1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto-common.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 #include "tcg/oversized-guest.h" 44 45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 46 /* #define DEBUG_TLB */ 47 /* #define DEBUG_TLB_LOG */ 48 49 #ifdef DEBUG_TLB 50 # define DEBUG_TLB_GATE 1 51 # ifdef DEBUG_TLB_LOG 52 # define DEBUG_TLB_LOG_GATE 1 53 # else 54 # define DEBUG_TLB_LOG_GATE 0 55 # endif 56 #else 57 # define DEBUG_TLB_GATE 0 58 # define DEBUG_TLB_LOG_GATE 0 59 #endif 60 61 #define tlb_debug(fmt, ...) do { \ 62 if (DEBUG_TLB_LOG_GATE) { \ 63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 64 ## __VA_ARGS__); \ 65 } else if (DEBUG_TLB_GATE) { \ 66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 67 } \ 68 } while (0) 69 70 #define assert_cpu_is_self(cpu) do { \ 71 if (DEBUG_TLB_GATE) { \ 72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 73 } \ 74 } while (0) 75 76 /* run_on_cpu_data.target_ptr should always be big enough for a 77 * vaddr even on 32 bit builds 78 */ 79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 80 81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 82 */ 83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 85 86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 87 { 88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 89 } 90 91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 92 { 93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 94 } 95 96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 97 size_t max_entries) 98 { 99 desc->window_begin_ns = ns; 100 desc->window_max_entries = max_entries; 101 } 102 103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 104 { 105 CPUJumpCache *jc = cpu->tb_jmp_cache; 106 int i, i0; 107 108 if (unlikely(!jc)) { 109 return; 110 } 111 112 i0 = tb_jmp_cache_hash_page(page_addr); 113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 114 qatomic_set(&jc->array[i0 + i].tb, NULL); 115 } 116 } 117 118 /** 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 120 * @desc: The CPUTLBDesc portion of the TLB 121 * @fast: The CPUTLBDescFast portion of the same TLB 122 * 123 * Called with tlb_lock_held. 124 * 125 * We have two main constraints when resizing a TLB: (1) we only resize it 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 127 * the array or unnecessarily flushing it), which means we do not control how 128 * frequently the resizing can occur; (2) we don't have access to the guest's 129 * future scheduling decisions, and therefore have to decide the magnitude of 130 * the resize based on past observations. 131 * 132 * In general, a memory-hungry process can benefit greatly from an appropriately 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 134 * we just have to make the TLB as large as possible; while an oversized TLB 135 * results in minimal TLB miss rates, it also takes longer to be flushed 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt 137 * performance. 138 * 139 * To achieve near-optimal performance for all kinds of workloads, we: 140 * 141 * 1. Aggressively increase the size of the TLB when the use rate of the 142 * TLB being flushed is high, since it is likely that in the near future this 143 * memory-hungry process will execute again, and its memory hungriness will 144 * probably be similar. 145 * 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a 147 * reasonably large time window. The rationale is that if in such a time window 148 * we have not observed a high TLB use rate, it is likely that we won't observe 149 * it in the near future. In that case, once a time window expires we downsize 150 * the TLB to match the maximum use rate observed in the window. 151 * 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 153 * since in that range performance is likely near-optimal. Recall that the TLB 154 * is direct mapped, so we want the use rate to be low (or at least not too 155 * high), since otherwise we are likely to have a significant amount of 156 * conflict misses. 157 */ 158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 159 int64_t now) 160 { 161 size_t old_size = tlb_n_entries(fast); 162 size_t rate; 163 size_t new_size = old_size; 164 int64_t window_len_ms = 100; 165 int64_t window_len_ns = window_len_ms * 1000 * 1000; 166 bool window_expired = now > desc->window_begin_ns + window_len_ns; 167 168 if (desc->n_used_entries > desc->window_max_entries) { 169 desc->window_max_entries = desc->n_used_entries; 170 } 171 rate = desc->window_max_entries * 100 / old_size; 172 173 if (rate > 70) { 174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 175 } else if (rate < 30 && window_expired) { 176 size_t ceil = pow2ceil(desc->window_max_entries); 177 size_t expected_rate = desc->window_max_entries * 100 / ceil; 178 179 /* 180 * Avoid undersizing when the max number of entries seen is just below 181 * a pow2. For instance, if max_entries == 1025, the expected use rate 182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 184 * later. Thus, make sure that the expected use rate remains below 70%. 185 * (and since we double the size, that means the lowest rate we'd 186 * expect to get is 35%, which is still in the 30-70% range where 187 * we consider that the size is appropriate.) 188 */ 189 if (expected_rate > 70) { 190 ceil *= 2; 191 } 192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 193 } 194 195 if (new_size == old_size) { 196 if (window_expired) { 197 tlb_window_reset(desc, now, desc->n_used_entries); 198 } 199 return; 200 } 201 202 g_free(fast->table); 203 g_free(desc->fulltlb); 204 205 tlb_window_reset(desc, now, 0); 206 /* desc->n_used_entries is cleared by the caller */ 207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 208 fast->table = g_try_new(CPUTLBEntry, new_size); 209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 210 211 /* 212 * If the allocations fail, try smaller sizes. We just freed some 213 * memory, so going back to half of new_size has a good chance of working. 214 * Increased memory pressure elsewhere in the system might cause the 215 * allocations to fail though, so we progressively reduce the allocation 216 * size, aborting if we cannot even allocate the smallest TLB we support. 217 */ 218 while (fast->table == NULL || desc->fulltlb == NULL) { 219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 220 error_report("%s: %s", __func__, strerror(errno)); 221 abort(); 222 } 223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 225 226 g_free(fast->table); 227 g_free(desc->fulltlb); 228 fast->table = g_try_new(CPUTLBEntry, new_size); 229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 230 } 231 } 232 233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 234 { 235 desc->n_used_entries = 0; 236 desc->large_page_addr = -1; 237 desc->large_page_mask = -1; 238 desc->vindex = 0; 239 memset(fast->table, -1, sizeof_tlb(fast)); 240 memset(desc->vtable, -1, sizeof(desc->vtable)); 241 } 242 243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 244 int64_t now) 245 { 246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 248 249 tlb_mmu_resize_locked(desc, fast, now); 250 tlb_mmu_flush_locked(desc, fast); 251 } 252 253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 254 { 255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 256 257 tlb_window_reset(desc, now, 0); 258 desc->n_used_entries = 0; 259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 260 fast->table = g_new(CPUTLBEntry, n_entries); 261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 262 tlb_mmu_flush_locked(desc, fast); 263 } 264 265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 266 { 267 env_tlb(env)->d[mmu_idx].n_used_entries++; 268 } 269 270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 271 { 272 env_tlb(env)->d[mmu_idx].n_used_entries--; 273 } 274 275 void tlb_init(CPUState *cpu) 276 { 277 CPUArchState *env = cpu->env_ptr; 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&env_tlb(env)->c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 env_tlb(env)->c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 CPUArchState *env = cpu->env_ptr; 294 int i; 295 296 qemu_spin_destroy(&env_tlb(env)->c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 299 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 300 301 g_free(fast->table); 302 g_free(desc->fulltlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 326 { 327 CPUState *cpu; 328 size_t full = 0, part = 0, elide = 0; 329 330 CPU_FOREACH(cpu) { 331 CPUArchState *env = cpu->env_ptr; 332 333 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 334 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 336 } 337 *pfull = full; 338 *ppart = part; 339 *pelide = elide; 340 } 341 342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 343 { 344 CPUArchState *env = cpu->env_ptr; 345 uint16_t asked = data.host_int; 346 uint16_t all_dirty, work, to_clean; 347 int64_t now = get_clock_realtime(); 348 349 assert_cpu_is_self(cpu); 350 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 352 353 qemu_spin_lock(&env_tlb(env)->c.lock); 354 355 all_dirty = env_tlb(env)->c.dirty; 356 to_clean = asked & all_dirty; 357 all_dirty &= ~to_clean; 358 env_tlb(env)->c.dirty = all_dirty; 359 360 for (work = to_clean; work != 0; work &= work - 1) { 361 int mmu_idx = ctz32(work); 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 363 } 364 365 qemu_spin_unlock(&env_tlb(env)->c.lock); 366 367 tcg_flush_jmp_cache(cpu); 368 369 if (to_clean == ALL_MMUIDX_BITS) { 370 qatomic_set(&env_tlb(env)->c.full_flush_count, 371 env_tlb(env)->c.full_flush_count + 1); 372 } else { 373 qatomic_set(&env_tlb(env)->c.part_flush_count, 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 375 if (to_clean != asked) { 376 qatomic_set(&env_tlb(env)->c.elide_flush_count, 377 env_tlb(env)->c.elide_flush_count + 378 ctpop16(asked & ~to_clean)); 379 } 380 } 381 } 382 383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 384 { 385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 386 387 if (cpu->created && !qemu_cpu_is_self(cpu)) { 388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 389 RUN_ON_CPU_HOST_INT(idxmap)); 390 } else { 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 392 } 393 } 394 395 void tlb_flush(CPUState *cpu) 396 { 397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 398 } 399 400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 401 { 402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 403 404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 405 406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 408 } 409 410 void tlb_flush_all_cpus(CPUState *src_cpu) 411 { 412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 413 } 414 415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 416 { 417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 418 419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 420 421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 423 } 424 425 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 426 { 427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 428 } 429 430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 431 vaddr page, vaddr mask) 432 { 433 page &= mask; 434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 435 436 return (page == (tlb_entry->addr_read & mask) || 437 page == (tlb_addr_write(tlb_entry) & mask) || 438 page == (tlb_entry->addr_code & mask)); 439 } 440 441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 442 { 443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 444 } 445 446 /** 447 * tlb_entry_is_empty - return true if the entry is not in use 448 * @te: pointer to CPUTLBEntry 449 */ 450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 451 { 452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 453 } 454 455 /* Called with tlb_c.lock held */ 456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 457 vaddr page, 458 vaddr mask) 459 { 460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 461 memset(tlb_entry, -1, sizeof(*tlb_entry)); 462 return true; 463 } 464 return false; 465 } 466 467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 468 { 469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 470 } 471 472 /* Called with tlb_c.lock held */ 473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 474 vaddr page, 475 vaddr mask) 476 { 477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 478 int k; 479 480 assert_cpu_is_self(env_cpu(env)); 481 for (k = 0; k < CPU_VTLB_SIZE; k++) { 482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 483 tlb_n_used_entries_dec(env, mmu_idx); 484 } 485 } 486 } 487 488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 489 vaddr page) 490 { 491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 492 } 493 494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page) 495 { 496 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr; 497 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask; 498 499 /* Check if we need to flush due to large pages. */ 500 if ((page & lp_mask) == lp_addr) { 501 tlb_debug("forcing full flush midx %d (%016" 502 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 503 midx, lp_addr, lp_mask); 504 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 505 } else { 506 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 507 tlb_n_used_entries_dec(env, midx); 508 } 509 tlb_flush_vtlb_page_locked(env, midx, page); 510 } 511 } 512 513 /** 514 * tlb_flush_page_by_mmuidx_async_0: 515 * @cpu: cpu on which to flush 516 * @addr: page of virtual address to flush 517 * @idxmap: set of mmu_idx to flush 518 * 519 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 520 * at @addr from the tlbs indicated by @idxmap from @cpu. 521 */ 522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 523 vaddr addr, 524 uint16_t idxmap) 525 { 526 CPUArchState *env = cpu->env_ptr; 527 int mmu_idx; 528 529 assert_cpu_is_self(cpu); 530 531 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 532 533 qemu_spin_lock(&env_tlb(env)->c.lock); 534 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 535 if ((idxmap >> mmu_idx) & 1) { 536 tlb_flush_page_locked(env, mmu_idx, addr); 537 } 538 } 539 qemu_spin_unlock(&env_tlb(env)->c.lock); 540 541 /* 542 * Discard jump cache entries for any tb which might potentially 543 * overlap the flushed page, which includes the previous. 544 */ 545 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 546 tb_jmp_cache_clear_page(cpu, addr); 547 } 548 549 /** 550 * tlb_flush_page_by_mmuidx_async_1: 551 * @cpu: cpu on which to flush 552 * @data: encoded addr + idxmap 553 * 554 * Helper for tlb_flush_page_by_mmuidx and friends, called through 555 * async_run_on_cpu. The idxmap parameter is encoded in the page 556 * offset of the target_ptr field. This limits the set of mmu_idx 557 * that can be passed via this method. 558 */ 559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 560 run_on_cpu_data data) 561 { 562 vaddr addr_and_idxmap = data.target_ptr; 563 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 564 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 565 566 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 567 } 568 569 typedef struct { 570 vaddr addr; 571 uint16_t idxmap; 572 } TLBFlushPageByMMUIdxData; 573 574 /** 575 * tlb_flush_page_by_mmuidx_async_2: 576 * @cpu: cpu on which to flush 577 * @data: allocated addr + idxmap 578 * 579 * Helper for tlb_flush_page_by_mmuidx and friends, called through 580 * async_run_on_cpu. The addr+idxmap parameters are stored in a 581 * TLBFlushPageByMMUIdxData structure that has been allocated 582 * specifically for this helper. Free the structure when done. 583 */ 584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 585 run_on_cpu_data data) 586 { 587 TLBFlushPageByMMUIdxData *d = data.host_ptr; 588 589 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 590 g_free(d); 591 } 592 593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 594 { 595 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 596 597 /* This should already be page aligned */ 598 addr &= TARGET_PAGE_MASK; 599 600 if (qemu_cpu_is_self(cpu)) { 601 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 602 } else if (idxmap < TARGET_PAGE_SIZE) { 603 /* 604 * Most targets have only a few mmu_idx. In the case where 605 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 606 * allocating memory for this operation. 607 */ 608 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 609 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 610 } else { 611 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 612 613 /* Otherwise allocate a structure, freed by the worker. */ 614 d->addr = addr; 615 d->idxmap = idxmap; 616 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 617 RUN_ON_CPU_HOST_PTR(d)); 618 } 619 } 620 621 void tlb_flush_page(CPUState *cpu, vaddr addr) 622 { 623 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 624 } 625 626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 627 uint16_t idxmap) 628 { 629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 630 631 /* This should already be page aligned */ 632 addr &= TARGET_PAGE_MASK; 633 634 /* 635 * Allocate memory to hold addr+idxmap only when needed. 636 * See tlb_flush_page_by_mmuidx for details. 637 */ 638 if (idxmap < TARGET_PAGE_SIZE) { 639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 640 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 641 } else { 642 CPUState *dst_cpu; 643 644 /* Allocate a separate data block for each destination cpu. */ 645 CPU_FOREACH(dst_cpu) { 646 if (dst_cpu != src_cpu) { 647 TLBFlushPageByMMUIdxData *d 648 = g_new(TLBFlushPageByMMUIdxData, 1); 649 650 d->addr = addr; 651 d->idxmap = idxmap; 652 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 653 RUN_ON_CPU_HOST_PTR(d)); 654 } 655 } 656 } 657 658 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 659 } 660 661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 662 { 663 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 664 } 665 666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 667 vaddr addr, 668 uint16_t idxmap) 669 { 670 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 671 672 /* This should already be page aligned */ 673 addr &= TARGET_PAGE_MASK; 674 675 /* 676 * Allocate memory to hold addr+idxmap only when needed. 677 * See tlb_flush_page_by_mmuidx for details. 678 */ 679 if (idxmap < TARGET_PAGE_SIZE) { 680 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 681 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 682 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 683 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 684 } else { 685 CPUState *dst_cpu; 686 TLBFlushPageByMMUIdxData *d; 687 688 /* Allocate a separate data block for each destination cpu. */ 689 CPU_FOREACH(dst_cpu) { 690 if (dst_cpu != src_cpu) { 691 d = g_new(TLBFlushPageByMMUIdxData, 1); 692 d->addr = addr; 693 d->idxmap = idxmap; 694 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 695 RUN_ON_CPU_HOST_PTR(d)); 696 } 697 } 698 699 d = g_new(TLBFlushPageByMMUIdxData, 1); 700 d->addr = addr; 701 d->idxmap = idxmap; 702 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 703 RUN_ON_CPU_HOST_PTR(d)); 704 } 705 } 706 707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 708 { 709 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 710 } 711 712 static void tlb_flush_range_locked(CPUArchState *env, int midx, 713 vaddr addr, vaddr len, 714 unsigned bits) 715 { 716 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 717 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 718 vaddr mask = MAKE_64BIT_MASK(0, bits); 719 720 /* 721 * If @bits is smaller than the tlb size, there may be multiple entries 722 * within the TLB; otherwise all addresses that match under @mask hit 723 * the same TLB entry. 724 * TODO: Perhaps allow bits to be a few bits less than the size. 725 * For now, just flush the entire TLB. 726 * 727 * If @len is larger than the tlb size, then it will take longer to 728 * test all of the entries in the TLB than it will to flush it all. 729 */ 730 if (mask < f->mask || len > f->mask) { 731 tlb_debug("forcing full flush midx %d (" 732 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 733 midx, addr, mask, len); 734 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 735 return; 736 } 737 738 /* 739 * Check if we need to flush due to large pages. 740 * Because large_page_mask contains all 1's from the msb, 741 * we only need to test the end of the range. 742 */ 743 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 744 tlb_debug("forcing full flush midx %d (" 745 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 746 midx, d->large_page_addr, d->large_page_mask); 747 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 748 return; 749 } 750 751 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 752 vaddr page = addr + i; 753 CPUTLBEntry *entry = tlb_entry(env, midx, page); 754 755 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 756 tlb_n_used_entries_dec(env, midx); 757 } 758 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 759 } 760 } 761 762 typedef struct { 763 vaddr addr; 764 vaddr len; 765 uint16_t idxmap; 766 uint16_t bits; 767 } TLBFlushRangeData; 768 769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 770 TLBFlushRangeData d) 771 { 772 CPUArchState *env = cpu->env_ptr; 773 int mmu_idx; 774 775 assert_cpu_is_self(cpu); 776 777 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 778 d.addr, d.bits, d.len, d.idxmap); 779 780 qemu_spin_lock(&env_tlb(env)->c.lock); 781 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 782 if ((d.idxmap >> mmu_idx) & 1) { 783 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 784 } 785 } 786 qemu_spin_unlock(&env_tlb(env)->c.lock); 787 788 /* 789 * If the length is larger than the jump cache size, then it will take 790 * longer to clear each entry individually than it will to clear it all. 791 */ 792 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 793 tcg_flush_jmp_cache(cpu); 794 return; 795 } 796 797 /* 798 * Discard jump cache entries for any tb which might potentially 799 * overlap the flushed pages, which includes the previous. 800 */ 801 d.addr -= TARGET_PAGE_SIZE; 802 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 803 tb_jmp_cache_clear_page(cpu, d.addr); 804 d.addr += TARGET_PAGE_SIZE; 805 } 806 } 807 808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 809 run_on_cpu_data data) 810 { 811 TLBFlushRangeData *d = data.host_ptr; 812 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 813 g_free(d); 814 } 815 816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 817 vaddr len, uint16_t idxmap, 818 unsigned bits) 819 { 820 TLBFlushRangeData d; 821 822 /* 823 * If all bits are significant, and len is small, 824 * this devolves to tlb_flush_page. 825 */ 826 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 827 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 828 return; 829 } 830 /* If no page bits are significant, this devolves to tlb_flush. */ 831 if (bits < TARGET_PAGE_BITS) { 832 tlb_flush_by_mmuidx(cpu, idxmap); 833 return; 834 } 835 836 /* This should already be page aligned */ 837 d.addr = addr & TARGET_PAGE_MASK; 838 d.len = len; 839 d.idxmap = idxmap; 840 d.bits = bits; 841 842 if (qemu_cpu_is_self(cpu)) { 843 tlb_flush_range_by_mmuidx_async_0(cpu, d); 844 } else { 845 /* Otherwise allocate a structure, freed by the worker. */ 846 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 847 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 848 RUN_ON_CPU_HOST_PTR(p)); 849 } 850 } 851 852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 853 uint16_t idxmap, unsigned bits) 854 { 855 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 856 } 857 858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 859 vaddr addr, vaddr len, 860 uint16_t idxmap, unsigned bits) 861 { 862 TLBFlushRangeData d; 863 CPUState *dst_cpu; 864 865 /* 866 * If all bits are significant, and len is small, 867 * this devolves to tlb_flush_page. 868 */ 869 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 870 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 871 return; 872 } 873 /* If no page bits are significant, this devolves to tlb_flush. */ 874 if (bits < TARGET_PAGE_BITS) { 875 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 876 return; 877 } 878 879 /* This should already be page aligned */ 880 d.addr = addr & TARGET_PAGE_MASK; 881 d.len = len; 882 d.idxmap = idxmap; 883 d.bits = bits; 884 885 /* Allocate a separate data block for each destination cpu. */ 886 CPU_FOREACH(dst_cpu) { 887 if (dst_cpu != src_cpu) { 888 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 889 async_run_on_cpu(dst_cpu, 890 tlb_flush_range_by_mmuidx_async_1, 891 RUN_ON_CPU_HOST_PTR(p)); 892 } 893 } 894 895 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 896 } 897 898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 899 vaddr addr, uint16_t idxmap, 900 unsigned bits) 901 { 902 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 903 idxmap, bits); 904 } 905 906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 907 vaddr addr, 908 vaddr len, 909 uint16_t idxmap, 910 unsigned bits) 911 { 912 TLBFlushRangeData d, *p; 913 CPUState *dst_cpu; 914 915 /* 916 * If all bits are significant, and len is small, 917 * this devolves to tlb_flush_page. 918 */ 919 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 920 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 921 return; 922 } 923 /* If no page bits are significant, this devolves to tlb_flush. */ 924 if (bits < TARGET_PAGE_BITS) { 925 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 926 return; 927 } 928 929 /* This should already be page aligned */ 930 d.addr = addr & TARGET_PAGE_MASK; 931 d.len = len; 932 d.idxmap = idxmap; 933 d.bits = bits; 934 935 /* Allocate a separate data block for each destination cpu. */ 936 CPU_FOREACH(dst_cpu) { 937 if (dst_cpu != src_cpu) { 938 p = g_memdup(&d, sizeof(d)); 939 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 940 RUN_ON_CPU_HOST_PTR(p)); 941 } 942 } 943 944 p = g_memdup(&d, sizeof(d)); 945 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 946 RUN_ON_CPU_HOST_PTR(p)); 947 } 948 949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 950 vaddr addr, 951 uint16_t idxmap, 952 unsigned bits) 953 { 954 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 955 idxmap, bits); 956 } 957 958 /* update the TLBs so that writes to code in the virtual page 'addr' 959 can be detected */ 960 void tlb_protect_code(ram_addr_t ram_addr) 961 { 962 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 963 TARGET_PAGE_SIZE, 964 DIRTY_MEMORY_CODE); 965 } 966 967 /* update the TLB so that writes in physical page 'phys_addr' are no longer 968 tested for self modifying code */ 969 void tlb_unprotect_code(ram_addr_t ram_addr) 970 { 971 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 972 } 973 974 975 /* 976 * Dirty write flag handling 977 * 978 * When the TCG code writes to a location it looks up the address in 979 * the TLB and uses that data to compute the final address. If any of 980 * the lower bits of the address are set then the slow path is forced. 981 * There are a number of reasons to do this but for normal RAM the 982 * most usual is detecting writes to code regions which may invalidate 983 * generated code. 984 * 985 * Other vCPUs might be reading their TLBs during guest execution, so we update 986 * te->addr_write with qatomic_set. We don't need to worry about this for 987 * oversized guests as MTTCG is disabled for them. 988 * 989 * Called with tlb_c.lock held. 990 */ 991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 992 uintptr_t start, uintptr_t length) 993 { 994 uintptr_t addr = tlb_entry->addr_write; 995 996 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 997 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 998 addr &= TARGET_PAGE_MASK; 999 addr += tlb_entry->addend; 1000 if ((addr - start) < length) { 1001 #if TARGET_LONG_BITS == 32 1002 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1003 ptr_write += HOST_BIG_ENDIAN; 1004 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1005 #elif TCG_OVERSIZED_GUEST 1006 tlb_entry->addr_write |= TLB_NOTDIRTY; 1007 #else 1008 qatomic_set(&tlb_entry->addr_write, 1009 tlb_entry->addr_write | TLB_NOTDIRTY); 1010 #endif 1011 } 1012 } 1013 } 1014 1015 /* 1016 * Called with tlb_c.lock held. 1017 * Called only from the vCPU context, i.e. the TLB's owner thread. 1018 */ 1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1020 { 1021 *d = *s; 1022 } 1023 1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1025 * the target vCPU). 1026 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1027 * thing actually updated is the target TLB entry ->addr_write flags. 1028 */ 1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1030 { 1031 CPUArchState *env; 1032 1033 int mmu_idx; 1034 1035 env = cpu->env_ptr; 1036 qemu_spin_lock(&env_tlb(env)->c.lock); 1037 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1038 unsigned int i; 1039 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1040 1041 for (i = 0; i < n; i++) { 1042 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1043 start1, length); 1044 } 1045 1046 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1047 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1048 start1, length); 1049 } 1050 } 1051 qemu_spin_unlock(&env_tlb(env)->c.lock); 1052 } 1053 1054 /* Called with tlb_c.lock held */ 1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1056 vaddr addr) 1057 { 1058 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1059 tlb_entry->addr_write = addr; 1060 } 1061 } 1062 1063 /* update the TLB corresponding to virtual page vaddr 1064 so that it is no longer dirty */ 1065 void tlb_set_dirty(CPUState *cpu, vaddr addr) 1066 { 1067 CPUArchState *env = cpu->env_ptr; 1068 int mmu_idx; 1069 1070 assert_cpu_is_self(cpu); 1071 1072 addr &= TARGET_PAGE_MASK; 1073 qemu_spin_lock(&env_tlb(env)->c.lock); 1074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1075 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr); 1076 } 1077 1078 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1079 int k; 1080 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1081 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr); 1082 } 1083 } 1084 qemu_spin_unlock(&env_tlb(env)->c.lock); 1085 } 1086 1087 /* Our TLB does not support large pages, so remember the area covered by 1088 large pages and trigger a full TLB flush if these are invalidated. */ 1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1090 vaddr addr, uint64_t size) 1091 { 1092 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1093 vaddr lp_mask = ~(size - 1); 1094 1095 if (lp_addr == (vaddr)-1) { 1096 /* No previous large page. */ 1097 lp_addr = addr; 1098 } else { 1099 /* Extend the existing region to include the new page. 1100 This is a compromise between unnecessary flushes and 1101 the cost of maintaining a full variable size TLB. */ 1102 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1103 while (((lp_addr ^ addr) & lp_mask) != 0) { 1104 lp_mask <<= 1; 1105 } 1106 } 1107 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1108 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1109 } 1110 1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1112 vaddr address, int flags, 1113 MMUAccessType access_type, bool enable) 1114 { 1115 if (enable) { 1116 address |= flags & TLB_FLAGS_MASK; 1117 flags &= TLB_SLOW_FLAGS_MASK; 1118 if (flags) { 1119 address |= TLB_FORCE_SLOW; 1120 } 1121 } else { 1122 address = -1; 1123 flags = 0; 1124 } 1125 ent->addr_idx[access_type] = address; 1126 full->slow_flags[access_type] = flags; 1127 } 1128 1129 /* 1130 * Add a new TLB entry. At most one entry for a given virtual address 1131 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1132 * supplied size is only used by tlb_flush_page. 1133 * 1134 * Called from TCG-generated code, which is under an RCU read-side 1135 * critical section. 1136 */ 1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1138 vaddr addr, CPUTLBEntryFull *full) 1139 { 1140 CPUArchState *env = cpu->env_ptr; 1141 CPUTLB *tlb = env_tlb(env); 1142 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1143 MemoryRegionSection *section; 1144 unsigned int index, read_flags, write_flags; 1145 uintptr_t addend; 1146 CPUTLBEntry *te, tn; 1147 hwaddr iotlb, xlat, sz, paddr_page; 1148 vaddr addr_page; 1149 int asidx, wp_flags, prot; 1150 bool is_ram, is_romd; 1151 1152 assert_cpu_is_self(cpu); 1153 1154 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1155 sz = TARGET_PAGE_SIZE; 1156 } else { 1157 sz = (hwaddr)1 << full->lg_page_size; 1158 tlb_add_large_page(env, mmu_idx, addr, sz); 1159 } 1160 addr_page = addr & TARGET_PAGE_MASK; 1161 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1162 1163 prot = full->prot; 1164 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1165 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1166 &xlat, &sz, full->attrs, &prot); 1167 assert(sz >= TARGET_PAGE_SIZE); 1168 1169 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1170 " prot=%x idx=%d\n", 1171 addr, full->phys_addr, prot, mmu_idx); 1172 1173 read_flags = 0; 1174 if (full->lg_page_size < TARGET_PAGE_BITS) { 1175 /* Repeat the MMU check and TLB fill on every access. */ 1176 read_flags |= TLB_INVALID_MASK; 1177 } 1178 if (full->attrs.byte_swap) { 1179 read_flags |= TLB_BSWAP; 1180 } 1181 1182 is_ram = memory_region_is_ram(section->mr); 1183 is_romd = memory_region_is_romd(section->mr); 1184 1185 if (is_ram || is_romd) { 1186 /* RAM and ROMD both have associated host memory. */ 1187 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1188 } else { 1189 /* I/O does not; force the host address to NULL. */ 1190 addend = 0; 1191 } 1192 1193 write_flags = read_flags; 1194 if (is_ram) { 1195 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1196 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1197 /* 1198 * Computing is_clean is expensive; avoid all that unless 1199 * the page is actually writable. 1200 */ 1201 if (prot & PAGE_WRITE) { 1202 if (section->readonly) { 1203 write_flags |= TLB_DISCARD_WRITE; 1204 } else if (cpu_physical_memory_is_clean(iotlb)) { 1205 write_flags |= TLB_NOTDIRTY; 1206 } 1207 } 1208 } else { 1209 /* I/O or ROMD */ 1210 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1211 /* 1212 * Writes to romd devices must go through MMIO to enable write. 1213 * Reads to romd devices go through the ram_ptr found above, 1214 * but of course reads to I/O must go through MMIO. 1215 */ 1216 write_flags |= TLB_MMIO; 1217 if (!is_romd) { 1218 read_flags = write_flags; 1219 } 1220 } 1221 1222 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1223 TARGET_PAGE_SIZE); 1224 1225 index = tlb_index(env, mmu_idx, addr_page); 1226 te = tlb_entry(env, mmu_idx, addr_page); 1227 1228 /* 1229 * Hold the TLB lock for the rest of the function. We could acquire/release 1230 * the lock several times in the function, but it is faster to amortize the 1231 * acquisition cost by acquiring it just once. Note that this leads to 1232 * a longer critical section, but this is not a concern since the TLB lock 1233 * is unlikely to be contended. 1234 */ 1235 qemu_spin_lock(&tlb->c.lock); 1236 1237 /* Note that the tlb is no longer clean. */ 1238 tlb->c.dirty |= 1 << mmu_idx; 1239 1240 /* Make sure there's no cached translation for the new page. */ 1241 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page); 1242 1243 /* 1244 * Only evict the old entry to the victim tlb if it's for a 1245 * different page; otherwise just overwrite the stale data. 1246 */ 1247 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1248 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1249 CPUTLBEntry *tv = &desc->vtable[vidx]; 1250 1251 /* Evict the old entry into the victim tlb. */ 1252 copy_tlb_helper_locked(tv, te); 1253 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1254 tlb_n_used_entries_dec(env, mmu_idx); 1255 } 1256 1257 /* refill the tlb */ 1258 /* 1259 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1260 * aligned ram_addr_t of the page base of the target RAM. 1261 * Otherwise, iotlb contains 1262 * - a physical section number in the lower TARGET_PAGE_BITS 1263 * - the offset within section->mr of the page base (I/O, ROMD) with the 1264 * TARGET_PAGE_BITS masked off. 1265 * We subtract addr_page (which is page aligned and thus won't 1266 * disturb the low bits) to give an offset which can be added to the 1267 * (non-page-aligned) vaddr of the eventual memory access to get 1268 * the MemoryRegion offset for the access. Note that the vaddr we 1269 * subtract here is that of the page base, and not the same as the 1270 * vaddr we add back in io_prepare()/get_page_addr_code(). 1271 */ 1272 desc->fulltlb[index] = *full; 1273 full = &desc->fulltlb[index]; 1274 full->xlat_section = iotlb - addr_page; 1275 full->phys_addr = paddr_page; 1276 1277 /* Now calculate the new entry */ 1278 tn.addend = addend - addr_page; 1279 1280 tlb_set_compare(full, &tn, addr_page, read_flags, 1281 MMU_INST_FETCH, prot & PAGE_EXEC); 1282 1283 if (wp_flags & BP_MEM_READ) { 1284 read_flags |= TLB_WATCHPOINT; 1285 } 1286 tlb_set_compare(full, &tn, addr_page, read_flags, 1287 MMU_DATA_LOAD, prot & PAGE_READ); 1288 1289 if (prot & PAGE_WRITE_INV) { 1290 write_flags |= TLB_INVALID_MASK; 1291 } 1292 if (wp_flags & BP_MEM_WRITE) { 1293 write_flags |= TLB_WATCHPOINT; 1294 } 1295 tlb_set_compare(full, &tn, addr_page, write_flags, 1296 MMU_DATA_STORE, prot & PAGE_WRITE); 1297 1298 copy_tlb_helper_locked(te, &tn); 1299 tlb_n_used_entries_inc(env, mmu_idx); 1300 qemu_spin_unlock(&tlb->c.lock); 1301 } 1302 1303 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1304 hwaddr paddr, MemTxAttrs attrs, int prot, 1305 int mmu_idx, uint64_t size) 1306 { 1307 CPUTLBEntryFull full = { 1308 .phys_addr = paddr, 1309 .attrs = attrs, 1310 .prot = prot, 1311 .lg_page_size = ctz64(size) 1312 }; 1313 1314 assert(is_power_of_2(size)); 1315 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1316 } 1317 1318 void tlb_set_page(CPUState *cpu, vaddr addr, 1319 hwaddr paddr, int prot, 1320 int mmu_idx, uint64_t size) 1321 { 1322 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1323 prot, mmu_idx, size); 1324 } 1325 1326 /* 1327 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1328 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1329 * be discarded and looked up again (e.g. via tlb_entry()). 1330 */ 1331 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1332 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1333 { 1334 bool ok; 1335 1336 /* 1337 * This is not a probe, so only valid return is success; failure 1338 * should result in exception + longjmp to the cpu loop. 1339 */ 1340 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1341 access_type, mmu_idx, false, retaddr); 1342 assert(ok); 1343 } 1344 1345 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1346 MMUAccessType access_type, 1347 int mmu_idx, uintptr_t retaddr) 1348 { 1349 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1350 mmu_idx, retaddr); 1351 } 1352 1353 static MemoryRegionSection * 1354 io_prepare(hwaddr *out_offset, CPUArchState *env, hwaddr xlat, 1355 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1356 { 1357 CPUState *cpu = env_cpu(env); 1358 MemoryRegionSection *section; 1359 hwaddr mr_offset; 1360 1361 section = iotlb_to_section(cpu, xlat, attrs); 1362 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1363 cpu->mem_io_pc = retaddr; 1364 if (!cpu->can_do_io) { 1365 cpu_io_recompile(cpu, retaddr); 1366 } 1367 1368 *out_offset = mr_offset; 1369 return section; 1370 } 1371 1372 static void io_failed(CPUArchState *env, CPUTLBEntryFull *full, vaddr addr, 1373 unsigned size, MMUAccessType access_type, int mmu_idx, 1374 MemTxResult response, uintptr_t retaddr) 1375 { 1376 CPUState *cpu = env_cpu(env); 1377 1378 if (!cpu->ignore_memory_transaction_failures) { 1379 CPUClass *cc = CPU_GET_CLASS(cpu); 1380 1381 if (cc->tcg_ops->do_transaction_failed) { 1382 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1383 1384 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1385 access_type, mmu_idx, 1386 full->attrs, response, retaddr); 1387 } 1388 } 1389 } 1390 1391 /* Return true if ADDR is present in the victim tlb, and has been copied 1392 back to the main tlb. */ 1393 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1394 MMUAccessType access_type, vaddr page) 1395 { 1396 size_t vidx; 1397 1398 assert_cpu_is_self(env_cpu(env)); 1399 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1400 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1401 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1402 1403 if (cmp == page) { 1404 /* Found entry in victim tlb, swap tlb and iotlb. */ 1405 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1406 1407 qemu_spin_lock(&env_tlb(env)->c.lock); 1408 copy_tlb_helper_locked(&tmptlb, tlb); 1409 copy_tlb_helper_locked(tlb, vtlb); 1410 copy_tlb_helper_locked(vtlb, &tmptlb); 1411 qemu_spin_unlock(&env_tlb(env)->c.lock); 1412 1413 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1414 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1415 CPUTLBEntryFull tmpf; 1416 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1417 return true; 1418 } 1419 } 1420 return false; 1421 } 1422 1423 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1424 CPUTLBEntryFull *full, uintptr_t retaddr) 1425 { 1426 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1427 1428 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1429 1430 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1431 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1432 } 1433 1434 /* 1435 * Set both VGA and migration bits for simplicity and to remove 1436 * the notdirty callback faster. 1437 */ 1438 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1439 1440 /* We remove the notdirty callback only if the code has been flushed. */ 1441 if (!cpu_physical_memory_is_clean(ram_addr)) { 1442 trace_memory_notdirty_set_dirty(mem_vaddr); 1443 tlb_set_dirty(cpu, mem_vaddr); 1444 } 1445 } 1446 1447 static int probe_access_internal(CPUArchState *env, vaddr addr, 1448 int fault_size, MMUAccessType access_type, 1449 int mmu_idx, bool nonfault, 1450 void **phost, CPUTLBEntryFull **pfull, 1451 uintptr_t retaddr, bool check_mem_cbs) 1452 { 1453 uintptr_t index = tlb_index(env, mmu_idx, addr); 1454 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1455 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1456 vaddr page_addr = addr & TARGET_PAGE_MASK; 1457 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1458 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env)); 1459 CPUTLBEntryFull *full; 1460 1461 if (!tlb_hit_page(tlb_addr, page_addr)) { 1462 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1463 CPUState *cs = env_cpu(env); 1464 1465 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1466 mmu_idx, nonfault, retaddr)) { 1467 /* Non-faulting page table read failed. */ 1468 *phost = NULL; 1469 *pfull = NULL; 1470 return TLB_INVALID_MASK; 1471 } 1472 1473 /* TLB resize via tlb_fill may have moved the entry. */ 1474 index = tlb_index(env, mmu_idx, addr); 1475 entry = tlb_entry(env, mmu_idx, addr); 1476 1477 /* 1478 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1479 * to force the next access through tlb_fill. We've just 1480 * called tlb_fill, so we know that this entry *is* valid. 1481 */ 1482 flags &= ~TLB_INVALID_MASK; 1483 } 1484 tlb_addr = tlb_read_idx(entry, access_type); 1485 } 1486 flags &= tlb_addr; 1487 1488 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1489 flags |= full->slow_flags[access_type]; 1490 1491 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1492 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY)) 1493 || 1494 (access_type != MMU_INST_FETCH && force_mmio)) { 1495 *phost = NULL; 1496 return TLB_MMIO; 1497 } 1498 1499 /* Everything else is RAM. */ 1500 *phost = (void *)((uintptr_t)addr + entry->addend); 1501 return flags; 1502 } 1503 1504 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1505 MMUAccessType access_type, int mmu_idx, 1506 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1507 uintptr_t retaddr) 1508 { 1509 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1510 nonfault, phost, pfull, retaddr, true); 1511 1512 /* Handle clean RAM pages. */ 1513 if (unlikely(flags & TLB_NOTDIRTY)) { 1514 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1515 flags &= ~TLB_NOTDIRTY; 1516 } 1517 1518 return flags; 1519 } 1520 1521 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1522 MMUAccessType access_type, int mmu_idx, 1523 void **phost, CPUTLBEntryFull **pfull) 1524 { 1525 void *discard_phost; 1526 CPUTLBEntryFull *discard_tlb; 1527 1528 /* privately handle users that don't need full results */ 1529 phost = phost ? phost : &discard_phost; 1530 pfull = pfull ? pfull : &discard_tlb; 1531 1532 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1533 true, phost, pfull, 0, false); 1534 1535 /* Handle clean RAM pages. */ 1536 if (unlikely(flags & TLB_NOTDIRTY)) { 1537 notdirty_write(env_cpu(env), addr, 1, *pfull, 0); 1538 flags &= ~TLB_NOTDIRTY; 1539 } 1540 1541 return flags; 1542 } 1543 1544 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1545 MMUAccessType access_type, int mmu_idx, 1546 bool nonfault, void **phost, uintptr_t retaddr) 1547 { 1548 CPUTLBEntryFull *full; 1549 int flags; 1550 1551 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1552 1553 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1554 nonfault, phost, &full, retaddr, true); 1555 1556 /* Handle clean RAM pages. */ 1557 if (unlikely(flags & TLB_NOTDIRTY)) { 1558 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1559 flags &= ~TLB_NOTDIRTY; 1560 } 1561 1562 return flags; 1563 } 1564 1565 void *probe_access(CPUArchState *env, vaddr addr, int size, 1566 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1567 { 1568 CPUTLBEntryFull *full; 1569 void *host; 1570 int flags; 1571 1572 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1573 1574 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1575 false, &host, &full, retaddr, true); 1576 1577 /* Per the interface, size == 0 merely faults the access. */ 1578 if (size == 0) { 1579 return NULL; 1580 } 1581 1582 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1583 /* Handle watchpoints. */ 1584 if (flags & TLB_WATCHPOINT) { 1585 int wp_access = (access_type == MMU_DATA_STORE 1586 ? BP_MEM_WRITE : BP_MEM_READ); 1587 cpu_check_watchpoint(env_cpu(env), addr, size, 1588 full->attrs, wp_access, retaddr); 1589 } 1590 1591 /* Handle clean RAM pages. */ 1592 if (flags & TLB_NOTDIRTY) { 1593 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1594 } 1595 } 1596 1597 return host; 1598 } 1599 1600 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1601 MMUAccessType access_type, int mmu_idx) 1602 { 1603 CPUTLBEntryFull *full; 1604 void *host; 1605 int flags; 1606 1607 flags = probe_access_internal(env, addr, 0, access_type, 1608 mmu_idx, true, &host, &full, 0, false); 1609 1610 /* No combination of flags are expected by the caller. */ 1611 return flags ? NULL : host; 1612 } 1613 1614 /* 1615 * Return a ram_addr_t for the virtual address for execution. 1616 * 1617 * Return -1 if we can't translate and execute from an entire page 1618 * of RAM. This will force us to execute by loading and translating 1619 * one insn at a time, without caching. 1620 * 1621 * NOTE: This function will trigger an exception if the page is 1622 * not executable. 1623 */ 1624 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1625 void **hostp) 1626 { 1627 CPUTLBEntryFull *full; 1628 void *p; 1629 1630 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1631 cpu_mmu_index(env, true), false, 1632 &p, &full, 0, false); 1633 if (p == NULL) { 1634 return -1; 1635 } 1636 1637 if (full->lg_page_size < TARGET_PAGE_BITS) { 1638 return -1; 1639 } 1640 1641 if (hostp) { 1642 *hostp = p; 1643 } 1644 return qemu_ram_addr_from_host_nofail(p); 1645 } 1646 1647 /* Load/store with atomicity primitives. */ 1648 #include "ldst_atomicity.c.inc" 1649 1650 #ifdef CONFIG_PLUGIN 1651 /* 1652 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1653 * This should be a hot path as we will have just looked this path up 1654 * in the softmmu lookup code (or helper). We don't handle re-fills or 1655 * checking the victim table. This is purely informational. 1656 * 1657 * The one corner case is i/o write, which can cause changes to the 1658 * address space. Those changes, and the corresponding tlb flush, 1659 * should be delayed until the next TB, so even then this ought not fail. 1660 * But check, Just in Case. 1661 */ 1662 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1663 bool is_store, struct qemu_plugin_hwaddr *data) 1664 { 1665 CPUArchState *env = cpu->env_ptr; 1666 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1667 uintptr_t index = tlb_index(env, mmu_idx, addr); 1668 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1669 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1670 CPUTLBEntryFull *full; 1671 1672 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1673 return false; 1674 } 1675 1676 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1677 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1678 1679 /* We must have an iotlb entry for MMIO */ 1680 if (tlb_addr & TLB_MMIO) { 1681 MemoryRegionSection *section = 1682 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1683 full->attrs); 1684 data->is_io = true; 1685 data->mr = section->mr; 1686 } else { 1687 data->is_io = false; 1688 data->mr = NULL; 1689 } 1690 return true; 1691 } 1692 #endif 1693 1694 /* 1695 * Probe for a load/store operation. 1696 * Return the host address and into @flags. 1697 */ 1698 1699 typedef struct MMULookupPageData { 1700 CPUTLBEntryFull *full; 1701 void *haddr; 1702 vaddr addr; 1703 int flags; 1704 int size; 1705 } MMULookupPageData; 1706 1707 typedef struct MMULookupLocals { 1708 MMULookupPageData page[2]; 1709 MemOp memop; 1710 int mmu_idx; 1711 } MMULookupLocals; 1712 1713 /** 1714 * mmu_lookup1: translate one page 1715 * @env: cpu context 1716 * @data: lookup parameters 1717 * @mmu_idx: virtual address context 1718 * @access_type: load/store/code 1719 * @ra: return address into tcg generated code, or 0 1720 * 1721 * Resolve the translation for the one page at @data.addr, filling in 1722 * the rest of @data with the results. If the translation fails, 1723 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1724 * @mmu_idx may have resized. 1725 */ 1726 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1727 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1728 { 1729 vaddr addr = data->addr; 1730 uintptr_t index = tlb_index(env, mmu_idx, addr); 1731 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1732 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1733 bool maybe_resized = false; 1734 CPUTLBEntryFull *full; 1735 int flags; 1736 1737 /* If the TLB entry is for a different page, reload and try again. */ 1738 if (!tlb_hit(tlb_addr, addr)) { 1739 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1740 addr & TARGET_PAGE_MASK)) { 1741 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1742 maybe_resized = true; 1743 index = tlb_index(env, mmu_idx, addr); 1744 entry = tlb_entry(env, mmu_idx, addr); 1745 } 1746 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1747 } 1748 1749 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1750 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1751 flags |= full->slow_flags[access_type]; 1752 1753 data->full = full; 1754 data->flags = flags; 1755 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1756 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1757 1758 return maybe_resized; 1759 } 1760 1761 /** 1762 * mmu_watch_or_dirty 1763 * @env: cpu context 1764 * @data: lookup parameters 1765 * @access_type: load/store/code 1766 * @ra: return address into tcg generated code, or 0 1767 * 1768 * Trigger watchpoints for @data.addr:@data.size; 1769 * record writes to protected clean pages. 1770 */ 1771 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1772 MMUAccessType access_type, uintptr_t ra) 1773 { 1774 CPUTLBEntryFull *full = data->full; 1775 vaddr addr = data->addr; 1776 int flags = data->flags; 1777 int size = data->size; 1778 1779 /* On watchpoint hit, this will longjmp out. */ 1780 if (flags & TLB_WATCHPOINT) { 1781 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1782 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1783 flags &= ~TLB_WATCHPOINT; 1784 } 1785 1786 /* Note that notdirty is only set for writes. */ 1787 if (flags & TLB_NOTDIRTY) { 1788 notdirty_write(env_cpu(env), addr, size, full, ra); 1789 flags &= ~TLB_NOTDIRTY; 1790 } 1791 data->flags = flags; 1792 } 1793 1794 /** 1795 * mmu_lookup: translate page(s) 1796 * @env: cpu context 1797 * @addr: virtual address 1798 * @oi: combined mmu_idx and MemOp 1799 * @ra: return address into tcg generated code, or 0 1800 * @access_type: load/store/code 1801 * @l: output result 1802 * 1803 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1804 * bytes. Return true if the lookup crosses a page boundary. 1805 */ 1806 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1807 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1808 { 1809 unsigned a_bits; 1810 bool crosspage; 1811 int flags; 1812 1813 l->memop = get_memop(oi); 1814 l->mmu_idx = get_mmuidx(oi); 1815 1816 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1817 1818 /* Handle CPU specific unaligned behaviour */ 1819 a_bits = get_alignment_bits(l->memop); 1820 if (addr & ((1 << a_bits) - 1)) { 1821 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1822 } 1823 1824 l->page[0].addr = addr; 1825 l->page[0].size = memop_size(l->memop); 1826 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1827 l->page[1].size = 0; 1828 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1829 1830 if (likely(!crosspage)) { 1831 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1832 1833 flags = l->page[0].flags; 1834 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1835 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1836 } 1837 if (unlikely(flags & TLB_BSWAP)) { 1838 l->memop ^= MO_BSWAP; 1839 } 1840 } else { 1841 /* Finish compute of page crossing. */ 1842 int size0 = l->page[1].addr - addr; 1843 l->page[1].size = l->page[0].size - size0; 1844 l->page[0].size = size0; 1845 1846 /* 1847 * Lookup both pages, recognizing exceptions from either. If the 1848 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1849 */ 1850 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1851 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1852 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1853 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1854 } 1855 1856 flags = l->page[0].flags | l->page[1].flags; 1857 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1858 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1859 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1860 } 1861 1862 /* 1863 * Since target/sparc is the only user of TLB_BSWAP, and all 1864 * Sparc accesses are aligned, any treatment across two pages 1865 * would be arbitrary. Refuse it until there's a use. 1866 */ 1867 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1868 } 1869 1870 return crosspage; 1871 } 1872 1873 /* 1874 * Probe for an atomic operation. Do not allow unaligned operations, 1875 * or io operations to proceed. Return the host address. 1876 */ 1877 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1878 int size, uintptr_t retaddr) 1879 { 1880 uintptr_t mmu_idx = get_mmuidx(oi); 1881 MemOp mop = get_memop(oi); 1882 int a_bits = get_alignment_bits(mop); 1883 uintptr_t index; 1884 CPUTLBEntry *tlbe; 1885 vaddr tlb_addr; 1886 void *hostaddr; 1887 CPUTLBEntryFull *full; 1888 1889 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1890 1891 /* Adjust the given return address. */ 1892 retaddr -= GETPC_ADJ; 1893 1894 /* Enforce guest required alignment. */ 1895 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1896 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1897 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1898 mmu_idx, retaddr); 1899 } 1900 1901 /* Enforce qemu required alignment. */ 1902 if (unlikely(addr & (size - 1))) { 1903 /* We get here if guest alignment was not requested, 1904 or was not enforced by cpu_unaligned_access above. 1905 We might widen the access and emulate, but for now 1906 mark an exception and exit the cpu loop. */ 1907 goto stop_the_world; 1908 } 1909 1910 index = tlb_index(env, mmu_idx, addr); 1911 tlbe = tlb_entry(env, mmu_idx, addr); 1912 1913 /* Check TLB entry and enforce page permissions. */ 1914 tlb_addr = tlb_addr_write(tlbe); 1915 if (!tlb_hit(tlb_addr, addr)) { 1916 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1917 addr & TARGET_PAGE_MASK)) { 1918 tlb_fill(env_cpu(env), addr, size, 1919 MMU_DATA_STORE, mmu_idx, retaddr); 1920 index = tlb_index(env, mmu_idx, addr); 1921 tlbe = tlb_entry(env, mmu_idx, addr); 1922 } 1923 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1924 } 1925 1926 /* 1927 * Let the guest notice RMW on a write-only page. 1928 * We have just verified that the page is writable. 1929 * Subpage lookups may have left TLB_INVALID_MASK set, 1930 * but addr_read will only be -1 if PAGE_READ was unset. 1931 */ 1932 if (unlikely(tlbe->addr_read == -1)) { 1933 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1934 /* 1935 * Since we don't support reads and writes to different 1936 * addresses, and we do have the proper page loaded for 1937 * write, this shouldn't ever return. But just in case, 1938 * handle via stop-the-world. 1939 */ 1940 goto stop_the_world; 1941 } 1942 /* Collect tlb flags for read. */ 1943 tlb_addr |= tlbe->addr_read; 1944 1945 /* Notice an IO access or a needs-MMU-lookup access */ 1946 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1947 /* There's really nothing that can be done to 1948 support this apart from stop-the-world. */ 1949 goto stop_the_world; 1950 } 1951 1952 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1953 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1954 1955 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1956 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1957 } 1958 1959 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 1960 int wp_flags = 0; 1961 1962 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 1963 wp_flags |= BP_MEM_WRITE; 1964 } 1965 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 1966 wp_flags |= BP_MEM_READ; 1967 } 1968 if (wp_flags) { 1969 cpu_check_watchpoint(env_cpu(env), addr, size, 1970 full->attrs, wp_flags, retaddr); 1971 } 1972 } 1973 1974 return hostaddr; 1975 1976 stop_the_world: 1977 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1978 } 1979 1980 /* 1981 * Load Helpers 1982 * 1983 * We support two different access types. SOFTMMU_CODE_ACCESS is 1984 * specifically for reading instructions from system memory. It is 1985 * called by the translation loop and in some helpers where the code 1986 * is disassembled. It shouldn't be called directly by guest code. 1987 * 1988 * For the benefit of TCG generated code, we want to avoid the 1989 * complication of ABI-specific return type promotion and always 1990 * return a value extended to the register size of the host. This is 1991 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1992 * data, and for that we always have uint64_t. 1993 * 1994 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1995 */ 1996 1997 /** 1998 * do_ld_mmio_beN: 1999 * @env: cpu context 2000 * @full: page parameters 2001 * @ret_be: accumulated data 2002 * @addr: virtual address 2003 * @size: number of bytes 2004 * @mmu_idx: virtual address context 2005 * @ra: return address into tcg generated code, or 0 2006 * Context: iothread lock held 2007 * 2008 * Load @size bytes from @addr, which is memory-mapped i/o. 2009 * The bytes are concatenated in big-endian order with @ret_be. 2010 */ 2011 static uint64_t int_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full, 2012 uint64_t ret_be, vaddr addr, int size, 2013 int mmu_idx, MMUAccessType type, uintptr_t ra, 2014 MemoryRegion *mr, hwaddr mr_offset) 2015 { 2016 do { 2017 MemOp this_mop; 2018 unsigned this_size; 2019 uint64_t val; 2020 MemTxResult r; 2021 2022 /* Read aligned pieces up to 8 bytes. */ 2023 this_mop = ctz32(size | (int)addr | 8); 2024 this_size = 1 << this_mop; 2025 this_mop |= MO_BE; 2026 2027 r = memory_region_dispatch_read(mr, mr_offset, &val, 2028 this_mop, full->attrs); 2029 if (unlikely(r != MEMTX_OK)) { 2030 io_failed(env, full, addr, this_size, type, mmu_idx, r, ra); 2031 } 2032 if (this_size == 8) { 2033 return val; 2034 } 2035 2036 ret_be = (ret_be << (this_size * 8)) | val; 2037 addr += this_size; 2038 mr_offset += this_size; 2039 size -= this_size; 2040 } while (size); 2041 2042 return ret_be; 2043 } 2044 2045 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full, 2046 uint64_t ret_be, vaddr addr, int size, 2047 int mmu_idx, MMUAccessType type, uintptr_t ra) 2048 { 2049 MemoryRegionSection *section; 2050 MemoryRegion *mr; 2051 hwaddr mr_offset; 2052 MemTxAttrs attrs; 2053 uint64_t ret; 2054 2055 tcg_debug_assert(size > 0 && size <= 8); 2056 2057 attrs = full->attrs; 2058 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra); 2059 mr = section->mr; 2060 2061 qemu_mutex_lock_iothread(); 2062 ret = int_ld_mmio_beN(env, full, ret_be, addr, size, mmu_idx, 2063 type, ra, mr, mr_offset); 2064 qemu_mutex_unlock_iothread(); 2065 2066 return ret; 2067 } 2068 2069 static Int128 do_ld16_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full, 2070 uint64_t ret_be, vaddr addr, int size, 2071 int mmu_idx, uintptr_t ra) 2072 { 2073 MemoryRegionSection *section; 2074 MemoryRegion *mr; 2075 hwaddr mr_offset; 2076 MemTxAttrs attrs; 2077 uint64_t a, b; 2078 2079 tcg_debug_assert(size > 8 && size <= 16); 2080 2081 attrs = full->attrs; 2082 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra); 2083 mr = section->mr; 2084 2085 qemu_mutex_lock_iothread(); 2086 a = int_ld_mmio_beN(env, full, ret_be, addr, size - 8, mmu_idx, 2087 MMU_DATA_LOAD, ra, mr, mr_offset); 2088 b = int_ld_mmio_beN(env, full, ret_be, addr + size - 8, 8, mmu_idx, 2089 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2090 qemu_mutex_unlock_iothread(); 2091 2092 return int128_make128(b, a); 2093 } 2094 2095 /** 2096 * do_ld_bytes_beN 2097 * @p: translation parameters 2098 * @ret_be: accumulated data 2099 * 2100 * Load @p->size bytes from @p->haddr, which is RAM. 2101 * The bytes to concatenated in big-endian order with @ret_be. 2102 */ 2103 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2104 { 2105 uint8_t *haddr = p->haddr; 2106 int i, size = p->size; 2107 2108 for (i = 0; i < size; i++) { 2109 ret_be = (ret_be << 8) | haddr[i]; 2110 } 2111 return ret_be; 2112 } 2113 2114 /** 2115 * do_ld_parts_beN 2116 * @p: translation parameters 2117 * @ret_be: accumulated data 2118 * 2119 * As do_ld_bytes_beN, but atomically on each aligned part. 2120 */ 2121 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2122 { 2123 void *haddr = p->haddr; 2124 int size = p->size; 2125 2126 do { 2127 uint64_t x; 2128 int n; 2129 2130 /* 2131 * Find minimum of alignment and size. 2132 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2133 * would have only checked the low bits of addr|size once at the start, 2134 * but is just as easy. 2135 */ 2136 switch (((uintptr_t)haddr | size) & 7) { 2137 case 4: 2138 x = cpu_to_be32(load_atomic4(haddr)); 2139 ret_be = (ret_be << 32) | x; 2140 n = 4; 2141 break; 2142 case 2: 2143 case 6: 2144 x = cpu_to_be16(load_atomic2(haddr)); 2145 ret_be = (ret_be << 16) | x; 2146 n = 2; 2147 break; 2148 default: 2149 x = *(uint8_t *)haddr; 2150 ret_be = (ret_be << 8) | x; 2151 n = 1; 2152 break; 2153 case 0: 2154 g_assert_not_reached(); 2155 } 2156 haddr += n; 2157 size -= n; 2158 } while (size != 0); 2159 return ret_be; 2160 } 2161 2162 /** 2163 * do_ld_parts_be4 2164 * @p: translation parameters 2165 * @ret_be: accumulated data 2166 * 2167 * As do_ld_bytes_beN, but with one atomic load. 2168 * Four aligned bytes are guaranteed to cover the load. 2169 */ 2170 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2171 { 2172 int o = p->addr & 3; 2173 uint32_t x = load_atomic4(p->haddr - o); 2174 2175 x = cpu_to_be32(x); 2176 x <<= o * 8; 2177 x >>= (4 - p->size) * 8; 2178 return (ret_be << (p->size * 8)) | x; 2179 } 2180 2181 /** 2182 * do_ld_parts_be8 2183 * @p: translation parameters 2184 * @ret_be: accumulated data 2185 * 2186 * As do_ld_bytes_beN, but with one atomic load. 2187 * Eight aligned bytes are guaranteed to cover the load. 2188 */ 2189 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2190 MMULookupPageData *p, uint64_t ret_be) 2191 { 2192 int o = p->addr & 7; 2193 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2194 2195 x = cpu_to_be64(x); 2196 x <<= o * 8; 2197 x >>= (8 - p->size) * 8; 2198 return (ret_be << (p->size * 8)) | x; 2199 } 2200 2201 /** 2202 * do_ld_parts_be16 2203 * @p: translation parameters 2204 * @ret_be: accumulated data 2205 * 2206 * As do_ld_bytes_beN, but with one atomic load. 2207 * 16 aligned bytes are guaranteed to cover the load. 2208 */ 2209 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, 2210 MMULookupPageData *p, uint64_t ret_be) 2211 { 2212 int o = p->addr & 15; 2213 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); 2214 int size = p->size; 2215 2216 if (!HOST_BIG_ENDIAN) { 2217 y = bswap128(y); 2218 } 2219 y = int128_lshift(y, o * 8); 2220 y = int128_urshift(y, (16 - size) * 8); 2221 x = int128_make64(ret_be); 2222 x = int128_lshift(x, size * 8); 2223 return int128_or(x, y); 2224 } 2225 2226 /* 2227 * Wrapper for the above. 2228 */ 2229 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2230 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2231 MemOp mop, uintptr_t ra) 2232 { 2233 MemOp atom; 2234 unsigned tmp, half_size; 2235 2236 if (unlikely(p->flags & TLB_MMIO)) { 2237 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size, 2238 mmu_idx, type, ra); 2239 } 2240 2241 /* 2242 * It is a given that we cross a page and therefore there is no 2243 * atomicity for the load as a whole, but subobjects may need attention. 2244 */ 2245 atom = mop & MO_ATOM_MASK; 2246 switch (atom) { 2247 case MO_ATOM_SUBALIGN: 2248 return do_ld_parts_beN(p, ret_be); 2249 2250 case MO_ATOM_IFALIGN_PAIR: 2251 case MO_ATOM_WITHIN16_PAIR: 2252 tmp = mop & MO_SIZE; 2253 tmp = tmp ? tmp - 1 : 0; 2254 half_size = 1 << tmp; 2255 if (atom == MO_ATOM_IFALIGN_PAIR 2256 ? p->size == half_size 2257 : p->size >= half_size) { 2258 if (!HAVE_al8_fast && p->size < 4) { 2259 return do_ld_whole_be4(p, ret_be); 2260 } else { 2261 return do_ld_whole_be8(env, ra, p, ret_be); 2262 } 2263 } 2264 /* fall through */ 2265 2266 case MO_ATOM_IFALIGN: 2267 case MO_ATOM_WITHIN16: 2268 case MO_ATOM_NONE: 2269 return do_ld_bytes_beN(p, ret_be); 2270 2271 default: 2272 g_assert_not_reached(); 2273 } 2274 } 2275 2276 /* 2277 * Wrapper for the above, for 8 < size < 16. 2278 */ 2279 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, 2280 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2281 { 2282 int size = p->size; 2283 uint64_t b; 2284 MemOp atom; 2285 2286 if (unlikely(p->flags & TLB_MMIO)) { 2287 return do_ld16_mmio_beN(env, p->full, a, p->addr, size, mmu_idx, ra); 2288 } 2289 2290 /* 2291 * It is a given that we cross a page and therefore there is no 2292 * atomicity for the load as a whole, but subobjects may need attention. 2293 */ 2294 atom = mop & MO_ATOM_MASK; 2295 switch (atom) { 2296 case MO_ATOM_SUBALIGN: 2297 p->size = size - 8; 2298 a = do_ld_parts_beN(p, a); 2299 p->haddr += size - 8; 2300 p->size = 8; 2301 b = do_ld_parts_beN(p, 0); 2302 break; 2303 2304 case MO_ATOM_WITHIN16_PAIR: 2305 /* Since size > 8, this is the half that must be atomic. */ 2306 return do_ld_whole_be16(env, ra, p, a); 2307 2308 case MO_ATOM_IFALIGN_PAIR: 2309 /* 2310 * Since size > 8, both halves are misaligned, 2311 * and so neither is atomic. 2312 */ 2313 case MO_ATOM_IFALIGN: 2314 case MO_ATOM_WITHIN16: 2315 case MO_ATOM_NONE: 2316 p->size = size - 8; 2317 a = do_ld_bytes_beN(p, a); 2318 b = ldq_be_p(p->haddr + size - 8); 2319 break; 2320 2321 default: 2322 g_assert_not_reached(); 2323 } 2324 2325 return int128_make128(b, a); 2326 } 2327 2328 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2329 MMUAccessType type, uintptr_t ra) 2330 { 2331 if (unlikely(p->flags & TLB_MMIO)) { 2332 return do_ld_mmio_beN(env, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2333 } else { 2334 return *(uint8_t *)p->haddr; 2335 } 2336 } 2337 2338 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2339 MMUAccessType type, MemOp memop, uintptr_t ra) 2340 { 2341 uint16_t ret; 2342 2343 if (unlikely(p->flags & TLB_MMIO)) { 2344 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2345 if ((memop & MO_BSWAP) == MO_LE) { 2346 ret = bswap16(ret); 2347 } 2348 } else { 2349 /* Perform the load host endian, then swap if necessary. */ 2350 ret = load_atom_2(env, ra, p->haddr, memop); 2351 if (memop & MO_BSWAP) { 2352 ret = bswap16(ret); 2353 } 2354 } 2355 return ret; 2356 } 2357 2358 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2359 MMUAccessType type, MemOp memop, uintptr_t ra) 2360 { 2361 uint32_t ret; 2362 2363 if (unlikely(p->flags & TLB_MMIO)) { 2364 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2365 if ((memop & MO_BSWAP) == MO_LE) { 2366 ret = bswap32(ret); 2367 } 2368 } else { 2369 /* Perform the load host endian. */ 2370 ret = load_atom_4(env, ra, p->haddr, memop); 2371 if (memop & MO_BSWAP) { 2372 ret = bswap32(ret); 2373 } 2374 } 2375 return ret; 2376 } 2377 2378 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2379 MMUAccessType type, MemOp memop, uintptr_t ra) 2380 { 2381 uint64_t ret; 2382 2383 if (unlikely(p->flags & TLB_MMIO)) { 2384 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2385 if ((memop & MO_BSWAP) == MO_LE) { 2386 ret = bswap64(ret); 2387 } 2388 } else { 2389 /* Perform the load host endian. */ 2390 ret = load_atom_8(env, ra, p->haddr, memop); 2391 if (memop & MO_BSWAP) { 2392 ret = bswap64(ret); 2393 } 2394 } 2395 return ret; 2396 } 2397 2398 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2399 uintptr_t ra, MMUAccessType access_type) 2400 { 2401 MMULookupLocals l; 2402 bool crosspage; 2403 2404 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2405 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2406 tcg_debug_assert(!crosspage); 2407 2408 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2409 } 2410 2411 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 2412 MemOpIdx oi, uintptr_t retaddr) 2413 { 2414 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2415 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2416 } 2417 2418 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2419 uintptr_t ra, MMUAccessType access_type) 2420 { 2421 MMULookupLocals l; 2422 bool crosspage; 2423 uint16_t ret; 2424 uint8_t a, b; 2425 2426 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2427 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2428 if (likely(!crosspage)) { 2429 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2430 } 2431 2432 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2433 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2434 2435 if ((l.memop & MO_BSWAP) == MO_LE) { 2436 ret = a | (b << 8); 2437 } else { 2438 ret = b | (a << 8); 2439 } 2440 return ret; 2441 } 2442 2443 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 2444 MemOpIdx oi, uintptr_t retaddr) 2445 { 2446 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2447 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2448 } 2449 2450 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2451 uintptr_t ra, MMUAccessType access_type) 2452 { 2453 MMULookupLocals l; 2454 bool crosspage; 2455 uint32_t ret; 2456 2457 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2458 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2459 if (likely(!crosspage)) { 2460 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2461 } 2462 2463 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2464 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2465 if ((l.memop & MO_BSWAP) == MO_LE) { 2466 ret = bswap32(ret); 2467 } 2468 return ret; 2469 } 2470 2471 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 2472 MemOpIdx oi, uintptr_t retaddr) 2473 { 2474 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2475 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2476 } 2477 2478 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2479 uintptr_t ra, MMUAccessType access_type) 2480 { 2481 MMULookupLocals l; 2482 bool crosspage; 2483 uint64_t ret; 2484 2485 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2486 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2487 if (likely(!crosspage)) { 2488 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2489 } 2490 2491 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2492 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2493 if ((l.memop & MO_BSWAP) == MO_LE) { 2494 ret = bswap64(ret); 2495 } 2496 return ret; 2497 } 2498 2499 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 2500 MemOpIdx oi, uintptr_t retaddr) 2501 { 2502 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2503 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2504 } 2505 2506 /* 2507 * Provide signed versions of the load routines as well. We can of course 2508 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2509 */ 2510 2511 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 2512 MemOpIdx oi, uintptr_t retaddr) 2513 { 2514 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2515 } 2516 2517 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 2518 MemOpIdx oi, uintptr_t retaddr) 2519 { 2520 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2521 } 2522 2523 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 2524 MemOpIdx oi, uintptr_t retaddr) 2525 { 2526 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2527 } 2528 2529 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr, 2530 MemOpIdx oi, uintptr_t ra) 2531 { 2532 MMULookupLocals l; 2533 bool crosspage; 2534 uint64_t a, b; 2535 Int128 ret; 2536 int first; 2537 2538 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2539 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); 2540 if (likely(!crosspage)) { 2541 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2542 ret = do_ld16_mmio_beN(env, l.page[0].full, 0, addr, 16, 2543 l.mmu_idx, ra); 2544 if ((l.memop & MO_BSWAP) == MO_LE) { 2545 ret = bswap128(ret); 2546 } 2547 } else { 2548 /* Perform the load host endian. */ 2549 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); 2550 if (l.memop & MO_BSWAP) { 2551 ret = bswap128(ret); 2552 } 2553 } 2554 return ret; 2555 } 2556 2557 first = l.page[0].size; 2558 if (first == 8) { 2559 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2560 2561 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2562 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2563 if ((mop8 & MO_BSWAP) == MO_LE) { 2564 ret = int128_make128(a, b); 2565 } else { 2566 ret = int128_make128(b, a); 2567 } 2568 return ret; 2569 } 2570 2571 if (first < 8) { 2572 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, 2573 MMU_DATA_LOAD, l.memop, ra); 2574 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); 2575 } else { 2576 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2577 b = int128_getlo(ret); 2578 ret = int128_lshift(ret, l.page[1].size * 8); 2579 a = int128_gethi(ret); 2580 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, 2581 MMU_DATA_LOAD, l.memop, ra); 2582 ret = int128_make128(b, a); 2583 } 2584 if ((l.memop & MO_BSWAP) == MO_LE) { 2585 ret = bswap128(ret); 2586 } 2587 return ret; 2588 } 2589 2590 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 2591 uint32_t oi, uintptr_t retaddr) 2592 { 2593 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2594 return do_ld16_mmu(env, addr, oi, retaddr); 2595 } 2596 2597 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) 2598 { 2599 return helper_ld16_mmu(env, addr, oi, GETPC()); 2600 } 2601 2602 /* 2603 * Load helpers for cpu_ldst.h. 2604 */ 2605 2606 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2607 { 2608 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2609 } 2610 2611 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2612 { 2613 uint8_t ret; 2614 2615 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2616 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2617 plugin_load_cb(env, addr, oi); 2618 return ret; 2619 } 2620 2621 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 2622 MemOpIdx oi, uintptr_t ra) 2623 { 2624 uint16_t ret; 2625 2626 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2627 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2628 plugin_load_cb(env, addr, oi); 2629 return ret; 2630 } 2631 2632 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 2633 MemOpIdx oi, uintptr_t ra) 2634 { 2635 uint32_t ret; 2636 2637 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2638 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2639 plugin_load_cb(env, addr, oi); 2640 return ret; 2641 } 2642 2643 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 2644 MemOpIdx oi, uintptr_t ra) 2645 { 2646 uint64_t ret; 2647 2648 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2649 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2650 plugin_load_cb(env, addr, oi); 2651 return ret; 2652 } 2653 2654 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 2655 MemOpIdx oi, uintptr_t ra) 2656 { 2657 Int128 ret; 2658 2659 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2660 ret = do_ld16_mmu(env, addr, oi, ra); 2661 plugin_load_cb(env, addr, oi); 2662 return ret; 2663 } 2664 2665 /* 2666 * Store Helpers 2667 */ 2668 2669 /** 2670 * do_st_mmio_leN: 2671 * @env: cpu context 2672 * @full: page parameters 2673 * @val_le: data to store 2674 * @addr: virtual address 2675 * @size: number of bytes 2676 * @mmu_idx: virtual address context 2677 * @ra: return address into tcg generated code, or 0 2678 * Context: iothread lock held 2679 * 2680 * Store @size bytes at @addr, which is memory-mapped i/o. 2681 * The bytes to store are extracted in little-endian order from @val_le; 2682 * return the bytes of @val_le beyond @p->size that have not been stored. 2683 */ 2684 static uint64_t int_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full, 2685 uint64_t val_le, vaddr addr, int size, 2686 int mmu_idx, uintptr_t ra, 2687 MemoryRegion *mr, hwaddr mr_offset) 2688 { 2689 do { 2690 MemOp this_mop; 2691 unsigned this_size; 2692 MemTxResult r; 2693 2694 /* Store aligned pieces up to 8 bytes. */ 2695 this_mop = ctz32(size | (int)addr | 8); 2696 this_size = 1 << this_mop; 2697 this_mop |= MO_LE; 2698 2699 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2700 this_mop, full->attrs); 2701 if (unlikely(r != MEMTX_OK)) { 2702 io_failed(env, full, addr, this_size, MMU_DATA_STORE, 2703 mmu_idx, r, ra); 2704 } 2705 if (this_size == 8) { 2706 return 0; 2707 } 2708 2709 val_le >>= this_size * 8; 2710 addr += this_size; 2711 mr_offset += this_size; 2712 size -= this_size; 2713 } while (size); 2714 2715 return val_le; 2716 } 2717 2718 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full, 2719 uint64_t val_le, vaddr addr, int size, 2720 int mmu_idx, uintptr_t ra) 2721 { 2722 MemoryRegionSection *section; 2723 hwaddr mr_offset; 2724 MemoryRegion *mr; 2725 MemTxAttrs attrs; 2726 uint64_t ret; 2727 2728 tcg_debug_assert(size > 0 && size <= 8); 2729 2730 attrs = full->attrs; 2731 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra); 2732 mr = section->mr; 2733 2734 qemu_mutex_lock_iothread(); 2735 ret = int_st_mmio_leN(env, full, val_le, addr, size, mmu_idx, 2736 ra, mr, mr_offset); 2737 qemu_mutex_unlock_iothread(); 2738 2739 return ret; 2740 } 2741 2742 static uint64_t do_st16_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full, 2743 Int128 val_le, vaddr addr, int size, 2744 int mmu_idx, uintptr_t ra) 2745 { 2746 MemoryRegionSection *section; 2747 MemoryRegion *mr; 2748 hwaddr mr_offset; 2749 MemTxAttrs attrs; 2750 uint64_t ret; 2751 2752 tcg_debug_assert(size > 8 && size <= 16); 2753 2754 attrs = full->attrs; 2755 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra); 2756 mr = section->mr; 2757 2758 qemu_mutex_lock_iothread(); 2759 int_st_mmio_leN(env, full, int128_getlo(val_le), addr, 8, 2760 mmu_idx, ra, mr, mr_offset); 2761 ret = int_st_mmio_leN(env, full, int128_gethi(val_le), addr + 8, 2762 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2763 qemu_mutex_unlock_iothread(); 2764 2765 return ret; 2766 } 2767 2768 /* 2769 * Wrapper for the above. 2770 */ 2771 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2772 uint64_t val_le, int mmu_idx, 2773 MemOp mop, uintptr_t ra) 2774 { 2775 MemOp atom; 2776 unsigned tmp, half_size; 2777 2778 if (unlikely(p->flags & TLB_MMIO)) { 2779 return do_st_mmio_leN(env, p->full, val_le, p->addr, 2780 p->size, mmu_idx, ra); 2781 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2782 return val_le >> (p->size * 8); 2783 } 2784 2785 /* 2786 * It is a given that we cross a page and therefore there is no atomicity 2787 * for the store as a whole, but subobjects may need attention. 2788 */ 2789 atom = mop & MO_ATOM_MASK; 2790 switch (atom) { 2791 case MO_ATOM_SUBALIGN: 2792 return store_parts_leN(p->haddr, p->size, val_le); 2793 2794 case MO_ATOM_IFALIGN_PAIR: 2795 case MO_ATOM_WITHIN16_PAIR: 2796 tmp = mop & MO_SIZE; 2797 tmp = tmp ? tmp - 1 : 0; 2798 half_size = 1 << tmp; 2799 if (atom == MO_ATOM_IFALIGN_PAIR 2800 ? p->size == half_size 2801 : p->size >= half_size) { 2802 if (!HAVE_al8_fast && p->size <= 4) { 2803 return store_whole_le4(p->haddr, p->size, val_le); 2804 } else if (HAVE_al8) { 2805 return store_whole_le8(p->haddr, p->size, val_le); 2806 } else { 2807 cpu_loop_exit_atomic(env_cpu(env), ra); 2808 } 2809 } 2810 /* fall through */ 2811 2812 case MO_ATOM_IFALIGN: 2813 case MO_ATOM_WITHIN16: 2814 case MO_ATOM_NONE: 2815 return store_bytes_leN(p->haddr, p->size, val_le); 2816 2817 default: 2818 g_assert_not_reached(); 2819 } 2820 } 2821 2822 /* 2823 * Wrapper for the above, for 8 < size < 16. 2824 */ 2825 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, 2826 Int128 val_le, int mmu_idx, 2827 MemOp mop, uintptr_t ra) 2828 { 2829 int size = p->size; 2830 MemOp atom; 2831 2832 if (unlikely(p->flags & TLB_MMIO)) { 2833 return do_st16_mmio_leN(env, p->full, val_le, p->addr, 2834 size, mmu_idx, ra); 2835 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2836 return int128_gethi(val_le) >> ((size - 8) * 8); 2837 } 2838 2839 /* 2840 * It is a given that we cross a page and therefore there is no atomicity 2841 * for the store as a whole, but subobjects may need attention. 2842 */ 2843 atom = mop & MO_ATOM_MASK; 2844 switch (atom) { 2845 case MO_ATOM_SUBALIGN: 2846 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2847 return store_parts_leN(p->haddr + 8, p->size - 8, 2848 int128_gethi(val_le)); 2849 2850 case MO_ATOM_WITHIN16_PAIR: 2851 /* Since size > 8, this is the half that must be atomic. */ 2852 if (!HAVE_ATOMIC128_RW) { 2853 cpu_loop_exit_atomic(env_cpu(env), ra); 2854 } 2855 return store_whole_le16(p->haddr, p->size, val_le); 2856 2857 case MO_ATOM_IFALIGN_PAIR: 2858 /* 2859 * Since size > 8, both halves are misaligned, 2860 * and so neither is atomic. 2861 */ 2862 case MO_ATOM_IFALIGN: 2863 case MO_ATOM_WITHIN16: 2864 case MO_ATOM_NONE: 2865 stq_le_p(p->haddr, int128_getlo(val_le)); 2866 return store_bytes_leN(p->haddr + 8, p->size - 8, 2867 int128_gethi(val_le)); 2868 2869 default: 2870 g_assert_not_reached(); 2871 } 2872 } 2873 2874 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2875 int mmu_idx, uintptr_t ra) 2876 { 2877 if (unlikely(p->flags & TLB_MMIO)) { 2878 do_st_mmio_leN(env, p->full, val, p->addr, 1, mmu_idx, ra); 2879 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2880 /* nothing */ 2881 } else { 2882 *(uint8_t *)p->haddr = val; 2883 } 2884 } 2885 2886 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2887 int mmu_idx, MemOp memop, uintptr_t ra) 2888 { 2889 if (unlikely(p->flags & TLB_MMIO)) { 2890 if ((memop & MO_BSWAP) != MO_LE) { 2891 val = bswap16(val); 2892 } 2893 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra); 2894 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2895 /* nothing */ 2896 } else { 2897 /* Swap to host endian if necessary, then store. */ 2898 if (memop & MO_BSWAP) { 2899 val = bswap16(val); 2900 } 2901 store_atom_2(env, ra, p->haddr, memop, val); 2902 } 2903 } 2904 2905 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2906 int mmu_idx, MemOp memop, uintptr_t ra) 2907 { 2908 if (unlikely(p->flags & TLB_MMIO)) { 2909 if ((memop & MO_BSWAP) != MO_LE) { 2910 val = bswap32(val); 2911 } 2912 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra); 2913 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2914 /* nothing */ 2915 } else { 2916 /* Swap to host endian if necessary, then store. */ 2917 if (memop & MO_BSWAP) { 2918 val = bswap32(val); 2919 } 2920 store_atom_4(env, ra, p->haddr, memop, val); 2921 } 2922 } 2923 2924 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2925 int mmu_idx, MemOp memop, uintptr_t ra) 2926 { 2927 if (unlikely(p->flags & TLB_MMIO)) { 2928 if ((memop & MO_BSWAP) != MO_LE) { 2929 val = bswap64(val); 2930 } 2931 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra); 2932 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2933 /* nothing */ 2934 } else { 2935 /* Swap to host endian if necessary, then store. */ 2936 if (memop & MO_BSWAP) { 2937 val = bswap64(val); 2938 } 2939 store_atom_8(env, ra, p->haddr, memop, val); 2940 } 2941 } 2942 2943 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2944 MemOpIdx oi, uintptr_t ra) 2945 { 2946 MMULookupLocals l; 2947 bool crosspage; 2948 2949 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2950 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2951 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2952 tcg_debug_assert(!crosspage); 2953 2954 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2955 } 2956 2957 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val, 2958 MemOpIdx oi, uintptr_t ra) 2959 { 2960 MMULookupLocals l; 2961 bool crosspage; 2962 uint8_t a, b; 2963 2964 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2965 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2966 if (likely(!crosspage)) { 2967 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2968 return; 2969 } 2970 2971 if ((l.memop & MO_BSWAP) == MO_LE) { 2972 a = val, b = val >> 8; 2973 } else { 2974 b = val, a = val >> 8; 2975 } 2976 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2977 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2978 } 2979 2980 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2981 MemOpIdx oi, uintptr_t retaddr) 2982 { 2983 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2984 do_st2_mmu(env, addr, val, oi, retaddr); 2985 } 2986 2987 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val, 2988 MemOpIdx oi, uintptr_t ra) 2989 { 2990 MMULookupLocals l; 2991 bool crosspage; 2992 2993 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2994 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2995 if (likely(!crosspage)) { 2996 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2997 return; 2998 } 2999 3000 /* Swap to little endian for simplicity, then store by bytes. */ 3001 if ((l.memop & MO_BSWAP) != MO_LE) { 3002 val = bswap32(val); 3003 } 3004 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3005 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3006 } 3007 3008 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 3009 MemOpIdx oi, uintptr_t retaddr) 3010 { 3011 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3012 do_st4_mmu(env, addr, val, oi, retaddr); 3013 } 3014 3015 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val, 3016 MemOpIdx oi, uintptr_t ra) 3017 { 3018 MMULookupLocals l; 3019 bool crosspage; 3020 3021 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3022 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3023 if (likely(!crosspage)) { 3024 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3025 return; 3026 } 3027 3028 /* Swap to little endian for simplicity, then store by bytes. */ 3029 if ((l.memop & MO_BSWAP) != MO_LE) { 3030 val = bswap64(val); 3031 } 3032 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3033 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3034 } 3035 3036 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 3037 MemOpIdx oi, uintptr_t retaddr) 3038 { 3039 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3040 do_st8_mmu(env, addr, val, oi, retaddr); 3041 } 3042 3043 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val, 3044 MemOpIdx oi, uintptr_t ra) 3045 { 3046 MMULookupLocals l; 3047 bool crosspage; 3048 uint64_t a, b; 3049 int first; 3050 3051 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3052 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3053 if (likely(!crosspage)) { 3054 if (unlikely(l.page[0].flags & TLB_MMIO)) { 3055 if ((l.memop & MO_BSWAP) != MO_LE) { 3056 val = bswap128(val); 3057 } 3058 do_st16_mmio_leN(env, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 3059 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 3060 /* nothing */ 3061 } else { 3062 /* Swap to host endian if necessary, then store. */ 3063 if (l.memop & MO_BSWAP) { 3064 val = bswap128(val); 3065 } 3066 store_atom_16(env, ra, l.page[0].haddr, l.memop, val); 3067 } 3068 return; 3069 } 3070 3071 first = l.page[0].size; 3072 if (first == 8) { 3073 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 3074 3075 if (l.memop & MO_BSWAP) { 3076 val = bswap128(val); 3077 } 3078 if (HOST_BIG_ENDIAN) { 3079 b = int128_getlo(val), a = int128_gethi(val); 3080 } else { 3081 a = int128_getlo(val), b = int128_gethi(val); 3082 } 3083 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); 3084 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); 3085 return; 3086 } 3087 3088 if ((l.memop & MO_BSWAP) != MO_LE) { 3089 val = bswap128(val); 3090 } 3091 if (first < 8) { 3092 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 3093 val = int128_urshift(val, first * 8); 3094 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3095 } else { 3096 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3097 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); 3098 } 3099 } 3100 3101 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 3102 MemOpIdx oi, uintptr_t retaddr) 3103 { 3104 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3105 do_st16_mmu(env, addr, val, oi, retaddr); 3106 } 3107 3108 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 3109 { 3110 helper_st16_mmu(env, addr, val, oi, GETPC()); 3111 } 3112 3113 /* 3114 * Store Helpers for cpu_ldst.h 3115 */ 3116 3117 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 3118 { 3119 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 3120 } 3121 3122 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, 3123 MemOpIdx oi, uintptr_t retaddr) 3124 { 3125 helper_stb_mmu(env, addr, val, oi, retaddr); 3126 plugin_store_cb(env, addr, oi); 3127 } 3128 3129 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, 3130 MemOpIdx oi, uintptr_t retaddr) 3131 { 3132 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 3133 do_st2_mmu(env, addr, val, oi, retaddr); 3134 plugin_store_cb(env, addr, oi); 3135 } 3136 3137 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, 3138 MemOpIdx oi, uintptr_t retaddr) 3139 { 3140 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3141 do_st4_mmu(env, addr, val, oi, retaddr); 3142 plugin_store_cb(env, addr, oi); 3143 } 3144 3145 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, 3146 MemOpIdx oi, uintptr_t retaddr) 3147 { 3148 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3149 do_st8_mmu(env, addr, val, oi, retaddr); 3150 plugin_store_cb(env, addr, oi); 3151 } 3152 3153 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 3154 MemOpIdx oi, uintptr_t retaddr) 3155 { 3156 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3157 do_st16_mmu(env, addr, val, oi, retaddr); 3158 plugin_store_cb(env, addr, oi); 3159 } 3160 3161 #include "ldst_common.c.inc" 3162 3163 /* 3164 * First set of functions passes in OI and RETADDR. 3165 * This makes them callable from other helpers. 3166 */ 3167 3168 #define ATOMIC_NAME(X) \ 3169 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 3170 3171 #define ATOMIC_MMU_CLEANUP 3172 3173 #include "atomic_common.c.inc" 3174 3175 #define DATA_SIZE 1 3176 #include "atomic_template.h" 3177 3178 #define DATA_SIZE 2 3179 #include "atomic_template.h" 3180 3181 #define DATA_SIZE 4 3182 #include "atomic_template.h" 3183 3184 #ifdef CONFIG_ATOMIC64 3185 #define DATA_SIZE 8 3186 #include "atomic_template.h" 3187 #endif 3188 3189 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 3190 #define DATA_SIZE 16 3191 #include "atomic_template.h" 3192 #endif 3193 3194 /* Code access functions. */ 3195 3196 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3197 { 3198 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 3199 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3200 } 3201 3202 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3203 { 3204 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 3205 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3206 } 3207 3208 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3209 { 3210 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 3211 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3212 } 3213 3214 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3215 { 3216 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 3217 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3218 } 3219 3220 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3221 MemOpIdx oi, uintptr_t retaddr) 3222 { 3223 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3224 } 3225 3226 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3227 MemOpIdx oi, uintptr_t retaddr) 3228 { 3229 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3230 } 3231 3232 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3233 MemOpIdx oi, uintptr_t retaddr) 3234 { 3235 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3236 } 3237 3238 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3239 MemOpIdx oi, uintptr_t retaddr) 3240 { 3241 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3242 } 3243