     /*
2840      * It is a given that we cross a page and therefore there is no atomicity
2841      * for the store as a whole, but subobjects may need attention.
2842      */
2843     atom = mop & MO_ATOM_MASK;
2844     switch (atom) {
2845     case MO_ATOM_SUBALIGN:
2846         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2847         return store_parts_leN(p->haddr + 8, p->size - 8,
2848                                int128_gethi(val_le));
2849 
2850     case MO_ATOM_WITHIN16_PAIR:
2851         /* Since size > 8, this is the half that must be atomic. */
2852         if (!HAVE_ATOMIC128_RW) {
2853             cpu_loop_exit_atomic(env_cpu(env), ra);
2854         }
2855         return store_whole_le16(p->haddr, p->size, val_le);
2856 
2857     case MO_ATOM_IFALIGN_PAIR:
2858         /*
2859          * Since size > 8, both halves are misaligned,
2860          * and so neither is atomic.
2861          */
2862     case MO_ATOM_IFALIGN:
2863     case MO_ATOM_WITHIN16:
2864     case MO_ATOM_NONE:
2865         stq_le_p(p->haddr, int128_getlo(val_le));
2866         return store_bytes_leN(p->haddr + 8, p->size - 8,
2867                                int128_gethi(val_le));
2868 
2869     default:
2870         g_assert_not_reached();
2871     }
2872 }
2873 
2874 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2875                     int mmu_idx, uintptr_t ra)
2876 {
2877     if (unlikely(p->flags & TLB_MMIO)) {
2878         do_st_mmio_leN(env, p->full, val, p->addr, 1, mmu_idx, ra);
2879     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2880         /* nothing */
2881     } else {
2882         *(uint8_t *)p->haddr = val;
2883     }
2884 }
2885 
2886 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2887                     int mmu_idx, MemOp memop, uintptr_t ra)
2888 {
2889     if (unlikely(p->flags & TLB_MMIO)) {
2890         if ((memop & MO_BSWAP) != MO_LE) {
2891             val = bswap16(val);
2892         }
2893         do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2894     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2895         /* nothing */
2896     } else {
2897         /* Swap to host endian if necessary, then store. */
2898         if (memop & MO_BSWAP) {
2899             val = bswap16(val);
2900         }
2901         store_atom_2(env, ra, p->haddr, memop, val);
2902     }
2903 }
2904 
2905 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2906                     int mmu_idx, MemOp memop, uintptr_t ra)
2907 {
2908     if (unlikely(p->flags & TLB_MMIO)) {
2909         if ((memop & MO_BSWAP) != MO_LE) {
2910             val = bswap32(val);
2911         }
2912         do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2913     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2914         /* nothing */
2915     } else {
2916         /* Swap to host endian if necessary, then store. */
2917         if (memop & MO_BSWAP) {
2918             val = bswap32(val);
2919         }
2920         store_atom_4(env, ra, p->haddr, memop, val);
2921     }
2922 }
2923 
2924 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2925                     int mmu_idx, MemOp memop, uintptr_t ra)
2926 {
2927     if (unlikely(p->flags & TLB_MMIO)) {
2928         if ((memop & MO_BSWAP) != MO_LE) {
2929             val = bswap64(val);
2930         }
2931         do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2932     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2933         /* nothing */
2934     } else {
2935         /* Swap to host endian if necessary, then store. */
2936         if (memop & MO_BSWAP) {
2937             val = bswap64(val);
2938         }
2939         store_atom_8(env, ra, p->haddr, memop, val);
2940     }
2941 }
2942 
2943 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2944                     MemOpIdx oi, uintptr_t ra)
2945 {
2946     MMULookupLocals l;
2947     bool crosspage;
2948 
2949     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2950     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2951     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2952     tcg_debug_assert(!crosspage);
2953 
2954     do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2955 }
2956 
2957 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2958                        MemOpIdx oi, uintptr_t ra)
2959 {
2960     MMULookupLocals l;
2961     bool crosspage;
2962     uint8_t a, b;
2963 
2964     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2965     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2966     if (likely(!crosspage)) {
2967         do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2968         return;
2969     }
2970 
2971     if ((l.memop & MO_BSWAP) == MO_LE) {
2972         a = val, b = val >> 8;
2973     } else {
2974         b = val, a = val >> 8;
2975     }
2976     do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2977     do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2978 }
2979 
2980 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2981                     MemOpIdx oi, uintptr_t retaddr)
2982 {
2983     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2984     do_st2_mmu(env, addr, val, oi, retaddr);
2985 }
2986 
2987 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2988                        MemOpIdx oi, uintptr_t ra)
2989 {
2990     MMULookupLocals l;
2991     bool crosspage;
2992 
2993     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2994     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2995     if (likely(!crosspage)) {
2996         do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2997         return;
2998     }
2999 
3000     /* Swap to little endian for simplicity, then store by bytes. */
3001     if ((l.memop & MO_BSWAP) != MO_LE) {
3002         val = bswap32(val);
3003     }
3004     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3005     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3006 }
3007 
3008 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
3009                     MemOpIdx oi, uintptr_t retaddr)
3010 {
3011     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3012     do_st4_mmu(env, addr, val, oi, retaddr);
3013 }
3014 
3015 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
3016                        MemOpIdx oi, uintptr_t ra)
3017 {
3018     MMULookupLocals l;
3019     bool crosspage;
3020 
3021     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3022     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3023     if (likely(!crosspage)) {
3024         do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3025         return;
3026     }
3027 
3028     /* Swap to little endian for simplicity, then store by bytes. */
3029     if ((l.memop & MO_BSWAP) != MO_LE) {
3030         val = bswap64(val);
3031     }
3032     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3033     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3034 }
3035 
3036 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3037                     MemOpIdx oi, uintptr_t retaddr)
3038 {
3039     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3040     do_st8_mmu(env, addr, val, oi, retaddr);
3041 }
3042 
3043 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3044                         MemOpIdx oi, uintptr_t ra)
3045 {
3046     MMULookupLocals l;
3047     bool crosspage;
3048     uint64_t a, b;
3049     int first;
3050 
3051     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3052     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3053     if (likely(!crosspage)) {
3054         if (unlikely(l.page[0].flags & TLB_MMIO)) {
3055             if ((l.memop & MO_BSWAP) != MO_LE) {
3056                 val = bswap128(val);
3057             }
3058             do_st16_mmio_leN(env, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
3059         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3060             /* nothing */
3061         } else {
3062             /* Swap to host endian if necessary, then store. */
3063             if (l.memop & MO_BSWAP) {
3064                 val = bswap128(val);
3065             }
3066             store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3067         }
3068         return;
3069     }
3070 
3071     first = l.page[0].size;
3072     if (first == 8) {
3073         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3074 
3075         if (l.memop & MO_BSWAP) {
3076             val = bswap128(val);
3077         }
3078         if (HOST_BIG_ENDIAN) {
3079             b = int128_getlo(val), a = int128_gethi(val);
3080         } else {
3081             a = int128_getlo(val), b = int128_gethi(val);
3082         }
3083         do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3084         do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3085         return;
3086     }
3087 
3088     if ((l.memop & MO_BSWAP) != MO_LE) {
3089         val = bswap128(val);
3090     }
3091     if (first < 8) {
3092         do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3093         val = int128_urshift(val, first * 8);
3094         do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3095     } else {
3096         b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3097         do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3098     }
3099 }
3100 
3101 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3102                      MemOpIdx oi, uintptr_t retaddr)
3103 {
3104     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3105     do_st16_mmu(env, addr, val, oi, retaddr);
3106 }
3107 
3108 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3109 {
3110     helper_st16_mmu(env, addr, val, oi, GETPC());
3111 }
3112 
3113 /*
3114  * Store Helpers for cpu_ldst.h
3115  */
3116 
3117 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3118 {
3119     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3120 }
3121 
3122 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3123                  MemOpIdx oi, uintptr_t retaddr)
3124 {
3125     helper_stb_mmu(env, addr, val, oi, retaddr);
3126     plugin_store_cb(env, addr, oi);
3127 }
3128 
3129 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3130                  MemOpIdx oi, uintptr_t retaddr)
3131 {
3132     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3133     do_st2_mmu(env, addr, val, oi, retaddr);
3134     plugin_store_cb(env, addr, oi);
3135 }
3136 
3137 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3138                     MemOpIdx oi, uintptr_t retaddr)
3139 {
3140     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3141     do_st4_mmu(env, addr, val, oi, retaddr);
3142     plugin_store_cb(env, addr, oi);
3143 }
3144 
3145 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3146                  MemOpIdx oi, uintptr_t retaddr)
3147 {
3148     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3149     do_st8_mmu(env, addr, val, oi, retaddr);
3150     plugin_store_cb(env, addr, oi);
3151 }
3152 
3153 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3154                   MemOpIdx oi, uintptr_t retaddr)
3155 {
3156     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3157     do_st16_mmu(env, addr, val, oi, retaddr);
3158     plugin_store_cb(env, addr, oi);
3159 }
3160 
3161 #include "ldst_common.c.inc"
3162 
3163 /*
3164  * First set of functions passes in OI and RETADDR.
3165  * This makes them callable from other helpers.
3166  */
3167 
3168 #define ATOMIC_NAME(X) \
3169     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3170 
3171 #define ATOMIC_MMU_CLEANUP
3172 
3173 #include "atomic_common.c.inc"
3174 
3175 #define DATA_SIZE 1
3176 #include "atomic_template.h"
3177 
3178 #define DATA_SIZE 2
3179 #include "atomic_template.h"
3180 
3181 #define DATA_SIZE 4
3182 #include "atomic_template.h"
3183 
3184 #ifdef CONFIG_ATOMIC64
3185 #define DATA_SIZE 8
3186 #include "atomic_template.h"
3187 #endif
3188 
3189 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3190 #define DATA_SIZE 16
3191 #include "atomic_template.h"
3192 #endif
3193 
3194 /* Code access functions.  */
3195 
3196 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3197 {
3198     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3199     return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3200 }
3201 
3202 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3203 {
3204     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3205     return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3206 }
3207 
3208 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3209 {
3210     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3211     return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3212 }
3213 
3214 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3215 {
3216     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3217     return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3218 }
3219 
3220 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3221                          MemOpIdx oi, uintptr_t retaddr)
3222 {
3223     return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3224 }
3225 
3226 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3227                           MemOpIdx oi, uintptr_t retaddr)
3228 {
3229     return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3230 }
3231 
3232 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3233                           MemOpIdx oi, uintptr_t retaddr)
3234 {
3235     return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3236 }
3237 
3238 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3239                           MemOpIdx oi, uintptr_t retaddr)
3240 {
3241     return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3242 }
3243